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Unlocking molecular
mechanisms and identifying
druggable targets in matched-
paired brain metastasis of
breast and lung cancers

Shiva Najjary, Willem de Koning, Johan M. Kros
and Dana A. M. Mustafa*

Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory,
Erasmus University Medical Center, Rotterdam, Netherlands
Introduction: The incidence of brain metastases in cancer patients is increasing,

with lung and breast cancer being the most common sources. Despite

advancements in targeted therapies, the prognosis remains poor, highlighting

the importance to investigate the underlying mechanisms in brain metastases.

The aim of this study was to investigate the differences in the molecular

mechanisms involved in brain metastasis of breast and lung cancers. In

addition, we aimed to identify cancer lineage-specific druggable targets in the

brain metastasis.

Methods: To that aim, a cohort of 44 FFPE tissue samples, including 22 breast

cancer and 22 lung adenocarcinoma (LUAD) and their matched-paired brain

metastases were collected. Targeted gene expression profiles of primary tumors

were compared to their matched-paired brain metastases samples using

nCounter PanCancer IO 360™ Panel of NanoString technologies. Pathway

analysis was performed using gene set analysis (GSA) and gene set enrichment

analysis (GSEA). The validation was performed by using Immunohistochemistry

(IHC) to confirm the expression of immune checkpoint inhibitors.

Results: Our results revealed the significant upregulation of cancer-related

genes in primary tumors compared to their matched-paired brain metastases

(adj. p ≤ 0.05). We found that upregulated differentially expressed genes in

breast cancer brain metastasis (BM-BC) and brain metastasis from lung

adenocarcinoma (BM-LUAD) were associated with the metabolic stress

pathway, particularly related to the glycolysis. Additionally, we found that the

upregulated genes in BM-BC and BM-LUAD played roles in immune response

regulation, tumor growth, and proliferation. Importantly, we identified high

expression of the immune checkpoint VTCN1 in BM-BC, and VISTA, IDO1,

NT5E, and HDAC3 in BM-LUAD. Validation using immunohistochemistry

further supported these findings.
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Conclusion: In conclusion, the findings highlight the significance of using

matched-paired samples to identify cancer lineage-specific therapies that may

improve brain metastasis patients outcomes.
KEYWORDS

molecular mechanisms, brain metastasis, breast cancer, lung adenocarcinoma,
gene expression
Introduction

The incidence of brain metastasis (BM) is rising. Improved

therapeutic methods to control the primary tumors have led to

longer survivals, but have also increased the incidence of late

metastases to brain (1, 2). Despite the development of novel

targeted therapies, BM remains a devastating complication of

cancer. BM patients exhibit poor prognosis due to no effective

long-term therapy (3, 4). BM from lung and breast cancer exhibits

distinct patterns in the disease course. In lung cancer, BM typically

develops within a few months after diagnosis. On the other hand, in

breast cancer, metastasis often occurs in one organ before it spreads

to other organs, with brain metastasis typically being a late event in

the course of disease (5). The median overall survival of the patients

diagnosed with BM is approximately 4-15 months in lung cancer and

6-18 months in breast cancer following treatment (2, 6). Due to the

limited effectiveness of current therapies and the poor prognosis

associated with BM (7–9), it is crucial to identify related genes and

molecular mechanisms involved. Understanding these mechanisms

can aid in the identification of new therapeutic targets and potentially

improve patient survival. The signaling pathways and gene

expression profiles in metastatic cancer cells play a significant role

in in the formation of organ-specific metastasis. Specific gene

expression patterns may dictate tendency for specific targeting

specific sites, such as the brain. The unique physiological barriers

in the brain, including the blood-brain-barrier (BBB), is hypothesized

to limit the ability of metastatic tumor cells to infiltrate the brain (10).

Site-specific metastasis may also reflect tissue-specific migration and

proliferation signatures that contribute to the differential ability of

tumor cells to metastasize and proliferate in specific organs (11, 12).

Compared to other sites of cancer metastasis, the normal brain tissue

has relatively low collagen content, lower oxygen tension, and high

glucose metabolism, which may affect the survival and proliferation

of disseminated tumor cells in the brain (13, 14). So far, the molecular

signatures and expression patterns involved in brain metastasis

remain largely unknown. Employing matched-paired samples from

both primary tumors and brain metastases constitutes a distinctive

and precise research approach, enabling a thorough investigation of

the association between gene expression signatures and metastatic

development. Despite its potential, few studies have utilized this

method, underscoring the uniqueness of the presented research.

Primary lung cancer and their matched-paired were used in

previous studies to generate gene expression signature (15).
02
Similarly, 16 primary breast cancers and their matched-paired

brain metastases were used to generate gene expression profiles in

order to assess clinic-pathological markers, immune-related gene

signatures, and identifying therapeutic targets for brain metastases

(16). In addition, 21 breast cancer and their matched-paired samples

were used previously to perform TrueSeq RNA-sequencing and

determine clinically actionable BM target genes (17).

The aim of the present study was to investigate the mechanisms

operative in the primary tumors and their matched-paired brain

metastasis. The utilization of matched-paired samples provides a

unique opportunity to investigate shared molecular characteristics

and distinctions, advancing our understanding and potential

treatments for malignancies. We compared gene expression

profiles of primary tumors with their matched-paired BM.

Subsequently, we thoroughly examined the upregulated genes in

BM of both tumor types to identify shared and distinctive

predominant molecular features in BM. We validated the

identified druggable targets by using IHC in the matched-paired

samples. The collective findings from our research have the

potential to enhance the treatment strategies for patients with BM.
Materials and methods

Tissue samples selection and
clinicopathological data

A set of 44 Formalin-fixed, paraffin-embedded (FFPE) tissue

samples of primary tumors and their matched-paired brain

metastases was used, including 11 pairs of lung adenocarcinoma

and 11 pairs of breast cancer (Figure 1). The clinicopathological

characteristics of patients are summarized in Table 1. None of the

patients in either group received therapy or treatment with

corticosteroids within the 6–12 months prior to brain metastasis

surgery. Treatment options following surgical removal of the brain

metastasis included radiotherapy, chemotherapy, stereotactic

radiotherapy (SRT), and whole brain radiotherapy (WBRT). More

than half of the patients with LUAD were males and the majority of

patients had a smoking history. The median age at diagnosis of the

brain metastases was 48 years for patients with breast cancer and 64

years for patients with LUAD. This study was approved by the

Medical Ethics Committee of the Erasmus Medical Center,

Rotterdam, the Netherlands, and was carried out in adherence to
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the Code of Conduct of the Federation of Medical Scientific Societies

in the Netherlands (MEC 02·953 & MEC-2020–0732).
RNA isolation and quality control

RNA isolation and QC were performed following our

previously described protocol (18). In brief, 5 mm H&E tissue

sections from each sample were examined by a pathologist. Total

RNA was isolated from 10-12 sections of 10 mm using the RNeasy

FFPE kit (Qiagen, Hilden, Germany) according to the supplier’s

instructions. The extracted RNA was stored in RNase/DNase-free

water at -80°C. The quality and quantity of the RNA was

determined using the Agilent 2100 Bioanalyzer (Santa Clara, CA,

USA). RNA degradation was assessed by calculating the percentage

of fragments within the range of 300-4000 nucleotides.
Targeted gene expression profiling using
Nanostring® nCounter assay

To measure targeted gene expression profiles, the nCounter

PanCancer IO360™ Panel consisting of 750 cancer-related genes

and 20 housekeeping genes, was used (Nanostring Technologies,

Seattle, WA, United States) (19). Briefly, 300 ng of RNA, up to a

maximum of 7 mL, was hybridized with the panel probes for 17 hours
at 65°C using a SimpliAmp Thermal Cycler (Applied Biosystems,

Foster City, CA, USA). The removal of unannealed probes was

performed through the nCounter FLEX system, following the

manufacture’s protocol. Gene counts were determined by scanning

490 fields-of-view (FOV). The obtained expression data were

imported into the nSolver software (version 4.0), and subsequent

analysis was carried out using the Advanced Analysis module

(version 2.0). To normalize the raw expression data, the geNorm

algorithm was applied, utilizing the 16 most stable housekeeping

genes (Table S1). Genes were included for further analysis if their

expression was higher than the detection limit, which was calculated

as the mean of negative controls plus 2 standard deviations.
Frontiers in Immunology 03
Statistical analysis

A simplified negative binomial model, log-linear models, or a

mixture of negative binomial models that are embedded within the

advanced analysis module, were used to identify differentially

expressed genes (DEGs) between pairs of breast cancer and

LUAD and their matched-paired brain metastases. To correct for

multiple testing, Benjamin-Hochberg method was used and genes

with a BH- P-value ≤ 0.05 were considered as DEGs. All statistical

analyses were performed using R version 4.0.1. The P-values

were two-sided, and statistical significance was defined as P-

values ≤ 0.05. Heatmaps were created using Log2-normalized data

of significantly expressed genes (adj. p ≤ 0.05). Heatmaps of the

DEGs were created using the following criteria: |Log2Fold change|

> 1.5, adj. p ≤ 0.05. Outliers were eliminated using Tukey’s rule (20).

To create and visualize heatmaps, the web-based tool Morpheus by

the Broad Institute (RRID: SCR_017386) was used. The scaling was

performed for each and ranged from 0 to 1.
Pathways analysis

To assess the differences at the pathway level, two different

methods were employed. The first was gene set analysis (GSA) was

carried out using the embedded methodology within nSolver

software. Pathway scores were calculated using the average

expression of genes associated with each pathway. Significant

changes in pathway scores between the two groups were

determined using the Wilcoxon test, and a p-value < 0.05 was

considered significant. The second method was by using Gene Set

Enrichment Analysis (GSEA) that was performed using the online

bioinformatics tool and database, Metascape.org. The NanoString

panel was used as the background. DEGs (adj. p ≤ 0.05) in BM-BC

and BM-LUAD were separately uploaded to the pathway analysis

tool, which identified enriched biological pathways and conducted

functional enrichment analysis. The obtained results were

thoroughly examined and interpreted.
FIGURE 1

Schematic overview of the study.
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Immunohistochemistry

Immunohistochemistry (IHC) using the Alkaline phosphatase was

performed to investigate the expression of immune checkpoint

inhibitors IDO1, VISTA, NT5E, VTCN1 and drug target HDAC3 in

all the available samples. Tissue sections of 4mm from each sample were

prepared. Primary antibodies were applied and incubated overnight at

4°C, followed by the application of alkaline phosphatase-conjugated

secondary antibodies for detection. The details of the antibodies that

were used are summarized in (Table S2). The stained slides were

evaluated and interpreted by a pathologist.
Results

Expression of cancer-related genes is
higher in the primary tumors than in the
matched-paired BM for both LUAD and BC

Comparing the primary breast cancer samples to their

matched-paired brain metastases showed that 281 genes were
TABLE 1 Clinical characteristics of patients.

Characteristics No. %

Total samples 44 100

Cancer type

Primary breast cancer 11 25

BM-BC 11 25

Primary lung adenocarcinoma 11 25

BM-LUAD 11 25

Lung adenocarcinoma

Median age at diagnosis with primary tumor, years (range) 57
(37-69)

Median age at diagnosis with brain metastasis tumor,
years (range)

64
(46-74)

Sex

Male 6 54.5

Female 5 45.5

Histology of primary tumor and their matched-paired
brain metastases

Adenocarcinoma 22 100

Smoking status

Never smoking 1 9.1

Former smoker 5 45.5

Smoking 4 36.4

Unknown 1 9.1

Treatment for primary tumor

Surgery 3 27.3

Surgery & Chemotherapy 1 9.1

surgery & Radiotherapy 2 18.2

Surgery & Chemotherapy & Radiotherapy 2 18.2

surgery & Radiochemotherapy 3 27.3

Treatment after surgery of BM

No treatment 1 9.1

Radiotherapy 6 54.4

SRT 1 9.1

WBRT 2 18.2

Other 1 9.1

Breast cancer

Median age at diagnosis with primary tumor, years (range) 47
(40-74)

Median age at diagnosis with brain metastasis tumor,
years (range)

48
(44-74)

Sex

Female 11 100

(Continued)
TABLE 1 Continued

Characteristics No. %

Histology of primary tumor

ER/PR+ 2 18.2

ER/HER2+ 1 9.1

HER2+ 1 9.1

TNBC 5 45.5

Unknown 2 18.2

Histology of matched-paired brain metastases

ER+ 3 16.7

PR+ 2 11.1

ER/PR+ 1 5.6

HER2+ 2 11.1

TNBC 2 11.1

Unknown 1 5.6

Treatment for primary tumor

Surgery 2 18.2

Surgery & Chemotherapy 3 27.3

Surgery & Chemotherapy & Radiotherapy 6 54.5

Treatment after surgery of BM

Radiotherapy 5 45.5

Chemotherapy 2 18.2

Radiotherapy & Chemotherapy 2 18.2

Other 2 18.2
frontiers
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor 2; TNBC,
triple-negative breast cancer; SRT, Stereotactic radiotherapy; WBRT, Whole brain radiotherapy.
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upregulated in primary breast cancers (adj. p ≤ 0.05; Table S3) and

43 were upregulated in BM-BC (adj. p ≤ 0.05; Table S4) (Figures 2A,

C). As to the lung adenocarcinomas 226 genes were upregulated in

the primary tumors (adj. p ≤ 0.05; Table S5) while 20 genes were

upregulated in BM-LUAD (adj. p ≤ 0.05; Table S6) (Figures 2B, D).

Pathway analysis revealed that the upregulated genes in the primary

tumors were associated mainly with cell growth and proliferation

(Figures 2E, F).
Different tumor types upregulate distinct
genes in their brain metastasis

In order to investigate whether different types of tumors

upregulated the same genes after developing brain metastasis, the

upregulated genes in BM of both tumor types were compared

(Figure 3A). The DEGs in BM-BC (n=43) and BM-LUAD (n=20)

revealed 12 shared upregulated genes (adj. p ≤ 0.05) (Figure 3B). Of

the other genes 31 were specifically upregulated in BM-BC (adj. p ≤

0.05) and 8 genes in BM-LUAD (adj. p ≤ 0.05) (Figures 3D, C).

Pathway analysis revealed that 6 genes of the commonly

upregulated DEGs in BM-BC and BM-LUAD were associated

with the metabolic stress pathway (Figures 3D, E).
Common upregulation of the metabolic
stress pathway in brain metastases of BC
and LUAD

To further investigate the involvement of the upregulated DEGs

in brain metastasis, 43 DEGs in BM-BC and 20 DEGs in BM-LUAD

were uploaded separately to the GSA and GSEA tools. The results

showed that the metabolic stress pathway was enriched in BM with

13 genes in BM-BC and 7 in BM-LUAD. A total of 9 genes of the

metabolic stress pathway were found to be involved in the glycolysis

pathway (Figure 4A). Interestingly, the expression level of all DEGs

associated with glycolysis was found to be higher in BM-BC

compared to that in BM-LUAD (Figure 4B).
Common upregulation of immune
response modulation and tumor
proliferation in brain metastasis of BC
and LUAD

Further exploration of the upregulated DEGs in the brain

metastases revealed their involvement in modulating the immune

response. Thirty DEGs that were upregulated in BM-BC (excluding

genes associated with metabolic stress) and 13 DEGs that were

upregulated in BM-LUAD (excluding genes associated with

metabolic stress) were included for GSA. A total of 11 genes were

found to have function related to regulating (stimulation or

inhibition) immune system in brain metastasis (Figures 5A, B).

Importantly, an FDA-approved druggable target, HDAC3, was

found to be upregulated in BM-LUAD as compared to primary

LUAD (Figure 5B). These results were validated by IHC
Frontiers in Immunology 05
(Figure 5C). In addition, 8 genes were associated with tumor

proliferation (Figure 6A). Remarkably, different types of tumors

used distinct genes to regulate their proliferation (Figures 6A, B).
Various potential druggable targets were
expressed in the brain metastasis of
different cancer types

A total of 12 immune checkpoint molecules were identified to

be upregulated in primary tumors compared to their matched-

paired brain metastases. However, only four immune checkpoint

molecules exhibited significant differences of expression between

the brain metastases from BC and LUAD (Figure 7A). The VTCN1

(B7-H4) was upregulated in BM-BC, whereas NT5E (CD73), VSIR

and IDO1 were upregulated in BM-LUAD (Figure 7A). The

expressional differences of these four immune checkpoints were

validated at the protein level. Immunohistochemistry was

performed in 2/11 breast cancer and 5/11 LUAD paired samples.

Due to the amount of samples that was used for RNA extraction, the

tumor compartment was lost in 9 breast cancer and 6 LUAD paired

samples. Consistent with the gene expression results, higher

expression of the immune checkpoint protein VTCN1 was

observed in BM-BC compared to primary tumors and BM-LUAD

(Figure 7B). Additionally, higher expression of the immune

checkpoint proteins NT5E (CD73), VISTA (VSIR) and IDO1 was

observed in primary tumors, with a predominant higher expression

in BM-LUAD compared to BM-BC (Figure 7B).
Discussion

Studying brain metastasis is important for the development of

effective treatment options and ultimately improving patient

outcomes (21). In the present study, we compared the primary

tumors of breast and LUAD to their matched-paired brain

metastases. We identified that cancer-related genes were

upregulated in the primary tumors compared to their matched-

paired brain metastases. In the brain metastases we found common

upregulated genes suggestive of the presence of shared molecular

mechanisms. In addition, we identified distinct differences of gene

expression in BM-BC and BM-LUAD, signifying the utilization of

unique mechanisms by different tumor types in brain metastasis.

This finding highlights the heterogeneity that exists among brain

metastases, revealing a complex interplay between common and

unique molecular pathways in this context. Moreover, we found

that the upregulated differentially expressed genes in BM-BC and

BM-LUAD were associated with the metabolic stress pathway in

brain metastasis, with a particular involvement of the glycolysis

pathway. Interestingly, the majority of these genes exhibited higher

upregulation in BM-BC compared to BM-LUAD, indicating higher

glycolysis and glucose uptake in BM-BC. Limited studies have also

provided evidence supporting the role of metabolic pathway in

cancer metastasis. Dupuy et al. (22) showed that breast cancer cells

with high metastatic potential undergo metabolic alterations

leading to increased glycolysis and decreased mitochondrial
frontiersin.org
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metabolism. Parida et al. (23) showed that variations in metabolic

pathways among brain-tropic cells influence their ability to adapt to

the brain microenvironment and support tumor growth,

highlighting the importance of understanding metabolic factors in

brain metastasis. Tchou et al. (24) demonstrated that triple negative

breast cancers (TNBCs) with high glycolytic rates exhibit an
Frontiers in Immunology 06
elevated proliferation index, indicating the association between

glycolysis and tumor cell proliferation in this breast cancer

subtype. These findings demonstrate the potential significance of

metabolic pathway in promoting the survival and proliferation of

metastatic cells within the brain microenvironment. However, it is

imperative to validate these observations through functional
B

C

D

E F

A

FIGURE 2

Targeted gene expression analysis between primary tumors with their matched-paired brain metastasis using nCounter PanCancer IO 360™ Panel
and gene set enrichment analysis (GSEA) for primary tumors using Metascape.org tool. (A) Volcano plot showing differentially expressed genes
between primary breast cancer and BM-BC (adj. p ≤ 0.05). (B) Volcano plot showing differentially expressed genes between primary LUAD and BM-
LUAD (adj. p ≤ 0.05). (C) Heatmap of normalized differentially expressed genes between primary breast and BM-BC (absolute fold change ≥ 1.5; adj.
p ≤ 0.05). The heatmap is scaled based on each gene. (D) Heatmap of normalized differentially expressed genes between primary LUAD and BM-
LUAD (absolute fold change ≥ 1.5; adj. p ≤ 0.05). The heatmap is scaled based on each gene. (E) GSEA of upregulated differentially expressed genes
in primary breast cancer (adj. p ≤ 0.05). (F) GSEA of upregulated differentially expressed genes in primary LUAD (adj. p ≤ 0.05).
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studies, including experiments on glycolysis-related genes’ role in

tumor metastasis, such as transwell or wound healing assays, in

future research. Given our discovery of elevated glycolysis in BM-

BC and the established literature on the impact of metabolic

pathways on cancer progression, we hypnotize that the increased

glycolysis in BM-BC may be influenced by dietary factors,

particularly carbohydrate intake in daily food consumption. A

comprehensive investigation into dietary habits and sugar intake

patterns could offer valuable insights into the regulation of

glycolysis in the context of BM-BC.
Frontiers in Immunology 07
Furthermore, we found that the upregulated genes in BM-BC

and BM-LUAD were involved in immune response regulation,

tumor growth, and proliferation. Limited studies have utilized

matched-paired samples to investigate immune related signatures.

A study by Iwamoto et al. (16) involved gene expression analyses on

16 matched-paired samples between primary breast cancers and

brain metastases. The results aimed to confirm previously reported

genes associated with brain metastases and epithelial-mesenchymal

transition (EMT) and identify novel therapeutic targets among

FDA-approved agents or those investigated in clinical trials for
B

C

D E

A

FIGURE 3

Comparison of upregulated genes in BM-BC and BM-LIUAD. (A) Schematic overview of the samples included in the comparison of differentially expressed
genes between BM-BC and BM-LIUAD. (B) Venn diagram indicating the overlap of differentially expressed genes between BM-BC and BM-LIUAD. (C)
Heatmap of normalized differentially expressed genes between BM-BC and BM-LUAD (adj. p ≤ 0.05). The heatmap is scaled based on each gene. (D) GSEA
of upregulated differentially expressed genes in BM-BC (adj. p ≤ 0.05). (E) GSEA of upregulated differentially expressed genes in BM-LUAD (adj. p ≤ 0.05).
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distinct cancers. Their results revealed that immune-related

signatures exhibited significantly lower gene expression in brain

metastases than in primary breast cancers. Similar to our approach,

Tsakonas et al. (2) employed immune-gene expression profiling of

13 primary lung samples and their matched-paired BM. However,

detailed information on the specific subtype of the matched-paired

samples is not available. Their results revealed significant

downregulated of 12 immune-related genes in BM compared to

primary tumors. Importantly, we found an FDA-approved
Frontiers in Immunology 08
druggable target (HDAC3, Figures 5B, C) that was differentially

expressed in LUAD and was upregulated in BM-LUAD compared

to primary LUAD. This finding suggests the potential for targeted

therapy in BM-LUAD. In our previous study we discovered higher

infiltration of immune cells in BM-LUAD as compared to BM-BC

(19). Interestingly, despite the higher immune response regulation

in BM-BC, we did not find significant immune infiltration between

the primary tumors and their matched-paired brain metastases.

This could be attributed to factors such as the poor blood-brain
B

A

FIGURE 4

Analysis of the metabolic stress pathway in BM-BC and BM-LIUAD. (A) Schematic image of a cell with the differentially expressed genes involved in
the metabolic stress and glycolysis. (B) Box plots of the differentially expressed genes associated with glycolysis within the metabolic stress pathway
in brain metastasis (adj. p ≤ 0.05). The word “pri” in the figure refers to primary tumor.
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barrier (BBB) permeability, differences in genetic characteristics, or

insufficient stimulation to facilitate additional infiltration. However,

we discovered four immune checkpoint molecules that exhibited

differential expression between BM-BC and BM-LUAD, suggesting

their potential for developing lineage-specific therapeutic strategies

for brain metastasis. Importantly, in line with our previous study,
Frontiers in Immunology 09
we found higher expression of VISTA and IDO1 in primary LUAD

and BM-LUAD as compared to breast cancer, with a predominant

higher expression in primary tumors. VISTA is an immune

regulatory receptor expressed mainly by myeloid cells and is

associated with poor overall survival in various cancers (25, 26).

We previously found that VISTA is expressed on tumor cells,
B

C

A

FIGURE 5

DEGs involved in immune response modulation in BM-BC and BM-LIUAD. (A) list of upregulated differentially expressed genes in BM-BC and BM-
LUAD involved in immune response regulation. The P-value and adj. P-value of commonly upregulated differentially expressed genes are related to
BM-BC. (B) Box plots of the differentially expressed genes involved in immune response regulation in brain metastasis (*adj. p ≤ 0.05, **adj. p ≤ 0.01,
***adj. p ≤ 0.001). (C) IHC staining for the expression of FDA-approved drug target HDAC3 in BC and LUAD paired samples. The red color in the IHC
images indicates the expression of HDAC3 on tissue of BC and LUAD. The border colors of each image are as follow, light pink: primary BC, dark
pink: BM-BC, light blue: primary LUAD, dark blue: BM-LUAD.
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T lymphocytes, and to a lesser extent on microglia (19). The results

highlight potential for targeted therapy strategies directed against

VISTA in the treatment of brain metastasis originating from LUAD.

IDO1 is an immune response regulator involved in the

suppression of the anti-tumor immune response and immune

evasion. IDO1 is highly expressed in various malignant tumors

including lung cancer, and its overexpression is linked to

unfavorable clinical outcomes (27–30). Although we found higher

expression of IDO1 in BM-LUAD, its level was relatively low as

compared to VISTA. Nevertheless, the predominant expression of

IDO1 in BM-LUAD should be taken into account regarding the

development of combination therapies targeting IDO1. Similarly,

the higher expression of IDO1 in 13 primary lung cancer and their

matched-paired samples we discovered previously (2), confirming

the results of our study. We also found higher expression of NT5E

(CD73) in BM-LUAD than in BM-BC. CD73 is a transmembrane

glycoprotein and exerts diverse functions in the tumor

microenvironment (31). CD73 catalyzes the hydrolysis of

adenosine , which contr ibutes to cancer progress ion,

neovascularization, tumor cell proliferation, and immune evasion

(32). Moreover, CD73 has been found to be involved in invasion

and metastasis across different cancers, such as ovarian and cervical
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carcinomas (32). Dual blockade of CD73-TGFb has led to promote

a complex inflammatory tumor microenvironment, characterized

by decreased levels of myeloid-derived suppressor cells (MDSCs)

and M2-macrophages, as well as increased levels of activated

dendritic cells, cytotoxic T cells, and B cells (33). The prominent

expression of CD73 in BM-LUAD, not in BM-BC, prompts this

molecule as another target for the treatment of BM-LUAD. VTCN1,

also known as B7-H4, is an immune regulatory molecule belonging

to the B7 family (34). VTCN1 is mainly expressed by antigen-

presenting cells (APCs) and induces immune suppression by

inhibiting the expansion of neutrophil progenitors and T cells

(35–37). Overexpression of VTCN1 in tumors correlates with

their clinicopathological features, and promotes tumor

proliferation, metastasis and immune evasion (38–43). We found

higher expression of VTCN1 in BM-BCthan in their primary

tumors, and also in BM-LUAD. The significant expression of

VTCN1 in BM-BC should be considered as another potential

target for inclus ion in the development of targeted

immunotherapy, especially in targeting BM-BC. In line with the

previous article (44), we hypothesize that the immune system

may play a role in the development of brain metastasis in breast

and lung cancer. This particular immune system involvement
B

A

FIGURE 6

DEGs associated with tumor proliferation in BM-BC and BM-LIUAD. (A) list of upregulated differentially expressed genes in BM-BC and BM-LUAD
associated with tumor growth and proliferation (adj. p ≤ 0.05). The P-value and adj. P-value of commonly upregulated differentially expressed genes
are related to BM-BC. (B) Box plots of the differentially expressed genes associated with tumor growth and proliferation in brain metastasis (*adj. p ≤

0.05, **adj. p ≤ 0.01, ***adj. p ≤ 0.001).
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requires additional validation, particularly in the case of

lung adenocarcinoma.

There are some limitations in our study. The cohort size we

analyzed was relatively small, however, it is important to highlight

the exceptional uniqueness of the samples we had the opportunity

to analyze. Utilizing matched-paired primary tumor and brain

metastasis samples is an important and unique approach in

cancer research, allowing for direct comparisons of molecular
Frontiers in Immunology 11
changes between the primary tumor and its corresponding brain

metastasis. This not only unravels the specific adaptations that

enable tumor cells to invade the brain but also sheds light on the

mechanisms governing the selection and survival of metastatic cells

in this unique microenvironment. Moreover, a control group

consisting of tumors that did not metastasize to the brain was

lacking for direct comparisons, however, our study provides

valuable insights into various intriguing aspects of brain metastasis.
B

A

FIGURE 7

Immunohistochemistry staining for immune checkpoint inhibitors in the BM-BC and BM-LUAD samples. (A) Box plots of the differentially expressed
immune checkpoint molecules in BM-BC and BM-LUAD (adj. p ≤ 0.05). (B) IHC staining for the expression of therapeutic targets VISTA, IDO1, NT5E
(CD73), and VTCN1 (B7-H4) in BM-BC and BM-LUAD samples. The red color in each IHC image shows the expression of associated target on tissue
of BC and LUAD. The border colors of each image are as follow, light pink: primary BC, dark pink: BM-BC, light blue: primary LUAD, dark blue:
BM-LUAD.
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In conclusion, the comparison of molecular mechanism in

primary breast and LUAD with their matched-paired brain

metastases, provide valuable insights into the molecular

landscape of brain metastasis. The findings of this study

highlight the differential gene expression patterns, the

significance of metabolic pathways specially the involvement of

glycolysis pathway, and the impact of immune response

modulation in brain metastasis. In addition, the identification of

the FDA-approved druggable target (HDAC3) and the four

immune checkpoint molecules in BM suggest that targeted

therapies should be tailored for specific tumor lineages in order

to effectively manage brain metastasis.
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