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Key Points

• Csnk1a1
haploinsufficiency and
p53 mutation
collaborate on
malignant
transformation of
hematopoietic stem
cells.

• Clonal advantage and
leukemic
transformation are
driven by converging
Wnt and Myc signaling.
m
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It is still not fully understood how genetic haploinsufficiency in del(5q) myelodysplastic

syndrome (MDS) contributes to malignant transformation of hematopoietic stem cells. We

asked how compound haploinsufficiency for Csnk1a1 and Egr1 in the common deleted

region on chromosome 5 affects hematopoietic stem cells. Additionally, Trp53 was

disrupted as the most frequently comutated gene in del(5q) MDS using CRISPR/Cas9 editing

in hematopoietic progenitors of wild-type (WT), Csnk1a1–/+, Egr1–/+, Csnk1a1/Egr1–/+ mice. A

transplantable acute leukemia only developed in the Csnk1a1–/+ Trp53–edited recipient.

Isolated blasts were indefinitely cultured ex vivo and gave rise to leukemia after

transplantation, providing a tool to study disease mechanisms or perform drug screenings.

In a small-scale drug screening, the collaborative effect of Csnk1a1 haploinsufficiency and

Trp53 sensitized blasts to the CSNK1 inhibitor A51 relative to WT or Csnk1a1

haploinsufficient cells. In vivo, A51 treatment significantly reduced blast counts in Csnk1a1

haploinsufficient/Trp53 acute leukemias and restored hematopoiesis in the bone marrow.

Transcriptomics on blasts and their normal counterparts showed that the derived leukemia

was driven by MAPK and Myc upregulation downstream of Csnk1a1 haploinsufficiency

cooperating with a downregulated p53 axis. A collaborative effect of Csnk1a1

haploinsufficiency and p53 loss on MAPK and Myc upregulation was confirmed on the

protein level. Downregulation of Myc protein expression correlated with efficient

elimination of blasts in A51 treatment. The “Myc signature” closely resembled the

transcriptional profile of patients with del(5q) MDS with TP53 mutation.
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Introduction

Myelodysplastic syndrome (MDS) is a disease of abnormal blood
production that frequently progresses to acute myeloid leukemia
(AML). One well defined subgroup of MDS carries a deletion of the
long arm of chromosome 5, the most common cytogenetic aber-
rations in MDS (del(5q) MDS).1 Although the prognosis of MDS
with isolated del(5q) is relatively favorable, aberrations of chromo-
some 5 are overrepresented in therapy-related myeloid neoplasms
(t-MNs) and often occur in combination with TP53 mutations as
well as other cytogenetic abnormalities. T-MNs are associated with
an exceedingly poor prognosis with a median survival of
8 months,2-5 and their treatment is challenging. It is often unsuc-
cessful in extending survival because t-MNs are frequently che-
moresistant and prone to relapse even after allogeneic stem cell
transplantation.6-8

Extensive research over the last decades has not succeeded in
identifying a single tumor suppressor gene in the common deleted
region of chromosome 5, and neither have inactivating mutations
been found on the remaining allele. This led to the currently pre-
vailing view that the gene dosage of several potentially cooperating
candidate genes is responsible in a contiguous gene syndrome.4,9

In particular, candidate genes involved in cell cycle regulation, such
as Csnk1a1, Egr1, and Apc, have been shown to provide a growth
advantage within hematopoietic stem cells (HSCs)10-16: Egr1 is a
transcription factor involved in multiple cell proliferation pathways.
Knockout of Egr1 in the hematopoietic system leads to increased
proliferation and mobilization of HSCs, and Egr1 haploinsufficiency
vastly accelerates the emergence of myeloid and lymphoid malig-
nancies after DNA damage.15,16 Csnk1a1 is a serine/threonine
kinase with prominent involvement in Wnt/b-catenin signaling and
cell cycle pathways. Our previous work demonstrated that
Csnk1a1 haploinsufficiency leads to a proliferative advantage of
HSCs by activation of Wnt signaling and Myc upregulation with
concurrent downregulation of inflammatory signaling in HSCs.10,17

TP53 mutations co-occur with chromosome 5 aberrations more
frequently than expected by chance, and progression of del(5q)
MDS to AML is associated with TP53 mutation.11,18-20 In >90% of
the cases, TP53 mutations in AML involve the DNA-binding domain
and are frequently missense mutations.5,21 Interestingly, previous
studies in mice have found enhanced oncogenic potential of Trp53
missense mutations compared with Trp53 loss.22 A dominant
negative effect impairing the remaining wild-type (WT) allele has
later been demonstrated for the most frequent TP53 missense
mutations of human MDS.23

It is still unclear how the large heterozygous deletion on chromo-
some 5 cooperates with TP53 mutation and/or other genetic
aberrations to drive malignant transformation of hematopoietic stem
cells. Here, we modeled haploinsufficiency for Csnk1a1, Egr1, and
their compound haploinsufficiency, together with Trp53 mutation in
mice, to explore the potential for malignant transformation.

Methods

Animal studies

Conditional compound haploinsufficiency for Csnk1a1, Egr1, and
Mx1-Cre was achieved as described previously.17 Mouse
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experiments were performed according to protocols approved by
the Central Animal Committee (Centrale Commissie Dierproeven,
The Netherlands; approval number AVD1010020173387).

Bone marrow cells were harvested from a primary transplant of
Csnk1a1fl/+ Mx1-Cre+ and Csnk1a1fl/+ Egr1–/+ Mx1-Cre+and
Egr1–/+ bone marrow cells into wild-type B6.SJL mice. Ckit+ cells
were isolated and transduced with concentrated lentiviral particles
containing the Trp53 targeting construct or nontargeted guide
sequence and SpCas9. Details are supplied in the supplemental
Methods.

Trp53 targeting vectors

The lentiviral vectors were based on the pLKO_TRC005 lentiviral
backbone.24 Lentiviral particles were produced by transient trans-
fection of 293T cells using Fugene (Promega) and concentrated
using ultracentrifugation at 4◦C. Details are supplied in the
supplemental Methods.

Quantification and statistical analysis

Statistical analysis was conducted using GraphPad Prism version
9.0 or R version 4.0.3. Unless otherwise specified, data are pre-
sented as mean ± standard error of the mean. Significance is
depicted throughout the manuscript as follows: *P ≤ .05; **P ≤
.01; ***,P ≤ .0001.

Results

Proproliferative stem cell phenotype of Csnk1a1fl/+

and Csnk1a1fl/+Egr1–/+ mice

We sought to model malignant transformation of hematopoietic
stem and progenitor cells (HSPCs) with deletion of key genes on
the q-arm of chromosome 5, found to contribute to a growth
advantage of hematopoietic stem cells when expressed at hap-
loinsufficient levels.10,13,16,17 We transplanted whole bone marrow
of Mx1Cre, Csnk1a1fl/+, Egr1–/+, and Csnk1a1fl/+/Egr1–/+ mice
(CD45.2+) into WT B6 mice (CD45.1+), induced excision of the
floxed allele after 4 weeks, and tracked the chimerism and blood
cell counts over a total of 24 weeks (Figure 1A). All recipients
recovered to a donor chimerism (CD45.2+) >95% (supplemental
Figure 1B). Hemoglobin levels were normal in the recipients’
blood over time (supplemental Figure 1A). None of the mice
developed spontaneous malignancies during the time of observa-
tion (supplemental Figure 1C). The CD11b+ myeloid output in the
blood of recipients of Egr1 and Csnk1a1/Egr1 haploinsufficient
bone marrow was increased (Figure 1B). The frequencies of pro-
genitor populations of WT (Mx1Cre), Csnk1a1–/+, Egr1–/+, and
Csnk1a1/Egr1–/+ mice were all comparable and did not show
differences (Figure 1C-D).

Colony forming assays demonstrated increased colony formation in
Csnk1a1 haploinsufficient Lin-Sca1+ckit+ cells (LSKs) but
decreased colony counts for Egr1. In a second plating, Csnk1a1–/+,
Egr1–/+, and Csnk1a1/Egr1–/+ all showed increased colony forma-
tion compared with WT (Figure 1E). Bulk RNA sequencing was
performed on freshly isolated and sorted LSK hematopoietic pro-
genitors. Transcriptomes of samples clustered together by genotype
in principal component analysis (supplemental Figure 1D), and each
haploinsufficient genotype was compared with Mx1Cre (WT). In
general, compound haploinsufficiency for Csnk1a1 and Egr1
Ck1a HAPLOINSUFFICIENCY WITH p53 MUTATION 767
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Figure 1. Stem cell phenotype of Csnk1a1fl/+, Egr1–/+ and Csnk1a1fl/+Egr1–/+ mice. (A) White blood cell counts recorded at 4, 7, 11, 16, and 20 weeks after transplant.

(B) Frequency of CD11b+ myeloid cells of viable blood cells at 20 weeks after transplant (euthanize). (C) Frequency of CD45.2+ cells in bone marrow LK (Lin– and ckit+) and LSK
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caused activation of numerous pathways that were neither acti-
vated in Csnk1a1 nor Egr1 haploinsufficiency alone. This was
particularly pronounced in metabolic pathways such as fatty acid
metabolism, glycolysis, mitochondrial iron transport, and comple-
ment activation. These factors might contribute to the expansion of
hematopoietic cells not only by intrinsic but also extrinsic (envi-
ronmental) factors. Csnk1a1 and Csnk1a1/Egr1 haploinsufficient
LSKs further displayed upregulation of proproliferation and cell
cycle pathways such as Myc- and E2F targets, whereas these
pathways were not upregulated in Egr1 haploinsufficient LSKs
(Figure 1F). Cibersort debulking of the RNA sequencing data
demonstrated that the most immature HSC cluster was reduced in
the Csnk1a1, Egr1, and Csnk1a1/Egr1 condition compared with in
the WT sample, whereas the downstream uncommitted pro-
genitors (short-term hematopoietic stem cells [ST-HSC]), inter-
mediate progenitors, such as MPP2) were expanded (Figure 1G).
These results were in line with the finding that S-phase–related
genes were upregulated in the Csnk1a1/Egr1 haploinsufficient
samples. Fms-related tyrosine kinase 3 ligand (FL) estrogen-
receptor (ER)–HoxB8 cells were generated as immortalized
HSPCs (multipotent progenitor cells) with lymphoid and myeloid
differentiation potential (FL-HoxB8 cells). Csnk1a1 and Egr1 hap-
loinsufficient cells had a trend of increased cell cycle entry, which
was less pronounced for Csnk1a1–/+/Egr1–/+ (Figure 1H-I). This
was also reflected in their competitive advantage (Figure 1J):
Csnk1a1 and Egr1 haploinsufficient cells outgrew WT competitors
over time, whereas Csnk1a1/Egr1 haploinsufficient cells were
more comparable with WT cells as observed in vivo, even under
inflammatory stress.17 Our results, thus, suggest that the tran-
scriptional proproliferative signature in Csnk1a1/Egr1 hap-
loinsufficient clones is not reflected in a functional growth
advantage under normal (nonchallenged) conditions. The combi-
nation of Csnk1a1 and Egr1 haploinsufficiency might provide a
proproliferative stimulus but is less efficient in preserving and
expanding stem cells.

Collaborative effect of Trp53mutations with Csnk1a1
haploinsufficiency

To further test the potential of these haploinsufficient mouse lines for
secondary malignant transformation of hematopoietic progenitors,
we introduced Trp53 mutations into ckit+ enriched progenitors
(Figure 2A). Mutations were introduced in the DNA-binding domain
of the murine Trp53 gene using CRISPR-Cas9 genome editing in
CD45.2+ bone marrow progenitors from the murine models with
deletion of 1 allele of Csnk1a1, Egr1, or compound hap-
loinsufficiency before transplant. Gene marking (green, fluorescent
protein [GFP]) before transplant varied from 1.7% to 3.7% in cells
transduced with either targeted and nontargeted single guide RNA
Figure 1 (continued) (Lin– Sca1+ ckit+) in bone marrow at 20 weeks after transplant (eut

and long-term hematopoietic stem cells (CD48-CD150+ LSK) in CD45.2+ LSK cells in the b

Csnk1a1fl/+, Egr1–/+, and Csnk1a1fl/+Egr1–/+ mice plated in methylcellulose at first and se

sequencing data of sorted LSK; columns signify enriched pathways of contrast Egr1–/+ vs

Characterization of cell type proportions of sorted LSK based on Cibersort tumor profiling

based on Cibersort tumor profiling. (I) Intracellular Ki67 and 7-AAD staining to discriminat

Csnk1a1fl/+Egr1–/+ HoxB8-Flt3 cells. (J) Flow cytometric analysis of the competitive cocultu

from Csnk1a1fl/+, Egr1–/+, and Csnk1a1fl/+Egr1–/+ HoxB8-Flt3 cells (GFP–) over 6 days. Da

1-way analysis of variance with Dunnet post hoc test to compare each genotype to contro

nonsignificant. HGB, hemoglobin; IFN, interferon; PBS, phosphate-buffered saline; WBC,
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(sgRNA), comparable with previous reports (supplemental
Figure 2A).24 TP53 editing or knockout is known to facilitate spon-
taneous malignant transformation and has a propensity to cause
thymic T-cell lymphomas in mice,25,26 a phenomenon that we
observed with short latency in all groups subjected to the lentiviral
Trp53-sgRNA-Cas9 construct transduction but not in the group
transplanted with Mx1-Cre+ntg-sgRNA (Figure 2B; supplemental
Figure 2D). Only mice from the Mx1-Cre+ Trp53 and Csnk1a1
Trp53 group developed bone marrow disorders. In these groups, 1
mouse each showed expansion of immature cells in the bone
marrow without dissemination in the blood or spleen. Leukemia with
blast dissemination and splenomegaly developed in the blood of 1
Csnk1a1–/+ Trp53 mouse (Figure 2C-E).

Four weeks after transplantation, blood of mice from all groups had
many small Trp53-edited clones bearing different indels overall
constituting ~5% to 15% of all sequences (Figure 2F;
supplemental Figure 2E,F,G), with no specific insertion or deletion
size being favored (supplemental Figure 2F). Notably, mouse 00-1,
which developed leukemia, had a fraction of small indels overall
constituting 15.4% of total sequence traces, comparable with the
other experimental mice. The clonal sequence carrying a 13bp
deletion was not detected in the blood 4 weeks after the transplant
but constituted 80.2% of total sequence traces in the bone marrow
at the end of the experiment (Figure 2F).

By flow cytometry, blasts appeared large in forward/side scatter
with negativity for lineage markers (Gr1, Ter119, CD11b, CD3, and
B220) and positivity for CD48 (Figure 2G), indicative of acute
leukemia but ambiguous lineage. Blasts showed a 13 base pair
deletion in the DNA-binding domain of the Trp53 sequence as
detected by Sanger sequencing (Figure 2H).

Csnk1a1–/+ p53mut leukemia is transplantable and

rapidly progressing in secondary recipients

To explore the aggressiveness and transplantability of the gener-
ated leukemia, whole bone marrow cells of the initial leukemic
mouse (CD45.2) were transplanted into sublethally irradiated
CD45.1+ secondary recipients (Figure 3A). All recipients showed
disease onset ~28 days after transplantation. At this time, blood of
all mice showed a CD45.2 chimerism of ~60%, with residual
normal hematopoiesis largely derived from 45.1 recipient hema-
topoiesis (supplemental Figure 4A-B). Three of the 5 recipient
mice showed leukocytosis and elevated hemoglobin (Figure 3B).
High frequencies of large basophilic blasts were found in the
peripheral blood, bone marrow, and spleens of all recipients
(Figure 3C-D). Blasts were CD48+, CD19-intermediate, CD31-
low, Il7ra, CD45.2-low, and negative for ckit, Sca1, CD3, Gr1,
CD11b, Ter119, B220, CD150, CD115 (m-CSF receptor), CD34,
hanize). (D) Frequency of MPP (CD48+CD150–LSK), ST-HSC (CD48-CD150- LSK),

one marrow at harvest. (E) Colony forming potential of sorted LSK cells from Mx1Cre,

cond plating. (F) Gene set enrichment analysis of Hallmark pathways on RNA

Mx1Cre+, Csnk1a1fl/+ vs Mx1Cre+, and Csnk1a1fl/+Egr1–/+ vs Mx1Cre+. (G)

. (H) Ridgeline plot comparing gene distribution of G2M- and S-phase genes

e the cell cycle phases G0, G1, S-G2-M) within Mx1Cre, Csnk1a1fl/+, Egr1–/+ and

re assay of HOXB8 cells derived from Mx1Cre (GFP+) against HOXB8 cells derived

ta represent the mean ± standard error of the mean. Statistical test was performed by

l (Mx1Cre). Only significant results are marked and all other comparisons were

white blood cell.
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cytometry of bone marrow of leukemic mouse (00-1) and nonleukemic control mouse (99-1) shows accumulation of large lineage negative CD48+ blasts and depletion of lineage

markers expressing differentiated cells. (H) Sanger sequencing of Trp53 amplicon in leukemic mouse (00-1) bone marrow cells reveals 13bp deletion within DNA-binding domain

of Trp53 compared with unedited donor bone marrow sequence (BM before transduction with Trp53 sgRNA-Cas9 construct) and Trp53 amplicon of nonleukemic control mouse

99-1. BM, bone marrow.
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Thy1.2, NK1.1, and CD135 (Flt3) (Figure 3E), thus indicating a
progenitor phenotype but ambiguous lineage. Round-shaped
blasts with high nucleus to cytoplasmic ratio were densely
packed in hypercellular bone marrows, and also, the spleen
showed blast infiltrates (Figure 3F).
770 FUCHS et al
We performed exome sequencing on the in vitro cultured blasts
and primary and secondary leukemia, comparing leukemic cells
with the nontransformed counterparts to exclude additional
acquired mutations (Figure 3G). For every gene that contained at
least 1 variant, we identified the human-derived homologs. We
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
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removed both nonsynonymous and nonhuman mutations. All genes
with at least 1 single nucleotide variant remaining were screened
for presence in the OncoKB database regarding their cancer gene
status. All mutations were annotated using GRCh38 to mm10
liftover of the ClinVar annotation database for their predicted clin-
ical significance. Mutations were manually rechecked in the Uni-
versity of California, Santa Cruz genome browser for correct
mapping of the liftover positions found in the ClinVar annotation
database. Genes were not considered further if neither was being
marked as oncogene in OncoKB nor being "likely pathogenic" nor
of "unclear significance" in the ClinVar Liftover database. After
these careful filtering steps, only the primary transplant leukemia
had 1 overlap with OncoKB genes affecting the gene Taf4. We
next interrogated a cohort of samples from patients with del(5q)
MDS for this mutation. None of the 98 patients with del(5q) MDS
(with or without TP53 mutation) had a TAF4 mutation. Additionally,
we looked at the expression level of TAF4 in the different World
Health Organization MDS diagnosis groups (total of 669 patients).
We did not detect any significant differences among the different
groups in TAF4 expression. Because this variant was also not
identified in the secondary transplant, we concluded that it is likely
not a driver of the disease.

Leukemic blasts can be cultured ex vivo and are

susceptible to direct Csnk1a1 and Cdk7/9 inhibition

We next asked whether primary blasts were expandable ex vivo in a
liquid culture system (Figure 4A). Blasts did not grow in methyl-
cellulose or conventional stem cell medium (CellGro media sup-
plemented by murine stem cell factor and murine thrombopoietin;
data not included). Primary leukemic blasts were propagated on
OP9 feeder cells in cell culture medium supplemented with Flt-3
and Il7, on which they started expanding after 3 weeks of
culturing and weekly transferal onto fresh feeder cells. Cultured
blasts reflect the phenotype in vivo characterized by large indented
nuclei surrounded by basophilic cytoplasm and often atypical
mitotic figures (Figure 4B). We confirmed that the ex vivo cultured
blasts were the cells carrying the previously found 13bp deletion in
the Trp53 allele and that they retained morphology and immuno-
phenotype of the primary blasts (Lin–, CD45.2+, Il7ra+, CD48+,
CD19low, and CD31low).

A leukemia cell line that can be modified in vitro and then studied
in vivo would be a good tool to understand, for example, druggable
pathways in the context of Csnk1a1 haploinsufficiency as a rele-
vant gene in the HSC phenotype and targeted therapy of del(5q)
MDS.10 We, thus, transplanted cultured blasts into sublethally
irradiated mice and compared them with transplanted secondary
leukemia transplants as controls. At 4 weeks, mice developed signs
of disease in similar kinetics to the transplanted secondary leuke-
mia (Figure 4C). In 2 of 3 mice, the blast counts in the blood and
bone marrow were comparable with that of control leukemias and
nearly encompassed 100% of bone marrow cells, which was
reflected in a hypercellular bone marrow (Figure 4D-E). Morpho-
logically, the bone marrow was filled with small blasts with high
nucleus-cytoplasma ratio, with complete replacement of trilineage
hematopoiesis in the bone marrow and, thus, in line with the orig-
inal leukemia phenotype (Figure 4F).

Having generated these expandable and transplantable blasts, we
performed a small-scale, proof-of-concept drug screening informed
772 FUCHS et al
by previous studies. We compared the Csnk1a1/Trp53 blasts with
Hoxb8 overexpressing cells derived from Csnk1a1–/+ Mx1Cre+

and Mx1Cre+ mice with intact p53 (hereafter referred to as
Csnk1a1–/+ Hoxb8-Flt3 and WT Hoxb8-Flt3 cells). Nutlin-3a
inhibits binding of MDM2 to p53, thereby preventing p53 degra-
dation and activating p53-dependent apoptosis (Figure 4G).
In vitro expanded blasts were not sensitive to Nutlin-3a treatment,
whereas Csnk1a1–/+ Hoxb8-Flt3 and WT Hoxb8-Flt3 cells
showed dose-dependent growth arrest. This confirms an impaired
function of p53 mutant protein in leukemic blasts. Previous
experimental results have demonstrated that Csnk1a1 hap-
loinsufficient cells are sensitive to Csnk1a1 knockdown but not in
the context of p53 loss.10,11 We tested the sensitivity of in vitro
expanded blasts to direct Csnk1a1 inhibition (D4476, A51) and
Aurora kinase inhibition, which inhibits growth and survival of AML
cell lines in preclinical studies.27 Interestingly, Trp53 mutant blasts
were insensitive to Aurora A kinase inhibition with Alisertib. Direct
Csnk1a1 inhibition using D4476 was not significantly more effi-
cient in Csnk1a1–/+ Hoxb8-Flt3 cells and blasts than in WT
Hoxb8-Flt3 cells. However, direct Csnk1a1 and Cdk7/9 inhibition
with compound A51 notably caused growth arrest selectively in
Trp53 mutant blasts at higher dose (Figure 4G).

A51 cotargeting CKIα and CDK7/9 can eradicate

blasts in tertiary leukemias

Because A51 selectively targeted Trp53 mutant blasts in the proof-
of-concept drug screening, we next set out to validate this finding
in a tertiary leukemia (after sublethal irradiation) in vivo (Figure 5A).
Oral treatment was initiated at 8 days after leukemia cell inocula-
tion. Mice in the vehicle group demonstrated leukocytosis and
thrombocytopenia ~4 weeks after leukemia inoculation. Blood
counts were normalized upon treatment with A51 (Figure 5B),
and in particular, the spleen size was reduced (Figure 5C), whereas
vehicle-treated mice showed leukemic cell infiltration into the
peripheral blood, and blasts were reduced or even absent in 7 of
10 A51-treated mice (Figure 5D). Blasts in the bone marrow were
reduced (even if not significant) in A51-treated leukemias, and
importantly, the cellularity of the bone marrow was significantly
lower (normocellular) than hypercellular bone marrow with dense
blasts in the vehicle-treated group (Figure 5D-E). In the A51-
treated group, the bone marrows were normocellular, and blasts
were loosely scattered, indicating a positive effect of A51 in elim-
inating blasts and restoring the bone marrow composition.

Leukemic growth is driven by Wnt and Myc signaling

To investigate the molecular pathways responsible for driving blast
growth, we sorted primary blasts from the initial leukemic mouse
and secondary recipients for RNA sequencing (supplemental
Figure 6A). As controls, we sorted the corresponding cell popu-
lation from a healthy Csnk1a1–/+ Trp53-mutated littermate as well
as Mx1Cre+-Trp53 mut and Mx1Cre-ntg mice (supplemental
Figure 6A). In principal component analysis of transcriptome
data, all leukemia samples clustered together, indicating similarity in
overall gene expression between primary and secondary leukemias,
whereas all controls were clearly separated from the leukemic
samples (supplemental Figure 6E). Because the blasts phenotyp-
ically characterized as CD48+, CD19 intermediate, CD31
low, Il7ra, CD45.2 low and negative for ckit, Sca1, CD3, Gr1,
CD11b, Ter119, B220, CD150, CD115 (m-CSF receptor), CD34,
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
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Thy1.2, NK1.1, and CD135 (Flt3), indicating a progenitor pheno-

type but ambiguous lineage, we first asked how they compared
with normal HSPCs17,28 and previously characterized murine leu-
kemias using Cibersort.17,29 Sort-purified blasts had transcriptional
similarity with MPP2 as a myeloid biased progenitor with multi-
lineage potential but not ST- and long-term hematopoietic stem
cells (Figure 6A). When compared with different types of acute
leukemia, the sort-purified blasts had high transcriptional similarity
to acute erythroid leukemia, some similarity to AML but, interest-
ingly, not to lymphoblastic leukemia (Figure 6B). Based on the
indicated erythroblastic transcriptional signature (supplemental
Figure 6D), we analyzed Ter119/CD71 expression commonly
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
used in the characterization of murine erythroid cells. In line with
the progenitor status, the blasts were characterized by high
expression of CD71 but negativity for Ter119 (supplemental
Figure 6B). High expression of CD71 in the literature is associ-
ated with poor survival, poor differentiation, and is a marker of
proliferation in both lymphoid and myeloid neoplasms. Based on
these results and also recommendations of the recent World
Health Organization classification and reviewed in Weinberg and
Arber, we conclude that the generated leukemia is an acute leu-
kemia of ambiguous lineage because the leukemia shows evidence
for myelo(erythroid) and partially B-lineage commitment, which is
characterized by clonal proliferation of primitive hematopoietic
Ck1a HAPLOINSUFFICIENCY WITH p53 MUTATION 773
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progenitor cells.30 The immature, progenitor status is further evi-
denced by upregulation of markers summarized as immature
myeloid progenitors (supplemental Figure 6C). Pathway footprint
analysis predicted downregulation of p53 pathways, as expected,
and NF-κb and hypoxia pathways, whereas MAPK and Wnt
signaling were upregulated (Figure 6C-D), as also seen in
Csnk1a1 haploinsufficient hematopoietic stem cells (compare
Figure 1).17 NF-κb and tumor necrosis factor α signaling were
downregulated compared with Csnk1a1 haploinsufficient HSPCs,
clearly reflecting the Csnk1a1 haploinsufficiency background even
in the context of p53 dysfunction.

Bcl2 was the most significantly downregulated gene in leukemia
compared with the control samples (Figure 5E). Bcl2 expression
has been demonstrated to be controlled by p53 expression, with
mutant p53 overexpression reportedly resulting in Bcl2 down-
regulation.31 Transcription factor target expression enrichment
analysis suggested upregulation of Myc and E2f activity
(Figure 6C), likely contributing to malignant growth in these cells.
Accordingly, we found Myc targets to be overexpressed in
leukemic blasts, specifically peroxiredoxin 4 (Prdx4) (Figure 6F).

Network contextualization with prior knowledge interactomes was
applied using the bioinformatic tool CARNIVAL32 to make a pre-
diction about the collaborating effect of Csnk1a1 hap-
loinsufficiency and p53 dysfunction in leukemic blasts. Predictions
suggest that Csnk1a1 haploinsufficiency led to upregulation of the
774 FUCHS et al
Wnt-pathway, via upregulation of GSK3B and through Lrp6, ulti-
mately culminating in Lef1 upregulation, known for its role in
malignant hematopoietic disorders.33 Csnk1a1 haploinsufficiency
and p53 downregulation converged on MAPK signaling (as the top
upregulated pathway; compare Figure 6D) and NF-κB/interferon
response factors downregulation (Rela, Stat1, Stat2, and Irf1).
Ultimately, Wnt signaling activated by Csnk1a1 haploinsufficiency,
NF-κB downregulated by p53 inhibition, and MAPK signaling
activated by both alterations finally culminated in activation of the
proto-oncogene Myc (Figure 6G).

Because MAPK was the top upregulated pathway in the pathway
analysis and MAPK1 (ERK2), MAPK3 (ERK1), and MAPK8 (JNK1/
2) form a central hub (triangle) in the converging mechanism of
Csnk1a1 haploinsufficiency and Trp53 mutation, we validated their
expression on the protein level (Figure 6H). Csnk1a1 hap-
loinsufficiency increased the expression of JNK1/2 and ERK1/2
compared with WT controls, and the effect was enhanced in the
presence of mutant Trp53. Myc induction was only observed in the
Csnk1a1/Trp53 mutant blasts but not in Csnk1a1 hap-
loinsufficiency or WT cells alone, indicating that Myc induction is
leukemia specific. We were, thus, then wondering whether A51
treatment affects Myc expression at the protein level. Interestingly,
vehicle-treated leukemias showed a strong induction of Myc,
whereas A51 treatment significantly reduced the expression
(Figure 6I). Notably, good responders to A51 (as indicated by bone
13 FEBRUARY 2024 • VOLUME 8, NUMBER 3
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marrow blast frequency) showed lower expression of Myc,
indicating that targeting Myc is an interesting therapeutic avenue in
TP53 mutant disease.

To determine whether MYC expression is also relevant in human
del(5q) MDS and human AML with p53 mutation, we analyzed
RNA sequencing data of whole bone marrow from patients with
del(5q) with and without TP53 mutation and compared MYC
expression levels with those of patients with MDS with normal
karyotype with and without TP53 mutation (Figure 6). We observed
significant upregulation ofMYC expression in del(5q) samples from
patients (Figure 6J). Furthermore, we tested the expression ofMYC
and top upregulated MYC targets in our murine leukemia and in
samples from patients with AML with del(5q) or normal karyotype
(Figure 6K). Interestingly, MYC and also the peroxiredoxin 4
(PRDX4) were significantly upregulated in samples from patients
with AML with del(5q) and p53 mutation (Figure 6K-L), reflecting
the findings in Csnk1a1 haploinsufficiency leukemia model.

Discussion

TP53 mutations occur in lower-risk del(5q) MDS at a frequency of
~20% and are associated with a poor prognosis. Progression of
del(5q) MDS into secondary acute leukemia has been reported to
be linked to clonal evolution of TP53-mutated subclones.34 We
observed leukemic transformation of murine Csnk1a1 hap-
loinsufficient HSCs with Trp53 mutation, recapitulating a genetic
murine model of secondary/therapy-related AML with del(5q) and
Trp53 mutation. This disease is transplantable and can be indefi-
nitely cultured ex vivo. We constructed a putative signaling network
by comparing the transcriptome of blasts with that of their healthy
counterparts that converged on upregulated MAPK signaling
(MAPK1/3/8), which we confirmed to be upregulated in Csnk1a1
haploinsufficiency but even enhanced in Csnk1a1 Trp53–mutant
leukemia. Activated MAPK, WNT, and NF-κB signaling were further
predicted to culminate in MYC activation. We confirmed that MYC
expression is specific for the Csnk1a1/Trp53 leukemia at the
protein level.

As a proof of concept that the derived leukemia can be a useful tool
to identify (druggable) mechanisms in leukemia in the context of
Csnk1a1 haploinsufficiency, we performed a small-scale small-
molecule inhibitor test. Targeting Csnk1a1 and the transcriptional
Figure 6. Leukemic growth is driven by MAPK signaling and Myc activation. (A)
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kinases CDK7/9 using compound A51 can be effective at inhibit-
ing growth of Csnk1a1/Trp53 mutated blasts in vitro and in vivo.
A51 treatment reduced Myc expression in the bone marrow, and
“nonresponders” had higher Myc expression, suggesting that Myc
is an attractive target in more aggressive TP53-mutant disease.
MYC is also upregulated in MDS and in AML with del(5q)
compared with MDS and AML with normal karyotype with and
without p53 mutation, supporting the rationale for targeting MYC.
In a recent murine model of malignant transformation of clonal
hematopoiesis with Tet2 mutation, depletion of Traf6 led to myeloid
malignancies driven by Myc activation.35 Furthermore, t-AMLs with
del(5q) show a distinct transcriptomic signature, different from
t-AML with other genetic background. They are characterized by
the upregulation of genes involved in cellular proliferation including
cell cycle control genes and most notably upregulation of MYC
oncogene and Wnt-signaling upregulation.36,37

The leukemic transformation occurred in the Csnk1a1 hap-
loinsufficient background and not in the context of Csnk1a1/Egr1
compound haploinsufficiency.9,17 We did not observe a higher rate
of malignant hematopoietic transformation (thymic T-cell lymphoma
etc) in Egr1–/+ Trp53-mutant or Csnk1a1–/+Egr1–/+ Trp53-mutant
mice. We observed previously that Egr1 haploinsufficient HSCs
have the potential to clonally expand but show large variability
among recipients.17 Here, we investigated the transcriptome of
Egr1–/+ LSK, which showed deregulation of metabolic pathways
but overall downregulation of cell cycle and proliferation related
pathways. Stoddart et al elegantly demonstrated how hap-
loinsufficiency for both Egr1 and Apc together with p53 loss cre-
ates an environment that is permissive to malignant transformation
of HSCs. AML spontaneously occurred in these mice with a long
latency of 234 to 299 days.38 The addition of alkylating-agent
exposure to the bone marrow niche of both donor and recipient
resulted in the emergence of myeloid neoplasm from Egr1–/+Apc–/
+Trp53-knockdown HSCs with higher incidence and shorter
latency (200 days).39 In line with our findings, this suggests that the
true potential for clonal expansion and, therefore, malignant trans-
formation of Egr1 is highly dependent on the individual microenvi-
ronmental context, possibly by metabolic regulation within the
surrounding niche. Recent findings additionally suggest that
EGR1 is not strictly haploinsufficient in patients with del(5q) MDS,
and EGR1 expression is not correlated with allele burden.40
Transcriptional blast identified based on Cibersort profiling using published single cell
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Combination of Csnk1a1 and Egr1 haploinsufficiency provides a
proproliferative stimulus to committed progenitors but is less effi-
cient in preserving and expanding stem cells, in line with our pre-
vious findings on the role of these 2 genes in the clonal
expansion.17 In comparison, Csnk1a1 haploinsufficiency drives a
robust pro-proliferative phenotype that is enhanced under envi-
ronmental stress providing selective pressure.17 As we and others
have shown, the pro-proliferative phenotype is dependent on Wnt-
signaling dosage.10,17,37 This pro-proliferative drive predisposes
HSCs to malignant transformation, which is guarded by p53 unless
it loses its function in a second-hit event.

Previous work on creating murine models for malignant trans-
formation of del(5q) MDS have used complete Trp53 loss or Trp53
knockdown by shRNA.38,39 It is still a topic of discussion whether
missense P53 mutants have the same function regardless of
mutation site or whether they each represent a unique oncogene
ranging from loss-of-function, gain-of-function, or dominant negative
effect, depending on the cellular context.41 For human AML, a
dominant negative effect of several common heterozygous missense
p53 mutations on the WT allele has been demonstrated.23 In our
study, using CRISPR/Cas9 genome editing, we introduced mono-
allelic and biallelic insertions and deletions in the DNA-binding
domain of Trp53 in a small subset of the HSC pool. Therefore,
only cells with advantageous mutations would outgrow WT HSCs.
This resembles the situation of patients with clonal selection of
hematopoietic progenitors with somatic TP53 mutations.
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