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Abstract

Background

Treatment of nerve injuries proves to be a worldwide clinical challenge. Acellular nerve allo-

grafts are suggested to be a promising alternative for bridging a nerve gap to the current

gold standard, an autologous nerve graft.

Objective

To systematically review the efficacy of the acellular nerve allograft, its difference from the

gold standard (the nerve autograft) and to discuss its possible indications.

Material and methods

PubMed, Embase and Web of Science were systematically searched until the 4th of Janu-

ary 2022. Original peer reviewed paper that presented 1) distinctive data; 2) a clear compari-

son between not immunologically processed acellular allografts and autologous nerve

transfers; 3) was performed in laboratory animals of all species and sex. Meta analyses and

subgroup analyses (for graft length and species) were conducted for muscle weight, sciatic

function index, ankle angle, nerve conduction velocity, axon count diameter, tetanic contrac-

tion and amplitude using a Random effects model. Subgroup analyses were conducted on

graft length and species.

Results

Fifty articles were included in this review and all were included in the meta-analyses. An

acellular allograft resulted in a significantly lower muscle weight, sciatic function index, ankle
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angle, nerve conduction velocity, axon count and smaller diameter, tetanic contraction com-

pared to an autologous nerve graft. No difference was found in amplitude between acellular

allografts and autologous nerve transfers. Post hoc subgroup analyses of graft length

showed a significant reduced muscle weight in long grafts versus small and medium length

grafts. All included studies showed a large variance in methodological design.

Conclusion

Our review shows that the included studies, investigating the use of acellular allografts,

showed a large variance in methodological design and are as a consequence difficult to

compare. Nevertheless, our results indicate that treating a nerve gap with an allograft results

in an inferior nerve recovery compared to an autograft in seven out of eight outcomes

assessed in experimental animals. In addition, based on our preliminary post hoc subgroup

analyses we suggest that when an allograft is being used an allograft in short and medium

(0-1cm, > 1-2cm) nerve gaps is preferred over an allograft in long (> 2cm) nerve gaps.

Introduction

Peripheral nerve injuries affect 2,8% of all trauma cases, and despite surgical repair, they often

result in deterioration of quality of life for these patients [1–3]. In some injuries, a segmental

loss of a peripheral nerve occurs after trauma or tumor excision for example [4, 5].

The current gold standard for the surgical repair of a peripheral nerve injury that cannot be

directly coaptated is a nerve autograft. The sural nerve is the most commonly used because it

supplies a consistent source of graft material and is anatomically accessible [6]. However, this

procedure has several limitations. The length of donor nerve available and its limited diameter

are often insufficient to achieve a complete reconstruction of multiple or significant segmental

defects. Besides, the procedure may cause considerable donor site morbidity, such as pain and

loss of sensation [7–9]. A specific form of autograft, a vascularized nerve graft, resulted in a

superior nerve recovery. However, it could result in an even more considerable donor site

morbidity [10].

Several techniques have been investigated to replace the nerve autograft, including allo-

grafts, biological conduits and synthetic conduits [11–13]. All with their benefits and draw-

backs. Of these options, the acellular allograft seems the most promising [14]. These grafts

provide the needed internal structural and molecular composition of the extracellular matrix

in a cell-free scaffold, which supports nerve regeneration while retaining a nonimmunogenic

nature [15]. This procedure however, has some drawbacks as well, including uncertain histo-

compatibility and ethical and legal concerns.

A variety of methods have been studied to prepare an acellular allograft such as cold preser-

vation, freeze-thaw cycling, chemical detergent and enzymatic preparations, lyophilization

and irradiation [16–18]. There is only one such method that is FDA approved available to sur-

geons produced by AxoGen, Inc., Alachua, Florida. AxoGen develops its human allografts by

combining proprietary detergent processing and gamma irradiation which removes cellular

remnants while minimizing the microstructural damage. Next to that, chondroitin sulfate pro-

teoglycan is enzymatic removed from the endoneural tube system to advance axon regenera-

tion [19]. Several additions and alterations to this method have been researched. However, at

this moment these techniques are not clinically available.
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There is little clinical and experimental evidence about the difference in outcomes between

an acellular allograft and an autograft. Therefore, A systematic review of experimental studies

was conducted to investigate the efficacy of the acellular nerve allograft, its difference from the

gold standard (the nerve autograft) and to discuss the possible indications for the use of an

allograft.

Material and methods

Research protocol

Before starting this systematic review, a protocol was defined in advance and registered in an

international database (PROSPERO, registration number CRD42020186451). The PRISMA

guidelines for conducting a systematic review were followed.

Search strategy

PubMed (Medline), Embase (OVID) and Web of Science were systematically searched to iden-

tify all original articles. The search contained studies up to the 4th of January 2022. Search

terms included ‘nerve reconstruct’, ‘nerve transfer’, ‘nerve graft’, ‘allograft’, ‘allogeneic’, ‘acellu-

lar’, ‘decellularize’ and their synonyms in abstract and title fields (see S1 Table for the complete

search strategy). To identify all animal studies, the SYRCLE search filters were used [20, 21].

Endnote (Clarivate Analytics, Pennsylvania, USA) was used to remove duplicates. Two authors

(BOB and AK) performed the screening process independently using Rayyan web tool [22].

All titles and abstracts were screened to determine their relevance by utilizing the pre-estab-

lished inclusion and exclusion criteria. Reference lists of the remaining studies were screened

manually for potentially relevant new studies. Full text screening of all relevant articles was

done by two reviewers for final selection. Divergences were solved by consensus discussion.

Any remaining divergences were solved by consulting TDJ as a third reviewer.

Inclusion and exclusion criteria

We included an original peer reviewed paper 1) that presented distinctive data; 2) made a clear

comparison between not immunologically processed acellular allografts and autologous nerve

transfers; 3) was performed in laboratory animals of all species and sex; 4) investigated the

effect of acellular allografts on motor outcomes: sciatic function index, muscle weight (gram),

ankle angle (degrees), electrophysiology (nerve conduction velocity (ms/s), amplitude (mA) or

latency (ms)) and sensory outcomes: hot-cold testing, pin-prick testing, Semmes-Weinstein

testing and histomorphometry (axon count and diameter). No publication date restriction was

applied.

Critical appraisal

Two authors (BOB and AK) independently assessed the risk of bias using the SYRCLE’s tool

for assessing the risk of bias for animal studies. This appraisal was subsequently merged by

consensus and disagreements were solved by discussion [23]. A “yes” indicating a low risk of

bias, a “no” indicating a high risk of bias or a “?” indicating an unknown risk of bias was scored

for all criteria. We determined selective outcome reporting by establishing if all outcome mea-

sures stated in the material and methods section were also reported in the results. Baseline

characteristics were: species, age and weight. We included two items to overcome the problem

of judging to many items as “unclear risk of bias: reporting on any measure of randomization

and reporting on any measure of blinding. For these two questions a “yes” indicates reported

and a “no” indicates not reported.
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Data extraction

From the included studies, both reviewers (BOB and AK) extracted the data in duplicate. The

descriptive data included: first author’s name, the year of publication, studied species, sex, total

number of animals, number of grafts, studied nerve, studied muscle, graft size and time points.

The mean, standard deviation (SD) and total number of subjects (n) were recorded for all out-

comes. In case multiple locations per nerve were reported, we used the most distal segment of

the graft. When the SEM was reported, it was recalculated to SD (SD = SEM x
p

n). If data

were only presented graphically, Universal Desktop Ruler software (https://avpsoft.com/

products/udruler/) was used by two reviewers independently to measure a fair estimation of

the presented data, after that the mean of these two independent measurements was used. We

attempted to contact the authors for additional information in case relevant data were missing.

Statistical analysis

Comprehensive Meta-Analysis (CMA version 3.3) was used to analyze all data. The standard-

ized mean difference (SMD) and 95% confidence interval (95% CL) for all outcome measure-

ments comparing acellular allografts and conventional autografts were calculated with Hedges’

g correction. A random effects model was applied, which takes the accuracy of independent

studies and the variation among studies into account and weighs all studies accordingly. I2 was

used to asses heterogeneity. In case a study reported results at different time points using the

same experimental group, these results were pooled to obtain an overall SMD with Hedges’g

correction using a random-effects model and variance. Subgroup analyses were conducted

post hoc for species (rat, rabbit, monkey and dog) and graft lengths (0–1 cm, > 1–2 cm

and> 2 cm). We only interpreted the results of subgroup analysis when groups consisted of 5

or more individual studies.

To detect publication bias funnel plots were created and evaluated on symmetry using

Egger’s regression and Trim and Fill analysis, if there were at least 15 or more independent

studies per outcome. We plotted the SMD against a sample size-based precision estimate(1/
p

(n)), because SMDs may cause funnel plot distortion.

A sensitivity analysis was performed to assess the robustness of our findings. The impact of

excluding studies published before 2008 and studies that used animals as their own control

was evaluated.

Results

Study selection process

The systematic literature search presented in S1 Table yielded 1191 unique references (Fig 1

shows a consort flow chart). After title abstract screening, 136 studies met the selection criteria.

Finally, after studying the full-text articles, 50 studies were included in the review and meta-

analyses.

Study quality and risk of bias

The general results of our risk of bias assessment of the included references are shown in Fig 2.

Poor reporting of essential methodological details in most animal experiments resulted in an

unclear risk of bias in most studies. In particular reporting about any randomization and

blinding measures taken at any level was 64% (32 out of 50 publications). Assessment of the

risk of bias was done separately for the 3 studies that used animals as their own control because

some aspects were not applicable (Fig 3).
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Study characteristics

A summary of the characteristics of the 50 included publications is shown in Table 1 [24–73].

The characteristics per outcome measurement are depicted in the Appendix. The most com-

monly used specie was rat (80%), followed by rabbit (6%), monkey (6%), dog (6%) and mice

(2%). Gender was not reported in 20% (10 of 50) of the publications. Out of the remaining stud-

ies 33 used males, 2 used females and in 5 both sexes were used. Different nerves were used with

the sciatic nerve being the most common (80%), followed by the peroneal nerve (6%), facial

nerve (4%), radial nerve (4%), ulnar nerve (2%), tibial nerve (2%) and femoral nerve (2%).

Overall analysis

Overall analysis showed a significant lower muscle weight, sciatic function index, tetanic con-

traction, nerve conduction velocity and smaller ankle angle, axon count diameter after treat-

ment with an acellular allograft compared to an autograft (Shown in Table 2). No significant

difference in amplitude was found.

Subgroup analyses

Subgroup analysis of all subgroups containing a minimum of 5 comparisons revealed a signifi-

cant difference in muscle weight when comparing graft length between acellular allografts and

Fig 1. Flow chart of the study selection.

https://doi.org/10.1371/journal.pone.0279324.g001
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conventional nerve autografts. Autografts showed a more favorable result in long grafts (> 2

cm) than in medium and short grafts (0–1 cm, > 1–2 cm) compared to acellular allografts (see

Table 3).

However, for nerve conduction velocity and axon count no significant difference was found

comparing graft length between acellular allografts and conventional nerve autografts.

All other subgroup analyses on graft length could not be interpreted because groups con-

sisted of fewer than 5 studies. The same goes for all subgroup analyses for species.

Sensitivity analysis

Exclusion of the studies published before 2008 did not alter our results significantly (see S2

Table). Also, when the studies were excluded in which animals were their own control no sig-

nificant changes were found, only the amplitude SMD improved significantly (0.70 to 1.00), in

favor of autografts (S3 Table).

Conclusions of all subgroup analyses appeared to be robust.

Publication bias analysis

Publication bias could only be assessed for axonal count, muscle weight and nerve conduction

velocity, because all other outcome measurements consisted of fewer than 15 independent

studies. The funnel plot for muscle weight and axon count suggested some asymmetry. Duval

Fig 2. Results of the risk of bias assessment of 47 included studies in this systematic review. The first two items assess study quality by scoring

reporting, a “yes” score indicates reported and a “no” score indicates unreported. The other items assessed risk of bias, with “yes” indicating low risk of

bias, “no” high risk of bias, and “?” unclear risk of bias.

https://doi.org/10.1371/journal.pone.0279324.g002
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and Tweedie’s Trim and Fill analysis resulted in 14 and 6 extra data points (Figs 4 and 5), indi-

cating the presence of publication bias and some overestimation of the identified summary

effect size. No publication bias for nerve conduction velocity was found (Fig 6).

Discussion

Our results indicate that treating a nerve gap with an allograft results in an inferior nerve

recovery compared to an autograft in seven out of eight outcome measurements assessed in

animal models. Our subgroup analysis suggests that when an allograft is being used, an allo-

graft in short and medium (0-1cm, > 1-2cm) nerve gaps performs better than an allograft in

long (> 2cm) nerve gaps.

Comparing the available literature regarding the use of acellular allografts was challenging

because a large variation in decellularization techniques were used. A variety of methods have

been studied to prepare an acellular allograft by these labs such as cold preservation, freeze-

thaw cycling, chemical detergent and enzymatic preparations, lyophilization and irradiation

[16–18]. There is little to no evidence for what combination of these decellularization methods,

give the best nerve regeneration. Fig 7 shows an approximate overview of the different aspects

of these methods. We tried to investigate which method led to the best nerve recovery by using

the data available in the current literature. Due to the great variation in methods used, groups

became too small to perform statistical analysis.

Fig 3. Results of the risk of bias assessment of the 3 included studies in this systematic review where animals were their own control group. The first

two items assess study quality by scoring reporting, a “yes” score indicates reported and a “no” score indicates unreported. The other items assessed risk of

bias, with “yes” indicating low risk of bias, “no” high risk of bias, and “?” unclear risk of bias.

https://doi.org/10.1371/journal.pone.0279324.g003
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Table 1. The characteristics of all 50 included references.

Reference Species Animals (grafts) Nerve Graft size (mm) Time points (weeks) Outcome measurements Muscle
Hadlock et al., 2001 Rat 35 Sciatic 7 6, 10.5 SFI

Boriani et al., 2019 Rabbit 15 Tibial 20 12 NCV

Amplitude

Cai et al., 2017 Rat 18 Sciatic 15 8 Muscle weight

Diameter

Axonal count

Gastrocnemicus

Chato-Astrain et al., 2020 Rat 24 Sciatic 10 12 SFI

Muscle weight

Gastrocnemicus

Dai et al., 2014 Rat 50 Sciatic 10 4, 8, 12 SFI

Diameter

Axonal count

Frerichs et al., 2002 Rat 40 Sciatic 20 6 Axonal count

Gao et al., 2014 Rat 45 Sciatic 10 6, 12 SFI

Muscle weight

NCV

Gastrocnemicus

Giusti, Lee et al., 2016 Rat 88 Sciatic 10 16 Muscle weight

Ankle angle

Axon count

Tetanic contraction

Tibialis anterior

Giusti, Willems et al., 2012 Rat 65 Sciatic 10 12, 16 Muscle weight

Ankle angle

Tetanic contraction

Tibialis anterior

Gulati et al., 1990 Rat 24 (48) Sciatic 20 12 Muscle weight Extensor digitorum longus

Haase et al., 2003 Rat 19 Peroneal 20, 40 3, 15 Muscle weight

Tetanic contraction

Extensor digitorum longus

Huang et al., 2015 Rat 18 Facial 10 12 NCV

Diameter

Axon count

Hu, Zhang et al., 2010 Rabbit 72 Facial

Peroneal

50 4, 12, 24 Axonal count

Hu, Zhu et al., 2007 Monkey 12 Ulnar 40 24 NCV

Hundepool et al., 2018 Rat 66 Sciatic 10 12, 16 Muscle weight

Ankle angle

Axon count

Tetanic contraction

Tibial

Ide et al., 1998 Dog 16 Sciatic 50 12 Axon count

Jiang et al., 2016 Rat 40 Sciatic 15 12 Muscle weight

NCV

Triceps surae

Li, Zhao et al., 2013 [41] Rabbit 51 Sciatic 30 24 NCV

Amplitude

Li, Peng et al., 2008 Rat 30 Sciatic 10 4, 8, 12, 16 SFI

Muscle weight

Diameter

Axon count

Gastrocnemicus

Soleus

Moore et al., 2011 Rat 60 Sciatic 14 6, 16 Muscle weight

Tetanic contraction

Extensor digitorum longus

Muheremu et al., 2016 Rat 45 Femoral 5 12 Muscle weight

Amplitude

Diameter

Quadriceps femoris

Nakamoto et al., 2021 Rat 40 Sciatic 5 3, 6, 12, 14 SFI

Diameter

Axon count

Piao et al., 2020 Rat 51 Sciatic 20 24 NCV

Amplitude

(Continued)
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Table 1. (Continued)

Reference Species Animals (grafts) Nerve Graft size (mm) Time points (weeks) Outcome measurements Muscle
Qiu et al., 2020 Dog 15 Sciatic 50 24 NCV

Diameter

Axon count

Rovak et al., 2004 Rat 16 Peroneal 20 15 Muscle weight

Axon count

Extensor digitorum longus

Saheb et al., 2013 Rat 30 Sciatic 20, 40, 60 10, 20 Muscle weight Extensor digitorum longus

Shin et al., 2019 Rat 20 Sciatic 10 4, 8, 12, 16 Muscle weight

Ankle angle

Axon count

Tetanic contraction

Tibialis anterior

Sun et al., 2009 Rat 24 Sciatic 10 12 NCV

Amplitude

Tang, Kilic et al., 2013 Rat 54 Sciatic 10 6, 12 Muscle weight

Tetanic contraction

Tibialis anterior

Tang, Whiteman et al., 2019 Rat 81 Sciatic 10 12, 16, 20 Muscle weight

Diameter

Axon count

Tetanic contraction

Tibilais anterior

Vasudevan et al., 2014 Rat 24 Sciatic 35 12 Muscle weight

Axon count

Gastrocnemicus

Wakimura et al., 2015 Rat 14 (22) Sciatic 15 24 Amplitude

Wang, Huang et al., 2014 [56] Monkey 20 Radial 25 20 NCV

Wang, Itoh et al., 2016 Rat 15 Sciatic 15 24 Amplitude

Diameter

Wang Liu et al., 2010 Monkey 12 Radial 25 20 Muscle weight

NCV

Extensor digitorum longus

Wang, Wu et al., 2016 Rat 20 (40) Sciatic 20 4, 8, 12 SFI

Muscle weight

Diameter

Gastrocnemicus

Triceps surae

Wang, Zhao et al., 2012 Rat 65 Sciatic 15 12 Muscle weight Triceps surae

Whitlock et al., 2009 Rat 102 Sciatic 14, 28 6, 12, 22 SFI

Muscle weight

Gastrocnemicus

Xiang et al., 2017 Rat 55 Sciatic 15 12 SFI

Muscle weight

NCV

Gastrocnemicus

Yan et al., 2016 Rat 32 Sciatic 20 8 Muscle weight

Axon count

Tetanic contraction

Extensor digitorum longus

Yu, Peng et al., 2009 Rat 52 Sciatic 10 16 Muscle weight Triceps surae

Yu, Wen et al., 2020 Rat 48 Sciatic 10 6, 12 SFI

NCV

Axon count

Zhang, Tong et al., 2008 Rat 16 Sciatic 10 12 Muscle weight

NCV

Amplitude

Tibialis anterior

Zhang, Zhang et al., 2014 Rat 30 Sciatic 10 2, 4, 6, 8 SFI

Muscle weight

NCV

Amplitude

Triceps surae

Zhao1 et al., 2014 Rat 52 Sciatic 15 12 Muscle weight Triceps surae

Zhao2 et al., 2011 Mice 18 Sciatic 10 2, 4, 6, 8 SFI

Muscle weight

Triceps surae

(Continued)
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At the moment, there is only one such method that is FDA approved and available to sur-

geons. It is produced by AxoGen, Inc., Alachua, Florida. AxoGen develops its human allografts

by combining proprietary detergent processing and gamma irradiation which removes cellular

remnants while minimizing the microstructural damage. Next to that, chondroitin sulfate pro-

teoglycan is enzymatic removed from the endoneural tube system to advance axon regenera-

tion [19]. We noticed that the studies we included, published before 2008, used a minimal

decellularization method like mere freeze-thaw cycling. In conclusion, based on the available

data and analysis we did, no clear statement could be made as to which decellularization

method is superior.

A few human studies show a resemblance in effect between the acellular allograft and the

autograft. This would be a significant development because the allograft has a couple of funda-

mental advantages as opposed to the autograft. It has an unlimited supply that offers an excel-

lent solution, e.g., plexus surgery after a major trauma. In such trauma, there can be

insufficient autograft material to repair the nerve deficits. Therefore, in these cases the allograft

offers a solution to restore the damages done. It also avoids potential donor site morbidity

such as pain and loss of sensation. Next to that, there is the benefit of a shorter operation time.

And finally, the off-the shelf availability of the allograft.

The clinical use of commercially available human acellular nerve allografts (AxoGen) for

nerve reconstruction has been reported in several case reports and in a more sizeable multicen-

ter study (RANGER) [14, 74–78]. Unfortunately, the multicenter study lacks the opportunity

to say anything about the effectiveness of the allograft, because it did not compare it to an

autograft.

Table 1. (Continued)

Reference Species Animals (grafts) Nerve Graft size (mm) Time points (weeks) Outcome measurements Muscle
Zhong et al., 2007 Dog 15 Sciatic 50 24 Ankle angle

NCV

Zhou, Zhang et al., 2015 Rat 75 Sciatic 10 4, 16 SFI

Muscle weight

NCV

Gastrocnemicus

Zhou, He et al., 2014 Rat 72 Sciatic 18 2, 4, 6, 8, 10, 12 SFI

NCV

Diameter

Axon count

Zhu et al., 2015 Rat 72 Sciatic 18 4 Muscle weight

Diameter

Axon count

Gastrocnemicus

https://doi.org/10.1371/journal.pone.0279324.t001

Table 2. Summary of the overall analyses.

Outcome measurement SMD (Hedges g) 95% convidence interval I 2 No. of comparisions No. of studies

Muscle weight -2.39 -1.85 to -2.93 86% 45 31

Sciatic function index -1.59 -0.44 to -2.73 93% 15 14

Tetanic contraction -0.54 -0.13 to -0.95 62% 14 9

Ankle angle -0.98 -0.28 to -1.69 74% 7 5

Nerve conduction velocity -2.20 -1.66 to -2.75 73% 19 18

Amplitude -0.79 0.11 to -1.69 83% 9 9

Axon count -1.40 -0.78 to -2.01 86% 27 18

Diameter -1.10 -0.32 to -1.89 82% 13 11

https://doi.org/10.1371/journal.pone.0279324.t002
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Safa et al. [77] and Leckenby et al. [78] both reported data from the RANGER study. Safa

et al. conducted an analysis of 365 patients with 624 nerve repairs (AxoGen). They found a

meaningful sensible and motor function recovery in 82% of cases. Finally, the authors stated

that nerve defects up to 7 cm could achieve a useful recovery after treatment. Leckenby et al.

Table 3. Subgroup analysis for graft length.

Outcome measurement SMD (Hedges g) 95% convidence interval P-value No. of comparisions

Muscle weight

• Short vs. long -2.13 vs. -4.21 -1.33 to -2.94 vs. -2.87 to -5.55 0.045 18 vs. 9

• Medium vs. long -1.92 vs. -4.21 -1.09 to -2.75 vs. -2.87 to -5.55 0.026 18 vs. 9

Nerve conduction velocity

• Short vs. long -2.36 vs. -1.92 -1.49 to -3.23 vs. -0.88 to -2.95 1 8 vs. 6

• Medium vs. long -2.33 vs. -1.92 -1.23 to -3.43 vs. -0.88 to -2.95 1 5 vs. 6

Axon count

Short vs. long -1.46 vs. -1.21 -0.54 to -2.38 vs. -0.08 to -2.33 1 13 vs. 9

Medium vs. long -1.62 vs. -1.21 -0.14 to -3.11 vs. -0.08 to -2.33 1 5 vs. 9

https://doi.org/10.1371/journal.pone.0279324.t003

Fig 4. Muscle weight publication bias.

https://doi.org/10.1371/journal.pone.0279324.g004

PLOS ONE The effectiveness of acellular nerve allografts compared to autografts in animal models

PLOS ONE | https://doi.org/10.1371/journal.pone.0279324 January 31, 2024 11 / 20

https://doi.org/10.1371/journal.pone.0279324.t003
https://doi.org/10.1371/journal.pone.0279324.g004
https://doi.org/10.1371/journal.pone.0279324


analyzed 171 nerve repairs (AxoGen) in 129 subjects exploring a meaningful sensory and

motor function recovery as well. In 73.7% of their cases a meaningful sensory recovery (3S3)

was achieved. The percentage of meaningful motor recovery (3M3) was lower at 40,1%,

respectively.

Neubauer et al. [19] observed another interesting aspect. They investigated which type of

acellular nerve, i.e. motor, sensory or mixed type, is best used for repairing particular types of

nerve gaps. No significant differences were found when comparing these three decellularized

nerve types as a dominant grafting with regard to axon count and myelinated axons. Most

repaired nerves happened to be a sensory dominant one in this study. We noticed that in the

animal experiment the opposite is used. The use of motor types was rather common.

Until this day there is no proper “gold standard” to test nerve recovery, although the ulti-

mate goal of nerve recovery is to maximize sensation and motion. The most commonly used

outcome measurement for sensation is the von Frey test [79]. For motion, walking track analy-

sis was believed to be the best overall assessment [80–82]. It is rarely used and some would say

it is even obsolete. Additionally, walking track analysis does not reflect maximum muscle force

capacity. Others say the most precise measurement is the isometric response of muscle to

tetanic contraction [83]. The authors are aware that histomorphometry, electrophysiology and

Fig 5. Axon count publication bias.

https://doi.org/10.1371/journal.pone.0279324.g005
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axonal count in particular may have a limited correlation to the real functional recovery of sen-

sation and strength [84]. Next to that, histomorphometry is difficult to compare between dif-

ferent laboratories, because other methods to measure the outcome were used. We used a

standardized mean difference for our meta-analysis to compensate for these differences. Over

the years methods have evolved from manually calculating axonal count from a light micro-

scopic photograph to a computer calculated estimate. The methods used by the studies in this

review vary as well. Searching the publication databases, we found little evidence on which one

is the best or on a clear sensitivity or specificity for these methods. However, Kim et al. [85]

concluded that the semi-automated method for counting axons in transmission electron

microscopic images was strongly correlated with conventional counting methods and showed

excellent reproducibility. Nevertheless, the techniques for histomorphometry will always be an

estimation and therefore prone to bias.

Limitations of this review

Firstly, the risk of bias analysis revealed that many essential methodological details were poorly

reported in the majority of included studies, which is why most risk of bias items assessed in

this analysis were scored as ‘unclear risk of bias’. Drawing reliable conclusions from the

Fig 6. Nerve conduction velocity publication bias.

https://doi.org/10.1371/journal.pone.0279324.g006
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included animal studies may have hampered the reliability of the analyses presented in this

review.

Secondly, for some outcome measurements the number of included studies in this meta-

analysis is relatively low, as a consequence the results of these small meta analyses may be

imprecise. Next to that, the heterogeneity between the studies was moderate to high. We used

a random effects model, subgroup analyses and conducted two different sensitivity analyses to

account for this anticipated heterogeneity.

Fig 7. Global overview decellularization methods.

https://doi.org/10.1371/journal.pone.0279324.g007
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Conclusion

This review demonstrates that an acellular nerve allograft results in a significantly inferior

nerve recovery compared to an autograft in animal models. In addition, when an allograft is

being used an allograft in short and medium (0-1cm, > 1-2cm) nerve gaps performs better

than an allograft in long (> 2cm) nerve gaps. However, the several different animal experi-

ments, investigating the use of acellular allografts, are difficult to compare due to the wide vari-

ety of study designs used and the generally poor reporting of essential methodological details.

Large population studies or comparative clinical trials with large study populations to allow

for participant and injury heterogeneity will be needed to prove and improve the success of the

acellular allograft. We strongly advise future animal studies to be designed and reported

according to the ARRIVE guidelines [86, 87].
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