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In this study, we consider an airport gate reassignment problem where an airport has assigned gates to aircraft,
but then a disruption occurs at some of the gates. After the disruption, we need to reassign the aircraft to the
gates while taking into account both efficiency and stability measures. For efficiency, we want to use the gates
as much as possible, considering both the number of aircraft and the number of passengers in these aircraft.

For stability, we want to stick as closely as possible to the initial plan.

We suggest solution procedures for finding two extreme ends of the nondominated objective vectors, all
extreme supported nondominated objective vectors, and all nondominated objective vectors with respect to
our efficiency and stability measures. An optimal decomposition rule is presented to simplify the complexity of
the solution. Our extensive experiments have shown that our optimization procedures can handle the instances
with up to 150 aircraft and 40 gates, and approximation algorithms can handle the instances with up to 200

aircraft and 40 gates.

1. Introduction

Gates are important resources of airports whose proper allocations
are crucial for effective air transport operations. In the airport gate
assignment problem (AGAP), aircraft with prespecified arrival and
departure times are assigned to available gates under some prespecified
objective. Some noteworthy objectives studied in the literature are
maximizing the number of aircraft assigned to gates, maximizing the
number of passengers assigned to gates, and minimizing the walking
distances of the passengers. Aircraft can also be assigned to a remote
gate, the so-called apron. Apron is an area at the airport where the air-
craft are parked if they cannot be assigned to any gate. The satisfactory
solutions to gate assignment problems usually avoid assignments to the
apron, due to its remote nature.

Daily airport operations may experience disturbances in various
forms: flight earliness and delays, flight cancellations, maintenance
operations, flight and gate breakdowns, adverse weather conditions,
emergency flights, and even major incidents such as labor strikes of
airport employees and abnormal meteorological conditions which may
even result in temporary airport closures.

Additionally, airports have experienced a new type of disturbance
owed to the recent corona virus disease. Existing studies in the litera-
ture are varied: its effects as potential aeropolitics issues (Macilree and
Duval, 2020), understanding its implications on commercial revenue
management through examining passenger spending drivers (Choi,
2021), how the aviation industry has bounced back and returned to

normalcy after a shock period (Sun et al.,, 2023), the most influ-
ential factors on passenger satisfaction before and during the pan-
demic (Pereira et al., 2023). Sun et al. (2022) reviewed selected studies
for a pandemic-resilient future in aviation.

As a result of such disruptions, the optimal solution to any gate
assignment problem may become undesired or even infeasible to im-
plement. Hence, a need to reassign the aircraft to the gates arises. We
consider a gate reassignment problem (AGRP) where the aircraft are
already assigned to the gates or to the apron, and a disruption that
affects a subset of the gates occurs. After the disruption, the aircraft
assigned to the disrupted gates should be shifted to the remaining avail-
able gates or the apron. This shift may also trigger some assignment
changes for the aircraft of the nondisrupted gates to give room for the
aircraft of the disrupted gates. Such adjustments, which are referred
to as reassignment, should ensure efficiency en route to low airport
operating costs and stability en route to low setup costs.

The original assignment of aircraft to the gates or to the apron
before any disruption is referred as the initial plan. We assume that
the initial plan was efficient, so our new plan should have its objec-
tive function as an efficiency measure. Moreover, we assume that the
preparations are already made according to the initial plan, hence the
new plan should stay faithful to the initial one.

In our efficiency criterion, we focus on an airport’s vital need of
utilizing its gate resources most efficiently. Gates are used both by
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aircraft and by passengers. We define our efficiency criterion through
two objectives with hierarchy. The first objective that goes into our
efficiency criterion is the maximization of the number of aircraft as-
signed to gates. With this objective, the number of ungated aircraft
is minimized, i.e., the gate utilization is maximized, thus the most
efficient assignment plan is obtained in terms of apron related costs.
The second objective that goes into our efficiency criterion is the max-
imization of the number of passengers assigned to gates. By assigning
the aircraft with a higher number of passengers to a gate, a contribution
to the minimization of passenger walking distance or general customer
satisfaction, since a smaller number of passengers will be routed to the
remote apron, is inherently being made. Therefore, with our efficiency
criteria, we maximize primarily the number of aircraft assigned to
gates and secondarily the number of passengers in these aircraft. In
doing so, we consider aeronautical concerns, i.e., concerns that are
directly related to the passengers and aircraft; but not non-aeronautical
concerns, such as airport retailing, advertising, car rentals, car parking,
and land rentals. We refer the reader to the review by Kidokoro
and Zhang (2023) for the detailed discussion of the non-aeronautical
objectives and their importance. Furthermore, we show that the gate
assignment problem that minimizes our efficiency measure is solvable
in polynomial time.

In our stability criterion, as the name suggests, we focus on staying
stable, i.e., the new plan should resemble the initial plan as much
as possible, preserving most of the initial assignments that remain
feasible. In the event of a disruption, first and foremost, we aim to
reassign the already gated aircraft to a gate again. We believe that
reassigning an already gated aircraft to the apron, will give a high
deviation from the initial plan in terms of similarity to the initial
plan and passenger discomfort. Secondly, we would like to focalize
on the number of passengers in the already assigned set of aircraft.
This consideration is in parallel with that of the secondary objective
of the efficiency criterion. Lastly, from an opportunistic point of view,
we would like to reassign the ungated aircraft to a gate whenever
possible. With the decreased apron usage, we would be reaping the
benefits of increased efficiency. Thus, a similar reassignment plan to
the initial plan is obtained through considerations in three folds: we
maximize the number of aircraft reassigned to gates that were initially
assigned to gates as the primary objective, the number of passengers in
these aircraft as the secondary objective, and the number of aircraft
reassigned to gates that were initially assigned to the apron as the
tertiary objective. We show that the gate assignment problem that
minimizes our stability measure is NP-hard.

Our performance measures are studied in a multicriteria context as
an increase in the efficiency value would lead to a decrease in the stabil-
ity value, and vice versa, hence a very fruitful trade-off analysis could
be made. Recognizing this fact, we study several trade-off problems.

Firstly, a hierarchical optimization is considered such that the ef-
ficiency (stability) value is maximized while the stability (efficiency)
value is kept at its optimal. This approach returns two extreme points
and is important for decision makers who have a strong preference for
one objective.

Secondly, we assume that the decision maker has a linear preference
function that is expressed as a weighted combination of the criteria.
We produce a set of objective vectors each of which is optimal for a
particular weight range. These objective vectors altogether form the
extreme supported nondominated objective vectors.

Finally, we assume that the decision maker has an unknown utility
function for efficiency and stability criteria. We produce the set of non-
dominated objective vectors, one of which is optimal for a particular
nonincreasing utility function. Using this set, the decision maker can
make a trade-off between a certain amount of increase in efficiency
value and a certain amount of decrease in stability value, and vice
versa. All trade-off problems of our concern are NP-hard since the
problem that minimizes our stability measure is NP-hard.
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We present a model-based optimization approach to generate the
exact set of nondominated objective vectors and a heuristic approach
to generate an approximate set of nondominated objective vectors. We
also develop a decomposition rule where the problem is decomposed
into subproblems, where each of which is dealt with independently,
and then their corresponding solutions are combined by a mathematical
model. We observe that if one is faced with instances for which the
decomposition rule can be applied, the exact nondominated objective
vectors can be found considerably easier.

Our experiments, where we chose to set the number of gates almost
equal to that of the airports in the three largest cities in Turkey:
istanbul Airport in Istanbul, Esenboga Airport in Ankara, and Izmir
Adnan Menderes Airport in izmir, namely, have shown that the exact
approaches can be used to tackle real-life instances with many aircraft
and many gates.

Related literature on AGAP and AGRP is reviewed in Section 2. In
Section 3, our AGRP is defined, and a mathematical model is given. The
solution procedures that are used to find two extreme nondominated
objective vectors, all extreme supported nondominated objective vec-
tors and all nondominated objective vectors are presented in Section 4.
Section 5 defines the optimal decomposition rule that decomposes the
main problem into smaller instances. In Section 6, the results of our
extensive experiments are reported. Conclusions and suggestions for
future research are made in Section 7.

2. Literature review

We give literature reviews on AGAP and AGRP in Sections 2.1 and
2.2, respectively.

2.1. Airport gate assignment studies

In a review by Das et al. (2020) on AGAP, many objective func-
tions of this assignment problem are classified under some defined
categories. Karsu et al. (2021) studied an AGAP with two minimiza-
tion objectives: the number of apron assignments and total passenger
walking distance. They give exact and heuristic solution approaches.
Their problem instances mimic the real-life airports in Turkey.

Yan and Chang (1998) formulated AGAP as a multi-commodity net-
work flow problem to minimize total passenger walking distance. They
used real-life data from an international airport in Taiwan. Another
multi-commodity flow model with two objectives (robustness and taxi-
ing times) is developed by Wang et al. (2022). They used real-life data
from the Paris-Charles-de-Gaulle international airport in France. Cai
et al. (2019) worked to minimize the total passenger walking distance
and the total robust cost. They put an upper limit on the number of
aircraft that can be assigned to the apron and defined compatibility
related constraints such as gate sizes: small/large, gate and airline
leasing contracts, and flight types. They made an application for the
Baiyun airport in Guangzhou, China.

Yu et al. (2017b) focused on the robustness and some traditional
costs: the expected conflict cost, tow cost, and passenger transfer
distance. They designed an adaptive large neighborhood search with
some novel multiple local search operators. Liu et al. (2023) focused
on gate utilization and running time of aircraft including parking time
and taxi time.

2.2. Airport gate reassignment studies

The gate reassignment problem literature mostly considers multi-
objective studies. Pternea and Haghani (2019) proposed hierarchical
optimization for a gate reassignment problem to minimize the costs
of (i) flight assignment, (ii) successful passenger connections, and (iii)
failed passenger connection. Zhang and Klabjan (2017) defined an
efficient gate reassignment methodology for disruptions. They come
up with two multi-commodity network flow models and two heuristic
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algorithms. They handle the minimization of total flight delays, the
number of gate reassignment operations, total passenger transfer dis-
tance, and the number of missed passenger connections with a weighted
sum approach.

Dorndorf et al. (2012) studied the multi objectives: some assignment
preference scores, the number of unassigned flights during overload
periods, the number of tows, some robustness measures, and the one
most familiar to our work which is a deviation from a given reference
schedule. Yan et al. (2011) assumed to handle the uncertainty around
aircraft arrival and departure times: that some flights which are closer
to the time of planning reassignments tend to be more certain. That
is why they divided flights into the following two categories: deter-
ministic flights and stochastic flights. They made an application to the
Taiwan Taoyuan Airport in Taiwan.

Flight delays, whether in the form of early or tardy flight arrivals
or the form of tardy flight departures, in general, constitute the dis-
ruptions worked on by Tang et al. (2010), where they emphasized the
crucial need of developing a framework for the gate reassignment prob-
lem, stating that the traditional manual flight reassignment method has
too many shortcomings.

In their study, Deng et al. (2017) worked with multi-objectives
that take into consideration the loss of passengers, cost of airport
operating, and economic loss of airlines, in one criterion and for the
other criterion, constructed a measure called the most important index
of disturbance value to manage the deviation from the initial plan. They
integrated two metaheuristics: the genetic algorithm and the ant colony
algorithm to propose a two-stage hybrid method.

Wang et al. (2013) handled flight delays in two categories: certain
and uncertain delays. For the former case, they minimize the apron
and gate disturbance values and for the latter case, they minimize
the gate and time disturbance values. They presented an ant colony-
based heuristic. Maharjan and Matis (2011) considered the passengers
who are either connecting to or originating from an airport where
their boarding passes were issued before the gate reassignments. They
implemented their work with Continental Airlines at the George W.
Bush Intercontinental Airport in Houston, Texas.

Further literature include Pternea and Haghani (2018) who studied
passenger connections, Yan et al. (2009) who assumed major events
that result in temporary airport closures, Gu and Chung (1999) who
implemented a genetic algorithm for the minimization of extra delay
times, Yu et al. (2017a) who also integrated taxiway scheduling and Ali
et al. (2019) where they proposed a passenger-centric model that
minimizes the transit time of transfer passengers.

The most closely related study to ours is Pternea and Haghani
(2019) where they used hierarchical optimization approaches to handle
their multi criteria problems. In addition to the hierarchical optimiza-
tion approaches, we deal with simultaneous optimization and generate
all extreme supported nondominated and all nondominated objective
vectors with respect to our efficiency and stability criteria. To the best
of our knowledge, no reported gate reassignment study considers the
performance measures simultaneously.

3. Problem definition and the mathematical model

We study an AGRP with n aircraft, m gates, and an apron. Each
aircraft has specified arrival and departure times and is either assigned
to a gate or the apron from its arrival time to its departure time. This is
compatible with the real-life application of renting gates to airlines for
fixed periods, i.e., time intervals. Moreover, each aircraft has a specified
number of passengers who have either entered from the entrance point
or transferred from other aircraft. The apron, assumed to have infinite
aircraft capacity, is so far away from the gates that using it is not
favored for any reason. Thus, only the aircraft that cannot be assigned
to a gate, are assigned to the apron.

We assume that there is an initial plan where each aircraft is
assigned to either a gate or to the apron. A disruption at the beginning
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of the planning horizon affects a specified set of gates and makes
them inoperable. After the disruption, a new plan is formed where the
affected aircraft are assigned to one of the not-affected gates or apron.
The not-affected aircraft may be reassigned to their initial gates or any
one of the not-affected gates or apron. We use the following terms
in the literature interchangeably: ‘initial plan’, ‘current assignment’,
‘initial assignment’; ‘affected gates’, ‘disrupted gates’; ‘affected aircraft’,
‘disrupted aircraft’; ‘new plan’, ‘reassignment’.

We further assume that there is no assignment restriction, i.e., all
aircraft can be assigned to one of the m gates. Moreover, the arrival
and departure times of aircraft, the number of passengers, and all other
parameters are known with certainty and not subject to any change.
That is, the system we consider is deterministic and static.

We define efficiency and stability criteria as our performance mea-
sures and assume that the initial plan is known and found by the
efficiency concerns of the decision makers.

In Sections 3.1 and 3.2, our efficiency and stability criteria are
discussed, respectively. In Section 3.3, the mathematical model is pro-
vided.

3.1. Efficiency criterion

From an airport and a passenger point of view, an assignment
plan should meet the following requirements: i. its number of aircraft
assigned to gates should be as high as possible, and ii. if there is a
tie among multiple aircraft that are potentially competing against each
other to be assigned to a gate, then the decision should be in favor of
the one with the highest number of passengers.

We call such an assignment plan efficient due to it having the least
apron usage both by aircraft and their corresponding passengers.

The efficiency criterion is defined through the objective function,
E, with the direction of maximization.

El Number of aircraft assigned to gates, the primary
objective
E2 Number of passengers assigned to gates, the

secondary objective

E = E1+ 5 E2 where ¢ is a sufficiently small number that gives
priority to E1 and breaks the ties in favor of E2. That is, ¢ ensures
that the maximum number of aircraft assigned to gates is preserved
while the number of passengers assigned to gates is being maximized.
Hence, e should be set so small that the E1 value does not decrease
even by one unit for the highest improvement of the E2 value, Eq. (1).
Note that, in addition to establishing the hierarchy between objective
functions, the parameter ¢, also performs a rescaling between the
objective functions, where one objective is in units of aircraft and the
other is in units of passengers.

El+éegE2,, >El—1+egE2,, )}

where E2,,, is the smallest possible E2 value and E2
possible E2 value.

We define p; as the number of passengers in aircraft i. We estimate
E2,,;, to be the case where all gates are busy with exactly one aircraft,
s0 E2,,;, = Y pjq where py; is the ith smallest p; value, i.e., it is the
summation of the smallest m p; values. We estimate E2,,  to be the
case where all aircraft are assigned to gates, so E2,, =Y p;.

Eq. (1) reduces to e E2,,, > epE2,,. — 1 and subsequently, ¢, <
1

max 1S the largest

. Putting E2,;, and E2,, into this expression, we have

EzmaX_EzmiVl
1

€ S s
E = X n2i b

In our experiments, we set

1
£p = . @
Z?:l pi — 2:11 P+ 1
Putting Eq. (2) into E, we get E = El1 + %EZ. To
g Ea. (2) ’ 8 iy pi= iy P+l

have an integer value for E, we multiply it by Y7, p; = 27, pyj + 1

and get the following expression for our efficiency criterion, E =
[, pi =20, by + 1] E1+ E2.
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3.2. Stability criterion

In the AGRP, the new plan after a disruption can have some re-
semblance to the initial plan. With our stability criterion, the new plan
stays faithful to the initial plan, and the number of gate assignments
preserved, their corresponding number of passengers, and the num-
ber of gate assignments that were initially assigned to the apron are
maximized in this very order.

S, Set of aircraft that are assigned to gates in the
initial plan

S, Set of aircraft that are assigned to the apron in
the initial plan

I Set of all aircraft, .S; U S,

ST1 Number of aircraft in .S| assigned to their initial
gates

ST2 Number of passengers in aircraft in .S, assigned to
their initial gates

ST3 Number of aircraft in .S, assigned to gates

Our stability aim is primarily to maximize S7T'1. Among the optimal
solutions of ST'1, we prefer the one having the maximum S72. e47,
is a number that guarantees that the maximum number of aircraft is
assigned to their initial gates while the number of passengers assigned
to their initial gates is being maximized. Hence, we first want to
maximize the partial objective function, ST1+ € ¢y ST2, where g, is
a sufficiently small number so that the ST'1 value does not reduce even
by one unit for the highest improvement of the ST2 value, Eq. (3).

ST1 + 571 ST 2 = ST = 1 + 571 ST2, 0 ®)

where S§T72,,, and ST2,,, are the smallest and largest possible ST2
values, respectively. We estimate S72,;, to be the case where all
aircraft are assigned to the apron, so ST2,,;, = 0. We estimate ST72,,,.
to be the case where no aircraft is disrupted, so ST2,,,, = X,cs, Pi-
1Eq. 3) re;duces to egp1ST2,in = €5715T 2. — 1 and then egp; <

ST2pay ZieSl i’
In our experiments, we set

1
ESTI T -
ZieS, Pi

Putting Eq. (4) into the objective function, we get ST 1+

4

1
Ziesl Pi

We multiply it by },cs p; to get an integer value for the objective

ST2.

function as | X;cq, pi ) ST1+ST2= ST 4.

Among the optimal solutions to ST 4, we prefer the one having the
largest ST3 value. eg7, is a number that ensures that the optimality
of ST, is preserved while the number of aircraft in S2 assigned to
gates is being maximized. Hence, we maximize ST = ST 4 + €47, ST3,
where € ¢, is a sufficiently small number which is found by using the
ideas of ¢ and e gy, Eq. (5). Similarly, parameters ¢ ¢ and € gy, also
perform rescaling between the objective functions as well as handling
the hierarchy between them.

STA +£ST2ST3min 2 STA -1+ ESTZST?’max ®

where ST3,,, is the smallest possible ST3 value and S73,,, is the
largest possible ST3 value. We take ST3,,,, as 0, i.e., it is the case where
all aircraft are assigned to the apron. We take ST3,,,, to be the case
where all apron assignments in the initial plan are shifted to gates, so
ST3,,.x = 1S,], i.e., it is the number of aircraft assigned to the apron in
the initial plan. Eq. (5) reduces to €47, ST3,,;, = €5725T3,,.x — 1 and
subsequently, € g5, < K ﬁ
In our experiments, we set

1

(6)
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Putting Eq. (6) into the objective function, the overall stability

measure is expressed as ST = ST 4 + ﬁST 3. To have an integer
2

value for ST, we multiply it by |.S,|+1 and get the following expression
for our overall stability criterion:

ST = (|S,] +1) ( z p,.>ST1 + (18,1 +1) ST2 + ST3.
ieS)

Our efficiency and stability measures altogether provide a broad
perception to cover many efficiency and customer satisfaction ob-
jectives of the airlines. Recently, Yu (2023) defines three categories
for airport performance: productivity and efficiency; financial perfor-
mance; and service quality and passenger satisfaction. One leg of our
stability measure, the number of passengers assigned to different gates
in the initial and new plans, falls under the passenger satisfaction
category, given that passengers would be dissatisfied with a changed
gate. Moreover, passengers of ungated aircraft are also dissatisfied. This
follows, one leg of our efficiency measure, the number of passengers
assigned to gates, falls under the passenger satisfaction category as well.
The other legs of our performance measures belong to the category of
productivity and efficiency.

3.3. Mathematical model

We give the mathematical model for our AGRP. The model is an
assignment-based model that is also used by Karsu et al. (2021) for
their AGAP. It uses the following sets and parameters:

Set of aircraft

Set of gates (apron included)

Number of aircraft (|7])

Number of gates (|K| — 1 gates, gate m+ 1 is
apron)

Number of passengers in aircraft i, i =1,...,n
Arrival time of aircraft i, i=1,...,n

Departure time of aircrafti, i=1,...,n

Number of distinct ¢; and d; values, where R — 1
is the number of time intervals

I S N~

>

IR

Set {ad,,ad,,...,ady} is the distinct a; and d; values in chrono-
logical order. During interval [a;, d;], aircraft i stays at the airport and
during interval [ad,, ad, ] there is no arrival or departure, r = 1, ..., R—

1, if aircraft i is in the airport at interval r,
0y = r=1,...,R—1

0, otherwise

We define the stability related parameter, c;, as:

1, if aircraft i is assigned to gate k in the
Cix = initial plan, i=1,....,n k=1,...,m+1

0, otherwise
The assignment decision variable, x;,, is defined as:

1, if aircraft i is assigned to gate k in the
Xi = new plan, i=1,....,n k=1,....,m+1

0, otherwise

The constraints are as given below:

m+1
zx,-kzl i=1,....n (A)
k=1
n
Y ox, <1 k=1,..,mr=1,.,R-1 (B)
i=1
Xy € {0,1} i=1,....nk=1,...,m+1 ©
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Constraint set (A) ensures each aircraft i is assigned to a single
gate. The overlapping of the aircraft is handled by binary parameter o;,,
where in constraint set (B) aircraft that are in the system at the same
time interval cannot be assigned to the same gate. Lastly, Constraint set
(C) states that the decision variable x;; is binary.

In our efficiency problem, EI, the number of gated aircraft
Y Xio Xy, and E2, their corresponding number of passengers
Y| Xi, Xy, are primarily and secondarily maximized, respectively.
We give the integer-valued aggregate objective function for the effi-
ciency criterion, E, = i D) Dy Xik + Doy Dy PiXy Where e =

1
Z,Ll l’i*Z,mzl pit+l ’

Karsu et al. (2021) showed that the maximization of the number of
aircraft assigned to gates, (max Y., Y'""_| x;;), is solved in polynomial
time using a network flow model. The same network structure holds
when the arc costs with ‘1’ that emanate from the node representing
aircraft i are replaced by i + p;. This follows that our efficiency
problem can also be solved in polynomial time.

In our stability problem, the objective functions ST1, ST2, and
ST3, (the number of aircraft-gate assignments preserved Y | 7" | ¢
x;;, their corresponding number of passengers >./_| > | picicx;, and
the number of aircraft assigned to gates that were initially assigned
to apron Z”c‘_w:l Yy X)) are maximized primarily, secondarily, and
tertiarily, respectively. We give the integer-valued aggregate objective
function for the stability criterion as follows:

We give the integer-valued aggregate objective function for the
stability criterion as follows:

1 n m
STy =—— 2 zcikxik
ESTIEST2 (0] j=1
1 n m m
L YD ILIEE D VD IE
ST2 = k=1 ileimer =1 k=1
where e¢;, = <——i—— and ¢ = ot
ST1 7:1 ;n:l cixtl ST2 ZL[ Cimt1+1

Jaehn (2010) shows that the maximizing the total aircraft-gate
score (max Y, Y| piX;c) problem is NP-hard. Our stability measure

reduces the total aircraft-gate score when p;, = #c,- s 1 picik+1.
ST1€ST2 ST2

This follows that our stability problem is also NP-hard. We refer to the
constraint sets (A), (B), and (C) as x € X, and state the mathematical
model as:

max E,
max ST,
subject to x € X,

A gate assignment solution r in x € X , is called an efficient solution
if there is no other solution ¢ in x € X, where E, > E, and ST, > ST,
with strict inequality holding at least once (E, > E, and ST, > ST,
or E, > E, and ST, > ST,). The associated objective vector (E,, ST,)
is said to be a nondominated objective vector (ndov). The solution q is
dominated by solution r and the objective vector (E,, ST,) is dominated
by the nondominated objective vector (E,, ST,).

A nondominated objective vector is called an extreme nondomi-
nated objective vector if it has the largest objective function value for
one objective, in a maximization problem.

Our efficiency and stability concerns constitute two different per-
spectives on the problem. Hence, their solutions are treated as the two
extreme ends of a solution spectrum.

An efficient solution is called a supported efficient solution if it is
optimal for the linear combination of E and ST, i.e., wE + (1 —w) ST
for any positive w. If an efficient solution does not optimize wE +
(1 = w) ST for all positive w, then it is unsupported efficient.

A supported efficient solution is called an extreme supported effi-
cient solution if it can be found by changing the value of w. A supported
efficient solution is called a nonextreme supported efficient solution if
it is a linear combination of two extreme supported efficient solutions.
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Table 1
Summary of the objective vectors.

Objective vector Definition

Nondominated objective
vector (ndov)

Set of objective vectors that are not dominated by
any other solution

Extreme nondominated
objective vector

Nondominated objective vectors with the
maximum values in any one of the objectives

Supported nondominated
objective vector

Nondominated objective vector that is optimal for
a linear combination of two objectives

Extreme Supported
nondominated objective
vector

Supported nondominated objective vector that is
found by a linear combination of two objectives

Unsupported nondominated
objective vector

Nondominated objective vector that does not
optimize any linear combination of two objectives

The nondominated objective vectors corresponding to supported,
unsupported, extreme supported, and nonextreme supported efficient
solutions are referred to as supported, unsupported, extreme supported,
and nonextreme supported nondominated objective vectors, respec-
tively. In Table 1, we summarize the objective vectors, for the sake of
completeness.

4. Finding the nondominated objective vectors

In this section, the generation of the nondominated objective vectors
is discussed. In Sections 4.1 and 4.2, algorithms to generate extreme
nondominated objective vectors are provided. The generation of all
exact nondominated objective vectors and approximate set of non-
dominated objective vectors are discussed in Sections 4.3 and 4.4,
respectively. The problems that are studied in Sections 4.2 and 4.3 are
all NP-hard due to the NP-hardness of our stability problem.

4.1. Finding the extreme nondominated objective vectors

We discuss the generation of the extreme nondominated objective
vectors with the largest E and the largest ST values in Sections 4.1.1
and 4.1.2, respectively.

4.1.1. Finding the extreme nondominated objective vector with the largest
E value
Consider the following problem:

max FE

subject to x € X,

Let E* be the optimal objective function value. E* is an upper
bound on the efficiency values of all nondominated objective vectors.
However, any feasible solution with an efficiency value of E* does not
necessarily comprise a nondominated objective vector since there may
exist another feasible solution with a larger ST value. The solution hav-
ing the maximum ST value among the solutions having an efficiency
value of E* can be found using the two-step Procedure 1.

Procedure 1 Finding an extreme nondominated objective vector

with the largest E value

Input: Arrival and departure times of the aircraft, initial plan
Step 1. Solve max E
subject to x € X,
Let E; be the optimal objective function value.
Step 2. Solve max ST
subject to E = E} and x € X,
Let ST, be the optimal objective function value.
Output: Extreme nondominated objective vector with the largest E

value, (E}, ST)) and the new plan
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4.1.2. Finding the extreme nondominated objective vector with the largest
ST value
Consider the following problem:

max ST
subject to x € X,

In the optimal solution, the initial plan should be implemented to
its greatest extent. To achieve this, we fix the aircraft-gate assignments
that are not affected by disruptions. In doing so, the first and second
terms of the stability objective are readily maximized. Hence, a great
emphasis is put on fixing the aircraft-gate assignments that are not
affected by disruptions.

By keeping the initial plan for the aircraft, that were initially
assigned to gates and are not affected by disruptions, we ensure that
the new plan will be the most faithful one to the initial plan. To this
end, we preprocess our stability problem and create a so-called reduced
problem to work with in Procedure 2.

Procedure 2  Creating a reduced problem for the stability problem

Input:
Step 1.

Arrival and departure times of the aircraft, initial plan

Fix the aircraft-gate assignments that are not affected by
disruptions.

Among the remaining unassigned aircraft, find which ones
can only be assigned to the apron, and assign these aircraft
to the apron.

Among the remaining unassigned aircraft, find which ones
have a one-to-one relationship with an available time
interval at a gate, i.e., an aircraft can only be assigned to a
specific gate and this specific gate have no other possible
unassigned aircraft for said open time interval.

Make this a one-to-one assignment.

The remaining unassigned aircraft and their possible gate
assignments constitute the reduced problem.

A reduced problem and a partial assignment plan

Step 2.

Step 3.

Output:

We define a network for each aircraft in the reduced problem, where
arcs represent possible aircraft-gate assignments. Note that each aircraft
has a set of eligible gates due to the partial assignment plan.

n Number of aircraft in the reduced problem

S(i) Set of gates that are eligible for aircraft i,i =1,...,n’

The objective function of the stability problem for the reduced prob-
lem is to maximize ST + egTE where ST = L T1+ %STZ +
ST2

1 1 EST1EST2
_ L ;o . .
ST3, E = EEEI +E2, € = BBl E,;, is the smallest possible

E value, and E,,, is the largest possible E value considering the set

of aircraft in the reduced problem, i = 1,...,n'. We estimate E,;, to be

the case where all aircraft in the reduced problem are assigned to the

apron, so E,;, = 0. We estimate E,,,, to be the case where all aircraft

. . 1 !

in the reduced problem are assigned to gates, so E,,,, = E—En/ +X, pi-
The constraint sets are as follows:

Xy =1
keS()
nl

i=1,...,n

i=1

Xy € {0,1} i=1,....n VkeU_ _uSG)

Let (E’, ST') be the optimal objective vector of the reduced prob-
lem. Extreme nondominated objective vector with the largest ST value,
(E3, STy), is found by also factoring in the partial assignment plan.
E2*=E’+iE1+E2 and ST = —! T1+$ST2+ST3 where

) EST1EST2
—El+ E2 and ———
£E £s

ST1+ ——ST2 + ST3 are the efficiency and

1
T1€ST2 EST2
stability of the partial assignment plan, and &g, £gyr;, and egp, are
parameters of the main problem.
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4.2. Finding the extreme supported nondominated objective vectors

The extreme supported nondominated objective vectors are found

through the following objective function: w(% + (1 — w)
max—Enmin
(H) where (E, ., ST,,;,) is the 1st extreme nondominated

objective vector, and (E,,;,, ST,,,) is the 2nd extreme nondominated
objective vector. Through this scaling, the same set of extreme sup-
ported vectors as without performing any scaling is found but with
more dispersed weights.

For the sake of simplicity, we write our scaled objective function

E—E,,; -
as WE gieq + (1 = w)ST 10 Where Eg oy = w2~ and similarly,
max " =min
ST—ST,,;
STyeqteq = oo
scaled ST ST i

max ™

We adapt the method used by Ozlen and Azizoglu (2009) to gener-
ate all extreme supported nondominated objective vectors in Procedure
3.

We start by finding the two extreme nondominated objective vectors
either as done in Sections 4.2 and 4.3 or by setting w = 1 and w = 0,
respectively.

Then, we solve the following relation to finding a range for w :
WEscaled(l) + (1 - w)STscaled(l) = WE:ca/ed(z) + (1 - w)STsca/ed(z)
where E, ., (i) and ST, (i) are E ., and ST, values of the ith
extreme nondominated objective vector, respectively. Rearranging the

STscated @ =STscatea (D
STycated D=STcatea D+ Egcatea D= Egcatea @)

In ranges [0, w) and (w, 1], extreme nondominated objective vectors
with the largest ST and E are favored, respectively.

We solve the following problem to get the third extreme supported
nondominated objective vector:

terms, we get w =

max WEscaled +0- w)STscaled

subject to x € X,

Let us say the optimal objective vector is (E;.qeq(3)s STscatea(3))-
We reorder these three extreme supported objective vectors so that
Escaled(3) < Esca[ed(z) < Escaled(l) and STscaled(l) < STscaled(2) <
STxmled(?’)'

Then, we calculate new weights, w, and w,, to search for other
extreme supported nondominated objective vectors.

STscated (@) = STiearea(D)

STcated @ = STiearedD) + Escated(D) = Egearea(2)
STcated3) = STcarea@

STcatea3) = STicared (@ + Escated(@) = Eseatea(3)

The extreme supported nondominated objective vectors are re-
ordered when a new one is found. New weights are calculated, and
new ranges are searched iteratively as shown in Procedure 3.

Procedure 3 returns an extreme supported nondominated objec-
tive vector at each iteration. This extreme supported nondominated
objective vector is either a new or an already known one.

If at the first iteration, one of the extreme nondominated objective
vectors is returned, meaning no other extreme supported nondominated
objective vector exists, then we stop. If one of the known extreme
supported nondominated objective vectors is returned, then we stop
searching the weight range at hand and move to a new one.

w, =

Wwy =

4.3. Finding all nondominated objective vectors

An optimal solution to
max E+¢epST
subject to ST <k and x € X,
or equivalently,
max FE

subject to x € X,



D.D. Poyraz and M. Azizoglu

Journal of Air Transport Management 115 (2024) 102529

Procedure 3  Finding the extreme supported nondominated objective

vectors

Input:
Step 0.

Arrival and departure times of the aircraft, initial plan
Find extreme nondominated objective vectors, (E,,,, ST,,,)
and (E,;,» STe)-

Find the scalarized weight,

max»

STcatea =S Tcatea (1)

w= .
ST, catea =S Tcatea D+ Eseated (D= Eqgrea(2)

Solve max wE,,;+ (1 —w)ST,

scaled

subject to x € X,
If the optimal objective vector is either (E,,,, ST,,,) or
(E,in> ST,.4x), 8O to Step 3.
Let k be the number of extreme supported nondominated
objective vectors excluding the two extremes.
Let k =1 and let (E,.;;,4(3), STy.a04(3)) be this optimal
objective vector.
Reorder the extreme nondominated objective vectors and
update w; and w,,, as:

Step 1.

STcateq kt-D=ST,g1eq (k)

wy = — = c -
K ST atea e+ D=ST,ced R+ E egteq ()= E cqreq (k1)

W, = STicatea kD =STyeureg (k1)
AL ST a1eq (k4 2)= ST, 1o D+ E e (D)~ E
Step 2. Solve max wyE, .. + (1 — w)ST,

seated (k+2)

caled
subject to x € X,

If the optimal objective vector is either (E,.,.,(k + 1),

ST, atea(k + 1)) OF (Eypuoq(K)s STyuea(k)), let k =k +1, go to

Step 2.

If the optimal objective vector is a new extreme supported

nondominated objective vector, go to Step 1.

If all weight ranges are searched, go to Step 3.

Stop, k + 1 extreme supported solutions are generated.

Set of all extreme supported nondominated objective vectors

and the new plans.

Step 3.
Output:

produces an efficient solution (see Haimes (1971)). Let E* be the
optimal E value. Using

max ST
subject to E=E" and x€ X,

and the fact that (E, ST) is integer, Procedure 4 finds all nondominated
objective vectors.

We demonstrate Procedure 4 on a small-sized problem (50 aircraft,
10 gates, with Disruption Type 1, and arrival and departure times
belonging to Set 1, as described in detail in Section 6.1). Procedure 4
starts by finding the extreme nondominated objective vector with the
largest E value following Procedure 1. Subsequently, the first nondom-
inated objective vector (E, ST) is found as (11054,21640) and labeled
as r = 1. Then, a new constraint is introduced, where the stability
value is incrementally increased by 1 and the problem is solved to find
the corresponding optimal efficiency value at each iteration. Meaning,
the second nondominated objective vector is found by introducing a
constraint where the stability value must be greater than or equal to
21640+ 1. Hence, r = 2 is found as (11004, 22265). After 12 iterations, all
nondominated objective vectors are found. We illustrate the trade-off
curve of this example in Fig. 1 whose data are tabulated in Table 2.

4.4. Finding the approximate nondominated objective vectors

Our experiments have shown that the exact algorithm becomes
computationally intractable as the number of aircraft and gates in-
creases, hence a need for a heuristic procedure arises. We generate
a set of approximate nondominated objective vectors by fixing some
aircraft-gate assignments and solving a reduced problem.

Procedure 4 Finding all nondominated objective vectors

Input: Arrival and departure times of the aircraft, initial plan
Step 0. To find the extreme nondominated objective vector with the
largest E value
solve max E
subject to x € X,
Let E(1) be the optimal E value.
Solve max ST
subject to E =E(l) and x € X,
Let ST(1) be the optimal ST value.
Then, (E(1),.ST (1)) is the 1 nondominated objective vector.
Let r be the number of nondominated objective vectors and
set r=1.
Step 1. Solve max E
subject to ST >ST(r)+1 and x € X,
Step 2. Let r=r+1 and E (r) be the optimal E value.
Solve max ST
subject to E = E(r) and x € X,
Let ST (r) be the optimal ST value.
Then, (E (r), ST (r)) is the " nondominated objective vector,
go to Step 1.
Step 3. Stop, all r nondominated objective vectors are generated.
Output: Set of all nondominated objective vectors and the new plans.
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Fig. 1. Efficient frontier for the example instance.

Table 2

Nondominated objective vectors of an example instance.
r E ST r E ST
1 11054 21640 7 10638 24101
2 11004 22265 8 10588 24105
3 10954 23485 9 10538 24710
4 10904 24095 10 10438 24711
5 10804 24096 11 10422 24720
6 10738 24100 12 10222 25330

Procedure 5 starts with finding the two extreme nondominated
objective vectors, each of which is obtained in reasonable times. Then,
the similarity of these new plans is detected. For a gate, if the set of
aircraft assigned in the extreme nondominated objective vector with
the largest ST value is a superset of the set of aircraft assigned in the
extreme nondominated objective vector with the largest E value, then
we fix these aircraft-gate assignments, obtain a partial assignment plan,
and create a reduced problem. The idea behind this is that if a set of
aircraft is assigned to the same gate in the two extreme nondominated
objective vectors, i.e., the furthest nondominated objective vectors,
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then it is very likely that said aircraft be assigned to the same gate
in the nondominated objective vectors in between also.

Procedure 5 Finding the approximate nondominated objective vectors
Input: Arrival and departure times of the aircraft, initial plan

Step 0. Find two extreme nondominated objective vectors, r = 1 and
r =2, with the largest E and ST values, respectively.

Let S, be the set of aircraft assigned to gate k in extreme
nondominated objective vector r.

Let N be the set of all aircraft.

Let M be the set of all gates.

Let k= 1.

If S, is a superset of S, i.e., all aircraft in .S, are also in
Sy, at gate k, update N = N\ S, and M = M \ {k}.

If k = m, then go to Step 3.

Let k =k + 1 and go to Step 1.

For the reduced problem with gates in M and aircraft in N,
find all nondominated objective vectors using Procedure 4.
Set of approximate nondominated objective vectors and the
new plans.

Step 1.
Step 2.
Step 3.

Output:

5. Optimal decomposition rule

A meaningful question in generating an assignment plan would be
“What would happen if the problem could be decomposed?”. The optimal
decomposition of an AGRP would mean that the main problem has
time intervals where no aircraft occupies the gates, i.e., in such time
intervals no aircraft is present in the system. After decomposing the
main problem by clustering the aircraft, we get preferably equal-sized,
smaller instances. Obtaining an assignment plan for each small instance
and constructing a full solution for the main problem might be a good
idea to explore. We propose Procedure 6 for our optimal decomposition
rule which uses the following notation.

Procedure 6  Finding all nondominated objective vectors with

decomposition rule

Input: Arrival and departure times of the aircraft, initial plan

Step 0. Find set A(v) for all v=1,...,V by using Procedure 4.
Find ST,z and STy .

Lett=S8T,; and r=1.

Step 1. Solve Py first and then solve Pgy.

Let the optimal objective function values of P, and Py, be
(EFF*, ST A*) which is the " nondominated objective
vector.

Step 2. If STA* < STyp, thenlet t=STA*+1, r=r+1 and go to
Step 1, else stop, all »r nondominated objective vectors are
generated.

Output: Set of all nondominated objective vectors and the new plans.

Let A(v) be the set of nondominated objective vectors of the decom-
posed problem, v =1,...,V and EFF, and ST A, be the corresponding
E, and ST A values of the solution u in A, where A = UL] A(v). We
construct a full solution by using two mathematical models: P and
Pgy. The decision variable of these models is:

L,
2=

14
(Pp) max Y Y EFF,z,

v=1 ucA(v)

if solution u is selected
otherwise

subject to

14
Y STAz, >t (D1)
v=1 ueA()
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> oz, =1 v=1,....V (E)
ueA(v)
z, € {0,1} ue A ()

In Pp, we maximize the efficiency value of the full solution while
the summation of the stability value counterparts of each smaller
solution that make it up are forced to be at least some lower bound ¢
(described further below and in Procedure 6) through constraint (D1).
Constraint set (E) makes sure that exactly one solution is selected for
each nondominated objective vector. Constraint set (F) is the binary
constraint for all decision variables. Let EF F* be the optimal objective
function value.

v
(Pgr) max 2 2 STA,z,

v=1 ueA(v)

subject to

14
Y Y EFF,z, =EFF* (D2)
v=1 ucA(v)

Y z=1 v=1,...V (E)
ueA(v)
z, € {0,1} ue A ()

In Py, we maximize the stability value of the full solution while the
summation of the efficiency value counterparts of each smaller solution
that make it up are forced to be exactly the optimal efficiency value
of the full solution found by the previous model through constraint
(D2). Constraint sets (E) and (F) are utilized as before. Let STA* be
the optimal objective function value. (EF F*, ST A*) is a nondominated
objective vector when ¢ is between ST, = ZL;I min,4 STA, and
STyg = 22/:1 max,c4 STA,, the lower and upper bounds for the ST
values of all efficient solutions, respectively.

6. Computational experiments

Performances of the algorithms are tested. In Section 6.1, the data
generation scheme is discussed. The performance measures are stated in
Section 6.2. In Section 6.3 the results of our computational experiment
are analyzed.

6.1. Data generation scheme

Airports in the largest three cities in Turkey, istanbul Airport in is-
tanbul, Esenboga Airport in Ankara, and izmir Adnan Menderes Airport
in Izmir, have about 40, 20, and 10 gates, respectively (World Airport
Guides, 2023; TAV Airports, 2023; Airport Technology, 2023). In our
experiments, we select the number of gates, m, compatible with these
real-life instances.

The number of aircraft, n, starts at 50 and changes in increments of
25, for each m scenario.

Arrival and departure times, i.e., a; and d; are generated as stated
in Karsu et al. (2021). According to this scheme, low and high wait-
ing instances, or having low and high chances of apron assignments,
namely Set I and Set II are defined, respectively.

SetT g, ~U[0,300] and d; ~ U[0,30] +30 + g
SetTl g, ~U[0,150] and d; ~ U[0,60] + 60 + a;

The time unit for the arrival and departure times is taken as minutes.
For example, when an aircraft has an arrival time of 65, it means that
this aircraft will be in the airport in the 65th minute of the planning
horizon, which is compatible with the time intervals used in real-life.

The number of passengers, p;, is generated as follows: p; ~ T(50, 100,
300) where T is the triangular distribution, 50 is the minimum, 100 is
the mode, and 300 is the maximum value.
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We use an initial plan that is optimal for the efficiency measure.
Then, we assume that disruptions occur at time zero and the affected
gates do not become available thereafter. We define three types of dis-
ruption scenarios for our experiments, where affected gates are selected
randomly. Disruption Type I depicts a small disruption where only a
single gate is closed. Disruption Type II shows a more serious case
where one fifth of the gates is affected. For the sake of completeness,
Disruption Type III depicts more severe incidents where half the gates
become inoperable. These disruption scenarios depict cases with emer-
gency flights where a gate is preempted, gate breakdowns, planned
or unplanned maintenance operations, adverse weather conditions that
render some gates inoperable, labor strikes of airport employees that
result in the closure of some gates, and so on.

For each n, m, arrival and departure time set, and disruption type,
10 problem instances are generated. We set a termination limit of 2 h
for each mathematical model.

All mathematical models and algorithms are developed using ILOG
CPLEX Optimization Studio 20.1.0, and solved by CPLEX Optimizer
20.1.0. Furthermore, a computer with quad-core Intel(R) Core(TM) i7-
10510U CPU @1.80 GHz-2.30 GHz, 16 GB RAM, and Windows 11 is
used. Reported CPU times are expressed in seconds.

6.2. Performance measures

We report the average and maximum (worst case) CPU times for all
procedures. We also include the statistics for the number of nondomi-
nated objective vectors.

To evaluate the performance of the heuristic algorithm that gener-
ates the approximate set of nondominated objective vectors, we first
use P, the percentage of exact nondominated objective vectors found

by the heuristic, P = |E|.S;;I|S\ X 100 where ES and HS are exact

and approximate sets of nondominated objective vectors, respectively,
and |ES n H.S| is the number of exact nondominated objective vectors
found by the heuristic.

To evaluate the closeness of the approximate solutions to their exact
counterparts, we use two statistics, D1 and D2, as in Czyzzak and
Jaszkiewicz (1998). They define D1 and D2 as the average and maxi-
mum distance between the exact and heuristic nondominated objective
vectors, respectively. We assume (E", ST") is in E.S and (E?, ST?) is in
H S, and calculate the ranges of E values, R(E), and ST values, R(ST),
as follows:

R(E) = E" - E"

max
(E",STT)EES

R(ST) = max
(E",ST"EES

f((E9, ST, (E", ST"))
- max{O, ﬁ(m, E), ﬁ(srq, ST’)}
Then, measures D1 and D2 are calculated as follows:
_ 1
= ES] (

min
(E",STT)EES

ST" — ST"

min
(Er,ST")EES

DI min, {f((Eq, ST9), (E", ST’))}

(E4,ST4
EST) “eps
cES

b2= (??’T‘H { (Erf}grrlh {f((E",ST‘I), (EV’STr)) }}
€ES €HS
The higher percentage of exact nondominated objective vectors
found by the heuristic, P, is preferred.
Furthermore, lower D1 and D2 values, average and maximum dis-
tances between the exact and heuristic nondominated objective vectors,
respectively, is preferred.

6.3. Analysis of the results

In this section, we discuss the computational results for the solution
procedures.
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6.3.1. Extreme and extreme supported nondominated objective vectors

We first discuss the performance of the extreme and extreme sup-
ported algorithms (Procedures 1, 2 and 3). Tables 3 and 4 report
average and maximum CPU times for extreme nondominated objective
vector with the largest E value, extreme nondominated objective vector
with the largest ST value, extreme supported nondominated objective
vectors, and average and maximum number of extreme supported
nondominated objective vectors, for Set 1 and Set 2, respectively.

As expected, both tables demonstrate higher CPU times for the
larger number of aircraft. Under both low and high apron usage scenar-
ios, we observe that CPU times for finding the extreme nondominated
objective vector with the largest ST value are smaller than those of the
extreme nondominated objective vector with the largest E value.

With this finding, the importance of using a reduced problem in
Procedure 2, is emphasized. Especially, in instances with a larger num-
ber of aircraft, the difference between CPU times of the two extreme
nondominated objective vectors is more dramatic, in some cases up to
40 times.

We also observe that CPU times to find the extreme supported
nondominated objective vectors are higher for Set 1 and it increases
with the number of aircraft.

The disruption types also affect the complexity of the solutions.
Disruption Type 1 leads to a less complex problem than its counterparts,
Disruption Types 2 and 3 where more gates are closed.

Lastly, we observe that the average and maximum number of ex-
treme supported nondominated objective vectors is higher in Set 1 as
opposed to Set 2 which is compatible with higher CPU times.

As expected, under the low apron usage scenario, there exist more
solutions compared to the more restrictive high apron usage scenario.
To illustrate, when n is 150 and m is 20, the average number of extreme
supported nondominated objective vectors is 14.6 (Disruption Type 2)
and 17.9 (Disruption Type 3) for Set 1, whereas, for Set 1, it is 5.1
(Disruption Type 2) and 6.8 (Disruption Type 3).

6.3.2. All nondominated objective vectors

We discuss the performance of the exact algorithm in Procedure
4 that generates all nondominated objective vectors. Tables 5 and 6
report the average and maximum number of nondominated objective
vectors, average and maximum CPU times, and average CPU time per
nondominated objective vector for Set 1 and Set 2, respectively. From
Tables 5 and 6, we observe that the number of nondominated objective
vectors is higher in Set 1 than that of Set 2. This is due to the high
apron usage nature of Set 2, there are not as many possible aircraft-
gate assignments, hence the solution space is narrower. Furthermore,
we observe that CPU times increase as n increases for both sets. This
can be attributed to the increase in the complexity of models due to
the increase in the problem size. Set 1 instances are harder to solve
than Set 2 instances. This is consistent with the higher number of
nondominated objective vectors of Set 1. For example, under Disruption
Type 2, when n is 125 and m is 20, the average (maximum) CPU
times are 1330.44 (5985.94) s for Set 1, whereas it is 15.01 (18.23) s
for Set 2. Similarly, under disruption type 3, when n is 125 and m is
20, the average (maximum) CPU times are 623.93 (2850.83) s for Set 1,
whereas it is 22.25 (32.13) s for Set 2. For both Set 1 and Set 2, we also
observe that Disruption Type 2 takes longer to solve than its Disruption
Type 3 counterpart. Moreover, the average CPU time per nondominated
objective vector is higher for Set 1. Its largest values occur with the
large number of aircraft and a relatively large number of gates, for
example when »n is 125 and m is 20. As the problem size increases, so do
the solution times for both sets. However, due to its narrower solution
space, there are not as many solutions for Set 2. This results in a higher
average CPU time per nondominated objective vector for Set 1.
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Table 3
Extreme solutions (ES), extreme supported solutions (ESS) for set 1.
Disruption type Aircraft, n Gates, m ES- Efficiency ES- Stability ESS
CPU time Number of ESSs CPU time
Avg Max Avg Max Avg Max Avg Max
50 10 0.31 0.41 0.20 0.83 3.6 5 1.05 1.52
20 0.39 0.47 0.39 0.84 1 1 0.78 1.23
75 10 0.50 0.66 0.11 0.45 4.6 7 1.62 2.72
20 0.79 1.41 0.35 0.66 1.4 3 1.43 2.52
10 1.22 1.58 0.03 0.11 4.7 7 3.93 6.11
100 20 2.37 3.58 0.31 0.89 4.3 6 5.92 9.36
40 2.37 3.78 0.78 1.77 1 1 3.15 5.38
10 2.10 2.55 0.04 0.11 4.5 7 5.51 8.05
1 125 20 5.10 8.55 0.19 0.45 4.5 6 10.36 13.56
40 3.13 3.58 1.26 3.41 1 1 4.39 6.66
10 3.80 4.84 0.07 0.27 4.2 6 8.06 11.36
150 20 10.62 16.83 0.15 0.39 6.3 8 23.99 38.67
40 3.89 4.28 1.12 2.00 1 1 5.01 5.92
10 5.02 7.05 0.12 0.38 4.9 7 10.74 17.53
175 20 21.38 30.14 0.10 0.33 5.6 7 36.70 46.56
40 10.34 15.22 1.90 3.19 2.1 3 16.17 23.42
10 4.07 4.98 0.10 0.47 4.3 7 10.05 17.36
200 20 22.87 30.61 0.21 0.67 5.6 8 45.57 55.48
40 15.93 37.44 1.39 2.33 3.2 4 28.52 55.53
50 10 0.29 0.52 0.21 0.47 5.9 8 1.80 2.50
20 0.39 0.45 0.56 1.28 1 1 0.95 1.66
75 10 0.55 0.81 0.18 0.53 6.9 12 4.58 10.38
20 0.88 1.06 0.61 1.22 4.2 7 4.16 5.50
10 0.74 1.00 0.05 0.11 7 8 5.26 7.17
100 20 2.32 3.02 0.60 0.88 11.3 16 18.68 29.36
40 2.33 2.55 2.77 5.31 1 1 5.10 7.69
10 1.52 1.92 0.06 0.19 6.8 9 7.35 11.80
2 125 20 5.10 7.28 0.35 0.80 11.5 19 29.49 49.91
40 3.36 3.77 3.80 7.08 1 1 7.16 10.23
10 2.21 2.67 0.07 0.22 6.5 10 12.37 21.03
150 20 8.10 11.91 0.13 0.28 14.6 18 52.71 68.92
40 6.06 8.25 3.57 5.30 2.4 6 15.63 35.08
10 3.83 4.50 0.08 0.28 7.6 11 13.81 19.77
175 20 14.65 21.55 0.36 0.77 13 17 60.23 71.94
40 24.97 48.19 3.08 5.13 10.4 18 95.67 217.11
10 3.59 4.08 0.09 0.30 6.7 10 16.88 28.34
200 20 18.13 20.97 0.33 1.28 12.7 17 81.50 111.67
40 45.41 69.88 2.33 3.41 19.3 24 316.24 701.03
50 10 0.33 0.45 0.23 0.77 8.8 14 3.23 6.44
20 0.52 0.66 0.84 1.37 3.3 5 2.33 3.22
75 10 0.58 0.73 0.14 0.44 8.6 11 5.47 7.61
20 0.93 1.13 0.79 1.61 10.7 16 10.58 16.91
10 0.78 0.88 0.10 0.42 9.7 14 8.56 14.20
100 20 1.76 2.17 0.45 0.83 15.6 20 25.06 34.81
40 3.14 4.03 3.60 6.03 3.2 7 11.97 18.58
10 1.10 1.47 0.14 0.63 9.1 13 12.68 17.42
3 125 20 2.80 3.19 0.35 0.63 17.8 21 51.22 71.86
40 7.18 10.70 4.82 6.69 9.8 15 58.28 98.39
10 1.24 1.38 0.12 0.34 9.4 11 10.28 11.66
150 20 3.73 4.14 0.28 0.84 17.9 20 50.75 56.83
40 11.43 15.95 5.16 7.50 16 19 127.84 244.45
10 2.43 3.00 0.08 0.38 9.7 15 17.36 27.84
175 20 7.15 8.44 0.25 0.56 16.1 19 63.57 80.53
40 35.40 45.08 4.96 8.09 24.2 28 344.99 608.61
10 2.15 2.36 0.07 0.25 8.9 11 15.31 19.58
200 20 5.60 6.17 0.16 0.41 17 21 71.47 108.80
40 33.00 54.36 3.08 5.47 26.1 34 329.08 490.97
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Table 4
Extreme solutions (ES), extreme supported solutions (ESS) for set 2.
Disruption type Aircraft, n Gates, m ES- Efficiency ES- Stability ESS
CPU time Number of ESSs CPU time
Avg Max Avg Max Avg Max Avg Max
50 10 0.26 0.30 0.05 0.14 2.4 3 0.84 1.45
20 0.53 0.61 0.07 0.17 2 3 1.30 2.05
75 10 0.47 0.66 0.05 0.17 2.2 3 1.19 2.03
20 1.29 1.83 0.15 0.66 2.3 3 2.38 3.31
10 0.76 0.92 0.03 0.09 1.7 3 1.91 3.13
100 20 1.75 2.23 0.05 0.19 2.3 4 4.32 6.69
40 4.28 5.02 0.25 0.97 2.1 3 5.27 8.47
1
10 1.05 1.16 0.07 0.20 2.2 3 3.04 3.73
125 20 2.20 2.53 0.09 0.42 2.1 3 6.64 11.14
40 6.04 7.69 0.17 0.42 2.3 3 7.90 11.25
10 1.37 1.53 0.08 0.34 1.7 2 4.70 6.16
150 20 2.89 3.08 0.10 0.25 2.5 3 12.83 19.83
40 9.16 11.42 0.23 0.61 2.8 3 11.90 13.64
10 2.02 2.36 0.06 0.27 2 3 5.00 6.23
175 20 3.82 441 0.10 0.39 2.1 3 25.05 32.38
40 13.42 15.33 0.27 1.08 2.4 4 26.00 48.58
50 10 0.27 0.34 0.04 0.14 3.2 5 1.09 2.00
20 0.50 0.64 0.19 0.81 4.7 9 2.93 4.81
75 10 0.48 0.67 0.07 0.25 2.8 4 1.61 3.09
20 1.06 1.34 0.13 0.56 4.9 7 4.97 7.05
10 0.69 0.78 0.06 0.25 29 4 2.13 3.42
100 20 1.73 2.02 0.11 0.31 4.8 6 6.54 7.89
40 4.09 4.97 0.39 1.08 7.6 12 19.00 28.39
2
10 1.07 1.19 0.07 0.33 2.9 5 3.20 4.83
125 20 2.04 2.17 0.06 0.20 5.1 7 11.05 14.81
40 5.09 5.86 0.15 0.50 7.8 10 28.27 33.23
10 1.58 2.66 0.08 0.38 2.5 4 3.82 4.72
150 20 2.75 3.11 0.12 0.39 5.1 7 16.28 22.95
40 7.02 7.77 0.34 1.11 8.6 12 42.32 62.45
10 1.69 2.02 0.04 0.19 2.4 4 5.75 8.86
175 20 3.25 3.91 0.14 0.38 4.3 7 27.29 33.42
40 12.33 14.94 0.27 0.59 7.5 11 95.33 147.88
50 10 0.25 0.28 0.08 0.30 4.1 5 1.37 1.81
20 0.46 0.58 0.19 0.73 6.3 9 4.42 6.91
75 10 0.47 0.56 0.04 0.11 3.7 6 2.14 3.61
20 0.82 1.03 0.13 0.31 7.9 10 6.90 8.83
10 0.61 0.67 0.04 0.14 4.2 6 3.37 4.31
100 20 1.33 1.44 0.09 0.19 7.2 9 8.82 12.88
40 3.03 3.97 0.42 0.94 11.6 14 32.36 49.47
3
10 0.96 1.11 0.07 0.27 4.1 5 4.13 4.78
125 20 1.91 2.25 0.08 0.23 6.9 9 13.24 18.20
40 4.00 4.50 0.11 0.41 11.4 15 47.86 60.45
10 1.23 1.42 0.05 0.23 4 7 4.71 8.16
150 20 2.35 2.58 0.07 0.20 6.8 9 18.39 27.39
40 5.38 6.14 0.13 0.44 11.4 16 65.88 91.42
10 1.60 2.19 0.07 0.23 3.4 4 5.10 6.16
175 20 2.90 3.17 0.07 0.25 6.8 11 21.97 36.78
40 8.91 10.17 0.21 0.45 10.5 14 85.72 114.05
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Table 5
All exact nondominated objective vectors for set 1.
Disruption type Aircraft, n Gates, m Number of ndovs CPU time Average CPU time
per ndov
Avg Max Avg Max
50 10 6.5 12 2.71 7.23 0.42
20 1 1 0.51 0.83 0.51
75 10 10.4 21 10.90 39.91 1.05
20 1.6 3 1.34 2.45 0.84
1 10 9.5 15 13.36 45.27 1.41
100 20 7.1 14 14.89 30.66 2.10
40 1 1 2.86 4.58 2.86
10 9.2 18 18.84 61.80 2.05
125 20 8.3 13 212.02 1671.61 25.54
40 1 1 5.13 7.83 5.13
50 10 11.5 19 7.36 14.00 0.64
20 1 1 0.75 1.08 0.75
75 10 18.2 33 26.83 118.42 1.47
20 6.5 11 8.99 22.69 1.38
2 10 18 25 23.75 54.30 1.32
100 20 32.8 69 452.11 1338.13 13.78
40 1 1 4.14 4.81 4.14
10 16.1 24 28.23 52.33 1.75
125 20 45.2 72 1330.44 5985.94 29.43
40 1 1 5.17 6.08 5.17
50 10 19.2 24 10.78 13.42 0.56
20 4.2 9 3.33 7.23 0.79
75 10 32.6 45 30.85 58.70 0.95
20 26 57 59.60 143.33 2.29
3 10 323 54 39.32 82.72 1.22
100 20 52.4 74 589.38 2840.03 11.25
40 4.3 10 16.84 40.27 3.92
10 30.4 56 39.07 71.34 1.29
125 20 76.3 103 792.51 1309.72 10.39
40 20.8 33 623.93 2850.83 30.00
Table 6
All exact nondominated objective vectors for set 2.
Disruption type Aircraft, n Gates, m Number of ndovs CPU time Average CPU time
per ndov
Avg Max Avg Max
50 10 2.8 4 0.85 1.28 0.31
20 2.8 5 1.75 291 0.63
75 10 2.4 4 1.49 2.88 0.62
20 2.5 4 2.98 4.48 1.19
1 10 1.9 5 1.94 5.05 1.02
100 20 2.7 7 5.23 11.36 1.94
40 3.1 5 11.72 17.91 3.78
10 2.9 6 4.38 11.38 1.51
125 20 2.3 3 5.47 7.30 2.38
40 2.7 4 13.98 22.56 5.18
50 10 4.2 6 1.78 2.88 0.42
20 10 19 7.64 13.28 0.76
75 10 3.6 6 2.18 4.13 0.61
20 8 12 9.51 14.83 1.19
2 10 3.4 6 3.12 6.08 0.92
100 20 6.1 9 10.55 15.41 1.73
40 28.4 48 118.32 258.56 4.17
10 4.4 10 5.82 15.36 1.32
125 20 7.6 10 15.01 18.23 1.98
40 13.4 22 57.63 96.55 4.30

(continued on next page)
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Table 6 (continued).
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Disruption type Aircraft, n Gates, m Number of ndovs CPU time Average CPU time
per ndov
Avg Max Avg Max
50 10 5.8 10 2.23 4.59 0.38
20 12.3 21 8.93 16.06 0.73
75 10 6 9 3.86 6.97 0.64
20 13.4 22 12.57 24.61 0.94
3 10 6.5 13 5.77 12.77 0.89
100 20 11.2 16 16.81 26.98 1.50
40 27.4 37 80.59 123.69 2.94
10 6.3 8 6.91 9.42 1.10
125 20 11.8 17 22.25 32.13 1.89
40 25.3 30 91.52 107.95 3.62
Table 7
Heuristic procedure for set 1.
Disruption type Aircraft, n Gates, m CPU time P D1 D2
Avg Max Avg Min Avg Max Avg Max
50 10 3.28 8.67 82.85 45.45 0.04 0.25 0.13 0.70
20 0.78 1.23 100.00 100.00 0.00 0.00 0.00 0.00
75 10 8.79 26.02 70.36 28.57 0.05 0.22 0.18 0.67
20 1.72 3.95 100.00 100.00 0.00 0.00 0.00 0.00
10 11.70 30.33 92.33 66.67 0.01 0.10 0.06 0.37
1 100 20 9.03 16.64 88.29 66.67 0.02 0.06 0.07 0.25
40 3.15 5.38 100.00 100.00 0.00 0.00 0.00 0.00
10 13.18 25.34 85.62 36.36 0.02 0.10 0.08 0.23
125 20 19.00 40.22 77.54 30.77 0.03 0.12 0.10 0.25
40 4.39 6.66 100.00 100.00 0.00 0.00 0.00 0.00
10 16.58 28.72
150 20 101.95 572.41
40 5.01 5.92
50 10 8.25 13.86 90.86 75.00 0.01 0.05 0.06 0.25
20 0.95 1.66 100.00 100.00 0.00 0.00 0.00 0.00
75 10 17.13 51.70 76.63 21.21 0.02 0.05 0.09 0.25
20 8.34 20.47 94.11 77.78 0.01 0.07 0.08 0.36
10 29.38 98.44 92.17 50.00 0.00 0.01 0.02 0.07
2 100 20 232.37 1034.02 92.04 33.33 0.00 0.01 0.01 0.07
40 5.10 7.69 100.00 100.00 0.00 0.00 0.00 0.00
10 19.09 35.22 89.63 50.00 0.01 0.03 0.04 0.17
125 20 706.73 4499.83 83.50 52.00 0.00 0.02 0.05 0.11
40 7.16 10.23 100.00 100.00 0.00 0.00 0.00 0.00
10 32.60 55.31
150 20 1699.25 6493.59
40 18.27 46.08
50 10 6.27 21.09 55.86 33.33 0.03 0.06 0.11 0.17
20 3.50 5.56 92.44 44.44 0.02 0.10 0.05 0.27
75 10 10.55 35.22 38.19 17.07 0.03 0.05 0.13 0.24
20 52.58 238.25 76.49 33.33 0.01 0.09 0.05 0.25
10 17.53 75.53 44.97 15.91 0.03 0.05 0.15 0.32
3 100 20 43.99 214.48 36.94 21.67 0.02 0.02 0.07 0.10
40 18.18 38.55 100.00 100.00 0.00 0.00 0.00 0.00
10 19.22 49.86 44.54 14.29 0.04 0.06 0.14 0.26
125 20 286.75 1030.66 62.78 20.41 0.01 0.03 0.05 0.13
40 761.56 4008.38 95.63 82.14 0.00 0.01 0.01 0.07
10 13.37 40.30
150 20 435.45 2137.91
40 7396.45 59410.89

6.3.3. Approximate nondominated objective vectors

Procedure 5, where we take advantage of the closeness of the two
extreme nondominated objective vectors to create a reduced problem
and unify its solutions with the extreme supported nondominated ob-
jective vectors, is implemented on our test instances. The results are
given in Tables 7 and 8, where average and maximum CPU times are
reported up to 150 aircraft to show the reduced problem complexity,
and average and minimum P, and average and maximum D1 and D2
values are reported for the instances used in Procedure 4.
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As expected, as the problem size increases, the CPU times increase.
However, it takes a much shorter time to solve the same set of problems
with the heuristic procedure compared to the exact algorithm. This
becomes more vivid in the following example: when » is 125 and m is
20 with Disruption Type 2 for Set 1, the average (maximum) CPU time
to generate all nondominated objective vectors is 1330.44 (5985.94) s
as seen in Table 5. The same instances are solved using the heuristic
procedure with the average (maximum) CPU time of 706.73 (4499.83) s
as shown in Table 7.
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Table 8
Heuristic procedure for set 2.
Disruption type Aircraft, n Gates, m CPU time P D1 D2
Avg Max Avg Min Avg Max Avg Max
50 10 1.05 1.89 94.17 66.67 0.03 0.17 0.08 0.50
20 1.45 2.14 79.00 40.00 0.11 0.35 0.29 0.77
75 10 1.38 2.19 97.50 75.00 0.01 0.08 0.03 0.33
20 2.62 3.69 95.00 50.00 0.03 0.25 0.06 0.63
10 2.08 3.69 96.00 60.00 0.01 0.14 0.05 0.49
1 100 20 4.70 7.47 98.57 85.71 0.00 0.00 0.00 0.00
40 5.49 9.16 75.67 50.00 0.12 0.23 0.37 0.69
10 3.49 4.66 90.00 50.00 0.04 0.17 0.13 0.51
125 20 6.95 11.41 93.33 66.67 0.03 0.17 0.10 0.50
40 8.19 11.64 90.83 66.67 0.03 0.17 0.10 0.50
10 4.98 6.58
150 20 13.19 20.53
40 12.90 15.62
50 10 1.85 3.33 96.00 60.00 0.01 0.08 0.03 0.25
20 6.27 10.77 90.58 68.75 0.00 0.02 0.04 0.24
75 10 2.27 4.72 97.50 75.00 0.01 0.08 0.03 0.33
20 8.27 13.58 94.44 66.67 0.01 0.04 0.06 0.25
10 2.77 4.95 94.17 66.67 0.02 0.12 0.08 0.50
2 100 20 9.68 11.78 98.89 88.89 0.00 0.02 0.01 0.14
40 48.82 108.78 90.94 68.00 0.00 0.01 0.03 0.11
10 5.31 10.41 94.50 70.00 0.01 0.08 0.06 0.33
125 20 16.94 22.63 99.00 90.00 0.00 0.01 0.01 0.07
40 39.35 54.95 99.55 95.45 0.00 0.00 0.00 0.04
10 4.84 7.94
150 20 20.68 27.91
40 55.37 87.94
50 10 2.73 5.22 95.71 57.14 0.01 0.09 0.03 0.29
20 10.44 21.03 99.38 93.75 0.00 0.00 0.00 0.04
75 10 3.87 7.11 98.00 80.00 0.01 0.06 0.03 0.32
20 13.77 23.75 93.26 40.91 0.00 0.03 0.01 0.09
10 6.95 12.72 94.53 75.00 0.01 0.03 0.05 0.19
3 100 20 18.42 24.89 98.13 87.50 0.00 0.00 0.00 0.01
40 66.34 108.67 98.00 80.00 0.00 0.01 0.00 0.03
10 8.23 11.91 96.25 75.00 0.00 0.03 0.03 0.24
125 20 25.04 36.39 97.39 88.24 0.00 0.01 0.01 0.11
40 92.02 110.06 99.55 95.45 0.00 0.00 0.01 0.07
10 8.41 13.84
150 20 29.31 41.13
40 101.61 137.23

We observe a significant time reduction when the heuristic proce-
dure is used for this sizeable problem set. In this reduced time, the
average (minimum) of the reported P value is 83.50% (52%), which
shows many of the nondominated objective vectors can be generated
in a much shorter time. Considering the high average (maximum)
number of nondominated objective vectors 45.2 (72), we would be
also generating a high number nondominated objective vectors for the
decision maker to choose from.

From Table 7, for Set 1, we see high P values for Disruption
Types 1 and 2, and satisfactory P values for Disruption Type 3 when
supported with considerable CPU time reductions compared to the
exact algorithm and considering the high number of nondominated
objective vectors in Set 1. From Table 8, for Set 2, we observe high
P values for all disruption types which is consistent with the lower
number of nondominated objective vectors in Set 2 compared to Set
1 as shown in Tables 5 and 6.

To illustrate, for Set 2, when n is 125 and m is 40 with Disruption
Type 2, on average 99.55% of all nondominated objective vectors are
generated using the heuristic procedure. The corresponding average
CPU time is 39.35 s. On the other hand, for the same instances, the exact
algorithm generates 13.4 nondominated objective vectors on average
with an average CPU time of 57.63 s as shown in Table 6. We observe
that a good percentage of all nondominated objective vectors can be
found within a reduced time by our heuristic procedure.
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6.3.4. Optimal decomposition rule

For the optimal decomposition rule proposed in Procedure 6, we
generated new instances where the problem can be decomposed into
two or three small problems where no aircraft pair between said small
problems is in the system at the same time interval. In Tables 9-12, we
report the average and maximum number of nondominated objective
vectors, and CPU times with and without the optimal decomposition
rule.

Table 9 is prepared for Set 1, with Disruption Type 2 and the case
where the problem is decomposed into two small problems. Similarly,
we observe increased problem complexity with the increased problem
size. We also observe as the number of nondominated objective vectors
increases, so do the CPU times. From Table 9, we observe the reduction
in CPU times that decomposing provides.

Table 10 is for Set 1, with Disruption Type 2 and the case where
the problem is decomposed into three small problems and Table 11
is prepared for Set 1, with Disruption Type 3 and the case where the
problem is decomposed into three small problems. From Tables 10 and
11, the effect of disruption, i.e., the number of gates closed, can be
inferred. As the number of closed gates increases, the average CPU time
also increases in Set 1. As a striking example, when » is 100 and m is
20 with Disruption Type 3 for Set 1, the average (maximum) CPU time
is reported as 162.39 (520.70) s without using the decomposition rule.
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Table 9
Decomposition algorithm, set 1, disruption type 2, r = 2.
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Aircraft, n Gates, m Number of ndovs CPU time
Without decomposition With decomposition
Avg Max Avg Max Avg Max
10 11.8 19 8.45 13.50 6.09 14.52
75 20 12.6 19 21.96 73.92 9.37 20.03
40 1 1 2.93 3.45 2.14 2.88
10 15 24 14.45 23.45 10.70 25.17
100 20 23.8 33 76.09 372.23 18.57 29.17
40 1 1 4.13 5.59 3.28 3.86
10 16.4 31 20.07 35.00 11.65 19.91
125 20 27.4 37 72.48 103.42 34.93 52.19
40 1.5 4 7.97 21.00 6.16 14.92
Table 10
Decomposition algorithm, set 1, disruption type 2, r = 3.
Aircraft, n Gates, m Number of ndovs CPU time
Without decomposition With decomposition
Avg Max Avg Max Avg Max
10 13.4 26 9.00 22.19 4.31 8.84
75 20 11.4 16 10.16 18.94 4.85 6.27
40 1 1 1.64 1.81 1.84 2.31
10 14.3 23 11.36 20.14 6.64 12.47
100 20 16.3 23 23.38 34.91 8.21 11.69
40 1 1 3.61 4.14 2.49 3.00
10 15.4 20 15.43 21.03 5.51 8.34
125 20 26.8 48 63.31 138.28 14.84 26.86
40 4.9 9 17.25 30.17 7.73 12.33
Table 11
Decomposition algorithm, set 1, disruption type 3, r = 3.
Aircraft, n Gates, m Number of ndovs CPU time
Without decomposition With decomposition
Avg Max Avg Max Avg Max
10 29.4 44 50.11 107.84 5.00 8.56
75 20 20.3 25 31.73 46.86 5.52 8.31
40 1.6 3 4.92 8.13 1.52 2.08
10 30.9 65 46.10 110.86 7.31 14.69
100 20 43.5 77 162.39 520.70 12.86 21.98
40 11.1 15 42.48 60.69 7.25 10.38
10 25.2 46 41.11 90.72 5.61 7.38
125 20 71.8 105 470.60 897.23 25.56 35.83
40 21.3 31 133.52 187.25 16.11 22.58
Table 12
Decomposition algorithm, set 2, disruption type 3, r = 2.
Aircraft, n Gates, m Number of ndovs CPU time
Without decomposition With decomposition
Avg Max Avg Max Avg Max
10 5.4 7 2.19 3.05 1.09 1.94
75 20 9.6 13 6.94 9.41 3.28 4.31
40 15.9 18 18.00 20.17 8.64 10.17
10 4.5 7 2.51 3.67 1.26 1.70
100 20 8.7 12 9.53 16.31 4.59 7.59
40 18.4 21 33.11 44.98 19.78 24.03
10 3.7 5 2.79 3.80 1.84 2.31
125 20 8.6 10 10.86 13.13 6.74 8.78
40 17.5 22 46.22 65.77 22.31 28.22

However, with the decomposition rule, the average (maximum) CPU
time significantly reduces to 12.86 (21.98) s.

From Tables 9 and 10, the effect of » can be observed. Under the
same apron usage scenario with the same disruption type, decomposing
the problem into either two or three small problems result in further
decreased CPU times in general. Table 12 is for Set 2, with Disruption

15

Type 3 and the case where the problem is decomposed into two
small problems. We again observe the improved CPU times with the
decomposition rule, this time for the high apron usage scenario (Set
2).

From Tables 9-12, we deduce that both the average and maximum
CPU times are considerably reduced by using the decomposition rule.
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7. Conclusions and further research directions

In this study, we consider an AGRP where due to gate disruptions
the initial aircraft-gate assignment plan becomes obsolete, and a new
plan is required. We define efficiency and stability criteria for different
concerns of the decision makers. In our efficiency criterion, maximiza-
tion of gate utilization in terms of the number of aircraft assigned and
their corresponding number of passengers is sought. On the other hand,
in our stability criterion, maximization of the number of preserved
assignments, the corresponding number of passengers, and the number
of apron assignments that are shifted to gates are aimed. Both the
efficiency and stability criteria are made up of multi-objectives: two
objective functions are defined for the efficiency criterion and three
for the stability criterion. These objective functions altogether cover
various efficiency and passenger satisfaction concerns of the airlines.

We apply hierarchical optimization, i.e., maximizing the efficiency
(stability) measure while keeping the stability (efficiency) value at its
maximum level in handling said objective functions. We use assignment
model-based approaches to generate all extreme supported and all
nondominated objective vectors with respect to our efficiency and
stability criteria.

To generate all nondominated objective vectors, we follow two ap-
proaches: optimization and approximation. Our optimization algorithm
solves instances with up to 150 aircraft and 40 gates, in less than two
hours. With the approximation algorithm, we handle instances with up
to 200 aircraft and 40 gates and report excellent performance results
in terms of solution times and the power of representing the exact
nondominated objective vectors.

We develop an optimal decomposition rule that decomposes the
main problem into smaller instances at time intervals that reside with
no aircraft in the system. We find that with the optimal decomposition
rule, problems could be solved in considerably small times.

All our objective functions reflect aeronautical concerns of the
airline managers. Future research may consider multi-criteria problems
that trade-off between aeronautical objectives and non-aeronautical
objectives such as airport retailing, advertising, car rentals, and so
on. Our solution procedures can be modified to make nice trade-offs
between aeronautical and non-aeronautical objectives. Moreover, we
anticipate that, in real-life instances, there may be few cases where our
optimal decomposition rule can be used directly. As further research,
some heuristic approaches that may take our rule as a basis can be
developed. Hence, we propose to create a subproblem that is optimally
decomposable, which is achieved by taking out a subset of aircraft and
then applying our optimal decomposition rule to obtain a new plan,
and lastly to reconsider the aircraft that were taken out through some
insertion or exchange heuristics. As another further research direction,
we propose some aircraft-gate eligibility constraints, where some gates
are reserved for certain airlines. Another proposition would be to
consider some side-by-side compatibility constraints, where the sizes
of the aircraft factor into the decision-making process, i.e., two large
aircraft cannot be assigned to juxtaposed gates. We believe implicit
enumeration techniques, such as a branch and bound algorithm, can
be designed to generate all nondominated objective vectors simulta-
neously in place of our sequential generation methods. Furthermore,
optimization algorithms for a known, yet complex utility function can
be developed, and different efficiency and stability measures can be
tried out.

CRediT authorship contribution statement

Dursen Deniz Poyraz: Conceptualization, Data curation, Formal
analysis, Investigation, Methodology, Resources, Software, Validation,
Visualization, Writing — original draft, Writing — review & editing.
Meral Azizoglu: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Supervision, Validation, Visu-
alization, Writing — original draft, Writing — review & editing.

16

Journal of Air Transport Management 115 (2024) 102529
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

Airport Technology, 2023. Izmir Adnan Menderes International Airport. Retrieved
May 17, 2023, from https://www.airport-technology.com/projects/izmir-adnan-
menderes-international-airport/.

Ali, H., Guleria, Y., Alam, S., Schultz, M., 2019. A passenger-centric model for reducing
missed connections at low cost airports with gates reassignment. IEEE Access 7,
179429-179444. http://dx.doi.org/10.1109/ACCESS.2019.2953769.

Cai, X., Sun, W., Misir, M., Tan, K.C,, Li, X., Xu, T., Fan, Z., 2019. A bi-objective
constrained robust gate assignment problem: Formulation, instances and algorithm.
IEEE Trans. Cybern. 51 (9), 4488-4500. http://dx.doi.org/10.1109/TCYB.2019.
2956974.

Choi, J.H., 2021. Changes in airport operating procedures and implications for airport
strategies post-COVID-19. J. Air Transp. Manage. 94, 102065. http://dx.doi.org/
10.1016/j.jairtraman.2021.102065.

Czyzzak, P., Jaszkiewicz, A., 1998. Pareto simulated annealing—a metaheuristic tech-
nique for multiple-objective combinatorial optimization. J. Multi-Criteria Decis.
Anal. 7 (1), 34-47. http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::
AID-MCDA161>3.0.CO;2-6.

Das, G.S., Gzara, F., Stiitzle, T., 2020. A review on airport gate assignment problems:
Single versus multi objective approaches. Omega 92, 102146. http://dx.doi.org/10.
1016/j.omega.2019.102146.

Deng, W., Li, B., Zhao, H., 2017. Study on an airport gate reassignment method and
its application. Symmetry 9 (11), 258. http://dx.doi.org/10.3390/sym9110258.
Dorndorf, U., Jaehn, F., Pesch, E., 2012. Flight gate scheduling with respect to a
reference schedule. Ann. Oper. Res. 194 (1), http://dx.doi.org/10.1007/s10479-

010-0809-8.

Gu, Y., Chung, C.A., 1999. Genetic algorithm approach to aircraft gate reassignment
problem. J. Transp. Eng. 125 (5), 384-389. http://dx.doi.org/10.1061/(ASCE)0733-
947X(1999)125:5(384).

Haimes, Y., 1971. On a bicriterion formulation of the problems of integrated system
identification and system optimization. IEEE Trans. Syst. Man Cybern. (3), 296-297.
http://dx.doi.org/10.1109/TSMC.1971.4308298.

Jaehn, F., 2010. Solving the flight gate assignment problem using dynamic program-
ming. Z. Betriebswirtschaft 80, 1027-1039. http://dx.doi.org/10.1007/s11573-010-
0396-9.

Karsu, 0., Azizoglu, M., Alanh, K., 2021. Exact and heuristic solution approaches for
the airport gate assignment problem. Omega 103, 102422. http://dx.doi.org/10.
1016/j.omega.2021.102422.

Kidokoro, Y., Zhang, A., 2023. Effects of non-aeronautical service on airports: A
selected review and research agenda. J. Air Transp. Res. Soc. 1 (1), 40-53.
http://dx.doi.org/10.59521/5372A44CC8A85136.

Liu, J., Guo, Z., Yu, B., 2023. Optimising gate assignment and taxiway path in a discrete
time—space network: integrated model and state analysis. Transp. B: Transp. Dyn.
11 (1), 1-23. http://dx.doi.org/10.1080/21680566.2022.2036650.

Macilree, J., Duval, D.T., 2020. Aeropolitics in a post-COVID-19 world. J. Air Transp.
Manage. 88, 101864. http://dx.doi.org/10.1016/j.jairtraman.2020.101864.

Maharjan, B., Matis, T.I, 2011. An optimization model for gate reassignment in
response to flight delays. J. Air Transp. Manage. 17 (4), 256-261. http://dx.doi.
org/10.1016/j.jairtraman.2011.02.012.

Ozlen, M., Azizoglu, M., 2009. Generating all efficient solutions of a rescheduling
problem on unrelated parallel machines. Int. J. Prod. Res. 47 (19), 5245-5270.
http://dx.doi.org/10.1080,/00207540802043998.

Pereira, F., Costa, J.M., Ramos, R., Raimundo, A., 2023. The impact of the COVID-19
pandemic on airlines’ passenger satisfaction. J. Air Transp. Manage. 112, 102441.
http://dx.doi.org/10.1016/j.jairtraman.2023.102441.

Pternea, M., Haghani, A., 2018. Mathematical models for flight-to-gate reassignment
with passenger flows: State-of-the-art comparative analysis, formulation improve-
ment, and a new multidimensional assignment model. Comput. Ind. Eng. 123,
103-118. http://dx.doi.org/10.1016/j.cie.2018.05.038.

Pternea, M., Haghani, A., 2019. An aircraft-to-gate reassignment framework for dealing
with schedule disruptions. J. Air Transp. Manage. 78, 116-132. http://dx.doi.org/
10.1016/j.jairtraman.2019.01.005.

Sun, X., Wandelt, S., Zhang, A., 2022. COVID-19 pandemic and air transportation:
Summary of recent research, policy consideration and future research directions.
Transp. Res. Interdiscip. Pers. 16, 100718. http://dx.doi.org/10.1016/j.trip.2022.
100718.

Sun, X., Wandelt, S., Zhang, A., 2023. Aviation under the COVID-19 pandemic: A
synopsis from normalcy to chaos and back. J. Air Transp. Res. Soc. 1 (1), 136-151.
http://dx.doi.org/10.59521/8F3EEB54038C692E.

Tang, C.H., Yan, S., Hou, Y.Z., 2010. A gate reassignment framework for real time
flight delays. 40R 8, 299-318. http://dx.doi.org/10.1007/s10288-009-0112-1.


https://www.airport-technology.com/projects/izmir-adnan-menderes-international-airport/
https://www.airport-technology.com/projects/izmir-adnan-menderes-international-airport/
https://www.airport-technology.com/projects/izmir-adnan-menderes-international-airport/
http://dx.doi.org/10.1109/ACCESS.2019.2953769
http://dx.doi.org/10.1109/TCYB.2019.2956974
http://dx.doi.org/10.1109/TCYB.2019.2956974
http://dx.doi.org/10.1109/TCYB.2019.2956974
http://dx.doi.org/10.1016/j.jairtraman.2021.102065
http://dx.doi.org/10.1016/j.jairtraman.2021.102065
http://dx.doi.org/10.1016/j.jairtraman.2021.102065
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://dx.doi.org/10.1016/j.omega.2019.102146
http://dx.doi.org/10.1016/j.omega.2019.102146
http://dx.doi.org/10.1016/j.omega.2019.102146
http://dx.doi.org/10.3390/sym9110258
http://dx.doi.org/10.1007/s10479-010-0809-8
http://dx.doi.org/10.1007/s10479-010-0809-8
http://dx.doi.org/10.1007/s10479-010-0809-8
http://dx.doi.org/10.1061/(ASCE)0733-947X(1999)125:5(384)
http://dx.doi.org/10.1061/(ASCE)0733-947X(1999)125:5(384)
http://dx.doi.org/10.1061/(ASCE)0733-947X(1999)125:5(384)
http://dx.doi.org/10.1109/TSMC.1971.4308298
http://dx.doi.org/10.1007/s11573-010-0396-9
http://dx.doi.org/10.1007/s11573-010-0396-9
http://dx.doi.org/10.1007/s11573-010-0396-9
http://dx.doi.org/10.1016/j.omega.2021.102422
http://dx.doi.org/10.1016/j.omega.2021.102422
http://dx.doi.org/10.1016/j.omega.2021.102422
http://dx.doi.org/10.59521/5372A44CC8A85136
http://dx.doi.org/10.1080/21680566.2022.2036650
http://dx.doi.org/10.1016/j.jairtraman.2020.101864
http://dx.doi.org/10.1016/j.jairtraman.2011.02.012
http://dx.doi.org/10.1016/j.jairtraman.2011.02.012
http://dx.doi.org/10.1016/j.jairtraman.2011.02.012
http://dx.doi.org/10.1080/00207540802043998
http://dx.doi.org/10.1016/j.jairtraman.2023.102441
http://dx.doi.org/10.1016/j.cie.2018.05.038
http://dx.doi.org/10.1016/j.jairtraman.2019.01.005
http://dx.doi.org/10.1016/j.jairtraman.2019.01.005
http://dx.doi.org/10.1016/j.jairtraman.2019.01.005
http://dx.doi.org/10.1016/j.trip.2022.100718
http://dx.doi.org/10.1016/j.trip.2022.100718
http://dx.doi.org/10.1016/j.trip.2022.100718
http://dx.doi.org/10.59521/8F3EEB54038C692E
http://dx.doi.org/10.1007/s10288-009-0112-1

D.D. Poyraz and M. Azizoglu

TAV Airports, 2023. Ankara Esenboga Airport arrival level. Retrieved May 17, 2023,
from https://webcmsesb.tav.aero/files/1551878584_ESB%20Gelis_2019.pdf.

Wang, R., Allignol, C., Barnier, N., Gondran, A., Gotteland, J.-B., Mancel, C., 2022.
A new multi-commodity flow model to optimize the robustness of the gate
allocation problem. Transp. Res. C 136, 103491. http://dx.doi.org/10.1016/j.trc.
2021.103491.

Wang, H., Luo, Y., Shi, Z., 2013. Real-time gate reassignment based on flight delay
feature in hub airport. Math. Probl. Eng. 2013, http://dx.doi.org/10.1155/2013/
646241.

World Airport Guides, 2023. Istanbul International Airport terminal information.
Retrieved May 17, 2023, from http://www.worldairportguides.com/istanbul-ist/
terminals.php.

Yan, S., Chang, C.M., 1998. A network model for gate assignment. J. Adv. Transp. 32
(2), 176-189. http://dx.doi.org/10.1002/atr.5670320204.

17

Journal of Air Transport Management 115 (2024) 102529

Yan, S., Chen, C.Y., Tang, C.H., 2009. Airport gate reassignment following tempo-
rary airport closures. Transportmetrica 5 (1), 25-41. http://dx.doi.org/10.1080/
18128600802591814.

Yan, S., Tang, C.H., Hou, Y.Z., 2011. Airport gate reassignments considering determin-
istic and stochastic flight departure/arrival times. J. Adv. Transp. 45 (4), 304-320.
http://dx.doi.org/10.1002/atr.141.

Yu, C., 2023. Airport performance — a multifarious review of literature. J. Air Transp.
Res. Soc. 1 (1), 22-39. http://dx.doi.org/10.59521/E7E8098D7A835864.

Yu, C., Zhang, D., Lau, H.H., 2017a. A heuristic approach for solving an integrated gate
reassignment and taxi scheduling problem. J. Air Transp. Manage. 62, 189-196.
http://dx.doi.org/10.1016/j.jairtraman.2017.04.006.

Yu, C., Zhang, D., Lau, H.Y., 2017b. An adaptive large neighborhood search heuristic
for solving a robust gate assignment problem. Expert Syst. Appl. 84, 143-154.
http://dx.doi.org/10.1016/j.eswa.2017.04.050.

Zhang, D., Klabjan, D., 2017. Optimization for gate re-assignment. Transp. Res. B 95,
260-284. http://dx.doi.org/10.1016/j.trb.2016.11.006.


https://webcmsesb.tav.aero/files/1551878584_ESB%20Gelis_2019.pdf
http://dx.doi.org/10.1016/j.trc.2021.103491
http://dx.doi.org/10.1016/j.trc.2021.103491
http://dx.doi.org/10.1016/j.trc.2021.103491
http://dx.doi.org/10.1155/2013/646241
http://dx.doi.org/10.1155/2013/646241
http://dx.doi.org/10.1155/2013/646241
http://www.worldairportguides.com/istanbul-ist/terminals.php
http://www.worldairportguides.com/istanbul-ist/terminals.php
http://www.worldairportguides.com/istanbul-ist/terminals.php
http://dx.doi.org/10.1002/atr.5670320204
http://dx.doi.org/10.1080/18128600802591814
http://dx.doi.org/10.1080/18128600802591814
http://dx.doi.org/10.1080/18128600802591814
http://dx.doi.org/10.1002/atr.141
http://dx.doi.org/10.59521/E7E8098D7A835864
http://dx.doi.org/10.1016/j.jairtraman.2017.04.006
http://dx.doi.org/10.1016/j.eswa.2017.04.050
http://dx.doi.org/10.1016/j.trb.2016.11.006

	An airport gate reassignment problem with gate closures
	Introduction
	Literature review
	Airport gate assignment studies
	Airport gate reassignment studies

	Problem definition and the mathematical model
	Efficiency criterion
	Stability criterion
	Mathematical model

	Finding the nondominated objective vectors
	Finding the extreme nondominated objective vectors
	Finding the extreme nondominated objective vector with the largest E value
	Finding the extreme nondominated objective vector with the largest ST value

	Finding the extreme supported nondominated objective vectors
	Finding all nondominated objective vectors
	Finding the approximate nondominated objective vectors

	Optimal decomposition rule
	Computational experiments
	Data generation scheme
	Performance measures
	Analysis of the results
	Extreme and extreme supported nondominated objective vectors
	All nondominated objective vectors
	Approximate nondominated objective vectors
	Optimal decomposition rule


	Conclusions and further research directions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


