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HBsAg has distinct effects in
blood and liver restricted to NK-,
CD8 T-, and memory B cell subsets

High levels of HBsAg associate
with mild immune activation in the
liver, but not inhibition
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Highlights Impact and implications

� HBsAg has distinct effects in the blood and liver of

patients with chronic HBV.

� The effects of HBsAg are restricted to NK-, CD8 T-,
and memory B-cell subsets.

� High HBsAg levels are associated with mild im-
mune activation, but not suppression, of these im-
mune cell subsets in the liver.
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This study provides unique insight into the impact of
HBsAgongeneexpression levels of immunecell subsets
in the blood and liver, particularly in the context of
NUC-treated chronic HBV infection. It holds significant
relevance for current and future clinical studies evalu-
ating treatment strategies aimed at suppressing HBsAg
production and reinvigorating immunity to HBV. Our
findings raise questions about the effectiveness of such
treatment strategies and challenge the previously hy-
pothesized immunomodulatory effects of HBsAg on
immune responses against HBV.
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Background & Aims: HBsAg secretion may impact immune responses to chronic HBV infection. Thus, therapeutic approaches
to suppress HBsAg production are being investigated. Our study aims to examine the immunomodulatory effects of high and
low levels of circulating HBsAg and thereby improve our understanding of anti-HBV immunity.
Methods: An optimized 10x Genomics single-cell RNA sequencing workflow was applied to blood samples and liver fine-
needle aspirates from 18 patients undergoing tenofovir/entecavir (NUC) treatment for chronic HBV infection. They were
categorized based on their HBsAg levels: high (920-12,447 IU/ml) or low (1-100 IU/ml). Cluster frequencies, differential gene
expression, and phenotypes were analyzed.
Results: In the blood of HBV-infected patients on NUC, the proportion of KLRC2+ “adaptive” natural killer (NK) cells was
significantly lower in the HBsAg-high group and, remarkably, both KLRC2+ NK and KLRG1+ CD8 T cells display enrichment of
lymphocyte activation-associated gene sets in the HBsAg-low group. High levels of HBsAg were associated with mild immune
activation in the liver. However, no suppression of liver-resident CXCR6+ NCAM1+ NK or CXCR6+ CD69+ CD8 T cells was
detected, while memory B cells showed signs of activation in both the blood and liver.
Conclusions: Among NUC-treated patients, we observed a minimal impact of HBsAg on leukocyte populations in the blood
and liver. However, for the first time, we found that HBsAg has distinct effects, restricted to NK-, CD8 T-, and memory B-cell
subsets, in the blood and liver. Our findings are highly relevant for current clinical studies evaluating treatment strategies
aimed at suppressing HBsAg production and reinvigorating immunity to HBV.
Impact and implications: This study provides unique insight into the impact ofHBsAgongene expression levels of immune cell
subsets in the blood and liver, particularly in the context of NUC-treated chronic HBV infection. It holds significant relevance for
current and future clinical studies evaluating treatment strategies aimed at suppressing HBsAg production and reinvigorating
immunity toHBV. Our findings raise questions about the effectiveness of such treatment strategies and challenge the previously
hypothesized immunomodulatory effects of HBsAg on immune responses against HBV.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Chronic HBV infection affects over 300 million people worldwide
and is one of the most common risk factors for the development
of cirrhosis and hepatocellular carcinoma.1 Although nucleos(t)
ide analogue (NUC) treatment can lead to long-term control of
viremia, curative therapy for chronic HBV infection is still lack-
ing. It is well known that persistent viral infection and prolonged
exposure to high levels of viral antigens negatively impact virus-
specific T-cell responses, as shown in lymphocytic choriomeni
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sequencing.
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ngitis virus-infected mouse studies.2 In line with this, it has been
postulated that continuous secretion of non-infectious HBsAg by
infected hepatocytes is immunomodulatory and may induce T-
cell exhaustion, thereby contributing to a weak immune
response against HBV, as observed in chronically infected pa-
tients.3–7 Various siRNA-based therapeutic approaches aimed at
suppressing HBsAg production from both integrated HBV DNA
and covalently closed circular DNA are currently being investi-
gated in clinical trials.8 However, the potential benefits of such
treatments on immune responses to HBV are not clearly
understood.

Previously, we evaluated the effects of the levels of circulating
HBsAg on peripheral blood leukocytes of patients with chronic
HBV using fluorescence-activated cell sorting and microarray
analysis.9 We observed minor differences in gene expression
profiles of purified leukocyte subpopulations. Other studies have
confirmed that HBsAg has minimal impact on cellular immune
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responses. This has been demonstrated in mouse models of HBV
infection10 and in the blood of patients with chronic HBV.7

However, in vivo animal models for HBV do not completely
mimic the chronicity of host-pathogen interactions in humans.
Previous attempts only evaluated the effects of HBsAg on leu-
kocytes in the blood and did not examine the consequence in the
liver. Therefore, we previously assessed the intrahepatic tran-
scriptome of patients with chronic HBV and differential HBsAg
levels by bulk RNA sequencing of liver biopsies.11 We observed
that HBsAg had minimal impact on the liver transcriptome,
although genes involved in leukocyte activation, recruitment,
and innate responses were positively correlated with liver HBsAg
levels. It is unclear if the correlations between HBsAg levels and
gene expression patterns in the liver indicate HBsAg-related
immune activation due to the limitations of bulk RNA sequ
encing. Our study aims to address a significant gap in knowledge
regarding the putative immunomodulatory effects of HBsAg. By
examining blood and liver fine-needle aspirates (FNAs) with
single-cell RNA sequencing (scRNAseq), we hope to shed light on
the impact of high and low circulating HBsAg levels on immune
cell subsets. Unbiased bioinformatic analyses provided us with
unique insights into the effects of HBsAg levels. We are the first
to show that: (1) HBsAg levels have distinct effects in the blood
and liver of patients with chronic HBV, (2) the effects of HBsAg
levels are restricted to natural killer (NK)-, CD8 T-, and memory
B-cell subsets, (3) and that high HBsAg levels are associated with
mild immune activation, but not suppression, in the liver.
Materials and methods
Study population
A total of 19 patients with HBeAg-negative chronic hepatitis B
visiting the outpatient clinic of the Erasmus MC were enrolled in
this study. Included patients were at least 18 years of age,
received NUC treatment (i.e., entecavir or tenofovir) and had
undetectable viral load (HBV DNA <20 IU/ml). Clinical data were
collected from electronic medical records. Serum levels of HBsAg
(IU/ml) were measured using the Lumipulse G HBsAg assay
(Fujirebio Europe) on a LUMIPULSE G1200 analyzer (Fujirebio
Inc). Patients with relatively low (<−100 IU/ml) and high serum
HBsAg levels (>900 IU/ml) were selected for inclusion. Liver
fibrosis was scored using liver elastography (Fibroscan®, Echos-
ens, France) or liver pathology. Patients were excluded in case of
significant liver fibrosis (elastography >7.0 kPa or metavir >F1),
history of hepatic decompensation, history of hepatocellular
carcinoma, co-infection with HCV, HDV, HEV or HIV, presence of
auto-immune liver disease, severe liver steatosis, steatohepatitis,
hemochromatosis, Wilson’s disease, documented clinical history
of alcohol abuse, malignancies, or recent pregnancy.

Collection of blood and liver FNAs
Heparinized blood samples were collected from patients for
isolation of peripheral blood mononuclear cells (PBMCs) using
ficoll separation (Ficoll-PaqueTM plus, GE Healthcare Bio-Sciences
AB). PBMCs were immediately processed fresh or were stored for
up to 24 h at -80 �C and subsequently frozen at -150 �C for long-
term storage. FNAs of the liver were collected from nine patients.
To minimize confounders (i.e., blood artifacts or ischemic cell
death) a rapid aspirate-processing pipeline was developed to
collect intrahepatic leukocytes. FNAs were freshly collected at
the outpatient clinic and immediately transferred on ice and
processed for scRNAseq. A workflow time of under 1 hour was
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established from the collection of liver aspirates to single-cell
droplet encapsulation, as described previously.12 Briefly, for
each patient four ultrasound-guided passes of intrahepatic as-
pirates were collected using a 25-gauge spinocan® needle. Passes
were collected in 500 ll colorless RPMI and immediately stored
on ice for transport. Optical density measurement (OD: 415-
595 nm) was applied to identify samples with blood contami-
nation. Samples with an OD value of >−0.19 were considered
contaminated with blood and were therefore excluded. Samples
that passed quality control were pooled and the remaining red
blood cells were removed by 5 min incubation with Red Blood
Cell Removal (Stemcell). Cells were washed twice and resus-
pended in RPMI + 5% FCS (700-1200 cells/ll) for further pro-
cessing of fresh FNAs.

Sample preparation and 10x genomics scRNAseq
PBMCs were prepared and sequenced in two batches, and FNAs
were processed in one batch. FNAs and the first batch of PBMCs
were prepared according to the 10x Genomics Single Cell 3’ v3
Reagent Kit user guide. The second batch of PBMCs were pre-
pared according to the 10x Genomics Single Cell 5’ v2 Reagent Kit
user guide. Briefly, the maximum volume was loaded on a 10x
Genomics Chromium Controller in order to aim for a maximum
recovery rate of 10,000 cells. After droplet generation, samples
were transferred into a pre-chilled tube strip and cDNA was
generated. As outlined by the user guide, cDNA was recovered
using Recovery Agent provided by 10x Genomics, and subse-
quently purified using a Silane DynaBead mix (Thermo Fisher).
Purified cDNA was amplified for 13 cycles before being purified
again using SPRIselect beads (Beckman Coulter). cDNA concen-
trations of the samples were determined on a Bioanalyzer (Agi-
lent Technologies). Libraries were prepared as outlined by the
10x Genomics Single Cell 3’ v3 or 5’ v2 Reagent Kit user guide
and sequenced (28-8-0-91 cycles) on a NovaSeq6000 platform
(Illumina, single-end 90 base pair reads).

Quality control and filtering of scRNAseq data
To process raw files to count matrices, 10x Genomics Cell Ranger
6.1.2 with the human reference genome GRCh38 was used with
default settings. Cell Ranger-processed filtered feature matrices
were analyzed using R version 4.2.2 and Seurat version 4.3.0.
Sequencing data from PBMCs were obtained in two batches, data
files were merged, log-normalized and data integration was
applied using reciprocal principal component analysis (k.an-
chor = 20, dims = 50) to correct for batch effects. Data from FNAs
were obtained in one batch and were merged and analyzed
separately from blood, hence data integration of blood with FNAs
was not applied. Low-quality cells or empty droplets were
filtered by removing cells with <600 features and >20% of reads
mapped to the mitochondrial genome. Cell doublets or multi-
plets were removed by excluding cells with >4,000 features. Out
of 19 blood samples and 9 FNAs, one liver sample did not pass
quality control and was excluded due to low-quality cells as
described by the criteria above. Single-cell clustering was per-
formed on the remaining 19 blood and 8 paired liver samples
from 19 enrolled patients. Since our study intended to study
patients on long-term NUC treatment, one blood sample from a
patient that only received NUC treatment for a period of 3
months was included in the clustering (PBMC11) but subse-
quently removed from further downstream analysis. We
continued the analysis with 18 blood samples and 8 paired liver
samples.
2vol. 6 j 100980



Analysis of scRNAseq data
For the regular single-cell analysis, the default settings from the
Seurat pipeline in R were used for normalization, highly variable
gene selection, dimensionality reduction, and clustering. Cells
from both PBMCs (n = 18) and FNAs (n = 8) were clustered
separately using the Louvain algorithm (dims = 20, resolution =
1.0) and clusters were visualized by uniform manifold approxi-
mation and projection (dims = 1:20, n.neighbors = 15). Cell
clusters were annotated manually, based onwell-known lineage-
specific markers retrieved from differentially expressed genes
(DEGs) using the FindAllMarkers function (min.pct = 0.15,
logfc.threshold = 0.6, only.pos = TRUE), including genes that are
expressed in at least 15% of cells and with a significant absolute
fold-change of 1.5 (p <0.05). Small clusters with less than 500
cells were excluded from further downstream DEG analysis. DEG
analysis was performed to compare the single-cell transcriptome
of each cluster between patients with high vs. low HBsAg serum
levels using the FindMarkers function. To assign significant DEGs,
genes that were expressed by at least 10% of cells in one of both
groups were included and a cut-off value of 1.5 for absolute fold-
change and p-adjusted <0.05 was applied. P values were ob-
tained using the Wilcoxon rank-sum test and adjusted using the
Benjamini Hochberg false discovery rate correction method.
Gene set-enrichment analysis
Gene expression analyses between the HBsAg-high and low
groups were assessed for overrepresentation of gene sets related
to biological states or processes. Results were analyzed as a
ranked list of genes, sorted by fold changes in decreasing order. A
normalized enrichment score was calculated for each gene set,
reflecting the degree to which it is overrepresented at the top or
bottom of the ranked list. P values were calculated based on
permutations using the R-package clusterProfiler and were cor-
rected with the Benjamini Hochberg false discovery rate
correction method.
FACS validation
Frozen PBMCs were thawed and washed with RPMI 1640 sup-
plemented with 10% FCS (Lonza, Walkersville, MD, USA). For flow
cytometry, 500,000 viable PBMCs were incubated for 20 minutes
at 4 �C in the dark with the desired mixture of antibodies
(supplementary CTAT table). Data was acquired with the FACS
Table 1. Patient characteristics.

Unit Tota

Patients N 18
Age (years) Median (IQR) 51 (14
Sex (male) N, % 17 (94%
HBeAg negative N, % 18 (100%
Log HBV DNA (IU/ml) Median (IQR) Undetectable (<20
ALT (U/L) Median (IQR) 24 (16
HBsAg (IU/ml) Median (IQR) 510 (4529
Treatment regimen N, %

TDF 10 (56%
ETV 8 (44%

Treatment duration (years) Median (IQR) 7 (7
F0/F1 fibrosis stage N, % 18 (100%
Anti-CMV IgG +/-/ND 13/4/1
Anti-HBe +/-/ND 18/0/0
Anti-HBs +/-/ND 0/18/0
HBcrAg (logU/ml) Median (IQR) 0.45 (7.85

ALT, alanine aminotransferase; CMV, cytomegalovirus; ETV, entecavir; HBcrAg, hepatiti
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Canto II or FACS Symphony analyzer and analyzed using FlowJo
version 10.9.0 (Tree Star Inc.).

Statistical analyses
R (version 4.2.2) and GraphPad Prism (version 8) were used for
statistical analyses. Continuous variables were expressed as
median (IQR). The Wilcoxon rank-sum test or v2-squared test in
the analysis of contingency tables was applied when appropriate.
Results were considered statistically significant if the adjusted p
value was <0.05.

Ethics and funding
This study was conducted according to the guidelines of the
Declaration of Helsinki and the principles of Good Clinical
Practice. The ethical review board of the Erasmus MC approved
the study, registered as MEC-2008-146 and MEC-2010-039. We
obtained written informed consent from patients prior to in-
clusion. The Foundation for Liver and Gastrointestinal Research
(SLO) sponsored the study. The funding source did not influence
the study design, data collection, analysis and interpretation of
the data, writing of the report, or the decision to submit for
publication.
Results
Patient characteristics
A total of 18 patients with a stably suppressed viral load (un-
detectable [<20 IU/ml] HBV DNA) were included in the study
(Table 1). All patients were HBeAg-negative (<0.01 PEIU/ml
HBeAg), had no significant fibrosis (F0/F1 stage), and received
NUC therapy with a median treatment duration of 7 years. Pa-
tients were divided into two groups based on circulating HBsAg
serum levels: the HBsAg-high (median 4,600 [5,795] IU/ml) and
the HBsAg-low (70 [40] IU/ml) groups.

Low circulating HBsAg is associated with significant gene
expression changes and enrichment in adaptive KLR2C+
NCAM1low NK cells
It has been postulated that continuous secretion of HBsAg by
HBV is immunomodulatory and may contribute to a weak im-
mune response against HBV, as observed in patients with chronic
HBV.5 However, studies have shownminimal impact of HBsAg on
circulating leukocyte subpopulations.7,9 To assess the putative
l High Low p value

9 9
) 48 (16) 52 (10) 0.6508
) 9 (100%) 8 (89%) 0.3035
) 9 (100%) 9 (100%)
) Undetectable (<20) Undetectable (<20)
) 21 (34) 26 (10) 0.4229
) 4,600 (5795) 70 (40) <0.0001

0.3428
) 6 (67%) 4 (44%)
) 3 (33%) 5 (56%)
) 5 (3) 9 (4) 0.2854
) 9 (100%) 9 (100%)

6/3/0 7/1/1 0.3540
9/0/0 9/0/0
0/9/0 0/9/0

) 1.3 (8.90) 0.10 (2.18) 0.207

s B core-related antigen; ND, not determined; TDF, tenofovir disoproxil fumarate.
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immunomodulatory effects of HBsAg, we compared cell fre-
quencies and gene expression patterns of cell clusters in blood
between patients with high vs. low HBsAg. Clustering of 166,351
PBMCs identified 27 distinct cell clusters in peripheral blood
with >500 cells (Supplementary data 1). There were no unique
cell clusters observed in patients with either high or low HBsAg
levels (Fig. 1A). Cluster frequencies in peripheral blood were
comparable between both groups, except for the KLRC2+
NCAM1low NK-cell cluster which was significantly lower in pa-
tients with high HBsAg levels (p = 0.0053, Fig. 1B and Fig. S1,
Table S3). This cluster exhibited negative expression of FCER1G
(FcεRc) and high expression of KLR2C (NKG2C), resembling the
"memory-like" NK-cell population known as NKG2C+ "adaptive"
NK cells.13 Flow cytometry confirmed the significantly lower
frequency of NKG2C+ CD56dim NK cells in the blood of patients
with high HBsAg levels compared to those with low HBsAg levels
(4.46% (IQR 5.92) vs. 20.6% (IQR 23.1); p = 0.040) (Fig. 1B and
Fig. S2, Table S4). Previously, Oliviero et al. reported an increased
proportion of NKG2C+ NK cells in patients with chronic HBV
compared to healthy controls, 11-23% vs. 5-13%, respectively.14

However, it is important to note that this comparison was in
the context of chronic HBV vs. no infection, rather than between
chronic HBV with high vs. low circulating levels of HBsAg.
Additionally, upon subgroup analysis, we found that the KLRC2+
NCAM1low NK-cell cluster was predominantly observed in pa-
tients with a documented history of human cytomegalovirus
(CMV) infection (Fig. S3A). Importantly, uniform manifold
approximation and projection analysis of only the patients with
a history of CMV infection demonstrated a significantly lower
frequency of this cluster in individuals with high HBsAg levels,
which was further confirmed by flow cytometry (Fig. S3B).

DEG analysis was performed to compare the individual clus-
ters within patients with high vs. low HBsAg levels (Table S5). As
shown in Fig. 1C, the highest number of DEGs in blood were
observed in the KLRC2+ NCAM1low NK-cell cluster, followed by
the KLRG1+ CD8 T-cell cluster, one CD14+ monocyte cluster, and
the FCRL5+ atypical memory B-cell and IGHG/A+ memory B-cell
clusters. Out of the 45 DEGs, inhibitory killer-cell immunoglob-
ulin-like receptors (KIRs) were highly expressed by the KLRC2+
NCAM1low NK-cell cluster within the HBsAg-low group (Fig. 2A).
Previously, predominant expression of inhibitory KIRs has been
described in NKG2C+ NK cells in patients with chronic HBV.15 We
show that the expression of these inhibitory KIRs is associated
with low HBsAg levels. Among others, expression of interferon-
related genes (IFITM1, IFITM3) and CD74 (MIF receptor) was
significantly higher within the HBsAg-low group in both the
KLRC2+ NCAM1low NK and KLRG1+ CD8 T-cell cluster (Fig. 2B,C
and Fig. S4). Whereas the activating KLRK1 (NKG2D) receptor
was highly expressed within the HBsAg-high group in both
clusters (Fig. 2B,C). Interestingly, both clusters shared similar
gene expression changes, 42 out of 49 DGEs in the KLRG1+ CD8 T-
cell cluster overlapped with DEGs of the KLRC2+ NCAM1low NK-
cell cluster. This overlap was confirmed by gene set-
enrichment analyses in which gene sets involved in lympho-
cyte-/T-cell activation and cell-cell adhesion were significantly
enriched in both clusters in the HBsAg-low group compared to
the HBsAg-high group (Fig. 3, Table S6). However, gene sets
involved in the type I interferon response, IL-2 production, and
lymphocyte proliferation were only significantly enriched by the
KLRC2+ NCAM1low NK-cell cluster within the HBsAg-low group.
Our data reveal that the frequency of KLRC2+ NCAM1low “adap-
tive” NK cells is lower in the blood of patients with relatively
JHEP Reports 2024
high HBsAg levels, and at the same time these cells display gene
expression patterns reflective of an activated state with signifi-
cant enrichment of proliferation-associated gene sets in the
HBsAg-low group.

Two memory B-cell clusters were also found in the top five
cell types primarily affected by HBsAg (Fig. 1C). Both CD83 and
CXCR4 expression was significantly higher in these clusters
within the HBsAg-high group compared to the HBsAg-low group
(Fig. S5). CD83 has been identified as an activation marker for B
cells and previous studies have shown an activating gene
signature in B cells of patients with chronic HBV.16–20 In addition,
CXCR4 was shown to be upregulated by B cells in chronic HBV
when compared to healthy controls.16,18 Herein, we show that
higher CD83 and CXCR4 gene expression by memory B cells in
the blood of patients with chronic HBV is significantly associated
with high HBsAg levels.

To note, the highest number of DEGs were observed in the
MKI67+ proliferating cell cluster. However, this cluster had a
relatively low number of cells (n = 850) and consisted of multiple
proliferating cell types. Subcluster analysis was underpowered
due to low absolute cell counts and therefore the MKI67+
proliferating cell cluster was not assessed further. Interestingly,
for many clusters, relatively high HBsAg levels were associated
with higher expression of genes involved in AP-1 and NF-jB
signaling (e.g., JUNB, FOS, NFKBIA, and TNFAIP3).

In sum, our findings demonstrate for the first time a signifi-
cant decrease in the proportion of KLRC2+ NCAM1low "adaptive"
NK cells in the peripheral blood of patients with high HBsAg
levels, and this was validated at the protein level using flow
cytometry. Additionally, we observed a notable enrichment of
gene sets associated with lymphocyte activation in both the
KLRC2+ NCAM1low NK-cell and KLRG1+ CD8 T-cell clusters in the
HBsAg-low group.

High HBsAg is associated with minor gene expression changes
in CXCR6+ CD69+ liver-resident CD8 T cells, pointing towards a
more activated cell state
Previously, we evaluated the effects of HBsAg in the liver by bulk
RNA sequencing and found gene correlations with HBsAg that
were associated with leukocyte activation.11 These results
contradict the hypothesis that HBsAg has an immunomodulatory
effect. To assess the putative immunomodulatory effects of
HBsAg and to confirm our previous conflicting findings in the
liver, we identified immune subsets in the liver by scRNAseq and
compared frequencies and gene expression patterns of these
clusters between patients with high vs. low HBsAg. Clustering of
35,513 intrahepatic cells identified 19 cell clusters with >500
cells (Supplementary data 2, Table S9). There were no unique cell
clusters observed in patients with either high or low HBsAg
levels (Fig. 4A). Immune cell cluster frequencies in liver FNAs
varied between samples but were not significantly different
between groups (Table S10, Fig. S6).

DEG analysis was performed to compare the individual clus-
ters within patients with high vs. low HBsAg levels (Fig. 4B,
Table S11). In general, the number of DEGs was relatively low for
clusters in liver FNAs. The highest number of DEGs were
observed in the CXCR6+ CD69+ liver-resident CD8 T-cell cluster
with 15 DEGs, followed by the CD27low CD8 T-cell, IGHG/A+
memory B-cell, and the CXCR6+ NCAM1+ CD160high liver-resident
NK-cell cluster. Within the HBsAg-high group, the early activa-
tion marker CD69 was found to be highly expressed in memory
B-cell, NK- and CD8 T-cell clusters when compared to the HBsAg-
4vol. 6 j 100980
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low group in the liver (Fig. 5). In line with the observations in
peripheral blood, high HBsAg levels were associated with a
significantly higher expression of CXCR4 by B-cell clusters in the
liver (Fig. S7). Our findings show that memory B-cell gene
expression profiles in patients with chronic HBV with relatively
JHEP Reports 2024
high HBsAg levels exhibit a more activated phenotype in both
peripheral blood and liver FNAs, with a simultaneous increase in
CXCR4 expression. Studies have demonstrated the role of CXCR4
and its ligand in the recruitment of T cells to the liver in the case
of hepatitis;21 however, the role of CXCR4 in B-cell activation
6vol. 6 j 100980
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and/or trafficking to the liver remains unknown. The CXCR6+
NCAM1+ CD160high liver-resident NK-cell cluster showed a
significantly higher expression of IL32 within the HBsAg-high
group. Six isoforms of IL-32 exist and are known to primarily
JHEP Reports 2024
induce various pro-inflammatory cytokines and chemokines
(especially the b and c isoforms).22 In hepatocytes, intracellular
IL-32c is induced by IFN-c and TNFa, and it has been shown to
suppress HBV replication23 and thus play a role in the non-
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cytopathic antiviral response. However, IL-32 production by NK
cells and its exact role in the antiviral immune response against
HBV remain unknown.
JHEP Reports 2024
Unique to the CXCR6+ CD69+ liver-resident CD8 T-cell cluster
was the significantly higher expression of KLRB1 (CD161), KLRC1
(NKG2A), and more importantly IFNG within the HBsAg-high
8vol. 6 j 100980
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group (Fig. 6). Notably, the percentage of cells within this cluster
that expressed IFNG and TNF (Fig. S8) was slightly higher in the
HBsAg-high group than the HBsAg-low group, albeit not signif-
icant. According to the literature, CD161-expressing CD8 T cells
have tissue-homing properties and enhanced cytotoxic charac-
teristics.24 CD161+ CD8 T cells secrete high levels of IFN-c and
TNF, and they have been shown to be enriched in the liver in
response to chronic HCV infection.25 In contrast, NKG2A has been
classified as a late inhibitory receptor on CD8 T cells that is
expressed after repeated antigen stimulation.26 Interestingly,
gene sets involved in chromatin remodeling, T-cell differentia-
tion, and antiviral immune response were significantly enriched
by CXCR6+ CD69+ liver-resident CD8 T cells within the HBsAg-
high group (Fig. 7, Table S12). Our results indicate that the
CXCR6+ CD69+ CD8 T cells in the HBsAg-high group exhibit a
JHEP Reports 2024
more differentiated state, as evidenced by changes in gene
expression profiles associated with activation and an effector
phenotype. However, we did not observe any significant differ-
ences in the frequency of the liver immune landscape, or cor-
relations with CXCR6+ NCAM1+ NK- and CXCR6+ CD69+ CD8 T
cells. Overall, we observed minor gene expression changes in the
liver associated with differential HBsAg levels. Similar to blood,
high HBsAg levels were associated with a higher expression of
AP-1 signaling pathway-related genes in intrahepatic immune
cell subsets (e.g., FOS, FOSB, JUN). Our data reveals that high
HBsAg levels are associated with gene expression changes
pointing towards mild immune activation, but not suppression,
of liver-resident CXCR6+ NCAM1+ NK- and CXCR6+ CD69+ CD8 T
cells, while memory B cells showed signs of activation in both
the blood and liver of patients with high HBsAg levels.
9vol. 6 j 100980
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Discussion
Understanding the immune cell subsets crucial for mediating
HBV resistance is vital to develop effective therapies and
improve treatment outcomes. While targeting the HBV envelope
protein holds promise, the impact of HBsAg on the immune
system remains poorly understood. Utilizing unique blood and
liver samples from NUC-treated patients with chronic HBV and
high or low HBsAg levels, our findings suggest that the immu-
nologic impact of HBsAg is not uniform across all leukocyte
subpopulations. Instead, it appears to be restricted to NK-, CD8 T-
, and memory B-cell subsets, and is suggestive of mild immune
activation in those with high HBsAg levels.

We show that the frequency of KLRC2+ NCAM1low “adaptive”
NK cells is significantly lower in the blood of patients with high
HBsAg levels and we validated this finding with flow cytometry.
Gene expression profiles of this cluster matched with those of
previously characterized NKG2C+ FcεRc- NK cells, which are
considered to be long-lived and presumably acquire memory-
like properties and are therefore referred to as “adaptive” NK
cells.13 Previous studies have described an expansion of NKG2C+
NK cells in various viral infections, and positive serology for CMV
infection has been strongly associated with a higher proportion
of NKG2C+ NK cells.13,27 In our patient cohort, a significant
JHEP Reports 2024
proportion of patients in both the high- and low-HBsAg groups
had a positive CMV serology, indicating that CMV is unlikely to
be the sole driver of our findings. To further validate this, cluster
frequency and flow cytometry analysis in the CMV-positive
subcohort demonstrated significantly higher frequencies of
NKG2C+ NK cells in the HBsAg-low group, providing additional
evidence supporting the association between HBsAg levels and
NK cell frequency. Our results suggest that subset expansion of
circulating KLRC2+ NCAM1low “adaptive” NK cells is associated
with HBsAg levels. This raises the question of why the frequency
of this NK cell subpopulation is significantly lower in the blood of
patients with high HBsAg levels. At the same time, together with
the KLRG1+ CD8 T cells, these cells display a more activated gene
expression profile in the HBsAg-low group. Based on our obser-
vations, there is no indication that the equivalent of circulating
KLRC2+ NK cells is present in the liver.

The role and presence of KLRC2+ NCAM1low NK cells in HBV
infection remain complex and not fully understood. Although
their frequency is conserved in HBV infection,28 the association
betweenKLRC2+NK cells andHBsAg levels suggests an interaction
between the two.Given the ex vivonatureof our study, prospective
studies with sequential liver FNAs in patients with chronic HBV
receiving drugs that modulate HBsAg levels are needed to
11vol. 6 j 100980



Research article
investigate the impact of HBsAg on this population or vice versa.
These studies could shed light on the effects of HBsAg on these
cells and their role in the immune response against HBV. This in-
cludes exploring the possibility of antibody-dependent killing of
HBsAg-presenting hepatocytes or HBsAg-mediated killing by
KLRC2+ (NKG2C) NK cells in individuals with high HBsAg levels. It
is also important to consider other potential factors, such as cell
migration to lymphoid tissues other than the liver or reduced
differentiation, that may contribute to the observed dynamics of
this NK cell subset.

As expected and previously shown,11 serum HBsAg levels
reflect HBsAg positivity in the liver where viral replication and
protein synthesis occur. As in the blood, the effects of HBsAg in
the liver were mainly restricted to NK-, B- and CD8 T-cell subsets.
Importantly, we analyzed the immune cell landscape in both
blood and liver samples and found no notable differences in the
frequency of T-cell, B-cell, and antigen-presenting cell pop-
ulations between patients with high and low levels of HBsAg.
This indicates that HBsAg levels do not significantly influence the
overall distribution of these immune cell subsets in the studied
compartments. However, high HBsAg levels in the liver were
associated with only minor gene expression changes, pointing
towards mild immune activation. Gene expression profiles of
CXCR6+ CD69+ liver-resident CD8 T cells exhibited a differenti-
ated effector phenotype that has been associated with tissue
homing, enhanced cytotoxic characteristics, and repeated anti-
gen stimulation.24–26 Notably, in patients with chronic HBV and
active liver damage, liver CXCR6+ CD8 T cells are enriched and
exhibit a highly activated immune signature along with the
expression of exhaustion-related markers.29 The expression of
CD69 in specific subgroups of immune cells suggests potential
increased activation or tissue retention, which in turn may have
implications for viral clearance and control; however, these
findings need to be confirmed in longitudinal prospective
studies. In our study, in which NUC-treated patients were stud-
ied, we found no evidence supporting a role for exhausted T-cell
phenotypes, as observed in liver scRNAseq studies focusing on
active hepatitis.29,30 It is important to note that our data does not
demonstrate induction of gene expression patterns associated
with immune inhibition in the HBsAg-high group. Thus, we do
not suggest a terminally dysfunctional or exhausted differentia-
tion of CD8 T cells as observed in chronic viral infections.31 In
addition, memory B cells showed signs of activation in both the
blood and liver of patients with high HBsAg levels. It is important
JHEP Reports 2024
to note that our analysis focused on the impact of high and low
HBsAg levels on immune cell subsets. To specifically investigate
the impact of HBsAg levels, we did not include healthy control
samples in our study. However, for future studies aiming to
understand the broader effects of HBsAg and HBV-related par-
ticles, it may be useful to compare publicly available datasets
with our findings.

In order to get a better understanding of the effects of HBsAg,
our cohort included patients receiving long-term NUC treatment,
with undetectable HBV DNA levels, and no significant fibrosis.
Despite successful suppression of HBV by NUC treatment, signs of
immune activationwere observed in patients with relatively high
HBsAg levels. This further brings into question whether these
signs of low-grade inflammation in the liver have any conse-
quences for patient health or long-term outcome. Furthermore, it
remains unknownwhether these signs of HBsAg-associated low-
grade liver inflammation could also be observed in inactive carrier
patients who are able to control viral replication naturally.

Our study provides valuable insight into the impact of HBsAg
on immune cell subsets, especially in the context of NUC-treated
HBV. While studying patients with active hepatitis offers insights
into the immune response during inflammation, NUC-treated
patients are highly relevant for clinical trials. Although we
acknowledge the need for caution in interpreting causality, our
study sheds light on the potential influence of prolonged HBsAg
exposure on HBV-specific immune responses mediated by CD8+
T cells or memory B cells during NUC-treated chronic HBV
infection. Thus, our findings hold significant relevance for cur-
rent and future clinical studies aimed at developing novel
treatment strategies to suppress HBsAg production and enhance
the antiviral response against HBV.

Our findings raise questions about the effectiveness of stra-
tegies targeting HBsAg production, as our analysis indicates that
antigen-presenting cells, such as dendritic cells and Kupffer cells,
do not appear to be significantly affected by HBsAg. Furthermore,
we demonstrate that relatively high levels of HBsAg in the liver
are associated with low-grade inflammation rather than immune
inhibition or exhaustion-related gene profiles. Taken together,
these findings challenge the previously hypothesized immuno-
modulatory effects of HBsAg on immune responses against HBV
and underscore the need for further investigation to fully un-
derstand the complex interactions between HBsAg and the im-
mune system, particularly in the context of novel therapeutic
interventions aimed at HBV suppression.
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