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Simple Summary: Daratumumab is a CD38-targeting antibody that is being increasingly integrated
into first-line multiple myeloma (MM) induction treatment, leading to an improved response depth
and a longer progression-free survival. Autologous stem cell transplantation (ASCT) is commonly
performed as a consolidation strategy following first-line treatment in fit MM patients. However,
limited data on the short-term effects of daratumumab on the success and safety of stem cell mobi-
lization and autologous stem cell transplantation are available to date. We analyzed the performance
of stem cell mobilization and collection, as well as engraftment kinetics, in MM patients treated with
daratumumab-containing induction regimens, compared to daratumumab-free therapy.

Abstract: Daratumumab is being increasingly integrated into first-line multiple myeloma (MM)
induction regimens, leading to improved response depth and longer progression-free survival.
Autologous stem cell transplantation (ASCT) is commonly performed as a consolidation strategy
following first-line induction in fit MM patients. We investigated a cohort of 155 MM patients who
received ASCT after first-line induction with or without daratumumab (RVd, n = 110; D-RVd, n = 45),
analyzing differences in stem cell mobilization, apheresis, and engraftment. In the D-RVd group,
fewer patients successfully completed mobilization at the planned apheresis date (44% vs. 71%,
p = 0.0029), and more patients required the use of rescue plerixafor (38% vs. 28%, p = 0.3052). The
median count of peripheral CD34+ cells at apheresis was lower (41.37 vs. 52.19 × 106/L, p = 0.0233),
and the total number of collected CD34+ cells was inferior (8.27 vs. 10.22 × 106/kg BW, p = 0.0139).
The time to recovery of neutrophils and platelets was prolonged (12 vs. 11 days, p = 0.0164; and 16 vs.
14 days, p = 0.0002, respectively), and a higher frequency of erythrocyte transfusions (74% vs. 51%,
p = 0.0103) and a higher number of platelet concentrates/patients were required (4 vs. 2; p = 0.001).
The use of daratumumab during MM induction might negatively impact stem cell mobilization and
engraftment in the context of ASCT.

Keywords: multiple myeloma (MM); daratumumab; anti-CD38 monoclonal antibody; mobilization;
apheresis; collection; engraftment; vinorelbine; gemcitabine
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1. Introduction

Autologous stem cell transplantation (ASCT) remains a key component of the first-line
treatment in fit multiple myeloma (MM) patients, with recent studies showing signifi-
cantly longer progression-free survival (PFS) compared to consolidation strategies without
ASCT [1–3]. The European Haematology Association and European Society of Medical
Haematology (EHA-ESMO) guidelines recommend the use of lenalidomide, bortezomib,
and dexamethasone (RVd) or daratumumab, bortezomib, thalidomide, and dexametha-
sone (D-VTd) as first-line regimens for ASCT-eligible patients, while the Swiss guidelines
recommend RVd. Both guidelines recommend melphalan-based high-dose chemotherapy
(HDCT) conditioning before proceeding to ASCT and subsequent lenalidomide mainte-
nance therapy [4,5].

However, the addition of daratumumab to newly diagnosed MM (NDMM) induction
therapy is being increasingly implemented in clinical practice since recent studies have
shown that daratumumab-containing regimens improve depth and duration of response
compared to induction without daratumumab [6–9]. Daratumumab is a monoclonal
antibody targeting CD38 and acts through a variety of direct on-tumor mechanisms as well
as immune modulation [10–15]. The addition of daratumumab to RVd (D-RVd) exploits
synergetic effects shown for combining daratumumab with lenalidomide and bortezomib,
respectively [16,17].

Choice of induction regimen, number of administered cycles, stem cell mobilization
regimen, use of plerixafor, and patient age were shown to impact CD34+ stem cell mobiliza-
tion potential [18–26]. A higher yield of collected CD34+ cells allows for performing more
than one ASCT, re-transfusion in case of engraftment failure, and administration of a higher
dose of CD34+ cells, which leads to better engraftment [27–29]. Previous reports have
shown that daratumumab might impair stem cell mobilization and collection, leading to an
increased requirement for plerixafor use, impaired stem cell engraftment, and an increased
complication rate during hospitalization [6,30–41]. However, current mobilization sched-
ules, as well as standards for induction treatment, are heterogeneous among institutions.
While cyclophosphamide combined with granulocyte-colony stimulating factors (G-CSF) is
frequently used as mobilization therapy in many institutions, Swiss centers alternatively
use vinorelbine + G-CSF or gemcitabine + G-CSF, which have both been shown to be
safe and effective [20,42–44], with gemcitabine being preferentially used in patients with
pre-existing polyneuropathy [20].

Since limited data are available on the impact of daratumumab on stem cell mobi-
lization performance, we report data from our NDMM patient cohort treated with D-RVd
versus RVd, comparing stem cell mobilization metrics as well as post-ASCT engraftment
kinetics. To the best of our knowledge, this is the first study performing this comparison be-
tween patients treated with D-RVd vs. RVd, followed by vinorelbine- or gemcitabine-based
mobilization therapy.

2. Materials and Methods
2.1. Patient Population and Study Endpoints

We performed a retrospective single-center case-control study. Patients were con-
sidered eligible if they were diagnosed with an NDMM as defined by the International
Myeloma Working Group (IMWG) [45] and treated with first-line induction with D-RVd or
RVd, followed by a consolidation with ASCT. A maximum of one cycle with a different
induction regimen was permitted. Data were analyzed per intention-to-treat.

The primary endpoint was the number of circulating CD34+ cells in peripheral blood
on the day of stem cell apheresis. As secondary endpoints, we assessed mobilization
treatment duration, duration of apheresis, number of apheresis days, CD34+ collection
yield, number of retransplanted cells, engraftment kinetics, transfusion requirements,
duration of hospitalization, and infectious complications.



Cancers 2024, 16, 1854 3 of 15

This study was performed following the Declaration of Helsinki and was approved by
the local ethics committee of Bern, Switzerland: the Ethics Commission of the Canton of
Bern (decision number #2024-00928).

2.2. Patient Characteristics

For basal characteristics, laboratory records between the initial diagnosis and the
start of induction therapy were used. If no data were available, laboratory values up to
1 month after the start of induction were used. Laboratory values, first available later than
1 month after the start of induction therapy, were deemed “missing.” If the degree of BM
infiltration was indicated with a range in reports, the mean value of the reported range
was used for statistical analysis. Staging according to the revised international staging
system (R-ISS) was documented whenever possible. If not available, staging according to
the previously used international staging system (ISS) was reported instead [46]. High-risk
cytogenetics were defined by the detection of del(17p), t(4;14), or t(14;16) via fluorescence
in situ hybridization (FISH).

2.3. Procedures

After induction, patients underwent mobilization therapy. The following standard
mobilization regimens were used: vinorelbine (35 mg/m2; intravenous (iv) for 10 min)
or gemcitabine (1250 mg/m2; iv for 30 min), administered as a single infusion on day
1. Gemcitabine was used in patients with pre-existing peripheral neuropathy. Weight-
adapted filgrastim (G-CSF) was added on day 4 (60 million international units (MIU) for
patients ≤ 69 kg body weight, 78 MIU from 70–89 kg, and 96 MIU for patients ≥90 kg,
administered subcutaneously and split into 2 doses/day) and continued until the morning
of apheresis, which was routinely planned on day 8. In an alternative schedule, G-CSF was
administered from day 1 until apheresis day (planned on day 5), either isolated (“G-CSF
only”) or in combination with a single dose of ixazomib (4 mg, orally) on day 4. Most
patients received meloxicam during mobilization therapy. Plerixafor was additionally
administered on the planned apheresis day if the CD34+ peripheral concentration was <10
× 106/L. Apheresis was performed when peripheral blood CD34+ cells exceeded 10–15 ×
106/L, aiming for a single day of collection.

While 2 × 106 collected CD34+ cells/kg BW were considered a minimal requirement
to proceed to ASCT, the optimal count was set at 6 × 106 cells. The collected CD34+ cells
were quantified after washing the apheresis product. Cell processing procedures followed
local standards. Flow cytometry was used to identify CD34+ cells in the peripheral blood
and quantify collected cells with a Canto-II flow cytometer (BD Biosciences, San Jose, CA,
USA), following the ISHAGE guidelines [47].

HDCT regiments used before ASCT were treosulfan and melphalan (TreoMel) or
isolated melphalan. TreoMel patients received treosulfan (14 mg/m2; iv) from day −4
to day −2 and melphalan (140 or 200 mg/m2, iv) on day −1 before ASCT (day 0). Pa-
tients receiving only melphalan either got a split dose (100 mg/m2 per day, iv) at days
−2 and −1 before ASCT or 200 mg/m2 on day −1. In patients aged 70 and older or
with a creatinine clearance between 40 and 50 mL/min, the total melphalan dose was
reduced to 140 mg/m2. If the creatinine clearance was below 40 mL/min, the melphalan
dose was adjusted to 100 mg/m2. The limit for transplant volume at ASCT was set at
300 mL/day with a 5% concentration of dimethyl sulfoxide (DMSO). The volume was
split over several days if this limit was exceeded. Anti-infective prophylaxis consisted of
sulfamethoxazole–trimethoprim, fluconazole, and valaciclovir. Dexamethasone was given
to prevent engraftment syndrome. Patients were premedicated with methylprednisolone
and clemastine before stem cell reinfusion. Additional comedications administered as
part of supportive treatment were allopurinol, zoledronic acid, folic acid, and filgrastim
(5 µg/kg/day, days +6 to +12). The time to neutrophil recovery was defined as the period
between ASCT and neutrophil granulocytes exceeding 0.5 G/L. The time to platelet recov-
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ery was defined as the period between ASCT and platelets exceeding 20 G/L in the absence
of platelet transfusions in the previous 3 days.

2.4. Therapy Response

Therapy response was reported according to the IMWG consensus criteria [48],
and the limit of minimal residual disease (MRD) negativity was set at 10−5 (less than
1 MM cell/100,000 total cells in bone marrow aspirate).

2.5. Data Collection

Our institution has a register of patients receiving hematopoietic stem cell transplants
(HSCT). This dataset was used to identify candidate patients. Clinical data were extracted
from the “Marcell” database, which records data related to ASCT, as well as from clinical
records registered in “i-pdos” and “m-pdos”.

2.6. Statistical Analysis

GraphPad Prism® version 10 was used to create figures and perform statistical anal-
yses, except for the multivariate analysis (MVA). p-values were calculated using Fisher’s
exact test for categorical data, whereas the Mann–Whitney U-test was used to analyze
numerical data. MVA was conducted using “R,” version 4.3.1, by performing a logistic
regression model for categorical data and a linear regression model for numerical data.
p-values below 0.05 were considered statistically significant, and percentage results were
rounded to whole numbers.

3. Results
3.1. Patient Characteristics

A total of 155 consecutive patients undergoing ASCT between March 2020 and June
2023 were identified, of whom 110 received induction with RVd and 45 received D-RVd.
Basal key patient characteristics are summarized in Table 1, and additional metrics are
reported in Table S1. At MM diagnosis, patients in the RVd group were older, with a median
age of 62 (vs. 58, p = 0.0317). The proportion of male patients was 65% in the RVd group
and 38% in the D-RVd group (p = 0.0022). Paraprotein subtypes did not differ significantly
(p = 0.3847). For 1 patient in each group, the first laboratory values were available 13 and
4 days, respectively, after the start of induction therapy. High-risk cytogenetics and initial
staging did not differ significantly among both patient groups. The only parameter of
documented MM diagnostic or staging criteria with a significant difference between both
groups was basal LDH level (p = 0.0313).

Table 1. Patient basal characteristics at diagnosis of MM.

Parameter RVd (n = 110) D-RVd (n = 45) p-Value

Age at diagnosis (y), median (range) 62 (31–75) 58 (41–75) 0.0317
Male sex, n (%) 72 (65) 17 (38) 0.0022
FISH, n (%) a 0.5296

High-risk cytogenetics 23 (28) 14 (35)
Non-high risk 59 (72) 26 (65)
(R-)ISS, n (%) b 0.8744

I 30 (28) 14 (31)
II 50 (47) 19 (42)
III 27 (25) 12 (27)

Data missing for n patients (RVd/D-RVd): a (28/5), b (3/0).

3.2. Induction

There was no significant difference in the number of induction cycles between the RVd
and the D-RVd patient groups (p = 0.2884). In 93% of the D-RVd patients, daratumumab
was administered starting from cycles 1 (60%) or 2 (33%). One patient (1%) in the RVd
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group received carfilzomib and dexamethasone for 2 weeks after completion of the RVd
induction. One patient (2%) in the D-RVd group received one cycle of pomalidomide,
bortezomib, and dexamethasone (PVd) prior to the planned D-RVd induction. In both
patients, this modification was performed due to renal function impairment. In 15% (RVd)
and 16% (D-RVd) of cases, one drug from the induction combination was omitted for at
least one cycle (e.g., due to intolerance). In one patient (1%) from the RVd group, two drugs
were omitted for one cycle. Additional cycles of induction therapy between apheresis
and HDCT were applied as “bridging” in a small percentage of both patient cohorts (4%
and 13%, respectively, p = 0.0641). Registered parameters regarding induction therapy are
summarized in Table S2.

3.3. Mobilization

Parameters concerning stem cell mobilization and apheresis are summarized in Table 2.
Standard mobilization regimens at our institution combine a chemotherapeutic agent, most
frequently vinorelbine or gemcitabine, with filgrastim. A total of 75% of patients in the
RVd group and 96% in the D-RVd group received such a combination. Meloxicam was
administered in the majority of cases during mobilization therapy (90% and 73% in the
RVd and D-RVd groups, respectively, p = 0.0123). Plerixafor was used in 28% (RVd) and
38% (D-RVd) cases (p = 0.3052).

Table 2. Mobilization and apheresis.

Parameter RVd (n = 110) D-RVd (n = 45) p-Value

Mobilization medication, n (%) <0.0001
Vinorelbine + G-CSF 41 (37) 21 (47)
Gemcitabine + G-CSF 27 (25) 22 (49)

Ixazomib + G-CSF 15 (14) 0 (0)
G-CSF only 27 (25) 2 (4)

Mobilization without meloxicam,
n (%) 11 (10) 12 (27) 0.0123

Plerixafor used, n (%) a 27 (28) 15 (38) 0.3052
Apheresis on the planned date,

n (%) b 77 (71) 20 (44) 0.0029

Mobilization days until apheresis (d),
median (range) b 8 (8–10) 9 (8–10) 0.0006

Measurements on day of apheresis:
CD34+ × 106/L, median (range) c 52.19 (3.85–295.14) 41.37 (6.05–115.6) 0.0233
WBC × 109/L, median (range) d 34.33 (8.97–80.34) 33.07 (16.9–75.49) 0.9526

CD34+/WBC (%), median (range) d 0.16 (0.02–0.83) 0.13 (0.02–0.45) 0.0463
Apheresis time (min),

median (range) e 265.5 (99–724) 297 (158–1000) 0.0282

Apheresis in one day, n (%) 104 (95) 43 (96) >0.9999
CD34+ × 106/kg BW, median (range) 10.22 (2.39–41.54) 8.27 (3.26–17.37) 0.0139

Data missing for n patients (RVd/D-RVd): a (14/6), b (2/0), c (5/1), d (9/4), e (8/6).

3.4. Apheresis

A total of 71% of the RVd patients could perform apheresis on the planned date vs.
44% in the D-RVd group (p = 0.0029). The median number of circulating peripheral CD34+
cells on the day of apheresis was lower in the D-RVd group (41.37 vs. 52.19 × 106/L;
p = 0.0233), whereas median white blood cell (WBC) counts were comparable. Nearly all
patients completed the apheresis procedure in one day, with the remaining 5% (RVd) and
4% (D-RVd) completing apheresis in two days. The median apheresis time in the RVd group
was 265.5 min, while it lasted 297 min for the D-RVd population (p = 0.0282). The total
amount of CD34+ cells collected per kilogram of body weight (CD34+/kg BW) after wash
was inferior in the D-RVd population (median: 8.27 vs. 10.215 × 106/kg BW, p = 0.0139).
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3.5. HDCT, ASCT, and Hospitalization

Key parameters regarding HDCT, ASCT, and hospitalization are summarized in
Table 3; additional parameters regarding hospitalization are documented in Table S3.
The majority of patients received TreoMel as HDCT: 86% in the RVd and 82% in the D-
RVd cohort. Alternatively, patients received a purely melphalan-based HDCT regimen.
Reinfused counts of CD34+/kg BW were 3.602 × 106/kg BW (RVd) and 3.27 × 106/kg
BW (D-RVd), respectively (p = 0.0157). In a minority of patients, ASCT was administered
over multiple days (5% and 9%, p = 0.2848). No significant differences in hospitalization
duration were detected, with 23 (D-RVd) vs. 22 (RVd) days (p = 0.0654). The RVd group
required a median of 11 days to achieve neutrophil recovery, while the D-RVd population
required 12 days (p = 0.0164). Regarding time to platelet recovery, the RVd population
achieved recovery in 14 days vs. 16 days in the D-RVd group (p = 0.0002). At least
one platelet concentrate (PC) was administered in most patients of either group (95%
vs. 98%, p = 0.6719). The median number of PCs administered was two (RVd) and four
(D-RVd) PCs, respectively (p = 0.001). Erythrocyte transfusions were required during the
hospitalization period in 51% (RVd) and 74% (D-RVd) of cases (p = 0.0103), with medians of
given erythrocyte concentrates (ECs) amounting to 1 and 2 for RVd and D-RVd, respectively
(p = 0.2837). In general, at least one infectious complication occurred in 58% (RVd) or 69%
(D-RVd) of patients (p = 0.276). No significant difference in the incidence of any single
infectious complication was documented when comparing both populations.

Table 3. HDCT, ASCT, and Hospitalization.

Parameter RVd (n = 110) D-RVd (n = 45) p-Value

HDCT, n (%) 0.619
Treosulfan/Melphalan 95 (86) 37 (82)

Melphalan 15 (14) 8 (18)
Transp. CD34+ × 106/kg BW,

median (range)
3.6 (2.05–10.36) 3.27 (1.90–5.15) 0.0157

ASCT on multiple days, n (%) 5 (5) 4 (9) 0.2848
Hospitalization duration (d),

median (range) 22 (13–51) 23 (18–39) 0.0654

Time to neutrophil recovery (d),
median (range) a 11 (9–27) 12 (10–20) 0.0164

Time to platelet recovery (d),
median (range) b 14 (11–20) 16 (11–27) 0.0002

≥1 PC used, n (%) c 104 (95) 44 (98) 0.6719
Number of PCs used,

median (range) d 2 (1–16) 4 (1–19) 0.001

≥1 EC used, n (%) e 54 (51) 32 (74) 0.0103
Number of ECs used,

median (range) f 1 (1–19) 2 (1–8) 0.2837

Fever during hospitalization, n (%) 106 (96) 44 (98) >0.9999
≥1 Infectious complication, n (%) 64 (58) 31 (69) 0.276

Data missing for n patients (RVd/D-RVd): a (1/0), b (9/1), c (1/0), d (4/0), e (4/2), f (12/6).

3.6. Therapy Response

Details regarding therapy responses are summarized in Table S4. The D-RVd group
showed better results in all response criteria documented, with more patients achieving at
least complete remission (p = 0.0125) and MRD negativity after ASCT (p = 0.0014). With a
significantly shorter follow-up time for the D-RVd group, our study was not powered to
generate meaningful long-term response data.

3.7. Multivariate Analysis

A multivariate analysis was conducted, comparing the effects of daratumumab use,
age ≥65 years old, sex, (R-)ISS Staging III, and ≥VGPR after induction. The resulting
p-values are shown in Table 4. Additional information, such as Beta or OR and 95% CI, can
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be found in Tables S5.1–S5.16. The significant impact of daratumumab use, age ≥65 years
old, and (R-)ISS III was, in all instances, negative, impairing the respective parameters.
The female sex improved results if significance was reached. ≥VGPR after induction
never reached significance but was close for the parameter plerixafor use, where it also
improved results.

Table 4. Impact of treatment with daratumumab, age, sex, (R-)ISS stage, and response to induction
treatment on stem cell mobilization, collection, and engraftment, multivariate analysis.

Parameter Dara Used Age ≥65 Sex (f) (R-)ISS III ≥VGPR

Apheresis on planned date 0.001 0.11 0.4 0.5 0.8
Mobilization duration <0.001 0.074 0.6 0.6 0.8

Plerixafor use 0.2 0.021 0.3 >0.9 0.054
CD34+ × 106/L 0.004 0.001 0.6 0.2 0.4

WBC 0.8 0.7 0.018 0.4 0.5
Apheresis time 0.012 0.3 0.034 0.8 0.5

Collected CD34+ 0.007 <0.001 0.8 0.067 0.8
Transplanted CD34+ 0.010 >0.9 0.4 0.012 0.5

Hospitalization 0.2 0.048 0.6 0.7 0.2
Neutrophil recovery 0.069 0.2 0.13 0.4 0.11

Platelet recovery <0.001 0.5 0.042 0.8 0.8
≥1 PC used 0.3 0.3 0.7 0.7 >0.9

Nr. of PCs used <0.001 0.2 0.055 >0.9 0.5
≥1 EC used 0.058 0.5 0.3 0.2 0.6

Nr. of ECs used 0.2 0.14 0.4 0.7 0.4
≥1 infectious complication 0.12 0.088 0.7 0.3 0.8

Significant p-values are highlighted in bold.

3.8. Comparison of Mobilization Strategies

Since vinorelbine- and gemcitabine-based mobilization strategies were most frequently
used within both patient cohorts, we compared parameters related to stem cell mobilization,
apheresis, ASCT engraftment, and post-ASCT hospitalization. Alternative mobilization reg-
imens, used in a minority of patients, were excluded from these analyses (Tables S7 and S9).
In Figure 1, results regarding our primary endpoint, the peripheral number of CD34+ cells
on the day of apheresis, are displayed, comparing the impact of daratumumab addition
for all patients as well as in the gemcitabine and vinorelbine subgroups. A peripheral
number of CD34+ cells on the day of apheresis was consistently lower in the D-RVd co-
horts, independently of the mobilization strategy. Within the D-RVd cohort, the vinorelbine
subgroup performed better in the accomplishment of apheresis on the previously planned
day (Table 5). Parameters regarding the comparability of the mentioned subgroups, such
as age, sex, staging, etc., were documented (Tables S6, S8, and S10).

Table 5. D-RVd/gemcitabine + G-CSF vs. D-RVd/vinorelbine + G-CSF.

Parameter Gemcitabine
(n = 22)

Vinorelbine
(n = 21) p-Value

Apheresis on the planned date, n (%) 6 (27) 13 (62) 0.0329
Mobilization days until apheresis

(d), median (range) 9 (8–10) 8 (8–9) 0.0070

Plerixafor used, n (%) a 10 (50) 4 (24) 0.1734
Measurements on day of apheresis:
CD34+ × 106/L, median (range) b 35.23 (6.05–106) 43.03 (19.97–115.6) 0.2174
WBC × 109/L, median (range) c 37.03 (18.41–75.49) 26.82 (16.9–52.32) 0.0067

CD34+/WBC (%), median (range) c 0.1 (0.02–0.27) 0.16 (0.08–0.45) 0.0071
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Table 5. Cont.

Parameter Gemcitabine
(n = 22)

Vinorelbine
(n = 21) p-Value

Apheresis time (min),
median (range) d 359.5 (192–1000) 277 (158–460) 0.0200

Coll. CD34+ × 106/kg BW,
median (range)

8.16 (3.26–13.66) 8.27 (3.6–17.37) 0.7093

Transp. CD34+ × 106/kg BW,
median (range)

3.16 (1.9–4.98) 3.3 (2–5.15) 0.8569

Hospitalization duration (d),
median (range) 24.5 (19–39) 22 (18–35) 0.2470

Time to neutrophil recovery (d),
median (range) 12 (10–20) 11(10–12) 0.0158

Time to platelet recovery (d),
median (range) e 16 (13–27) 15 (11–25) 0.0430

≥1 PC used, n (%) 22 (100) 20 (95) 0.4884
Number of PCs used,

median (range) 5 (1–19) 2.5 (1–8) 0.0015

≥1 EC used, n (%) f 19 (90) 11 (55) 0.0148
Number of ECs used,

median (range) g 2 (1–8) 1 (1–4) 0.3921

Fever during hospitalization, n (%) 22 (100) 20 (95) 0.4884
≥1 Infectious complication, n (%) 16 (73) 13 (62) 0.5256

Data missing for n patients (gemcitabine/vinorelbine): a (2/4), b (0/1), c (1/3), d (4/2), e (1/0), f (1/1), g (3/3).
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4. Discussion

This study retrospectively compared stem cell mobilization metrics and post-ASCT
hematologic recovery of NDMM patients treated in the first line with (D-RVd) or without
daratumumab (RVd). Patient characteristics within both groups were overall comparable.
Slight disbalances were observed as to the patient’s age and basal LDH values. RVd-patients
were a median of 4 years older at diagnosis (62 vs. 58 years, p = 0.0317) and had lower basal
LDH values (p = 0.0313). There were no significant differences in MM stage distribution
at diagnosis (p = 0.8735). A predominance of female patients has been observed among
MM patients undergoing ASCT since the beginning of 2022, affecting 84% of the D-RVd
patients. Both groups received a median of four induction cycles. Case-control matching
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was limited by a lower number of D-RVd patients due to the more recent integration of
daratumumab into first-line regimens in the clinical routine.

Regarding mobilization therapy, the combination of either vinorelbine or gemcitabine
with G-CSF constitutes a standard approach in Switzerland. Jeker et al. showed a 42%
higher median CD34+ cell count on day +8 of mobilization when using vinorelbine instead
of gemcitabine, in addition to G-CSF [20]. Our two treatment groups had significant
differences in the use of mobilization therapies (Table 2, p < 0.0001). We addressed this
by conducting a subgroup analysis between patients receiving gemcitabine + G-CSF or
vinorelbine + G-CSF and comparing the performance of RVd vs. D-RVd. While lower
counts of peripheral CD34+ cells were observed for the D-RVd cohort in both mobilization
subgroups, vinorelbine performed better within the D-RVd cohort as to the accomplishment
of apheresis on the previously planned day. Relevantly, we did not identify previous
comparable studies using mobilization with gemcitabine or vinorelbine.

In our study, fewer patients in the D-RVd group were able to complete mobilization
therapy on the planned apheresis date (44% vs. 71%, p = 0.0029). Another study reported a
poorer performance of D-VTd vs. VCd as to mobilization metrics (e.g., amount of circulating
peripheral CD34+ cells on apheresis day) [41]. In our study, use of plerixafor rescue was
more frequent in D-RVd patients (38% vs. 28%, p = 0.3052), which is in line with the majority
of previous reports [6,31,33–35,37,39–41]. On the contrary, Hodroj et al. reported similar
rates of plerixafor usage between regimens with or without daratumumab [49]. However,
most reviewed studies used induction regimens distinct from RVd/D-RVd, and stem cell
mobilization procedures are overall heterogeneous across institutions.

Our primary endpoint, the number of circulating CD34+ cells on the day of apheresis,
was 21% lower in the D-RVd group (41.37 vs. 52.19 × 106/L, p = 0.0233). This was also
consistently observed in the subgroup analysis: 35% lower for patients mobilized with
gemcitabine (p = 0.0714) and 42% lower for the vinorelbine subgroup (p = 0.0005). Other
studies reported similar results [30–32,37,41]. For instance, Cavallaro et al. showed lower
pre-harvest concentrations of peripheral CD34+ cells in patients treated with D-VTd vs.
VTd (26 vs. 76 × 106/µL) [31]. Since we previously showed that meloxicam use correlates
with improved stem cell mobilization [24], and both groups differed regarding this factor
(p = 0.0123), we performed a subgroup analysis between patients mobilized with and
without meloxicam. We observed no differences.

There was no difference in WBC concentrations after daratumumab exposure. In
line with previous findings, WBCs were lower in the vinorelbine subgroup [20]. Almost
all the patients, regardless of treatment group, completed apheresis in one day. Oth-
ers’ reports showed an increase in the amount of apheresis days after treatment with
daratumumab [30,33,34,36,39–41]. Apheresis time was longer in the D-RVd population
(p = 0.0282), with similar results also observed in a previous report [33]. Despite signifi-
cantly prolonged apheresis, 19% fewer CD34+ cells were collected (p = 0.0139), which is in
line with numerous other studies [30–36,39,41]. However, other reports did not observe
significant differences [37,40,49,50]. The GRIFFIN and PERSEUS trials documented lower-
collected CD34+ cells in the D-RVd group [6,9]. The smaller impact of daratumumab use
on collected CD34+ cells in the gemcitabine subgroup could be potentially explained by
worse initial performance compared to the vinorelbine patients.

HDCT procedures were comparable. Most patients received TreoMel based on data
gathered in own previous work [51]. The median amount of transplanted CD34+ cells
was 9% lower for the D-RVd patients (p = 0.0157), which we interpreted in the context
of the lower amount of collected CD34+ cells. No significant differences as to hospital-
ization duration (p = 0.0654) or splitting of ASCT were observed (9% vs. 5%, p = 0.2848),
which was shown to complicate the hospitalization period [52]. Hospitalization duration
increased by a median of 1 day in the D-RVd population (p = 0.0654). E. Papaiakovou et al.
documented a median increase in hospitalization duration of 2 days (p = 0.02) [33], while
Oza et al. reported no differences [36]. The time to neutrophil recovery was prolonged
by a median of 1 day in the D-RVd group (12 vs. 11 days, p = 0.0164). Reports on the
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impact of daratumumab on neutrophil recovery are conflicting [6,30,31,33,36,38–40,50].
The time to platelet recovery was 2 days longer in the D-RVd cohort (p = 0.0002). Similar
findings were also reported by other studies [6,31,33,36,38–40,50], while Zappaterra et al.
documented no difference [30]. Contrarily, Mina et al. documented a median reduction
of 2 days in neutrophil and platelet recovery for daratumumab patients (p < 0.001 and
p = 0.001) [35]. While almost every patient received at least 1 PC, the median number of PCs
administered doubled in patients treated with daratumumab induction (4 vs. 2, p = 0.001).
Moreover, the proportion of patients receiving at least 1 EC increased significantly (51% vs.
74%, p = 0.0103). E. Papaiakovou et al. reported a significant increase in platelets (4 vs. 2,
p < 0.0001) and erythrocyte units (1 vs. 0.6, p = 0.031) transfused in daratumumab-exposed
patients [33]. Nearly all patients developed a fever during the recovery period. No differ-
ences in infectious complication rates were observed (69% vs. 58%, p = 0.276). Several other
studies showed similar findings [31,33,36,49]. Interestingly, subgroup analysis showed
differing behavior as to hospitalization duration, neutrophil recovery, number of PCs used,
need for EC, and infectious complications. While gemcitabine showed worse performance
when daratumumab was used in induction, the vinorelbine group was largely unaffected,
possibly due to lower associated hematologic toxicity.

The definitive mechanism responsible for impaired mobilization of CD34+ cells under
daratumumab exposure remains to be clarified. One mechanistic hypothesis is that CD38 is
partly expressed in CD34+ stem cells, which could be contributing to daratumumab-related
toxicity. However, despite the fact that the binding of daratumumab to CD34+ cells could be
shown, no direct cytotoxicity on CD34+ cells has been demonstrated in vitro [53]. Moreover,
CD38 expression is modifiable [54–56]. Hence, the use of CD38-expression modulating
agents during MM treatment might also upregulate the CD38 expression on CD34+ cells,
potentially leading to behavior that could not yet be replicated in vitro. Moreover, changes
in adhesion of the CD34+ cells under exposure to daratumumab have been reported, which
could explain the impact on mobilization performance and might even play a role in post-
ASCT engraftment [57–59]. Further, the lower dose of retransplanted cells in daratumumab
patients is likely a major factor in a more complicated engraftment period [27–29]. The
clonogenic potential of hematopoietic stem cells might be influenced by daratumumab,
with a reported negative impact on the burst-forming unit-erythroid (BFU-E) [30]. This
effect could not be observed by another group, although with notably different underlying
conditions [50].

The multivariate analysis showed a negative impact of age over 65 on several assessed
parameters, including the primary endpoint. As previously highlighted, the D-RVd group
was younger in median (58 vs. 62 y.o., p = 0.0317) and fewer patients were ≥65 years
old (27% vs. 37%, p = 0.2636). Therefore, we believe that age had no relevant impact on
impaired stem cell mobilization and engraftment in the D-RVd population. Female sex was
associated with a shorter time to platelet recovery (p = 0.042) and a lower number of PC
transfused (p = 0.055). Since a higher proportion of D-RVd patients were female (62% vs.
35%, p = 0.0022), patient sex distribution could have acted as a potential confounder.

We compared mobilization and engraftment parameters in D-RVd patients mobilized
either with gemcitabine or vinorelbine. Overall, vinorelbine outperformed gemcitabine
in the analyzed parameters, lining up with previous reports concerning daratumumab-
free regimens [20]. A higher percentage of patients treated with D-RVd and mobilized
with vinorelbine + GCSF could complete mobilization on the planned date, compared to
gemcitabine + G-CSF (62% vs. 27%, p = 0.0329), had shorter times to neutrophil and platelet
recovery, and required fewer transfusions. These results suggest that mobilization with
vinorelbine might positively impact stem cell mobilization and post-ASCT hematologic
recovery, as compared to gemcitabine, in patients treated with daratumumab.

Therapy response was improved with daratumumab addition to RVd, in line with
the GRIFFIN and PERSEUS trials, underscoring the relevance of daratumumab-based
combinations in the treatment of MM [6,9]. More patients achieved a CR (p = 0.0125) and
MRD negativity after ASCT (p = 0.0014).
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The retrospective design of the study and the disbalance in sample size between the
D-RVd and RVd groups limit optimal comparability between both patient cohorts. Further
research on the impact of daratumumab on ASCT short- and long-term outcomes, as well
as optimization of mobilization strategies in patients treated with daratumumab, would
be needed.

5. Conclusions

The addition of daratumumab to first-line induction with RVd was associated with
21% fewer circulating CD34+ cells detected on the day of apheresis (p = 0.0233), lower
counts of collected and reinfused CD34+ cells (p = 0.0139 and p = 0.0157), and more frequent
use of plerixafor rescue. Apheresis was delayed more frequently within the D-RVd patient
cohort (p = 0.0029). Moreover, longer times to neutrophil and platelet recovery (p = 0.0164
and p = 0.0002), a higher number of transfused platelet concentrates (p = 0.001), and an
increased need for erythrocyte concentrates (p = 0.0103) were documented in the D-RVd
cohort. Further research would be required to optimize stem cell mobilization in MM
patients receiving daratumumab-containing regimens.
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