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Abstract

Background The objective of this systematic review is to identify prognostic factors among

women and their offspring affected by gestational diabetes mellitus (GDM), focusing on

endpoints of cardiovascular disease (CVD) and type 2 diabetes (T2D) for women, and

cardiometabolic profile for offspring.

Methods This review included studies published in English language from January 1st, 1990,

through September 30th, 2021, that focused on the above outcomes of interest with respect

to sociodemographic factors, lifestyle and behavioral characteristics, traditional clinical traits,

and ‘omics biomarkers in the mothers and offspring during the perinatal/postpartum periods

and across the lifecourse. Studies that did not report associations of prognostic factors with

outcomes of interest among GDM-exposed women or children were excluded.

Results Here, we identified 109 publications comprising 98 observational studies and 11

randomized-controlled trials. Findings indicate that GDM severity, maternal obesity, race/

ethnicity, and unhealthy diet and physical activity levels predict T2D and CVD in women, and

greater cardiometabolic risk in offspring. However, using the Diabetes Canada 2018 Clinical

Practice Guidelines for studies, the level of evidence was low due to potential for con-

founding, reverse causation, and selection biases.

Conclusions GDM pregnancies with greater severity, as well as those accompanied by

maternal obesity, unhealthy diet, and low physical activity, as well as cases that occur among

women who identify as racial/ethnic minorities are associated with worse cardiometabolic

prognosis in mothers and offspring. However, given the low quality of evidence, prospective

studies with detailed covariate data collection and high fidelity of follow-up are warranted.
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Plain language summary
Gestational diabetes mellitus (GDM)

occurs when levels of sugar in the

blood are high during pregnancy. We

sought to identify factors associated

with short- and long-term cardiome-

tabolic disease risk, health conditions

that involve heart-related issues and

complications in bodily function,

among women with GDM and their

offspring. We reviewed publications

on factors related to type 2 diabetes

(T2D) and cardiovascular disease

(CVD) risk among women with

GDM, and additionally assessed body

composition in offspring of women

with GDM. We found that GDM

severity, maternal obesity, self-

identified race/ethnicity, poor diet,

and low physical activity levels pre-

dict postpartum T2D and CVD in the

women, and unfavorable long-term

cardiometabolic disease risk in off-

spring. The quality of evidence was

poor, emphasizing a need for high-

quality research capturing detailed

short- and long-term outcome data to

facilitate preventative interventions

to improve health of women and

children.
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Gestational diabetes mellitus (GDM), a state of hypergly-
cemia due to insufficient insulin secretion and/or insulin
resistance that occurs during pregnancy, is the most

common metabolic disorder of pregnancy, affecting 6–12% of
pregnancies globally1,2. A diagnosis of GDM is not only asso-
ciated with risk of acute pregnancy and delivery complications,
but also carries implications for the long-term risk of type 2
diabetes (T2D)3,4 and cardiovascular disease (CVD)5. Addition-
ally, offspring exposed to GDM in utero have higher adiposity
and a worse metabolic profile across the life course than their
unexposed counterparts6,7. The wide-ranging and intergenera-
tional sequelae of GDM-affected pregnancies emphasize the
importance of characterizing not only the short- and long-term
consequences of this common pregnancy complication. Further,
identification of bellwethers of such consequences will facilitate
preventive intervention of such comorbidities and complications,
also known as disease prognosis.

Recent technological advancements have improved the capa-
city to comprehensively assess physiology. In turn, these devel-
opments facilitated the ability to harness metabolic heterogeneity
– the phenomenon of interest to precision medicine by which
similar exposures and risk factors yield differential health
sequelae across individuals. In the context of GDM prognosis,
this effort requires the identification of prognostic factors and
biomarkers among women with a history of GDM and/or their
offspring who were exposed to GDM in utero that may serve as
both causal and non-causal indicators of future health risks.

Recognizing the relevance of metabolic heterogeneity in accu-
rate and precise assessment of disease prediction, diagnosis,
treatment, and prognosis, the Precision Medicine in Diabetes
Initiative (PMDI) was established in 2018 by the American
Diabetes Association (ADA) in partnership with the European
Association for the Study of Diabetes (EASD). The ADA/EASD
PMDI includes global thought leaders in precision diabetes
medicine who are working to address the burgeoning need for
better diabetes prevention and care through precision medicine8.
This Systematic Review is written on behalf of the ADA/EASD
PMDI as part of a comprehensive evidence evaluation in support
of the 2nd International Consensus Report on Precision Diabetes
Medicine9.

Thus, in an effort to evaluate prognostic factors to better
understand health risks related to postpartum and long-term
cardiometabolic health outcomes among mothers with GDM and
her offspring, we conducted a systematic review that synthesizes
evidence from empirical research papers published through
September 1st, 2021, to evaluate and identify prognostic condi-
tions, risk factors, and biomarkers among women and offspring
affected by GDM pregnancies, focusing on clinical endpoints of
CVD and T2D among women with a history of GDM; and
adiposity and cardiometabolic risk profile among offspring
exposed to GDM in utero. Overall, we find that GDM severity,
maternal obesity, self-identified race/ethnicity, poor diet, and low
physical activity levels predict postpartum T2D and CVD in the
women, and unfavorable long-term cardiometabolic health in
offspring with GDM exposure.

Methods
Systematic review protocol development. We registered our
search strategy and systematic review protocol to PROSPERO
CRD4202127609410. We developed a systematic review protocol
to comprehensively include and evaluate individual research
studies reporting on risk factors for long-term clinical outcomes
in women with GDM and a range of cardiometabolic health and
anthropometric outcomes in GDM-exposed offspring. Nota bene,
ADA/EASD PDMI is committed to using inclusive language,

especially in relation to gender. We choose to use gendered ter-
minology throughout the article following the rationale for using
gendered language in studies of maternal and child health,
including but not limited to reducing risk of exposure mis-
classification and avoidance of dehumanizing terms11. Further,
most of the original studies reviewed used ‘women’ as their ter-
minology to describe their population, as GDM per definition
occurs in pregnancy which can only occurs in individuals that are
female at birth. In this review, we use the term ‘women’
throughout, but acknowledge that not all individuals who
experienced a pregnancy may self-identify as a woman.

Our strategy aimed to identify two broad categories of
empirical studies: (1) populations of women with a history of
prior GDM that investigated additional exposures or risk factors
for incident postpartum T2D or CVD; (2) populations compris-
ing offspring exposed to GDM in utero that investigated
additional exposures or risk factors for an adverse cardiometa-
bolic profile. Studies including pregnancies unaffected by GDM
were eligible only if results were included for GDM subgroups.

Prognostic factors of interest, hereafter also referred to as
exposures, included sociodemographic factors, lifestyle and
behavioral characteristics, traditional clinical traits, and ‘omics
biomarkers. We considered these prognostic factors during the
perinatal/postpartum periods and across the lifecourse for both
the mothers and offspring. Maternal outcomes of interest were
incident T2D or CVD, including study-specific composites of
clinical cardiovascular events, non-fatal and fatal myocardial
infarction or stroke, and chronic kidney disease (CKD). For
offspring, we were interested in outcomes reported 12 weeks of
age and older, and limited to anthropometrics, glycemic and
cardiometabolic traits or biomarkers, and incident metabolic
syndrome (MetS), T2D, or CVD.

Data sources, search strategy, and screening criteria. We
developed search terms for Medline EMBASE, and Cochrane
CENTRAL (Supplementary Data 1) for eligible citations pub-
lished in English language from January 1st, 1990, through Sep-
tember 30th, 2021. References of accepted manuscripts and
relevant systematic reviews published within the past 2 years were
screened to identify additional citations. We included prospective
and retrospective observational studies identifying factors with
incident outcomes of interest in women or offspring exposed to
GDM. We excluded cross-sectional analyses among populations
with prevalent disease outcomes or traits. While studies could
include non-GDM exposed pregnancies, those without subgroup
findings exclusively among GDM pregnancies were excluded. We
also included interventions prospectively comparing effects of a
treatment assignment on the outcome. Exclusion criteria com-
prised studies with outcomes <6 weeks postpartum, maternal
studies reporting only intermediate phenotypes, glycemic traits,
or cardiometabolic biomarkers, and studies in offspring that only
assessed endpoints outside of the cardiometabolic outcomes of
interest (e.g., neurodevelopment, allergic disease). Using these,
two independent reviewers conducted screening at the title
abstract level. For accepted citations, two independent reviewers
implemented screening of the full manuscripts. Conflicts at all
screening stages were resolved by a third reviewer. All screening
was conducted in the Covidence online systematic review track-
ing platform.

Data extraction and synthesis of results. We developed and
piloted a data extraction template for eligible manuscripts. Data
included manuscript information, study level details and design,
population enrollment and characteristics, exposure and outcome
ascertainment and diagnosis criteria, follow-up time of outcome
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assessment since index GDM pregnancy and other pertinent
details. We indicated the population in which outcomes were
assessed (e.g., maternal, offspring, or both), and recorded the
exposures that were investigated in four broad categories: (i)
social/genetics factors across the life course; (ii) all factors in
perinatal/postpartum window; (iii) long-term maternal expo-
sures; and (iv) long-term offspring exposures.

Quality assessment (risk of bias) and synthesis. We assessed the
quality of each study using the Joanna Briggs Institute’s (JBI)
critical appraisal tools for cohort studies and randomized con-
trolled trials (RCTs)9. For cohort studies, we assessed quality
based on 11 items which evaluated population recruitment,
exposure and outcome ascertainment, confounding, statistical
methodology, and follow-up. For the RCTs, the JBI criteria
evaluated 13 items which assessed selection and allocation,
intervention, administration, outcome ascertainment, follow-up,
and statistical analysis. Each JBI item was categorized as, ‘Yes,’
‘No,’ ‘Unclear,’ or ‘Not applicable’ following the guidelines. Any
uncertainty in assessment was further discussed by the full
research team.

Overall evidence certainty assessment and synthesis. The cer-
tainty of evidence was determined using the Diabetes Canada
2018 Clinical Practice Guidelines for studies12. Levels were based
on study design and criteria focused on inception cohort of
patients presenting GDM but without outcomes of interest,
inclusion/exclusion reproducibility, follow-up of at least 80% of
participants and assessment of loss to follow-up, adjustment for
confounding factors, and reproducible outcome measures. Scor-
ing ranged from level 1 to 4, with Level 1 indicating the highest
certainty of evidence and Level 4 indicating the lowest certainty of
evidence. Details on the criteria and guidelines are in Supple-
mentary Table 1.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Of the 8141 studies identified, five were excluded due to dupli-
cation (Fig. 1). Another 7770 were excluded following title and
abstract review. The remaining 366 studies were reviewed in full,
of which 106 studies met the inclusion criteria through the
database search. An additional three studies were identified
through manual search. A total of 109 studies were included in
this review.

Of the 109 included, 98 were observational studies and 11 were
RCTs (Supplementary Data 2 and 3). Of the studies, 51 focused
on maternal outcomes and 38 focused on offspring outcomes. Of
the RCTs, three evaluated maternal outcomes and eight assessed
offspring outcomes. Studies included data from primarily from
white populations from North America and Europe. Sample sizes
of the eligible studies ranged from 26 to 23,302.

Maternal outcomes
Maternal type 2 diabetes. Forty-nine observational studies (Sup-
plementary Data 4) and two RCTs (Supplementary Data 5)
assessed sociodemographic, lifestyle, clinical, and pregnancy
characteristics associated with the risk of T2D among GDM
women. The most frequently studied characteristics were
maternal BMI and GDM severity. All observational studies that
assessed maternal BMI as a prognostic factor showed that higher
maternal BMI prior to and/or during pregnancy, and later in the
lifecourse predicted higher risk of T2D. One observational

study13 further demonstrated that a greater pre-pregnancy weight
increased the risk of T2D, though this study did not observe a
significant association of gestational weight gain with T2D
(Supplementary Data 4). Seventeen observational studies,
including one that derived a composite risk score for future T2D
risk14, assessed GDM severity in relation to risk of T2D. Findings
indicate that more severe GDM, measured by either clinical
markers assessing degree of hyperglycemia or need for insulin
treatment, predicts risk of developing T2D (Supplementary
Data 4). Fewer studies examined the role of lifestyle behaviors and
prenatal clinical characteristics. Four observational studies15–18

investigated the role of self-identified race/ethnicity – which we
view as social constructs as opposed to biological forms of
determinism – for the risk of T2D, two of which showed no
significant associations15,17 and two suggested that the risk was
higher among women with non-white European ancestry16,18

(Supplementary Data 4).
Four19–22 of seven17,19–24 observational studies that focused on

prognostic value of pregnancy or delivery complications reported
that additional pregnancy complications beyond GDM conferred
higher risk of T2D. The pregnancy complications assessed varied
across reports including stillbirth, gestational hypertension, and
cesarian section. Seven studies explored the role of parity24–30, of
which five25–28,30 found that higher parity predicted risk of T2D.
Four observational studies31–34 showed that breastfeeding was
associated with a reduced risk of developing T2D in later life. Two
observational studies35,36 and one RCT37 assessed associations of
healthy dietary patterns during mid-life with risk of incident T2D
among women with a history of GDM but showed inconsistent
results. Ten studies assessed biomarkers of T2D risk14,30,38–45,
including metabolomics, lipidomics, sICAM and sE-selectin, and
proinsulin-to-insulin ratio.

Maternal cardiovascular diseases. Six observational
studies19,46–50 explored the role of sociodemographic, lifestyle,
and pregnancy characteristics in future risk of CVD among
women with GDM (Supplementary Data 6). Two studies iden-
tified maternal BMI before46 and during48 pregnancy as risk
factors for future CVD, in which women with overweight or
obesity, in addition to GDM, have a higher risk of CVD as
compared to normal weight women with GDM. One study47

further showed that a healthy lifestyle – i.e., healthy diet, physical
activity, and being a non-smoker – was associated with a lower
risk of CVD. Two studies showed that pregnancy complications—
namely, gestational hypertension50 and stillbirth19—predicted
risk of CVD. No effect modification was identified with respect to
family history of CVD47 or chronic hypertension48.

Quality of studies conducted and certainty of evidence in
women with a history of GDM. The quality of studies for
prognostic factors indicative of future T2D or CVD risk is low
and the overall certainty of evidence ranked between Levels 3 and
4 according to the Diabetes Canada 2018 Clinical Practice
Guidelines12. (Fig. 2 for observational studies; Fig. 3 for RCTs).
Most current literature were based on retrospective studies
leveraging registry data and observational cohort studies, both of
which are vulnerable to bias due to residual confounding, reverse
causation bias by pre-existing conditions, and other character-
istics around the time of pregnancy and GDM diagnoses.

Offspring outcomes
Anthropometry and body composition. In comparison to the large
maternal literature, relatively few studies focused on prognostic
factors associated with suboptimal offspring body composition
among those exposed to GDM in utero. Forty observational studies
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(Supplementary Data 7) and five RCTs (Supplementary Data 8)
examined associations of sociodemographic, lifestyle, clinical and
pregnancy characteristics associated with anthropometric out-
comes in offspring of GDM women. The RCTs, by nature, also
enabled assessment of the effect of GDM treatment type (e.g.,
Metformin vs. insulin; dietary advice, glucose monitoring, and
insulin therapy vs. routine care) on offspring outcomes.

The most studied associations included maternal BMI, GDM
severity, breastfeeding status, and offspring birthweight, in
relation to offspring anthropometric outcomes (e.g., BMI and
risk of overweight/obesity). Seven observational studies51–57

found that higher maternal pre-pregnancy BMI was associated
with higher adiposity in the offspring, as reflected by a higher
BMI, waist circumference or directly-assessed fat mass, and
greater risk of overweight or obesity. Nine studies55,56,58–64

assessed the associations of maternal GDM severity, measured
by either clinical markers of hyperglycemia or need for insulin

treatment, with offspring body composition, of which four
observational studies55,56,63,64 indicated that more severe mater-
nal GDM is associated with a higher offspring BMI and
overweight risk. RCTs that evaluated GDM severity and showed
no significant association with offspring anthropometry or body
composition.

Six55–57,60,65,66 of 10 observational studies51,55–57,60,65–69

showed that a larger size and/or higher adiposity at birth predicts
higher future BMI and risk of overweight among GDM-exposed
offspring.

With regards to breastfeeding status, one study69 reported
that breastfed offspring with larger size at birth had lower future
BMI and lower risk of overweight or obesity. Multiple
observational studies showed that exclusive breastfeeding and
longer vs. shorter duration of breastfeeding are associated with
lower offspring BMI and risk of overweight or obesity
(Supplementary Data 7). Additionally, a study in the SWIFT

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagrams for study identification, screening, and retention of
studies included in this systematic review.
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cohort showed that inadequate duration and/or exclusivity of
breastfeeding, alone and in combination with consumption of
fruit juice or sugar sweetened beverages during the first year of
life, predicts higher offspring BMI at ages 2–5 years70. Three
studies using data from the Danish National Birth Cohort
indicated that maternal prenatal diet consisting of fatty fish71,
refined grain72, and sugar-sweetened beverage intake73 were
associated with higher offspring BMI, whereas protein intake74

and glycemic index/load75 did not show significant impact on
offspring abdominal fat. Finally, one study identified a genetic
risk score that predicted higher BMI among offspring exposed to
GDM in utero76.

Of the five RCTs testing an effect of GDM treatment on
offspring anthropometry and body composition, three77–79 yielded

null findings and two found that treatment with Metformin, as
compared to insulin, was associated with higher offspring adiposity
according to skinfold thicknesses80 and weight81 within the first 18
months of life (Supplementary Data 8).

Cardiometabolic profile. We identified fourteen observational
studies (Supplementary Data 9) and five RCTs (Supplementary
Data 10) that evaluated prognostic risk factors for adverse cardi-
ometabolic outcomes among GDM-exposed offspring. These stu-
dies focused on blood pressure, lipids, and glycemic markers in the
offspring separately or via a score comprising multiple biomarkers.

Birthweight was the most studied predictor of the offspring
prognostic factors, but only two observational studies82,83 showed
that a higher birthweight predicted MetS components in offspring

Fig. 2 Heat map of study quality according to the Diabetes Canada Clinical Practice Guidelines for observational studies assess maternal type 2
diabetes (T2D) and cardiovascular disease (CVD) as outcomes. Green cells indicate high quality; red cells indicate low quality. Yellow cells indicate
unclear/unable to assess quality based on information provided.
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later in life. Four observational studies assessed associations of
specific maternal dietary components (glycemic index/load75, fish71,
magnesium84, and protein74), though no consistent associations
were observed in relation to offspring cardiometabolic outcomes.
Although one observational study showed that breastfeeding was
associated with a lower risk of a MetS phenotype in the offspring85,
but this finding was not recapitulated in other observational studies.

Several RCTs compared diet vs. insulin treatment of GDM and
showed no significant associations with the development of a
MetS phenotype in the offspring (Supplementary Data 10). One
RCT86 assessed the effect of a lifestyle intervention comprising
exercise and diet counselling for treatment of GDM vs. usual
clinical care and found higher risk of unfavorable metabolic
outcomes among offspring in the intervention group.

Quality of studies and certainty of evidence conducted in off-
spring exposed to GDM in utero. We identified low quality of
evidence for prognostic factors indicative of future adiposity and
cardiometabolic risk among offspring exposed to GDM in utero
(Fig. 3 for RCTs; Fig. 4 for observational studies). As with the
maternal literature, most studies focusing on offspring outcomes
were based on retrospective study designs leveraging registry data
and observational cohort studies, both of which can be fraught
with residual confounding and reverse causation bias, as well as
structural biases like selection and attrition bias. Moreover, the
literature of offspring outcomes remains scant and with poten-
tially inadequate durations of follow-up for manifestation of
clinically relevant cardiometabolic outcomes, though additional
research is warranted. Furthermore, the certainty of evidence for
maternal and offspring exposures with cardiometabolic outcomes
were scored at Level 412, based on several factors including lim-
ited studies, small sample sizes, heterogeneity of study designs,
and inadequate statistical methods.

Discussion
Summary. This systematic review sought to identify prognostic
risk factors during the perinatal period and across the lifecourse
for maternal and offspring cardiovascular and metabolic out-
comes among women and offspring affected by GDM pregnan-
cies. We hypothesized that worse glycemic control at the time of
GDM diagnosis (i.e., severity of GDM), older maternal age,
belonging to a racial/ethnic minority group as proxy of upstream
social experiences that trickle down to affect physiology87,
unhealthy lifestyle behaviors during the prenatal period (i.e., poor
diet quality and low physical activity levels) predict risk of

incident type 2 diabetes (T2D) and cardiovascular disease (CVD)
among women with a history of GDM, and an unfavorable car-
diometabolic profile among offspring exposed to GDM in utero.

The studies identified herein were primarily long-term retro-
spective and prospective studies. The level of evidence for
prognostic risk factors of maternal T2D and CVD and for
offspring cardiometabolic risk is low due to unmeasured
confounding by lifestyle behaviors, the possibility of reverse
causation bias due to pre-existing chronic conditions prior to or
at the time of GDM diagnosis. Additionally, for offspring
outcomes, the small body of literature on prognostic factors
indicative of future adiposity and cardiometabolic risk and major
loss to follow-up in both observational and intervention studies.

Maternal outcomes. Among women with GDM, higher BMI at
any time in relation to the index pregnancy – i.e., pre-pregnancy,
during the index pregnancy including gestational weight gain,
and lifecourse measures of weight – predicted higher risk of T2D
later in life. GDM severity, typically estimated by use of insulin or
higher blood glucose values during the index pregnancy, was
consistently associated with higher risk of developing T2D. While
few studies assessed race and/or ethnicity as a prognostic risk
factor, women of Asian or non-white European descent with a
history of GDM had higher risk of future T2D than white
women16,18,46. Breastfeeding duration and/or exclusivity was
consistently associated with lower risk T2D risk following a GDM
diagnosis during pregnancy, though follow-up often ended <2
years postpartum—a period within which occult T2D incidence is
relatively low (Supplementary Data 4). Longer duration follow-up
is necessary to better evaluate the benefits of breastfeeding on
T2D risk. Some observational studies indicated a protective effect
of lifestyle factors such as physical activity level during the peri-
natal and postpartum periods, and compliance with a healthy diet
(e.g., adherence to a Mediterranean or DASH-like dietary pattern;
the Healthy Eating Index score). However, RCTs investigating the
effects of dietary interventions yielded mixed results (Supple-
mentary Data 5). Several observational studies also examined
biomarkers of T2D risk following GDM pregnancies, including
degree of hyperglycemia at the time of GDM diagnosis, lipids,
inflammation, and metabolomics biomarkers38–40. However, low
certainty of evidence from the studies and lack of replication/
validation of findings prevent us from drawing firm conclusions
regarding which factors may be the best predictors of future
diabetes.

In line with a large literature demonstrating that women with a
history of GDM are at higher risk CVD than their non-diabetic

Fig. 3 Heat map of study quality according to the Diabetes Canada Clinical Practice Guidelines for randomized controlled trials (RCTs) assessing GDM
intervention on maternal and offspring outcomes. Green cells indicate high quality; red cells indicate low quality. Yellow cells indicate unclear/unable to
assess quality based on information provided.

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00427-1

6 COMMUNICATIONS MEDICINE |             (2024) 4:9 | https://doi.org/10.1038/s43856-023-00427-1 | www.nature.com/commsmed

www.nature.com/commsmed


counterparts5, studies among women with a history of GDM
indicated dose-response associations of maternal BMI – primar-
ily, pre-pregnancy BMI—and GDM severity with these endpoints.
However, the extent to which these physiological factors are
modifiable remains yet to be determined. Given the paucity of
available research on CVD risk in women with a history of GDM,
and the low certainty of evidence assessment, this is a research
area ripe for investigation.

Quality of maternal studies. We ranked the quality of evidence
for prognostic factors indicative of risk of T2D or CVD in women
as Level 4 (low)12. Most empirical literature comes predominantly
from large health care registries that boast large sample sizes and
decades of follow-up. However, they carry high risk of bias in
terms of identifying and interpretation specific prognostic char-
acteristics as causal risk factors due to residual confounding due to
maternal lifestyle, pre-existing chronic conditions, and other
characteristics around time of pregnancy and GDM diagnoses. For
example, although maternal hypertension during pregnancy may
be a risk factor for T2D or CVD, the association may be explained
by maternal BMI, diet quality, physical activity, smoking status,
socioeconomic factors, and more. In contrast, there are notable
large prospective cohorts, including CARDIA (e.g. refs. 31,46) and
the Nurses’ Health Study II (e.g. refs. 47,67), that collected detailed
prospective information on the above-mentioned variables,
thereby mitigating risk of bias in these studies.

Offspring outcomes. The most common measure of offspring
anthropometry was BMI between 2 and 10 years after birth. As
with maternal outcomes, observational evidence for offspring
indicates that greater GDM severity and higher maternal pre-
pregnancy BMI predicts higher offspring adiposity. Yet, inter-
pretation of these findings should be tempered with results of
intervention studies showing that GDM treatment did not affect
offspring anthropometrics77–79. Other frequently studied

perinatal predictors of offspring adiposity included birth size and
breastfeeding duration/exclusivity. Generally, higher birthweight
tended to be associated with higher future BMI55–57,65,66. Some
observational studies showed a protective effect of breastfeeding
against offspring obesity risk during childhood, though this
finding was not consistently observed. A few observational studies
reported a modifying effect of offspring biological sex on future
body composition among children exposed to GDM (e.g.57,88),
but the direction of association was not consistent. Of the five
RCTs that investigated the effect of GDM treatment on offspring
anthropometry and body composition, two found that treatment
with Metformin, as compared to insulin, predicted higher off-
spring adiposity according to skinfold thicknesses80 and weight81

within the first 18 months of life. These results call for additional
research to assess long-term offspring outcomes related to
pharmaceutical treatments for GDM, especially given findings
indicating comparable neonatal outcomes among women treated
with Metformin and insulin89.

Most studies that assessed offspring cardiometabolic profile
were observational and focused on prognostic factors that
occurred during the perinatal/postpartum period, though a few
RCTs targeting maternal glycemic control during pregnancy via
pharmaceutical treatments and/or lifestyle alterations. Among
observational studies (Supplementary Data 9), common prog-
nostic factors included maternal BMI and diet, for which both
prognostic factors yielded inconsistent associations with offspring
cardiometabolic profile. As with the studies assessing offspring
anthropometry and body composition as outcomes, RCTs to
prevent GDM among high-risk women generally found minimal
effects of the pharmaceutical and/or lifestyle interventions on
offspring cardiometabolic profile (Supplementary Data 10). This,
again, suggests that additional research is needed to better
understand the pathophysiology of maternal GDM, to character-
ize relevant in utero programming pathways90–92, and identify
accurate and valid prognostic biomarkers—including those in

Fig. 4 Heat map of study quality according to the Diabetes Canada Clinical Practice Guidelines for observational studies assessing offspring
anthropometric and cardiometabolic outcomes. Green cells indicate high quality; red cells indicate low quality. Yellow cells indicate unclear/unable to
assess quality based on information provided.
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cord blood—as well as outcomes in offspring that are more
relevant to future disease risk6 such as directly-assessed neonatal
adiposity92.

Quality of offspring studies. As with the maternal studies, we
categorized the literature on prognostic factors for offspring
outcomes as being of low quality (Level 4)12. The inconsistent
observational findings in conjunction with null results of RCTs
targeting prevention of GDM among high-risk women indicate
the existence of residual confounding for observational studies,
and in the cases of the trials, the possibility that the interventions
were developed with a suboptimal endpoint (e.g., a focus on
preventing macrosomia based on birth size rather than directly
assessed neonatal adiposity). Future work is needed to gain a
better understanding of in utero programming mechanisms that
may link maternal GDM to offspring adiposity, as well as inter-
ventions specifically formulated to prevent neonatal adiposity
assessed via gold standard methods such as computed tomo-
graphy or dual X-ray absorptiometry93,94.

Strengths and limitations of studies included in the
systematic review. A key strength of many studies included in
this systematic review is the prospective study design, which
enhances temporal and causal inference regarding prognostic
capacity of the maternal and offspring characteristics and beha-
viors assessed in studies herein. Additional strengths of some, but
not all studies, include multi-ethnic study populations, which
enhance generalizability of findings; large sample sizes, which
improves capacity to detect biologically relevant associations; and
use of gold standard assessments of the maternal and offspring
outcomes of interest.

Limitations include the low-grade quality of studies included in
this review (residual confounding, reverse causation bias, attrition
and selection bias, inadequate duration of follow-up). Addition-
ally, most studies were not designed to explore the long-term
prognosis of GDM. Accordingly, many studies comprise post hoc
analyses that were likely underpowered to detect smaller but
biologically relevant effects of prognostic risk factors solely
among mothers and/or offspring exposed to GDM. When
screening studies, we also noted that a general limitation of the
literature on GDM prognostics in relation to offspring outcomes
is assessment of the prognostic variable(s) of interest contempor-
aneously with outcome assessment, which limits our ability to
make causal inference on the effect of the prognostic variable on
outcomes of interest. These shortcomings resulted in high risk of
bias and low quality of studies.

Strengths and limitations of systematic review approach and
methodology. Strengths of the methodology for this systematic
review include implementation of at least two independent
reviews across all phases of the extraction and assessment process,
with an additional review by a third independent reviewer to
resolve conflicts; and adherence to well-established assessments of
research quality and assessments of bias. Limitations include the
exclusively qualitative synthesis of results—a necessity given the
relatively small number of studies identified; and as with all
systematic reviews, the potential for our conclusions to be
impacted by publication bias.

Future directions. Given the low quality of evidence identified in
this systematic review, there is need for prospective cohort studies
in diverse populations with granular data collection on prognostic
risk factors as well as clinical and subclinical outcomes. Addi-
tionally, high fidelity of follow-up across the lifecourse,

particularly during sensitive windows of development during
which there is greater developmental plasticity to respond to
external cues95, will shed light on avenues for primordial and/or
primary prevention. Finally, consideration of appropriate
adjustment covariates depending on the specific prognostic risk
factor of interest (e.g., there is discourse regarding whether
maternal pre-pregnancy BMI should be included as a covariate in
models where GDM severity is the prognostic factor of interest
given that these variables share overlapping in utero program-
ming pathways6,91); and appropriate causal inference and ana-
lytical approaches to address structural biases that afflict
observational study designs95,96.

As interest in the application of precision prognostics to improve
health for women and offspring affected by GDM pregnancies
grows, there remains a crucial need to establish foundational
knowledge regarding traditional prognostic factors which, in turn,
will enhance our ability to identify new prognostic biomarkers that
improve risk stratification for unfavorable health outcomes among
both women and children affected by GDM.

Data availability
The data that support the findings of this study are derived from published, peer-
reviewed manuscripts. The search terms used to retrieve studies are found in the
Supplementary Data 1 and the list of included studies is described in Supplementary
Data 2 and 3. The source data underlying Figs. 2–4 is provided in Supplementary Data 4
to 10. All other relevant data are available from the authors upon request.
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