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Abstract
Background and Objective  With the rise in the use of physiologically based pharmacokinetic (PBPK) modeling over the 
past decade, the use of PBPK modeling to underpin drug dosing for off-label use in clinical care has become an attractive 
option. In order to use PBPK models for high-impact decisions, thorough qualification and validation of the model is essen-
tial to gain enough confidence in model performance. Currently, there is no agreed method for model acceptance, while 
clinicians demand a clear measure of model performance before considering implementing PBPK model-informed dosing. 
We aim to bridge this gap and propose the use of a confidence interval for the predicted-to-observed geometric mean ratio 
with predefined boundaries. This approach is similar to currently accepted bioequivalence testing procedures and can aid in 
improved model credibility and acceptance.
Methods  Two different methods to construct a confidence interval are outlined, depending on whether individual observa-
tions or aggregate data are available from the clinical comparator data sets. The two testing procedures are demonstrated 
for an example evaluation of a midazolam PBPK model. In addition, a simulation study is performed to demonstrate the 
difference between the twofold criterion and our proposed method.
Results  Using midazolam adult pharmacokinetic data, we demonstrated that creating a confidence interval yields more 
robust evaluation of the model than a point estimate, such as the commonly used twofold acceptance criterion. Additionally, 
we showed that the use of individual predictions can reduce the number of required test subjects. Furthermore, an easy-to-
implement software tool was developed and is provided to make our proposed method more accessible.
Conclusions  With this method, we aim to provide a tool to further increase confidence in PBPK model performance and 
facilitate its use for directly informing drug dosing in clinical care.

1  Introduction

Physiologically based pharmacokinetic (PBPK) modeling 
is an approach for model-informed drug development that 
has grown significantly over the past decade [1]. Physiologi-
cally based pharmacokinetic models describe the absorption, 
distribution, metabolism, and excretion of a substance in 
a living system [2]. The models aim to cover the complex 
processes of drug disposition by integrating anatomical 
and physiological-related parameters with drug properties 

to simulate clinical trials [3]. These models have numer-
ous uses in drug development both in industry and clinical 
practice. The most common purpose of PBPK analyses that 
are submitted to the regulator is to assess enzyme-based 
drug–drug interactions, which is followed by the application 
of PBPK models to estimate pharmacokinetics for special 
populations [1]. With the rise and refinement of PBPK mod-
els, this in silico approach has shown tremendous potential 
to replace or simplify clinical trials, especially in special 
populations for which clinical pharmacology data to under-
pin dosing guidelines are hard to obtain, for example in pedi-
atrics [1, 4]. More specifically, PBPK modeling in pediatrics 
could be used in clinical care to support off-label dosing, in 
cases where a drug is prescribed to meet a medical need, 
but where limited pharmacokinetic (PK) data are available 
to support a rational dosing regimen.
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Key Points 

We propose an extension of the commonly applied 
approach in which physiologically based pharmacoki-
netic models are accepted when predicting pharmacoki-
netic parameters within twofold of the observed clinical 
data, by taking into account the variance in data in a 
manner that is similar to bioequivalence testing proce-
dures.

We provide an easy-to-implement software tool for 
creating a 90% confidence interval of the predicted-to-
observed geometric mean ratio, to facilitate the use of 
this approach by researchers in the field.

The application of the proposed validation method could 
bring harmonization in the assessment of model cred-
ibility and could increase confidence in physiologically 
based pharmacokinetic model performance to eventually 
enable the application of physiologically based pharma-
cokinetic modeling for high-impact decisions in drug 
development and guidance of clinical drug dosing.

To use PBPK models for high-impact decisions, thorough 
qualification and validation of the model is essential to gain 
enough confidence in model performance [4]. In general, 
regulatory agencies request that PBPK model performance 
is assessed against observed outcomes of representative 
in vivo PK studies [5, 6]. The European Medicines Agency 
[6] delineates that the acceptance criteria to evaluate the 
closeness of predicted and observed data depend on the 
regulatory impact.

However, regulatory agencies do not define how to evalu-
ate model credibility, and also in the scientific literature, an 
overall consensus is lacking. Kuemmel et al. [7] and Fre-
chen and Rostami-Hodjegan [8] recently proposed the use 
of a framework to achieve harmonization in the modeling 
field. One step of this framework introduces the application 
of context-of-use (COU) and model risk assessment, which 
determine the required rigorousness of verification and vali-
dation activities [7]. Determination of the right validation 
method is subjective, and there is a lack of consensus on 
which validation steps should be applied [9]. Furthermore, 
stakeholders recently concluded a more stringent validation 
method for model-informed drug development is necessary 
[10].

Currently, there are numerous validation approaches. It 
is customary to begin with visual checks. As a second step, 

it is common to check if the predicted-to-observed ratios of 
different PK parameters fall inside a certain nfold, twofold 
being the most common [9]. Other metrics include average 
fold error, absolute average fold error, and prediction error 
[11, 12].

These validation steps have limitations and are not thor-
ough enough for high-impact models, such as the direct 
application of model results for dosing in clinical care. Error 
metrics (i.e., average fold error, absolute average fold error, 
and prediction error) can only be applied if the model makes 
predictions for all separate individuals of the correspond-
ing PK study. This is problematic especially in cases where 
PBPK modeling is used post-marketing, when often only 
aggregated data from published PK studies are available in 
the literature to validate the model. Additionally, the two-
fold criterion is criticized by many for its wide range, and 
it is sometimes stated as a criterion only fit for informing 
drug development or adjusting the dosing of drugs with a 
broad therapeutic window [9, 13]. Another major limitation 
of the twofold criterion is that it does not take the inherent 
randomness of the data into account [13]. The predicted-
to-observed ratio depends heavily on the random observed 
data, especially in small data sets. A good ratio can therefore 
be a result of mere chance. Although this effect is mitigated 
somewhat by testing on multiple data sets, it is nevertheless 
undesirable. This problem was noted by Abduljalil et al. [13] 
who proposed to test if the predicted geometric mean (GM) 
falls inside the 99.998% confidence interval (CI) of the true 
GM. The problem with this approach is that for small data 
sets, the interval becomes very wide resulting in easy model 
acceptance while for larger data sets, the model can only be 
accepted if the predicted and observed GMs are approxi-
mately equal, which can never be expected.

We propose a validation step that is more in line with 
common practices within bioequivalence (BE) studies [14]. 
From the perspective of using PBPK model predictions for 
clinical drug dosing, the BE approach appears very use-
ful in assessing PBPK model predictive performance. The 
methodology is also followed when bringing generic drug 
preparations to the market and when fulfilling predefined 
BE criteria, the generic drug is accepted to be equivalent to 
the brand-name medicine [14]. Along these lines, it would 
be desirable that PBPK model predictions be measured with 
similar standards, aside from mechanistical considerations 
(of course the structure of the model needs to be in order, 
and parameterizations should have been done in the appro-
priate mechanistic manner).

For the statistical evaluation, we propose to construct a 
CI of the predicted-to-observed ratio, and to accept a model 
if the entire interval falls within predefined boundaries. This 
is an extension of the twofold criterion that addresses the 
potential problem of accepting a model merely by chance by 
now logically incorporating the randomness of the data. In 
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addition, we suggest to primarily apply BE boundaries [0.8, 
1.25] as the predefined boundaries. This 1.25-fold bound has 
been accepted to test for similarity between test-to-reference 
drugs and accounts for a 20% clinical variation to determine 
if the predictive values agree with clinical observed values 
[14].

For the assessment of BE between drug products, a cross-
over design or parallel design can be considered [15, 16]. 
A cross-over design usually is preferred, as it allows an 
intra-subject comparison between treatments, as each sub-
ject serves as its own control [15]. In a parallel biodesign, 
each subject is randomly assigned to one of the treatments 
and both cohorts are compared. Bioequivalence assessment 
is in this case thus based on both intra-subject and inter-
subject variability [15]. Our proposed approach to evaluate 
PBPK model performance against clinical data uses a similar 
design, ideally by using individual patient data and simulat-
ing the virtual twin, in order to reduce the inter-individual 
variability comparable to the cross-over design in BE stud-
ies. This reduction in variance reduces the required number 
of clinical observations, as has been shown for BE statistics 
comparing cross-over and parallel design [15, 16]. How-
ever, for post-marketing PBPK studies, often only GM PK 
parameters are available from the literature, not the indi-
vidual observations. Therefore, we also provide a group-
level approach, comparable with parallel-design BE studies, 
to create a CI when only aggregated values are given for 
the clinical data to compare PBPK modeling results. Con-
sequently, as this approach suffers from both intra-individual 
and inter-individual variance, a larger number of clinical 
observations is required.

Hence, the aim of this paper is (1) to present our novel 
approach in more detail, distinguishing two scenarios 
depending on the availability of individual-level or aggre-
gate clinical data to be used for PBPK model validation, 
including all formulas; (2) to exemplify the workflow of our 
approach with published midazolam data from healthy adult 
populations; and (3) to provide an easy-to-use implementa-
tion software tool.

2 � Methods

2.1 � Description of the Proposed Statistics 
for the Model Evaluation

2.1.1 � General Concept of the Proposed Validation 
Approach

We propose to test the predictive performance of a PBPK 
model by evaluating a CI of the predicted-to-observed 

geometric mean ratio (GMR) of relevant PK parameters, 
as intervals are more informative than point estimates, and 
provide an easy-to-interpret result, as shown in Fig. 1. The 
CI is constructed for all PK parameters, as requested by 
regulators, representing relevant parts of the plasma con-
centration–time curve: area under the curve (AUC), maxi-
mum concentration (Cmax), and half-life (t1/2) [6]. Care 
should be taken that these parameters are obtained from 
matched simulations to the comparator data set. Model pre-
dictive performance is accepted when the CIs of all three PK 
parameters entirely fall within the predefined boundaries. 
When one of the CIs entirely falls outside of the predefined 
boundaries, the model quality is not sufficient and cannot be 
accepted for its intended use. When the CIs are too wide and 
do not entirely fall either within or outside the acceptance 
window, no definitive conclusion can be drawn about the 
predictive performance of the PBPK model. In those situa-
tions, we conclude that, given the amount of variability of 
the observed data, the data set has an insufficient number of 
subjects to make a decision. This is similar to BE statistics, 
where large variability and a smaller number of subjects 
result in wider 90% CIs [17].

Similarly to BE statistics, our CI approach is not trying 
to prove that the predictions and observations are identical, 
but that the size of the difference is not clinically significant 
[17]. Therefore, defining the significance level of the CI and 
the boundaries of the acceptance window are adaptable and 
depend on drug variability and the therapeutic window, as 
well as the context of use and assessed model risk of the 
PBPK model of interest [6, 18].

For high-impact applications of PBPK models (e.g., 
directly informing drug labels, developing clinical dosing 
guidelines), the exact ranges must be determined by regula-
tory agencies. We propose a 90% CI and [0.8–1.25] range 
as boundaries for the AUC and Cmax, unless the therapeu-
tic window is wide, similar to BE statistics to test for BE 
[14]. In BE studies, the t1/2 is not a parameter of interest, 
and therefore, the acceptance boundaries of the t1/2 are not 
defined [14]. We propose a 90% CI and [0.67–1.5] range as 
the boundaries for t1/2, as more variability may be present 
with t1/2 estimations. Note that the timing of sampling needs 
to be accurately matched between clinical measurement and 
simulation. A complicating factor here is that the exact sam-
pling time of the terminal proportion of the PK curve, i.e., 
the part that was used to calculate terminal t1/2, is often not 
published with the clinical data. Because of the uncertainty 
of the terminal sampling points used to calculate t1/2 and the 
difficulty in overcoming the variability associated with this, 
we propose the broader 1.5-fold acceptance range. We stress 
that, although we proposed various boundaries, the definitive 
boundaries should be determined by regulatory agencies.
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2.1.2 � Approach with PK Individual‑Level Data

The first approach we propose is based on the cross-over 
design used in BE studies and uses similar statistics. We 
believe this is an appropriate method to evaluate the pre-
dictive performance of PBPK models with clinical data 
of individual subjects available for comparison. When the 
subjects are simulated individually, using as much informa-
tion about the subject as possible and including it in the 
modeling effort, a key strength of PBPK modeling, the 
inter-individual variability reduces, and ideally the result-
ing difference between observation and prediction will only 
consist of intra-individual variation. The following steps are 
proposed to test the model’s predictive performance with the 
individual-level data (I-LD) approach:

1.	 Decide on the acceptance criterion that meets the COU 
of the PBPK model. For high-impact models, the BE 
boundaries of 0.8–1.25 are proposed for AUC and Cmax.

2.	 Collect data from clinical studies (e.g., from literature 
or from investigators) that provide individual PK param-
eters.

3.	 Simulate each observed subject separately with the pro-
vided characteristics of the subject (e.g., age, height, 
renal function, where appropriate). A large number (N = 
100) of simulations per subject are acquired to overcome 
uncertainty in the predicted PK parameters.

4.	 Create a 90% CI by using Equation (1) or the online tool, 
detailed below.

5.	 Accept, reject, or remain undecided as explained above 
and illustrated in Fig. 1.

2.1.3 � Approach with PK Group‑Level Data

Pharmacokinetic I-LD are often not available, as only 
aggregate data are published and getting access to the 
original data is often onerous or impossible. Therefore, 
we also propose a method to evaluate predictive perfor-
mance with mean values. This group-level data (G-LD) 
method is comparable to the parallel design sometimes 
used in BE studies. Similar to the parallel design, the 
G-LD approach needs correction for both intra-individual 
and inter-individual variation. As described for BE stud-
ies, the intra-individual variability is often smaller (i.e., 
approximately 15% compared with 30%), which makes 
the parallel design and G-LD approach subordinate to the 
cross-over design and I-LD [16]. The greater variability of 
the G-LD approach results in wider CIs and the necessity 
of larger data sets to establish predictive performance [17]. 
The difference with the I-LD approach is that, instead of 
individuals, now a total population is simulated matching 
the mean characteristics of individuals enrolled in the clin-
ical study. It is important to note that the GM and not the 
arithmetic mean should be used both for the observations 
and predictions, as the AUC, Cmax, and t1/2 are believed to 
more closely correspond to a log normal distribution [16, 
19]. The following procedure of testing model predictive 
performance with G-LD is proposed:

1.	 Decide on the acceptance criterion that meets the COU 
of the PBPK model. For high-impact models, the BE 
boundaries [0.8 1.25] are proposed for AUC and Cmax.

Fig. 1   Graphical representa-
tion of an acceptance window 
of [0.8–1.25] and the variety of 
outcomes that are possible fol-
lowing the assessment of a 90% 
confidence interval around the 
predicted-to-observed ratio
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2.	 Simulate a comparable population to the collected clin-
ical study. A very large number (order of magnitude: 
10,000) of subjects are simulated in order to remove all 
uncertainty of the GM estimate. For some specific and 
very extensive PBPK models and in certain research set-
tings, not enough computational power may be available 
to complete a large simulation in a reasonable amount 
of time. The approach is applicable, but the variance of 
the model, incorporated with the CV of the predictions, 
will then have an influence on the width of the CI and 
will need to be taken into account as well.

3.	 Create a 90% CI by using Equation (2), detailed below, 
or use the online tool.

4.	 Accept, reject, or remain undecided as explained above.

2.1.3.1  Construction of the CI using the I‑LD approach   In 
this subsection, the statistical background is given for creat-
ing a CI of the GMR. More extensive explanation and the 
mathematical proof of the CI can be found in the Electronic 
Supplementary Material (ESM).

Suppose there are n observations and predictions, denoted 
with Yi and Ŷi , respectively. The CI is of the following form:

Here,

•	 GMR is the GM of the predictions divided by the GM of 
the observations, which is equal to:

•	 V  is the sample variance of the n differences 
ln
(

Ŷi

)

− ln
(

Yi
)

 , which is equal to:

•	 t(1−�∕2,n−1) is the ( 1 − α∕2)-quantile of a t-distribution 
with n − 1 degrees of freedom. This value must be looked 
up in a table or can be calculated using any statistical 
software package.

2.1.3.2  Construction of  the  CI using the  G‑LD approach  
When only G-LD (GM and geometric coefficient of vari-
ation [CV]) are available, the following CI must be used:
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Here,

•	 GMR is the observed GMR: 
�
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j=1
Ŷj
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(
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Yi)

1∕nobs
.

•	 nobs is the number of observed subjects.
•	 npred is the number of predictions.
•	 Vobs is the sample variance of the observations on a log 

scale and Vpred is the sample variance of the predictions 
on a log scale. These can be determined from the geo-
metric CV by using V = ln

(

CV2 + 1
)

.
•	 t(1−α∕2,ν) is the (1 − α∕2)-quantile with ν degrees of free-

dom, and

	   Note that if the number of predictions is far greater 
than the number of observations, this reduces to nobs − 1.

In the limit of a large amount of data or a small variance, 
the CI converges to the currently used GMR. It can therefore 
be seen as an easy-to-implement extension of the current 
testing methodology of the predicted-to-observed ratio.

To aid implementation, we created an online implemen-
tation tool. An interactive version can be found at: https://​
colab.​resea​rch.​google.​com/​github/​Laure​nsSlu​yterm​an/​
PBPK-​evalu​ation/​blob/​main/​PBPK_​evalu​ation.​ipynb. The 
original GitHub repository can be found at: https://​github.​
com/​Laure​nsSlu​yterm​an/​PBPK-​evalu​ation.

These formulae also allow us to estimate the required 
number of subjects for validation. Figure 2 shows the ranges 
of predicted-to-observed ratios that would lead to accept-
ance of the model for an increasing number of observations 
and increasing CV of the observations. We assume that the 
number of simulations is much larger than the number of 
observations. In that case, the required number of subjects 
is determined only by the CV of the observations. The figure 
suggests that at least 10–15 observed subjects are required 
if PK I-LD are available, where we expect a lower CV of 
roughly 30% [20]. At least 25 observed subjects are required 
if PK G-LD are available, where we expect a much higher 
CV of roughly 70% [20].

(2)
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https://colab.research.google.com/github/LaurensSluyterman/PBPK-evaluation/blob/main/PBPK_evaluation.ipynb
https://colab.research.google.com/github/LaurensSluyterman/PBPK-evaluation/blob/main/PBPK_evaluation.ipynb
https://colab.research.google.com/github/LaurensSluyterman/PBPK-evaluation/blob/main/PBPK_evaluation.ipynb
https://github.com/LaurensSluyterman/PBPK-evaluation
https://github.com/LaurensSluyterman/PBPK-evaluation
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2.2 � Simulation Experiment: Comparing the Twofold 
and G‑LD Approaches

Our proposed approach is an extension of the nfold 
method. To demonstrate the differences and similarities, 
we conducted a simulation study. All simulations were 
performed in Python. The code is made publicly available 
and can be found at: https://​github.​com/​Laure​nsSlu​yterm​
an/​PBPK-​evalu​ation/​blob/​main/2-​fold_​examp​le.​ipynb.

Hypothetical subjects and predictions were simulated 
from a lognormal distribution. For each experiment, 
10,000 sets of subjects and predictions were simulated, 
where each individual subject or predictions follows a log-
normal distribution:

and

Here, Yi and Ŷj represent an observation and prediction of 
the PK parameter of interest, for example the AUC, and CV 
is the geometric CV. The same variance was used for both 
the observations and predictions.

Various scenarios were simulated, considering different 
true GMRs e

𝜇̂

e𝜇
 , CV  values, and numbers of subjects. In every 

simulation, 10,000 predictions were simulated. For each 

ln
(

Yi
)

∼ N
(

μ, ln
(

CV2 + 1
))

,

ln
(

�Yj

)

∼ N
(

𝜇̂, ln
(

CV2 + 1
))

.

scenario, the frequency of model acceptance was determined 
using the twofold method.

Subsequently, we ran various simulations to demonstrate 
what the results would have been with our method, while 
using the G-LD approach. To facilitate a comparison to the 
twofold method, the [0.5–2] acceptance window was used 
and not the BE acceptance window, which is used in the other 
experiments. For various scenarios, we determined how often 
our approach accepts, rejects, or refrains from deciding.

2.3 � Illustration of the Novel Evaluation Approach 
on an Example PBPK Model

To illustrate the application of the CI of predicted-to-observed 
GMRs as a validation step, we validated an existing PBPK 
model for midazolam against published PK data from healthy 
adults. In the following subsections, the model specification 
and validation of this example PBPK model are described.

2.3.1 � Midazolam Clinical PK Data

Midazolam was chosen because it has been widely inves-
tigated as its clearance is considered a probe marker to 
determine cytochrome P450 3A activity [21]. Additionally, 
a well-established PBPK model is available. A standardized 
search query was used to search for healthy adult PK data 
(detailed in the ESM). Titles and abstracts were screened 
for healthy volunteer midazolam PK studies. To illustrate 

Fig. 2   Illustration of the required number of observations in different 
scenarios. The shaded areas provide the predicted-to-observed ratios 
that would lead to acceptance of the model for an increasing number 
of observations. The different colors correspond to different values 
of the coefficient of variation (CV). We observe that (1) with mini-
mal variance a data set of five observed values can be sufficient to 

have a chance to accept the model; (2) more subjects lead to a larger 
probability of reaching a conclusion; (3) with this approach, a data set 
with an infinite number of subjects will always accept the model if 
the geometric mean ratio falls within the interval [0.8–1.25]; and (4) 
with data sets with a larger variance (e.g., a geometric CV of 0.7), at 
least 30 subjects are required to have a chance to accept a model

https://github.com/LaurensSluyterman/PBPK-evaluation/blob/main/2-fold_example.ipynb
https://github.com/LaurensSluyterman/PBPK-evaluation/blob/main/2-fold_example.ipynb
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the novel predictive performance criterion, we searched for 
papers with I-LD and contacted research groups to share raw 
PK data of published papers with aggregate PK parameters.

For I-LD sets, we only identified two older papers with 
individual-level PK data [22, 23]. Both papers reported a 
midazolam PK study with six subjects. We selected Smith 
et al. [22] to illustrate our novel validation approach, as this 
paper shared more individual characteristics compared with 
Heizmann et al. [23]. The characteristics of the subjects of 
the Smith et al. data set are given in Table S5 of the ESM. In 
addition, Cleary et al. [24] contributed to our study by test-
ing our I-LD and G-LD approach on their healthy volunteer 
data receiving an oral single dose of midazolam 2 mg. The 
patient characteristics and study conditions are described 
previously [24].

For the illustration of the G-LD approach, we chose two 
recently published midazolam papers with more than 25 
subjects [25, 26]. For an extra illustration of our approach 
in different scenarios, we created an additional hypothetical 
clinical data set to illustrate different scenarios of the use of 
our proposed validation approach, when individual-level PK 
data are available (ESM).

2.3.2 � PBPK Model Specifics

To test the applicability of the novel predictive performance 
criterion, we used a default PBPK model for midazolam in 
healthy volunteers (model and compound file Simcyp® Ver-
sion 22). Simulations were conducted to match the patient 
and study characteristics of the available clinical data sets. 
For the I-LD approach, a matched simulation of 100 sub-
jects was conducted per individual observed subject with 
the custom trial option.

For the G-LD approach, a simulation was conducted 
matching the data sets in age, female ratio, drug dosing, and 
dosing route. A virtual trial of 10,000 subjects was simu-
lated. The predictive performance was evaluated with the 
proposed metric of the G-LD approach.

2.3.3 � Model Validation

Before modeling, the acceptance boundaries for model val-
idations were established. The predicted-to-observed 90% 
CI of the AUC within the 0.8–1.25 range was considered 
acceptable. The Cmax of midazolam is known to be highly 
variable, especially for the intravenous application of mida-
zolam [27, 28]. Therefore, a broader acceptance range of 
0.67-fold to 1.5-fold was chosen as the acceptance criterion 
for Cmax. As motivated earlier, the same 1.5-fold was chosen 
as an acceptance criterion for t1/2.

For the model evaluation, simulations were conducted 
to match the data sets of the published papers and the 

hypothetical clinical study. The hypothetical clinical study 
was used to illustrate possible scenarios of model evaluation, 
when more PK IL-D are available (described in the ESM). 
The predictive performance of the model was validated with 
the published data sets following the I-LD approach and the 
G-LD approach. Description of PK parameters are illustrated 
in Tables S6 and S7 of the ESM. Pharmacokinetic param-
eters of the cohort of Cleary et al. are described previously 
[24].

3 � Results

3.1 � Simulation Experiment: Comparing the Twofold 
and G‑LD Approaches

The following simulation study addresses the difference 
between the twofold method and our proposed approach. 
Table 1 illustrates the behavior of the twofold method. Sets 
of subjects of various sizes were simulated with varying 
amounts of variance. For each combination, 10,000 sets of 
subjects and predictions were simulated. The tables provide 
the acceptance rates for scenarios with a different true GMR, 
specifically one true GMR within [0.5–2.0], one true GMR 
just outside the boundaries, and two true GMRs representing 
mis-specified models. The acceptance rate is defined as the 
fraction of simulations for which the simulated GMR lies 
within the twofold range [0.5–2.0].

We observe that the twofold method works as desired 
when dealing with easier scenarios: a very poor (e.g., a true 
GMR of 0.3) or very good model (e.g., a true GMR 0.7), 
small amount of variation in the clinical data (i.e., low CV), 
and a large number of subjects in the clinical data set. A 
model with a true GMR, e

𝜇̂

e𝜇
 , of 0.7 that is tested on 20 sub-

jects is accepted in roughly 99–100% of simulations for all 
CV values. Similarly, a very bad model with a true GMR of 
0.3 is nearly always rejected.

Problems arise for the more difficult scenarios where we 
are testing a model that is slightly below the acceptance 
threshold, for instance a true GMR of 0.45, on a small data 
set with a large amount of variance. In these scenarios, a 
bad model is frequently accepted by the twofold method.

Figure 3 illustrates such a problematic example. The 

histogram shows 10,000 simulated GMRs, 
�

∏npred

i=1
Ŷi

�1∕npred

(
∏nobs

i=1
Yi)

1∕nobs
 , 

where we used a true GMR, e
𝜇̂

eμ
 , of 0.45, five subjects, and 

a CV  of 0.8 for both the predictions and the simulations. 
For each simulation, 10,000 predictions were simulated. 
Using the twofold method, the model would have been 
accepted in 37% of the simulations even though we know 
that the true GMR, 0.45, falls outside the acceptable win-
dow. Because of the variability of the data, the twofold 
method yields unreliable results for smaller data sets.
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Our extension, not only providing the ratio but a CI 
of this ratio, addresses this issue. For a fair comparison, 
we used acceptance boundaries of [0.5–2]: we accept the 
model if the entire CI falls within [0.5–2], reject if it falls 
entirely outside this interval, and refrain from deciding if the 
interval is partially inside [0.5, 2]. Note that for the sake of 
comparison, we do not use the BE boundaries of [0.8, 1.25] 
here because that would make a comparison to the twofold 
approach impossible.

Table  2 gives the results of various simulations. In 
extreme cases with many subjects or a very low variance, 
our approach leads to the same conclusions as the twofold 

method. This is of course to be expected because our method 
is an extension. For the difficult cases, a GMR close to 0.5 or 
2, and a smaller number of subjects, our approach will fre-
quently conclude that there is insufficient evidence to decide 
and will refrain from doing so.

Table 1   Acceptance rates using the twofold approach for various scenarios

True GMR 0.7

Number of subjects

5 10 15 20

CV

0.8 0.859 0.934 0.966 0.982

0.7 0.889 0.955 0.979 0.990

0.6 0.911 0.975 0.991 0.996

0.5 0.944 0.985 0.997 0.999

0.4 0.973 0.997 1.000 1.000

(a)

True GMR 0.45
Number of subjects

5 10 15 20

CV

0.8 0.374 0.317 0.287 0.260

0.7 0.359 0.305 0.258 0.229

0.6 0.338 0.272 0.237 0.199

0.5 0.303 0.236 0.197 0.156

0.4 0.268 0.188 0.149 0.112

(b)

True GMR 0.4
Number of subjects

5 10 15 20

CV

0.8 0.235 0.163 0.115 0.082

0.7 0.213 0.130 0.084 0.058

0.6 0.181 0.100 0.059 0.037

0.5 0.149 0.068 0.032 0.019

0.4 0.094 0.032 0.012 0.006

(c)

True GMR 0.3
Number of subjects

5 10 15 20

CV

0.8 0.053 0.008 0.002 0.001

0.7 0.034 0.005 0.001 0.000

0.6 0.021 0.001 0.000 0.000

0.5 0.008 0.000 0.000 0.000

0.4 0.002 0.000 0.000 0.000

(d)

CV coefficient of variation, GMR geometric mean ratio

Fig. 3   10,000 realizations of the observed geometric mean ratio 
(GMR). For each simulation, five subjects and 10,000 predictions 
were simulated with a coefficient of variation (CV) of 0.8

Table 2   Simulation results of our method for various combinations of 
CV, n, and GMRs

In scenarios with insufficient information, our model refrains from 
making a decision
CV coefficient of variation, GMR geometric mean ratio, n number of 
subjects

True GMR CV n Accept (%) Reject (%) Undecided (%)

0.3 0.5 20 0 99.8 0.2
0.3 0.8 20 0 93.9 6.1
0.45 0.5 20 0.5 26.1 73.4
0.45 0.8 20 1.0 17.4 81.6
0.45 0.8 5 3.1 11.1 85.8
0.7 0.5 5 22.2 0.8 77.0
0.7 0.5 20 93.1 0 6.9
0.7 0.8 20 66.8 0 33.2
1.2 0.5 15 99.2 0 0.8
1.2 0.8 30 98.7 0 1.3
1.2 0.8 15 86.3 0 13.7
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3.2 � Validation of the Example PBPK Model

In Fig. 4, a graphical representation of the predicted-to-
observed 90% CIs in relation to the different predefined 
acceptance windows for AUC, Cmax, and t1/2 are shown. At 
the utmost left and right of the figure, the commonly applied 
twofold acceptance criterion is also included as dotted verti-
cal lines. The results of the example validation with the clin-
ical data of Cleary et al. illustrate the difference between the 
I-LD and G-LD approach. Using the I-LD approach, all 90% 
CIs fall within the acceptance window. With this method, 
the PBPK model would have been accepted for the study of 
Cleary et al. Contrary to the I-LD approach, 90% CIs cre-
ated for Cleary et al. with the G-LD approach are wider. The 
90% CI for AUC violates one of the predefined boundaries. 
Therefore, the conclusion of the predictive performance of 
the midazolam PBPK model would be to remain undecided.

For the predictions corresponding to the data set pub-
lished by Smith et al., the 90% CI for AUC falls within the 
acceptance window. For Cmax and t1/2, the CIs violate one 
of the predefined 0.67-fold to 1.5-fold boundaries for these 
parameters. In fact, they would even not have been accepted 
using the 0.5-fold to 2-fold boundaries. Furthermore, note 
that when only the GM value of the predicted-to-observed 
ratio would have been taken into account (ignoring variance, 
as commonly is done when applying the twofold accept-
ance criterion), this would have led to accepting the model. 
In this example validation step, the validation with Smith 

et al. would have led to the conclusion to remain undecided 
about PBPK model predictive performance, as not all CIs of 
the PK parameters entirely fall within the acceptance win-
dow. Yet, we also cannot reject the model, as not one of the 
CIs falls completely outside the predefined boundaries. The 
PBPK model would not have been accepted for high-impact 
applications for populations comparable to those studied by 
Smith et al. (healthy, male, aged 21–22 years), owing to a 
lack of observed data.

To give an extra illustration of differences between the 
I-LD and G-LD approach (Table S4 and Fig. S1 of the 
ESM), we included results of our evaluation procedure on 
the hypothetical clinical data set to further illustrate the out-
come of the I-LD and G-LD validation approaches should 
ten instead of six subjects be included in the clinical study 
or should more extensive details of subject characteristics be 
available to better match individual predictions. Comparing 
the approaches, six subjects would be sufficient for the I-LD 
compared with ten subjects for the G-LD approach to result 
in CIs for all the PK parameters that fall entirely within the 
acceptance window.

For the G-LD approach, the PK data of the published 
manuscripts of Bui et al. and Johansson et al. were compared 
to the predictions of the example midazolam PBPK model. 
All 90% CIs of the predicted-to-observed GMRs fall within 
[0.8–1.25] and [0.67–1.5]. Therefore, the predictive perfor-
mance is accepted (Table 3).

Fig. 4   Predicted-to-observed 90% confidence interval (CI) of geomet-
ric mean ratios of the area under the curve (AUC), maximum con-
centration (Cmax), and half-life (t1/2). For each pharmacokinetic (PK) 
parameter, we compared the predictions with the published manu-
scripts with the group-level data (G-LD) approach and for Smith et al. 

with the individual-level data (I-LD) approach. The acceptance win-
dow (gray-shaded area) for AUC was set at the 1.25-fold range, and 
for Cmax and t1/2 was set at the 1.5-fold range. Maximum concentra-
tion and t1/2 CIs of Smith et al. fall outside the twofold range and are 
indicated with a star. GM geometric mean
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4 � Discussion

With this paper, we responded to the call in the PBPK 
modeling field for a thorough validation approach for high-
impact decisions, such as informing clinical drug dosing. 
We have presented a novel validation approach to evalu-
ate PBPK model predictive performance with a 90% CI 
of the GMR of PK parameters. The metric is based on BE 
statistics and is both applicable when individual-level PK 
data or only mean values of clinical PK studies are avail-
able. We believe that a 90% CI of predicted-to-observed 
GMR is more informative than the currently used ratios. 
Furthermore, we advocate for a stringent acceptance win-
dow of 0.8-fold to 1.25-fold to test if model performance is 
equivalent to clinical observations.

In our opinion, a metric based on BE statistics is convinc-
ing for PBPK model performance evaluation. The goal of 
our CI approach aligns with BE studies, aimed at demon-
strating that the difference between products is not clinically 
significant [17]. Similarly, the aim of PBPK model valida-
tion is not to prove that predictions are identical to a clini-
cal trial, but that the difference is not clinically significant. 
An advantage of implementing an approach in line with BE 
studies is that it is a well-investigated field and familiar for 
stakeholders, regulators, and clinicians. In line with this, our 
approach for evaluating PBPK model performance mirrors 
the cross-over and parallel design, depending on the avail-
ability of individual-level clinical data.

For the G-LD approach, we advise to use a large number 
of simulated subjects (N = 10,000) to overcome uncertainty 
in the GM of the predictions. The prediction of many sub-
jects removes the influence of the variability of PBPK model 
simulations. This results in a smaller CI. Nevertheless, for 

complicated models, simulating large trials may not always 
be feasible because of insufficient computer processing 
power. In such cases, the G-LD approach can still be used 
as it accounts for the variability of the PBPK model predic-
tions within the statistical analysis.

Our study sides with recent critiques of the twofold crite-
rion. van der Heijden et al. [29] argued that more stringent 
ranges for predicted-to-observed ratios should be consid-
ered. Another limitation of the twofold ranges was high-
lighted by Guest et al. [30] and Abduljalil et al. [13] who 
demonstrated the necessity of incorporating variability of 
the PK data into the evaluation procedure. In addition, Guest 
et al. criticized the broad twofold boundaries and also pro-
posed the use of 1.25-fold boundaries of the BE testing for 
the predicted-to-observed GMRs. In line with these sugges-
tions, our approach provides a more reliable extension of 
current validation methodology by adding the use of a 90% 
CI of the GMR.

We exemplified this reliable extension by comparing our 
approach to the currently most used twofold criterion [9] . 
The simulation study, comparing both approaches, showed 
that in extreme cases both metrics perform identically. How-
ever, the twofold criterion proves unreliable when assess-
ing a PBPK model with a GMR close to the acceptance 
boundaries or when using PK studies with a small number 
of subjects or high variance. In contrast, we demonstrate that 
in such difficult scenarios, where evidence is insufficient for 
a decisive judgment, our approach refrains from doing so.

In the context of the midazolam PBPK model illustra-
tion, all GMRs for Smith et al. fell within the twofold range. 
However, the 90% CIs of the GMRs revealed uncertainty 
regarding model predictive performance. Our example dem-
onstrated the advantage of CIs over ratios, as ratios alone do 

Table 3   Predicted-to-observed 90% confidence intervals of geometric mean ratios for the different published manuscripts with clinical pharma-
cokinetic data of midazolam

Geometric mean ratios with 90% confidence interval in []
AUC​ area under the plasma concentration–time curve, Cmax maximum concentration, G-LD group-level data, GM geometric mean, I-LD individ-
ual-level data, t1/2 half-life
a The model is not validated because the confidence interval does not completely fall within the acceptance window. This is caused by a lack of 
subjects in the observation data set and too much inter-individual variability

Clinical data sets AUC​ Cmax t1/2 Predictive performance

Cleary et al. (N = 27)
 I-LD approach 1.057 [0.933–1.202] 0.933 [0.814–1.072] 1.052 [0.796–1.389] Accepted
 G-LD approach 1.097 [0.942–1.278] 0.979 [0.842–1.139] 0.995 [0.726–1.365] Undecideda

Smith et al. (N = 6)
 I-LD approach 1.006 [0.858–1.179] 0.765 [0.430–1.360] 1.690 [1.307–2.160] Undecideda

 G-LD approach 0.936 [0.812–1.079] 0.735 [0.386–1.397] 1.831 [1.395–2.403] Undecideda

Bui et al. (N = 46)
 G-LD approach 1.032 [0.919–1.159] 0.764 [0.694–0.842] 1.318 [1.176–1.477] Accepted

Johansson et al. (N = 28)
 G-LD approach 0.937 [0.854–1.027] 0.823 [0.725–0.933] 0.841 [0.755–0.936] Accepted
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not account for variance and are a less stringent evaluation 
metric.

Through the example of validating the midazolam PBPK 
model, we aimed to illustrate the difference between the 
I-LD and G-LD approaches. Our illustrations, using data 
of Cleary et al. and a hypothetical trial, clearly demonstrate 
that the I-LD approach is superior to the GM approach. The 
I-LD approach requires fewer observations to generate a suf-
ficiently narrow CI for assessing predictive performance. 
Notably, even though the Cleary et al. data set consisted of 
27 subjects, the high variability of the observed AUC and 
CV of 49% resulted in a slightly too wide 90% CI [24]. This 
example demonstrates that the I-LD approach, following a 
cross-over design, requires fewer subjects compared with the 
G-LD approach, which follows a parallel design.

We mention in our methods the adaptability of the accept-
ance boundaries. Making decisions on the definitive accept-
ance window, as is the case with BE studies, will be the 
role of the regulatory agencies, incorporating details related 
to the therapeutic window of the drug and the COU of the 
model. For instance, different boundaries can be justified 
between applying a PBPK model for drug development 
or for model-informed dosing recommendations to spe-
cial populations (i.e., renal disorders or pediatric patients). 
As BE studies do not assess t1/2, we proposed acceptance 
boundaries of 0.67-fold to 1.5-fold for the t1/2. We justify 
the choice of broader boundaries because of the challenge 
to mimic the clinical sampling scheme of PK studies with 
PBPK modeling. The PBPK models, per definition, allow 
intensive sampling in the terminal phase of the PK curve 
and use this for calculating t1/2, where in many PK studies 
the terminal t1/2 is often based on only two or three sampling 
points obtained in the terminal phase of drug disposition. 
Despite our proposal of various boundaries, the regulatory 
agencies must decide on the definitive acceptance bounda-
ries for the PK parameters.

A limitation to the direct applicability of the method is 
the lack of openly accessible PK data sets. PK I-LD sets are 
especially difficult to acquire, but also publications with PK 
G-LD often are not applicable for a PBPK model evaluation 
because of lacking the GM and CV or a clear description 
of the investigated study population. The difficulty of data 
sharing has also been addressed in a recent workshop of 
stakeholders as a challenge for further advancement of the 
PBPK modeling field [10]. We side with their statement of 
the need for innovative and responsible ways to share I-LD 
to improve the predictability of PBPK models.

In summary, the strengths of this novel approach com-
pared with the current validation methods are as follows:

•	 90% CIs of GMRs are more informative than prediction 
ratios based on mean values only.

•	 Our approach is easy to implement with an online tool 
that quickly generates the intervals after loading the pre-
dictions and observations.

•	 No thorough biostatistical background is required as the 
approach generates easy-to-interpret results.

•	 The approach enables the possibility of remaining unde-
cided about model performance. Instead of outright 
rejecting or accepting the model, the outcome can be 
that it is impossible to make a decision given the limited 
amount of random data.

•	 The approach is applicable as a validation method both 
with PK I-LD, as well as with only PK G-LD data.

•	 The validation approach is not specific to any particular 
PBPK modeling platform and can be applied for results 
generated by different PBPK platforms than Simcyp®.

5 � Conclusions

The applicability of a novel, more stringent validation 
approach has been demonstrated with an example PBPK 
model. The approach could be a next step in the harmoniza-
tion of validation activities in the PBPK field, as the current 
methods are diverse and the acceptance window is arbitrary. 
With this method, which has been implemented in an openly 
accessible online tool, we hope to pave the way to a further 
increased confidence in PBPK model performance. This, in 
turn, facilitates its use, not only in drug development but also 
for directly informing drug dosing in clinical care.
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