
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
9
7
0
8
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
4
.
6
.
2
0
2
4

Citation: Kolokotroni, E.; Abler, D.;

Ghosh, A.; Tzamali, E.; Grogan, J.;

Georgiadi, E.; Büchler, P.;

Radhakrishnan, R.; Byrne, H.;

Sakkalis, V.; et al. A Multidisciplinary

Hyper-Modeling Scheme in

Personalized In Silico Oncology:

Coupling Cell Kinetics with

Metabolism, Signaling Networks, and

Biomechanics as Plug-In Component

Models of a Cancer Digital Twin. J.

Pers. Med. 2024, 14, 475. https://

doi.org/10.3390/jpm14050475

Academic Editor: Ceres Fernandez

Rozadilla

Received: 3 March 2024

Revised: 11 April 2024

Accepted: 17 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

A Multidisciplinary Hyper-Modeling Scheme in Personalized
In Silico Oncology: Coupling Cell Kinetics with Metabolism,
Signaling Networks, and Biomechanics as Plug-In Component
Models of a Cancer Digital Twin
Eleni Kolokotroni 1,* , Daniel Abler 2,3 , Alokendra Ghosh 4, Eleftheria Tzamali 5 , James Grogan 6, Eleni Georgiadi 1,7,
Philippe Büchler 8 , Ravi Radhakrishnan 4 , Helen Byrne 9, Vangelis Sakkalis 5 , Katerina Nikiforaki 5,
Ioannis Karatzanis 5 , Nigel J. B. McFarlane 10, Djibril Kaba 11, Feng Dong 12, Rainer M. Bohle 13, Eckart Meese 14,
Norbert Graf 15 and Georgios Stamatakos 1,* on behalf of the CHIC Project Consortium

1 In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School
of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
egeorgiadi@uniwa.gr

2 Department of Oncology, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
daniel.abler@hcuge.ch or daniel.abler@chuv.ch

3 Department of Oncology, Lausanne University Hospital and University of Lausanne,
1011 Lausanne, Switzerland

4 Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of
Pennsylvania, Philadelphia, PA 19104, USA; aghos@seas.upenn.edu (A.G.); rradhak@seas.upenn.edu (R.R.)

5 Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece;
tzamali@ics.forth.gr (E.T.); sakkalis@ics.forth.gr (V.S.); kat@ics.forth.gr (K.N.); karatzan@ics.forth.gr (I.K.)

6 Irish Centre for High End Computing, University of Galway, H91 TK33 Galway, Ireland;
james.grogan@universityofgalway.ie

7 Biomedical Engineering Department, University of West Attica, 12243 Egaleo, Greece
8 ARTORG Center, University of Bern, 3010 Bern, Switzerland; philippe.buechler@unibe.ch
9 Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK; helen.byrne@maths.ox.ac.uk
10 The Cambridge Crystallographic Data Centre, Cambridge CB2 1EZ, UK; nmcfarlane@ccdc.cam.ac.uk
11 Department of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;

dkaba@turing.ac.uk or kabadjibril@gmail.com
12 Department of Computer & Information Sciences, University of Strathclyde, Glasgow G1 1XH, UK;

feng.dong@strath.ac.uk
13 Department of Pathology, Saarland University, 66421 Homburg, Germany;

rainer.bohle@uniklinikum-saarland.de
14 Department of Human Genetics, Saarland University, 66421 Homburg, Germany;

eckart.meese@uniklinikum-saarland.de
15 Department of Paediatric Oncology and Haematology, Saarland University, 66421 Homburg, Germany;

norbert.graf@uniklinikum-saarland.de
* Correspondence: ekolok@mail.ntua.gr (E.K.); gestam@central.ntua.gr (G.S.); Tel.: +30-2107722287 (G.S.)

Abstract: The massive amount of human biological, imaging, and clinical data produced by multiple
and diverse sources necessitates integrative modeling approaches able to summarize all this informa-
tion into answers to specific clinical questions. In this paper, we present a hypermodeling scheme
able to combine models of diverse cancer aspects regardless of their underlying method or scale.
Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport,
genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular
response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical
data. The constituting hypomodels, as well as their orchestration and links, are described. Two
specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed
as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have
been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy
and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy.
Our innovative hypermodel holds promise as a digital twin-based clinical decision support system
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and as the core of future in silico trial platforms, although additional retrospective adaptation and
validation are necessary.

Keywords: in silico medicine; in silico oncology; cancer; hypermodeling; digital twin; virtual twin;
computational oncology; Wilms tumor; non-small cell lung cancer

1. Introduction

Over the last decades, a plethora of mathematical models have been developed, ad-
dressing different aspects of tumor complexity ranging from tumor growth to heterogeneity
in tumor microenvironment [1–8]. Furthermore, the massive amount of human biological
data being produced by multiple and diverse sources (imaging, expression, mutation,
clinical, etc.) necessitates the development of integrative approaches able to summarize all
this information into answers to specific clinical questions related to treatment responses
and prognoses. Herein, we present an integration scheme able to combine component
models of diverse cancer aspects regardless of their underlying method or scale. Our
goal is to integrate clinical, treatment, imaging, and genomic data with models, stemming
from multiple disciplines in a simple but efficient and coherent way to optimise treatment
strategy and promote precision medicine in oncology. The hypermodelling scheme allows
for complex multi-scale simulations to be broken down into simpler and more manage-
able models, so-called hypomodels, that can be combined and potentially be replaced by
equivalent ones.

Specifically, the hypermodel presented here is orchestrated as a composition of five
different physical components, each one representing different aspects of cancer biology at
the genome, cellular, and tissue scale. At the heart of the hypermodel lies the Oncosimulator,
a tissue-scale model of cancer cell multiplication, cellular response to treatment and spatial
tumor expansion/shrinkage based on the notion of discreteevent-discrete state modeling [9].
The Oncosimulator acts as the hypermodel integrator and is linked with a vasculature
hypomodel, a biomechanics hypomodel, a cell kill rate focusing molecular hypomodel,
and a metabolic network hypomodel. The vasculature hypomodel describes the transport
of nutrients in tumors at the tissue scale. It predicts glucose concentration as a function
of the three-dimensional spatial distribution of the vessel volume fraction and tumor
tissue. The metabolic hypomodel is a sub-cellular component that delineates the aberrant
metabolism of cancer cells on a genomic scale. This component utilizes constraint-based
methodologies, specifically employing the Flux Balance Analysis method in which cancer
cells optimize their growth rates subject to flux balancing constraints and substrate uptake
bounds, governed by glucose availability [10]. The molecular component constitutes an
integrated cellular framework to model key cell signaling pathways operating at different
time scales. Particularly, the ErbB receptor-mediated Ras-MAPK and PI3K/AKT pathway,
and the p53-mediated DNA damage-response pathway, are modeled and integrated to
predict the kill probability of tumor cells under specific drug combinations or radiation
treatment and patient-specific miRNA expression levels. The Biomechanical Simulator
(BMS) is a hypomodel for the simulation of bio-mechanical aspects of macroscopic tumor
growth. It models the mechanical constraints on tumor growth and informs its growth
direction. It relies on the Finite Element Method (FEM) to compute mechanical stresses and
strains resulting from tumor growth or shrinkage in a patient-specific anatomy.

The primary emphasis of this paper lies in the conception and development of an
integrated modeling approach that distills available information from diverse individu-
alized patient data. At a technical level, the communication between the hypomodels
was achieved by exploiting loosely and tightly coupled topologies. In a tightly coupled
topology, a feedback loop exists within the model, resulting in certain other models being
revisited. To do so, the execution software must maintain some models in a waiting state
while others are processing. Conversely, a loosely coupled topology is devoid of cycles,
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and a model is deemed complete once it has transmitted its information [11]. Details on the
technological infrastructure that was developed for the execution of the hypermodel can be
found in [12].

The hypermodel was applied in patients with nephroblastoma or Wilms tumor (WT)
and non–small-cell lung cancer (NSCLC), addressing clinical questions related to tumor
growth and reaction to treatment over time. All data exploited by the present study have
been provided following anonymization through the security framework implemented
within the CHIC European Commission-funded program (Project FP7-ICT-600841, [13]).

2. Materials and Methods
2.1. Component Models
2.1.1. The Oncosimulator

The Oncosimulator is a lattice-based, discrete-event, discrete-state approach that
models tumor cell population kinetics at a super-cellular and tissue scale, either under
free-growth or treatment conditions. Within the framework of CHIC, two instances of
the Oncosimulator concept have been implemented: the Lung Oncosimulator, a model of
lung tumor response-to-external beam radiotherapy, and the Wilms tumor, WT, (Nephrob-
lastoma) Oncosimulator, a model of Wilms tumor response to preoperative combined
chemotherapy treatment of actinomycin and vincristine. The core algorithms of the Lung
and WT Oncosimulators have been previously developed by the In Silico Oncology and
In Silico Medicine Group, and the implementation details can be found in [9,14]. Herein,
the Lung Oncosimulator was algorithmically extended to account for the effect of external
beam radiotherapy as described in [15]. To enable communication with the CHIC platform
and the exchange of data with the other component models, new code was developed and
added according to guidelines [16] in both instances [see also Section 2.2]. Below, basic
notions of the modeling approach, common for both Oncosimulators, are briefly presented.

The reconstructed tumor area is represented by a three-dimensional grid of cubic
voxels, named Geometrical Cells (GCs). Each GC belonging to the tumor corresponds to
a tissue volume of either 1 or 8 mm3 and is occupied by an inhomogeneous community
of living and dead tumor cells. Specifically, the tumor is assumed to be organized as a
hierarchy originating from a type of immature cell with unlimited mitotic capacity. These
cells, termed cancer stem cells, may divide either symmetrically, with probability Psym, to
produce two stem cells, or asymmetrically to produce a stem cell and a cell of limited mitotic
potential (LIMP) that follows an aberrant differentiation process. LIMP cells are allowed to
perform a specific number of divisions, NLIMP, before entering an irreversible differentiated
state (compartment of differentiated -DIFF- cells). Stem and LIMP cells may exist in a
cycling or resting, G0, phase. Cycling cancer cells are distributed into four compartments
corresponding to the four cell cycle phases (G1, S, G2, M). The withdrawal probability, Psleep,
of cycling cells to a resting phase following mitosis is regulated by the local conditions of
nutrient and oxygen supply. Tumor cells are allowed to spend an average time, TG0, in G0
phase. Afterwards, they re-enter the cell cycle, with probability PG0toG1, or die via necrosis.
The necrotic loss of resting cells is assumed to be caused by nutrient or oxygen deprivation.
Stem and LIMP cell categories may die with rate RA through spontaneous apoptosis. DIFF
cells may undergo either apoptosis with rate RADiff or necrosis with rate RNDiff. The time
required for apoptotic and necrotic cells to be permanently removed from the tumor bulk
is TA and TN, respectively.

The Oncosimulator explicitly models chemotherapy and/or radiotherapy. During
chemotherapeutic treatment, a fraction of stem and LIMP cells are assumed to undergo
lethal damage by the drug(s). These cells follow a rudimentary cell cycle before apoptotic
death through a cell cycle phase dictated each time by the mechanism of action of the
specific chemotherapeutic agent. The effect of the drug is assumed instantaneous at the
time of its administration. In the case of radiation therapy, lethally damaged cells die
through a radiation-induced necrotic mechanism. These cells enter a rudimentary cell
cycle and die after undergoing a few mitotic divisions. The probability of cells being hit
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by irradiation depends primarily on the phase they reside. Cell killing by irradiation is
described by the Linear Quadratic or LQ Model [17,18]:

S(D) = exp [−(αD + βD2)], (1)

where S(D) is the surviving fraction after a (uniform) dose D (Gy) of radiation to a popula-
tion of cells. The parameters α (alpha) (Gy−1) and β (beta) (Gy−2) are called the radiosensi-
tivity parameters of the LQ model.

The model integrates cytokinetic, metabolic, pharmacokinetic/pharmacodynamic, and
mechanical rules to simulate the dynamic behavior of the tumor over time. A computational
grid (regular mesh) is used to model the spatial distribution of cells within the tumor. Two
mesh scans address the biological aspects (cytokinetics) and the spatial dynamics (tumor
expansion/shrinkage) within the simulation. Specially designed algorithms are employed
to control the movement of cells within the mesh, defining tumor spatial evolution as
described analytically in [9]. In the framework of the hypermodel presented herein, a
biomechanical simulator governs the movement of biological cells within the discretized
mesh, as detailed in the subsequent sections.

Thorough sensitivity analyses have been conducted and reported in a number of
publications [14,19–21].

The model is implemented in C++ programming language (version C++14).

2.1.2. The Molecular Hypomodel

The molecular component explicitly models two types of signaling pathways, which
are important determinants of tumor cell fate (death and proliferation) and treatment
resistance, as well as the interfaces between them: the ErbB receptor-mediated Ras-MAPK
and PI3K-AKT pathways, and the TP53-mediated DNA damage-response pathways.

ErbB Receptor-Mediated Ras/Raf/MAPK and PI3K/AKT Pathways: This part of
the model has been adapted from Chen et al. [22] after suitable modifications. It is a
continuum ordinary differential equations (ODE)-based model with 504 distinct species,
827 elementary mass action-type reactions, and 252 parameters. It consists of all the ErbB
family of receptors and a subset of the homodimers and heterodimers. Though the model
includes both epidermal growth factor (EGF) and heregulin (HRG) as the growth factors,
for simplicity, we only consider the effect of EGF here. The growth factors activate the
receptors which, in turn, initialize the downstream signaling cascade. This component
model incorporates the effect of receptor internalization and recycling and the cross-talks
involved between the Ras-MAPK cascade and PI3K/AKT cascade. This has also been
extended to consider various mutant forms of EGFR receptor like L858R and deletion
mutants, which can be constitutively active.

TP53-Mediated DNA Damage-Response Module: This part of the model has been
adapted and modified from [23]. It consists of two main submodules corresponding to cell
cycle progression and apoptosis. The first module consists of cyclin-CDK-mediated cell
cycle progression, which affects the G1-to-S phase entry of the cell cycle. The cell death
module is the intrinsic apoptotic pathway, which is mediated by key proteins like Bax and
Bcl-2, which regulate the cell death protein Caspase 9. Damage to DNA activates ATM
kinase, which in turn activates TP53 through kinases Chk1 and Chk2. Activated TP53 in
turn activates DNA damage-repair pathways or cell-death pathways depending on the
extent of damage. The ultimate cell fate will depend on the combined interactions of all the
various components of the network and their initial activation state. This module consists
of 16 nodes with 160 negative and 218 positive feedbacks. The module is modeled using
a discrete Boolean model. Depending on set thresholds, each node of the network can
have two possible states—ON or OFF. The interaction between the nodes is also a discrete
number, which can be both positive and negative depending on whether it activates or
represses the downstream node. These kinds of discrete models can give two possible
outcomes: (a) a point attractor, which is a single steady state where the activation state of
all the nodes in the network does not change over successive time steps, and (b) a cyclic
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attractor that corresponds to a sequence of repeating states (cycle). For the current model,
there were three possible outcomes corresponding to three different cell fates: (a) cell-cycle
progression (point attractor with high cyclin-G and low p53 activity), (b) apoptosis (point
attractor high p53 and high caspase activity), and (c) cell senescence (cyclic attractor with
oscillations in p53 and Mdm2).

Module Interfaces and Hybrid Simulator Algorithm: The two modules are able to
communicate through the states of the common nodes; these are Erk, Akt, and PTEN. We
run the modules sequentially, where the final states of the interface nodes obtained from
each module are fed to the other module at the start of each new time step. The ODE states
of the common nodes are described by continuous time concentration functions, which
are discretized by applying appropriate thresholds before passing them to the Boolean
module. The Boolean p53 model will pass the activation fraction of the common nodes
to the ODE Ras-MAPK and PI3K/AKT module. We assume that the reactions in the
Ras-MAPK and PI3K/AKT module are much faster than the p53 module. This enables
us to partially uncouple these processes and pass pseudo-steady state information from
the fast to the slow process. We assume that within the short time step of the Ras-MAPK
and PI3K/AKT module, the state of the p53 module is invariant. On the other hand, the
p53 module will evolve with its own time scale, but its behavior will be modified by the
information about the interface species it receives from Ras-MAPK and PI3K/AKT module.
The modules are run until the p53 module (slow process) converges to a steady state (point
or cyclic attractor).

All model parameters, as well as local and parametric sensitivity analysis, are reported
in detail in [24]. Partial clinical validation and acceptance of the molecular models have
been performed by comparing the tumor volume data obtained from patients pre- and
post-chemotherapeutic treatment against the computed cell kill probability obtained from
the patient-specific molecular model [24].

The molecular model is implemented by combining an ordinary differential equations-
based continuous-time biochemical network systems model implemented using the CO-
PASI open-source software (version 4.20) and a discrete-time discrete-state Boolean model
for transcriptional control of cellular states implemented using the Python programming
language (version 2.7).

2.1.3. The Vasculature Hypomodel

The vasculature hypomodel describes the transport of nutrients, glucose in particular,
in tumors at the tissue scale. It uses the finite difference method to predict nutrient
concentrations as a function of the three-dimensional spatial distribution of vessel volume
fraction and tumor tissue, the latter being provided by other hypomodels. The vessel
volume fraction is assumed fixed in time. The vasculature hypomodel returns a three-
dimensional nutrient field, which can be used as input to other hypomodels.

In general, the vasculature plays a vital role in the transport of nutrients and therapeu-
tics to tumors, with tumor size limited by its ability to co-opt and maintain a vessel network.
The vasculature hypomodel is motivated by the well-known model of vascularized tumor
growth by Hahnfeldt et al. [25]. This model describes the rate of change of tumor volume
T as a function of carrying capacity K, assuming a spherical tumor:

T′ = −αTlog
(

T
K

)
(2)

where α is a growth rate parameter. The adopted rate of change of the carrying capacity
term is:

K′ = −α2K + bT − dKT
2
3 (3)

where α2, b and d are constants. Implicit in this form is a balance between a rate of increase
in carrying capacity due to tumor stimulation of new vasculature, and a rate of decrease in
carrying capacity due to increasing diffusion length scales as the tumor grows. Since 3D
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imaging data and other hypomodels can give a more general tumor shape as inputs to the
hypomodel, it is useful to relax the spherical tumor assumption.

The vasculature hypomodel assumes steady-state, diffusion-limited transport of nu-
trients with concentration c, which is supplied by the vasculature at a rate dependent on
vessel amount (volume fraction or density) V and is consumed by tumor tissue at a rate
proportional to the number or volume fraction of viable cells P. The tissue is assumed to
comprise a tumor region and a non-tumor region, as shown in Figure 1.
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Figure 1. The simulation domain for the transport problem. Distinct tumor and non-tumor regions
are assumed.

In practice, these regions are determined based on segmentations of clinical images,
performed in a pre-processing step external to the vasculature component in the hyper-
model execution. In the non-tumor region, it is assumed that the tissue is well vascularized
and nutrient concentrations are set to a reference value cn. In the tumor region nutrient
transport is described according to:

D∇2c − λPc + ρV(cn − c) = 0 (4)

where D is the effective nutrient diffusion coefficient in the tumor tissue, λ (redefined) is
the rate of nutrient consumption and ρ is rate of nutrient delivery by vessels. In this simple
model the nutrient concentration in the tumor will approach the value in the surrounding
healthy tissue as the vessel volume fraction increases, or as the rate of consumption by
cells decreases.

For the WT and NSCLC hypermodels the Vasculature component describes the trans-
port of glucose and uses a vessel volume fraction that is fixed in time. This simple model
was chosen to aid hypermodel integration and validation, as it has a favorably low number
of input parameters.

The nutrient transport problem is solved on a regular finite difference grid in 3D. This
method was chosen for computational efficiency and to avoid interpolation when used
with the grid-based descriptions of cell growth used in other hypomodels.

The model is implemented in the Chaste [26] open-source C++ framework for soft
tissue modelling. A custom Chaste build was developed to allow the incorporation of
MUSCLE libraries for run-time coupling of hypomodels and also packaging as a standalone
executable. The code can be found on GitHub [27]. Validity checks of the vasculature
component are presented in Appendix B.

2.1.4. The Metabolic Hypomodel

Normal mammalian cells are exposed to a continuous supply of oxygen, glucose
and other nutrients in circulating blood. In normal cells, glucose is taken up by specific
transporters and is converted to pyruvate in the cytoplasm through glycolysis generating
2 moles of ATP per glucose. In the presence of sufficient oxygen, pyruvate is then completely
oxidized in mitochondria generating additional 36 moles of ATP per glucose. However,
when oxygen is insufficient, pyruvate is redirected away from mitochondrial oxidation
and is converted to the waste product lactate. In contrast to normal cell metabolism,
Warburg’s observations [28,29] showed that cancer cells produce a substantial amount of
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energy by inefficiently metabolizing glucose to lactate, independent of oxygen availability-
a phenomenon termed the Warburg effect or aerobic glycolysis. The exact regulatory
mechanisms of tumor metabolism are far from complete. The tumor microenvironment
significantly affects the metabolic activity and rewiring, impacting metabolite transporters
and glycolytic enzymes. Signaling pathways involving various oncogenes and tumor
suppressor genes have been identified to play a role in the altered metabolism [30,31].

To model the metabolic adaptations of highly proliferating human cancer cells,
Shlomi et al. [10] employed a genome-scale human metabolic network, comprising
1496 ORFs, 3742 reactions, and 2766 metabolites [32]. They introduced metabolic demands
for biomass synthesis required for high proliferation rates, with the flux through biomass
serving as the objective function. Additionally, they considered solvent capacity constraints
to further restrict the fluxes of metabolic reactions. Their approach successfully replicated
several experimentally observed metabolic characteristics during cancer development.

We extend the work of Shlomi et al. [10] and apply a metabolic strategy that allows for
near-optimal growth solution, while maximizing lactate secretion. This approach aims to
elucidate the high-flux mechanisms leading to a substantial increase in lactate production
observed in tumor cells. Sub-optimal growth solutions have been noted to describe the
metabolic capabilities of microorganisms under environmental stress and in the absence of
sufficient evolutionary pressure [33] indicating that variability around optimal growth is not
unexpected for biological systems, including cancer. The lactate maximization strategy is
mathematically described as a two-step optimization problem, akin to the Flux Variability
Analysis (FVA) method [34], which has been utilized to identify alternate optimal and
sub-optimal metabolic states. The lactate maximization strategy employs an iterative
procedure to pinpoint the minimal compromise in growth rate necessary to achieve lactate
production [35].

Specifically, in the first step, the optimization problem is solved as described in [10]
where cells are assumed to maximize their growth rate subject to flux balancing constraints,
uptake bounds in the substrate reactions and the solvent capacity constraint. Within these
specific constraints, the first problem aims to identify the maximum growth rate. The
second optimization problem aims to maximize the lactate production rate. Additionally, it
includes the constraint that the growth rate should not be less than a given percentage, k,
of the optimal growth rate determined in the first problem. The second step is iteratively
performed for decreasing values of k until a solution is found, as long as the lactate secretion
rate remains below a specified tolerance (0.01 umol/mgDW/h). The model provides a
solution closer to optimal growth by varying k from its maximum to lower values. The
model has demonstrated its ability to capture several metabolic phenotypes observed
experimentally in cancer. Slight deviations around the optimal growth rate (90–99%) were
found to be sufficient for adequate lactate production, with increasing deviations observed
at lower glucose uptake bounds.

The metabolic model is implemented using the COBRA Toolbox-1.3.1 in MATLAB
(R2008, Natick, MA, USA: The MathWorks Inc.) with GLPK as the linear program-
ming solver.

2.1.5. The Biomechanics Simulator

The Biomechanics Simulator (BMS) aims to predict the mechanical impact of a growing
tumor, its so-called “mass-effect”. Rapid cell division and increase of the number of cells
in a tissue segment gives rise to mechanical forces that lead to volumetric growth. This
tumor-induced strain results in mechanical stresses in the tumor and the surrounding
healthy tissue.

Such tumor-induced biomechanical forces shape the tumor environment and are
known to affect tumor growth and evolution [36,37], for example by reducing blood
perfusion through compression of intratumoral vessels [38]. For certain tumor locations,
such as the brain, mass effect is also of direct clinical importance.
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BMS is designed to model a tumor’s mass effect and the resulting mechanical stress
distribution on macroscopic length scales, i.e., the tissue level. First, tumor-induced strains
are computed as spatially varying volumetric growth factor ϵgrowth(x), where x indicates
the location in space, based on volumetric considerations and the ratio of local tumor cell
concentration to a reference concentration c0. Incorporating these strains into a continuum
mechanics model of the tumor growth domain then allows the resulting stresses to be
computed. We have previously employed this approach for modeling the mechanical
stresses resulting from tumor growth [39–42].

In the CHIC hypermodeling framework, mechanical information is used to identify
the most likely growth direction of the tumor. Thus, the role of BMS is to compute tissue
stresses resulting from the current tumor cell distribution in each time step. From this
information, the direction for tumor growth and shrinkage are computed to inform the
redistribution of tumor cells in the next time step.

BMS relies on the Finite Element Method (FEM) to solve the linear-momentum equi-
librium equations with a particular mechanical material model and in a patient-specific
anatomy. Its usage involves a pre-processing step in which a personalized FE Model of
the patient-specific anatomy is created and parametrized, followed by iteratively coupled
execution with OS, as described in Section 2.2.3. A custom pre-processing pipeline has
been developed to automate the model configuration process, including the assignment
of material properties and boundary conditions from simple configuration options. In
combination with automatic segmentation tools, this pipeline permits rapid generation
of patient-specific FEM models for personalized simulations (Section 2.3.5). FEM model
and pre-processing pipeline are implemented using Open-Source libraries and software
packages (CGAL, VTK, FEBio).

2.2. Hypermodel Coupling Topology
2.2.1. Oncosimulator—Molecular Hypomodel

Cellular intrinsic sensitivity or resistance to treatment is a determinant of treatment
outcome. The cell kill rate (CKR), i.e., the fraction of tumor cells to be lethally hit by a given
therapeutic regimen is an input parameter of the Oncosimulator (Table 1) and it is explicitly
computed by the Molecular model based on the molecular profile (e.g., EGFR mutations,
miRNA expression data, etc.) of the patient.

Table 1. Model parameters of the Oncosimulator.

Symbol Description Units

Cell phase durations
Tc Cell cycle duration h

TG0
G0 (dormant phase) duration i.e., time interval before a dormant cell re-enters cell cycle or dies

through necrosis h

TA Time needed for both apoptosis to be completed and its products to be removed from the tumor h

TN
Time needed for both necrosis to be completed and its lysis products to be removed from

the tumor h

Cell category/phase transition rates and fractions

RA
Apoptosis rate of living stem and limp tumor cells, i.e., fraction of cells dying through apoptosis

per unit time h−1

RADiff Apoptosis rate of differentiated tumor cells h−1

RNDiff Necrosis rate of differentiated tumor cells h−1

Psym Fraction of stem cells that perform symmetric division -
Psleep Fraction of cells entering the G0 phase following mitosis -

PG0toG1 Fraction of dormant (stem and LIMP) cells that re-enter cell cycle -

Miscellaneous parameters
NLIMP Number of mitoses performed by LIMP cells before becoming differentiated -
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Table 1. Cont.

Symbol Description Units

Radiotherapy—chemotherapy parameters

CKR Cell kill rate: the numbers of biological cells lethally hit by treatment at each administration. In
case of chemo, it is defined separately for each drug. -

α/β alpha to beta ratio Gy
D Dose of radiation to a population of cells Gy

The unidirectional data flow between the Oncosimulator and the molecular model has
been implemented by a serial coupling topology, i.e., the component models are called and
executed sequentially. Within CHIC framework, the aforementioned coupling topology
is orchestrated via TAVERNA workflow management system [43] which passes CKR as a
command line argument to the Oncosimulator (Figure 2).
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2.2.2. Oncosimulator—Vasculature—Metabolic Hypomodels

The hyper-modelling scenario dictates an iterative, tightly-coupled communication
scheme between the Oncosimulator, Vasculature and Metabolic models (Figure 2).

As tumor grows, well-vascularized regions that provide ample nutrients to cancer
cells may coexist with nutrient-limited areas within the tumor mass. In this work, we
focus on glucose as the sole limiting resource, although oxygen and glutamine can also
be considered. The dependence of glucose uptake on glucose concentration is modeled
using Michaelis-Menten kinetics as illustrated in Equation (5). Here, C represents the
glucose concentration, Vmax corresponds to the maximum rate of the process (dependent on
factors like GLUT receptor concentration), and Km is the saturation constant indicating the
glucose concentration at which the uptake rate equals to Vmax/2. This implies that glucose
availability sets an upper limit on the glucose uptake rate. We further assume that Vbound
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reaches Vmax when the glucose concentration C reaches its maximum observed value in
tissues (Cmax= 0.9 kg m−3).

vbound = vmax
C

Km + C
, (5)

A relatively slow varying environment is assumed where cancer cells can operate
at optimal or near optimal growth rates constrained by the current nutrient availability.
The Oncosimulator computes and passes the initial and updated (during execution) tumor
domain geometry and population of proliferating, quiescent, terminally differentiated,
apoptotic, and necrotic tumor cells at each voxel of the grid (GC-geometrical cell) to
the vasculature model. The vasculature model solves the reaction-diffusion equation for
glucose transport at each GC, based on the current tumor geometry and cell composition
and outputs the normalized glucose field ( c

cn
at each GC) for use by the metabolic model.

The spatiotemporal-dependent inflow of glucose flux is constrained by the Michaelis–
Menten kinetics model and an instantaneous optimization problem is solved for each cell
position and time point by the metabolic model. During that time interval, the fluxes of the
metabolic model are assumed constant. The metabolic model, with the available glucose
concentration at every position in the computational grid, provides information regarding
the uptake fluxes (e.g., glucose), intake fluxes (e.g., lactate), and the local proliferation rate
of the tumor cells that reside within each GC. The latter is passed to the Oncosimulator to
update its state.

Considering that Oncosimulator does not have as an intrinsic parameter the prolifera-
tion rate of the tumor cells as modulated by local metabolism (see model parameters in
Table 1), a parameter transformation needs to take place. The local conditions of nutrient
supply, such as glucose concentration, primarily regulate the withdrawal of tumor cells
in a quiescent state, in an attempt by the tumor to sustain viability under conditions of
reduced nutrient supply [44]. Hence, a reasonable first approximation is to translate the
proliferation rate, a, of the cell population to the fraction of newborn cells entering quiescent
state, Psleep, within the population. The following formula has been considered:

Psleep =
1 − eaTc /2

1 − (P G0toG1/TG0)/(a + 1/ TG0)
, (6)

where TC is the cell cycle duration, TG0 is the residence time of tumor cells in a quiescent
state, and PG0toG1 is the fraction of quiescent cells re-entering the cell cycle. Equation (6)
has been derived from Equation (7) in [20] that describes the proliferation rate of a tumor
cell population with stem and progenitor cell hierarchy as regulated by the symmetric
divisions of stem cells, the spontaneous apoptosis, the withdrawal of cells in a quiescent
state following mitosis and the cycle entry of quiescent cells:

e(α+RA)TC =
(
1 + Psym

)(
1 − Psleep + Psleep

PG0toG1/TG0

RA + 1/TG0 + α

)
, (7)

where Psym is the fraction of stem cells that divide symmetrically and RA is the rate of
spontaneous apoptosis. As a first approximation, we consider that metabolism has no effect
on spontaneous apoptosis and symmetric divisions and, thereby, ignore stem hierarchy
and apoptosis by setting Psym = 1 and RA = 0. The described parameter transformation has
been implemented as intrinsic part of the Oncosimulator.

Furthermore, the proliferation rate, a, returned by the metabolic model is an upper
bound of the cell cycle (TC, max = ln(2)/α), and corresponds to the case that no newborn
cell withdraws to a quiescent state (Psleep = 0). For cell cycles longer than ln(2)/α, the Psleep
computed by (6) is negative and therefore biologically unrealistic.

The previously described cyclic coupling is implemented via MUSCLE platform [16].
The component models are called simultaneously and the data exchanges take place
dynamically, i.e., during the runtime of the component models. Data transfer is triggered
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by the Oncosimulator at every predefined time interval. All the component models run
until the Oncosimulation finishes executing. MUSCLE is triggered through TAVERNA.

2.2.3. Oncosimulator—Biomechanics Simulator

The hyper-modelling scenario dictates an iterative tightly-coupled communication scheme
between the Oncosimulator (OS) and the Biomechanics simulator (BMS) (Figures 2 and 3). The
dynamic coupling is implemented via MUSCLE as previously described. The Oncosimula-
tor computes cell proliferation in the case of free growth or cell loss in the case of treatment.
Starting from an initial spatial map of cancer cell concentrations, BMS receives an (updated)
tumor cell concentration map from OS in each time step. BMS and OS operate on distinct
domains (OS: tumor only; BMS: tumor and healthy tissue) and discretization (OS: regular
grid; BMS: unstructured mesh). Therefore, OS cell concentrations c(x) are first mapped into
the BMS simulation domain before spatial maps of local tumor-induced volumetric growth
ϵgrowth(x) can be computed. As the predicted mechanical stresses are intended to inform
the spatial redistribution of existing tumor cells, we define the “growth” strain relative to a
fixed maximum carrying capacity c0, below (above) which additional tumor cells may still
be accepted (will be rejected) in a region of interest:

ϵgrowth(x) =
(

c(x)
c0

) 1
3
− 1, (8)
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Figure 3. Data exchange and Computation in BMS-OS coupled execution. Arrows indicate the se-
quence of computational steps: (1) Updated cell concentration map from OS execution; (2–3) Transfer
of cell concentration maps from OS to BMS domain; (4) Computation of volumetric growth factor; (5–
6) Computation of growth-induced pressure and transfer from BMS to OS domain; (7) Computation
of direction of least-pressure in OS domain.

Tumor-induced strain assumes positive (negative) values when the local tumor cell
concentration exceeds (is less than) the maximum carrying capacity. From this strain map,
tumor-induced mechanical stresses σ(x) are computed using a linear-elastic material model
with tissue-specific mechanical parameters, Young’s modulus E and Poisson ratio υ. The
resulting pressure field p(x) = 1/3tr(σ(x)) is then mapped back from the unstructured
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grid of the BMS simulation domain into the regular grid of the OS where the “direction of
least-pressure” is computed as the normalized negative pressure gradient:

d(x) = − ∇p(x)
∥∇p(x)∥ , (9)

This information is returned to OS where it informs the movement and redistribution
of tumor cells. Both models and their joint application (not as separate components) have
been tested successfully for brain tumor simulation [39].

2.3. Tumor- and Patient-Specific Parameterization

The parameterization of component models accounts for the observed interpatient
variability for both NSCLC adenocarcinoma and Wilms tumor. By incorporating the
molecular information of a patient and by properly adjusting model parameters, a wide
range of genetic, anatomical, tumor growth, and tumor response profiles can be reproduced,
as described below per component model.

2.3.1. Molecular Hypomodel

Micro-RNAs, short non-coding RNAs that regulate gene expression post-transcriptionally,
play a critical role in various forms of cancer. Normalized tissue and serum miRNA expression
data of a patient are utilized to adjust the initial levels of the nodes of our networks. In
particular, we identify the 5–10 miRNA which are overexpressed in particular patient data.
Using miRTarBase [45], we are able to obtain the target proteins of these miRNA. The combined
molecular model is run with lower levels of activity or concentration for these target proteins,
determined based on the expression levels of miRNA with respect to control. For lung cancer,
the model additionally, incorporates the sequencing information by considering the mutational
status of EGFR, KRAS, BRAF, and AML/ALK. Hence, the final outcomes are tailored to the
particular expression profile of the patients to generate clinically useful outcomes.

For WT, nodes are constrained in a similar fashion, based on the drug interactions. In
total, we consider doxorubicin, vincristine, and actinomycin. For each type of chemothera-
peutic drug, there exists literature cell kill rates that are uniformly applied for all patients.
We aim to obtain an adjusted cell kill rate that takes into account patient-specific genetic
variation. To do this, we assume that the effect of the drug on cell survival follows a Poisson
distribution so that the fraction of cells killed (CKR) is given by CKR = 1 − e−kt where k is
a rate constant that is proportional to the cell kill probability. Using subscripts ‘lit’ and ‘adj’
for literature and adjusted cell kill rates we get CKRadj = 1− e−kadjt and CKRlit = 1− e−klitt.
Then the two CKRs are related through the following equation:

kadj

klit
=

ln
(

1 − CKRadj

)
ln(1 − CKRlit)

, (10)

The ratio
kadj
klit

is obtained from simulation for a patient and a control where the control
indicates no miRNA-based initialization of the model. For a combination of drugs, we
assume additivity of rate constants (probabilities) instead of additivities in cell kill rates
which is commonly used in literature.

The effect of radiation dosage is implemented through the linear-quadratic model
(LQ) [18]. Radiation dosage introduces DNA single and double-strand breaks, which
activate the p53-mediated DNA repair and apoptotic pathways. Due to the discrete nature
of our p53 mediated DNA damage model, we are only able to account for the dose-
independent part (the linear term involving α). Future versions will aim to account for the
dose-dependent part as well, which requires a more detailed model that takes into account
the various double-strand DNA repair mechanisms. In brief, the linear coefficient is used to
constrain the node that regulates the p53 activation in a radiation dose-dependent manner.
In particular, we activate the ATM kinase levels according to a probability exp(−aD). The
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survival calculated by the model is then modified by the quadratic term involving β. The
values of α and β are obtained from the literature.

Finally, the model is run based on the input miRNA and treatment and averages
over several tissue conditions such as growth factor levels and receptor expression. An
average as well as a distribution of cell growth, cell senescence and cell kill probabilities
are obtained for a given patient. The average cell kill probability is translated to cell kill
rate (i.e., fraction of cells killed) that is passed on to the multi-modeler framework.

2.3.2. Oncosimulator

The Oncosimulator accounts for the diverse proliferative behavior observed between
tumors based on the balance/interplay between active proliferation, reversible dormancy
and cell loss due to differentiation, apoptosis or nutrient/oxygen deprivation. However,
there is a lack of patient-specific data directly linked to the related model parameters. Some
experimental data may only suggest plausible value ranges. To overcome this limitation,
a parametrization methodology has been developed that fits/adapts model predictions
to macroscopic clinical proliferation features. We consider that a set of model parameter
values constitutes a virtual tumor. The parametrization methodology aims to derive a group
of virtual tumors that constitute solutions to the same adaptation problem and efficiently
cover the parameter space. These virtual tumors have common a predefined tumor- and
patient-specific proliferation profile but, in general, will differ in their treatment response
and long-term behavior. The parameter space can be efficiently covered by exploiting
computationally low-cost statistical sampling methods, such as Latin hypercube sampling
(LHS). If consistent results can be demonstrated for the considered set of virtual tumors (e.g.,
a clinically significant volume reduction in all cases when applying a specific schedule),
this result may be considered robust to the uncertainty in parameter values.

Herein, the proliferation profile of a tumor is described by: (a) the doubling time, Td, of
tumor volume, (b) the growth fraction (GF). To perform personalized predictions, Td can be
estimated based on the observed tumor volume increase between two successive imaging
examinations, e.g., MRI or CT scans, prior to treatment (S3 in [21]). GF can be determined
by immunohistochemistry for the Ki-67 antibody in biopsies or resected specimens. In the
case of the non-availability of personalized data, a literature survey can provide biologically
reasonable and tumor-specific reference values or value ranges.

Constraints related to other proliferation features of the virtual tumor, i.e., the fraction
of stem cells, and necrotic and apoptotic cells, are also imposed. Value ranges of these
critical features informed by clinical studies in the literature are utilized.

The parametrization methodology along with the mathematical derivations used to
link proliferation features with model parameters are presented in Appendix A. More
information can be found in [21,46].

2.3.3. Metabolic Hypomodel

It has been shown that aerobic glycolysis in NSCLC is promoted through oncogenic
mutations in two critical proteins, K-RAS and EGFR [47,48]. Ras-driven cancer cells display
increased glucose uptake and aerobic glycolysis that support both nucleotide biosynthesis
and protein glycosylation for growth signaling. However, it should be noted that high
heterogeneity in metabolism proteome has been observed (i) compared to normal lung
tissue, (ii) between lung subtypes and (iii) between primary and metastatic lung cancer.

In order to construct a tumor-specific metabolic model in a simplified manner, we
included constraints in the metabolic reactions of the model, which are associated with
bibliographically reported differentially expressed metabolic genes/proteins in these tu-
mors. mRNA levels cannot accurately determine enzyme concentrations as inaccuracies
in experiments, post-translational modifications, and other effects might occur. However,
they can determine an upper bound on the amount of available enzyme concentrations. In
particular, enzyme levels, Ei, bound the fluxes of the corresponding metabolic reactions vi
through vi = Kcati Ei, where Kcati corresponds to the enzyme’s turnover number. However,
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in the absence of quantitative information, metabolic reactions catalyzed by up-regulated
metabolic proteins/enzymes, are constrained to carry non-zero fluxes via a lower bound,
which is set equal to 0.1 umol/mgDW/h unless stated otherwise, for all the involved
reactions. Different bounds have also been tested. It is important to mention that the level
of flux bound substantially alters the metabolic capabilities of the cells. Downregulated
genes constrain the corresponding reactions via an upper bound, which is usually set equal
to zero unless stated otherwise. Parameter values are shown in Table 2.

Table 2. Assumed parameter values for the metabolic hypomodel for WT and NSCLC.

Symbol Description Unit Value Source

Cmax Maximum glucose concentration kg·m−3 0.9 [49]
Km Michaelis-Menten constant kg·m−3 0.2704 [49]
Cenz Total enzyme mass mg·(mgDW)−1 0.078 [10]

Lower metabolic flux bound for reactions
catalyzed by up-regulated genes umol·(mgDW)−1·h−1 0.1 [35]

Upper metabolic flux bound for reactions
catalyzed by down-regulated genes 0 This work

Glucose flux range umol·(mgDW)−1·h−1 [0, 1.2] [10]
Lactate secretion rate tolerance umol·(mgDW)−1·h−1 0.01 [35]

An extensive omics analysis [47] integrating DNA, RNA, and proteomics data from
normal lung, patient primary tumors, and primary tumor-derived xenograft tumors re-
vealed sets of proteins that are consistently up- or downregulated across tumors, recapitu-
lated in xenograft tumors and their associated genes map into regions of focal amplification
or deletion respectively. This DNA->RNA->protein association indicates a response to
selective pressure driving cancer phenotype. From the reported metabolism proteome
clusters in [47], we used specific clusters of proteins (Table 3) consistently upregulated in
LADC (cluster index: C15) and LSCC (cluster index: C10) to constrain the corresponding
metabolic fluxes of the genome-scale metabolic network. It is also important to mention
that individual proteome clusters have been correlated with overall survival in cancers
other than NSCLC.

Table 3. Specific metabolism proteome clusters upregulated in lung cancer as reported in [47].

Cluster ID Cluster Proteins (Gene Names) Excluded from Model

C10 ADSS, ATP2A2, CTPS1, IMPDH2, PKM2, PTGES3, SGPL1 SGPL1

C15 NAT10, NME2, OAT, PPAT, SHMT2, GART, PAICS, SRM,
UMPS, QARS, ABCE1, ABCF2, ACOT7 OAT, SHMT2

WT is believed to arise from the malignant transformation of renal stem cells that
abnormally persist after embryogenesis and maintain embryonic differentiation capacity.
Although there are a few studies that have shown metabolic alteration related to glycolytic
phenotype in WT, unfortunately, there are no thorough studies currently available, which
have investigated the metabolism of WT in detail. There is only indirect evidence from
the genes altered in WT that there are alterations in cell metabolism. Thus, in the absence
of bibliographic or other data, we use the generic cancer metabolic model to describe WT
metabolism, which can be supported by the fact that Wilms’ tumor cells are believed to
derive from pluripotent embryonic renal precursor cells.

Figure 4 summarizes the output variables for different glucose concentrations and
different phenotypes. Although the glucose uptake rates (Figure 4c) are very similar
among the different phenotypes, their proliferation time (Figure 4a), as well as the lactate
production (Figure 4b), are substantially different for the different concentrations of glucose.
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2.3.4. Vasculature Hypomodel

Although the model has a physical basis, determination and physical interpretation of
parameter values (D, λ, ρ, V, cn) is challenging. In practice, these parameters should be
treated in a phenomenological manner and used in fitting model predictions to observed
clinical tumor growth (or shrinkage) rates. Discrimination of the relative influence of deliv-
ery by the vasculature and consumption by cells may be aided by additional observations
of tumor micro-vessel density and vascular function through functional imaging or cell
numbers by functional imaging. However, this has not been performed to date.

In order to obtain reasonable estimates for these parameters for model evaluation,
literature values based on observations in tumor spheroids are adopted [50]. Within the
hypermodeling framework, dependent components use glucose concentrations to predict
cell proliferation rates in the tumor. Although the mechanism of glucose consumption by
cells also depends on oxygen availability [50], to preserve the simplicity of the model it is
assumed that the diffusing nutrient is glucose and glucose consumption is independent of
oxygen concentration. Parameter values are shown in Table 4.

Table 4. Assumed parameter values for the vasculature hypomodel for WT and NSCLC.

Symbol Description Unit Value Source

D Glucose Diffusivity mm2·h−1 0.396 [50]
λ Glucose Consumption Rate (Num cells)−1·h−1 7.6 × 10−10 Modified from [50]

cn
Glucose Concentration in

Non Tumor Regions kg·m3 0.9 Value used in metabolic
hypomodel

ρV Vascular Delivery Efficiency h−1 0.25 User chosen/fit to data

2.3.5. Biomechanics Simulator

The mechanical response evoked by a growing tumor depends on its mechanical
growth environment, which is defined by the surrounding healthy tissues, the tumor’s
shape, and location, as well as mechanical constraints. The BMS simulator component
supports two levels of parameterization to represent (1) different simulation scenarios, such
as tumors growing at different body sites, and (2) the patient-specific geometry in any of
these scenarios.

In each tumor-growth scenario, we identify those tissues that are expected to make a
distinct contribution to the tumor’s mechanical landscape, either because of their imme-
diate vicinity to the developing tumor or because of their distinctly different mechanical
properties. Average bulk values are assumed for other tissues. As mechanical boundary
conditions, we assume the movement of nodes on the outer surface of the BMS simulation
domain to be fully constrained. In both hypermodeling scenarios, the BMS simulation do-



J. Pers. Med. 2024, 14, 475 16 of 37

mains are chosen to be significantly larger than the actual tumor growth domain (provided
by OS). Scenario-specific tissue types and mechanical properties are listed in Table 5 for the
WT and the NSCLC scenarios.

Table 5. Tissues and mechanical tissue parameters for WT and NSCLC scenarios.

Tissue Type E [Pa] Poisson Ratio

WT scenario
Healthy kidney 5.3 × 103 0.40

Bone 1.0 × 109 0.30
Other tissues 5.0 × 103 0.40

Tumor 20.0 × 103 0.40

NSCLC scenario
Lung tissue 5.0 × 103 0.40

Bone 1.0 × 109 0.30
Other tissues 5.0 × 103 0.40
Inner organs 5.0 × 103 0.40

Bronchi 5.0 × 103 0.40
Tumor 10.0 × 103 0.40

While material parameters and boundary conditions are assumed identical across
patients within a simulation scenario, differences in patient anatomy are accounted for
by solving the equations of continuum elasticity on a patient-specific domain. These
personalized computational models are created by first segmenting the region and tissues
from clinical imaging of each patient. From the segmentations of each patient’s anatomy,
tetrahedral meshes are generated using an in-house C++ tool based on open-source libraries.
Figures 5 and 6 illustrate patient-specific BMS simulation domains for one exemplary
patient of the WT and NSCLC scenario, respectively.
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3. Results
3.1. Assessing Personalized Predictions for NSCLC Adenocarcinoma: A Proof of Concept Study

A 63-year-old female patient with a past history of lung cancer is considered in the
present study. The patient was followed up and treated at the Institute of Pathology of
the University Hospital of Saarland. The study involves the progression and response to
radiation treatment of a cancer recurrence that the patient developed.

Treatment schedule considered: The patient received external radiation of the right
upper lobe. Four fractions of 15 Gy were given, once a day, three days/week. The radiation
schedule considered is detailed in Appendix C.

Patient-specific data: Histological examination of the resected primary section revealed
NSCLC adenocarcinoma of stage IB disease (pT2aN0M0) (TNM Classification of Malignant
Tumors, 7th ed.) with acinar growth patterns (grade II). The proliferative index determined
by Ki-67 labeling was 23%. Mutation analysis revealed the presence of the KRAS mutation
Gly12Cys, but no EGFR, BRAF, ALK or ROS-1 alterations. Furthermore, tumor and normal
lung tissue samples were analysed for the expression levels of 2549 miRNAs. Values are
considered in the present study using quantile normalization [51].

Approximately three years after surgery, successive CT scans show the appearance
and progression of a recurrence. Two CT imaging sets of the recurrent cancer acquired three
months and one week before the onset of radiotherapy are available for study purposes.
A follow-up with a CT scan one year after irradiation revealed no tumor presence in the
treated area.

Due to the non-availability of biopsy-related data, as a first approximation, the mu-
tation data, miRNA expression values, and the Ki-67 proliferation index of the recurrent
cancer are considered the same as the ones of the primary tumor (time point T0). The hyper-
model also considers the applied radiotherapeutic scheme (dose, radiation instants), and
the 3D image of the tumor as reconstructed from the segmented CT imaging data. In the
absence of volumetric data that allow the delineation of any tumor metabolic subregions,
segmentation has been restricted to the boundary of the tumor. Hence, the virtual tumor is
assumed homogeneous with a shape compliant to the reconstructed tumor image.

Predicted cell kill rate: The predicted cell kill rate from the molecular model was
compared with that obtained from the empirical LQ model (Table 6). We observe that
the predicted cell kill rates converge at higher radiation dosages but molecular model
predictions are lower compared to the LQ model at lower dosage fractions. The results
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obtained from the molecular model are averages over various growth factor and time scale
considerations taking into consideration the molecular profile of the patient.

Table 6. Cell kill rate (i.e., fraction of cells killed) averaged over various growth factor concen-
trations and cell cycle times as obtained from the molecular model compared with the results
obtained from the LQ model. Typical radiosensitivity parameters are considered to be α = 0.35 Gy−1,
β = 0.035 Gy−2 [52]. Values are rounded at the 3rd decimal place.

Dose per Fraction (Gy) Cell Kill Rate Based on LQ Modified Cell Kill Rate

5 0.928 0.433
10 0.999 0.712
15 1.000 0.905
20 1.000 0.979

Predicted treatment outcome: The clinical questions addressed by the hypermodel
concern the prediction of tumor recurrence and in the case of recurrence, to predict the vol-
ume of the tumor one year following the completion of tumor irradiation. The progression
‘phase’ of the recurrent tumor before irradiation is used to adapt the Lung Oncosimulator.
More specifically, a group of virtual tumors that constitute solutions to the same adaptation
problem and efficiently cover the parameter space are derived. The following proliferation
constraints/assumptions have been exploited: (a) the virtual tumor implementations must
have a growth fraction (GF) equal to the proliferation index (Ki-67) of the patient (=0.23),
(b) the volume doubling time must be around 370 days and (c) the population composition
should be within the value ranges reported in Table 7. Furthermore, the ranges of the model
parameters considered are given in Table 7. The doubling time has been estimated based
on the observed volume increase between the two available volumetric data before the radi-
ation therapy. In the second step, the Oncosimulator is run to simulate tumor progression
and treatment response and predict recurrence and tumor volume after irradiation.

Table 7. Assumed parameter values of the Oncosimulator and tumor characteristics for NSCLC.

Parameter Value Range Reference(s)

Tc (h) 20–134 [53,54], the upper limit is constrained by the proliferation rate computed by
the metabolic hypomodel

TG0 (h) 96–240 [55]
TN (h) 1–100 [56,57], estimation based on the extent of necrosis reported in the literature
TA (h) 1–25 [58–60]
NLIMP 13–24 estimation based on frequency of tumor-initiating cells reported in literature

RA (h−1) 0–0.001 estimation
RADiff (h−1) 0.0001–0.02 extension of [61–64]
RNDiff (h−1) - estimated per virtual tumor based on patient’s data (GF)

PG0toG1 0–0.2

Psleep - estimated per virtual tumor based on the cell proliferation rate computed by
the metabolic hypomodel

Psym <0.3 [65,66], estimated per virtual tumor based on patient’s data (Td)

CKR Study 1, 3: 0.905
Study 2: 0.712

estimated by molecular hypomodel based on patient’s miRNA and mutation
data

α/ β 4–10 [67]
Cell proliferation rate 70 h computed by metabolic model

Stem/living 0.00001–0.00025 [68]
GF 23% Patient’s data: Ki-67

Td 370 days patient’s data: tumor volumetric increase between two successive imaging
data prior therapy

Necrotic/Total <30% based on [69,70]
Apoptotic/Total <5% [71]
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LHS has been run to generate 200 combinations of parameter values that fulfill the
above requirements, following the methodology described in Section 2.3.2. Combinations
that result in biologically non-relevant tumors e.g., negative cell class transition rates Psleep
and RNDiff, or in tumors with non-relevant proliferation dynamics e.g., stem cell fractions
out of range, are excluded.

The first clinical question is addressed by computing the tumor control probability
(TCP), which is the probability that no clonogens survive after treatment [72]. We have
adopted the Poisson model of TCP, which is considered a good approximation when the
surviving fraction is <<1 [72,73], as in our clinical case: TCP = exp(−N), where N is the
average number of surviving clonogens or cancer stem cells (CSCs) at the end of treatment.
In our case, N is derived based on the execution of the hypermodel. In particular, because
the Oncosimulator explicitly models the proliferation and treatment-induced death of CSCs,
the number of CSCs that remains at the end of the radiation treatment can be computed for
each virtual tumor. The number of remaining CSCs depends on their initial number. The
latter is determined based on initial tumor volume, assumed tumor cell density (106/mm3)
and the value of OS input parameters related to the kinetics of CSCs. Proper adjustment of
the considered value ranges ensures that the fraction of CSCs is within the range of TIC
(tumor-initiating cells) frequency reported in the literature (Table 7) for the majority of the
virtual tumors returned by the LHS. Virtual tumors having an initial frequency of cancer
stem cells beyond this range are excluded from the analysis.

Three scenarios are demonstrated here. In all scenarios, the cell kill rate of cells in all
phases is considered equal to the estimation of the molecular component for the specific
patient and the radiation dose considered. Moreover, the withdrawal of cells in a quiescent
phase, as a means to adapt to the local nutrient (glucose) conditions, is regulated by the
vasculature and metabolic components. A sufficient average vessel density and glucose
consumption rate are considered because the presence or extent of necrosis, which is
associated with the local disappearance of blood vessels, is usually low in this histological
type [69,70]. The first scenario considers the dose that was actually administered (15 Gy),
while the second scenario corresponds to a lower radiation dose (10 Gy). In the third
scenario, radiation therapy is given one month earlier.

Figure 7 displays the box and whisker plots of the estimated TCP and the predicted
tumor volume one year following radiotherapy for the three clinical scenarios. In the
first scenario that exploits all available imaging, treatment, and molecular data, a TCP
close to zero is estimated (median TCP: 4 × 10−12, IQR: 2 × 10−22–7 × 10−5), suggesting
that the tumor will recur. The volume of the predicted lesion is approximately 0.91 mm3

(median: 0.908, IQR: 0.909–0.912) at the time point of the final CT acquisition. The pre-
dicted volume size is below the detection limit [74] for all virtual tumors implemented.
Administration of a lower dose per radiotherapy session (scenario 2) would result again in
no local control (TCP: 0), while the predicted tumor size is much larger (median: 78 mm3,
IQR: 77–79 mm3). If radiotherapy would be given one month earlier (scenario 3), TCP
would not improve (median: 7 × 10−12, IQR: 7 × 10−20–9 × 10−6).
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Summarizing, the hypermodel predicts (scenario 1) a tumor of an equivalent diameter
of approximately 0.97 mm i.e., a tumor not easily detected. Based on patient data no
visible tumor exists one year after irradiation. Even though hypermodel predictions seem
consistent with reality, follow-up data beyond this period would be needed to properly
validate the hypermodel, for the specific clinical case.

3.2. Clinical Adaptation and Partial Validation of the Hypermodel: A Proof of Principle Study for
Wilms Tumor

Two clinical cases of Wilms tumor have been selected for the present study. The
patients were diagnosed and treated at the Department of Pediatric Oncology and Hematol-
ogy of the University Hospital of Saarland. The study involved the response to combination
chemotherapy.

Treatment schedules considered: Both patients received preoperative chemotherapy
with a 4-week regimen of vincristine (1.5 mg/m2, maximum 2 mg) and actinomycin
D (45 mg/kg IV, maximum 2 mg) according to the SIOP 2001/GPOH clinical trial for
unilateral stage I-III nephroblastoma tumors. (Appendix C). For Case 1, only a schedule
was available. Dosage was assumed based on other patients.

Patient-specific data: Because of the fragile nature of Wilms tumor, no biopsy is
performed in clinical practice and the diagnosis is always made after the surgery. For the
cases considered, the histological reports of the resected tumors were not available.

The hypermodel considers the normalized serum miRNA data, the applied chemother-
apeutic scheme (dose, administration times), and the 3D image of the tumor as recon-
structed from the segmented MRI imaging data. Two MRI imaging sets of the tumor
acquired before and after chemotherapy are available for the study purposes. Because
of the lack of macroscopically distinct tumor subregions, the virtual tumor is assumed
homogeneous with a shape compliant to the reconstructed tumor image.

Predicted cell kill rate: The cell kill rates predicted by the molecular model based on
the normalized miRNA data are depicted in Table 8. Molecular data model a moderate
response to combined chemotherapy for Case 2, while a high CKR is computed for Case 1.

Table 8. Cell kill rate (CKR) (i.e., fraction of cells killed) averaged over various growth factor
concentrations and cell cycle times and adjusted to patient-specific genetic variation. Typical CKRs
are considered to be CKRVincristine = 0.28, CKRActinomycin = 0.4, CKRcombo = 0.568 (Calculated following
methodology in supplement S3 from [14] based on data from [75,76]. Values are rounded at the 3rd
decimal place.

Vincristine (mg/m2) Actinomycin (ug/kg) Cell-Death-Mean Propability CKR Adjusted

Case 1
0 0 0.179 -
1 650 0.527 0.916

Case 2
0.83 0 0.112 0.28
0.83 540 0.149 0.673

Assessment of proliferation profile: The hypermodel is applied to estimate the prolifer-
ation profile of the examined clinical cases. The following tumor-proliferation features have
been considered based on the literature: a. volume doubling time: Td = 11 days, 25 days,
40 days, b. growth fraction: GF = 10%, 25%, 50% and c. cell proliferation times = 13.1 h,
20 h, 50 h corresponding to high, moderate, and very low glucose concentration (Figure 4a),
leading to 27 proliferation profiles i.e., pairs of (Td, GF, cell proliferation time). The value
range of the input parameters is reported in Table 9. Only parameters related to free
growth are varied. Cell-kill rates are fixed to the patient-specific estimates from the molec-
ular model (Table 8). LHS has been run to generate 60 virtual tumors (combinations of
parameter values) for each pair of (Td, GF, cell proliferation time). Combinations that
result in negative cell class transition rates, namely negative Psleep and RADiff, are excluded.
For each virtual tumor, the Oncosimulator simulates the therapeutic plan of each clinical
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case (Appendix C) and the treatment-induced volume reduction is predicted. The real
chemotherapy-induced shrinkage of tumor volume is compared against the predicted
volume reduction to determine the proliferation profiles that are compatible with each
clinical case.

Table 9. Assumed parameter values for the Oncosimulator for the WT.

Parameter Value Range Reference(s)

Tc (h) 11–50 [75,77,78], constrained by the output of metabolic hypomodel
TG0 (h) 96–240 [55]
TN (h) 1–200 [56,57], estimation based on extent of necrosis in resected tumors reported in literature
TA (h) 1–25 [58–60]
NLIMP 13–24 Estimation based on frequency of tumor-initiating cells reported in literature

RA (h−1) 0–0.001 -
RADiff (h−1) 0–0.02 -
RNDiff (h−1) - estimated per virtual tumor based on patient’s data (GF)

PG0toG1 0–0.2

Psleep - estimated per-virtual tumor based on the cell proliferation rate computed by the
metabolic hypomodel

Psym - [65,66], estimated per virtual tumor based on patient’s data (Td)
CKR - Estimated by molecular hypomodel based on patient’s miRNA
GF 0–80% [79–81]
Td 11–40 days [82,83]

Necrotic/Total 0–100% [84]

The boxplot of the predicted volume reductions for each combination of Td, GF, and
cell proliferation time is depicted in Figure 8. The tumor volume doubling times cover the
entire value range reported in the literature. The growth fractions chosen approximately
correspond to median values for different histological types of WT [79,80]. The results
clearly demonstrate the potential of the integrative hypermodel to predict tumor shrink-
age following proper adaptation. In both cases, there are proliferation profiles that are
consistent with the observed tumor behavior. For case 1 most virtual tumors suggest a
high tumor shrinkage. In case 2 proliferation profiles not consistent with the observed
behavior are evident. It is noted that for the specific predictions, the only personalized
data utilized that could affect the predicted outcome were the serum miRNA expression
data. They were used by the molecular model to assess chemosensitivity. The rest of the
hypomodels utilized cancer-specific knowledge. The results demonstrate that the increased
chemosensitivity of case 1 was successfully captured. Studies of this type can be used to
link proliferation activity with response taking into consideration the sensitivity profile of
the patient to therapy.

3.3. Assessing Evolution of Tumor Shape and Position

Available clinical medical images at two time points (t1, t2) were registered using
a rigid registration procedure in order to establish a common spatial reference frame,
facilitating comparison and analysis. Then, the position of the center-of-mass (COM) was
computed for both images at the initial time point (t1), the second time point (t2), and at
the various simulation timesteps ts,i between t1 and t2. The spatial agreement between the
simulation and reality is assessed by measuring the distance between the tumor center-of-
mass positions of the simulated tumor at each simulation time step ts,i and the center of
mass at the final imaging time point (t2). This distance metric serves as a measure of how
well the simulation aligns with the actual imaging data.
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Figure 8. Box-and-whisker plots of the predicted volume reductions at the time of 2nd image acquisi-
tion for two WT patients. Black dashed line corresponds to real volume reduction. 9 proliferation
profiles, i.e., combinations of (Td, GF), and 3 cell proliferation times have been considered. Based
on metabolic model the cell proliferation time of WT cancer cells can vary between approximately
13 and 50 h depending on glucose concentration (Figure 4a). Panels (a,d) correspond to an adequate
glucose concentration and a low cell proliferation time = 13 h. Panels (b,e) correspond to a moderate
glucose concentration and a cell proliferation time = 30 h. Panels (c,f) correspond to a low glucose
concentration and a cell proliferation time = 50 h.

This assessment strategy was applied to the results of the fully integrated WT and
NSCLC hypermodels. Figure 9 illustrates the 3D shape and position of the simulated tumor
in comparison to the actually observed tumor. For the lung scenario medical clinical images
at the time of diagnosis (t1) and after three months of free growth (t2) were acquired. For
the WT scenarios, medical imaging was acquired at the time of diagnosis (t1) and after
the completion of the administered chemotherapy scheme (t2). During the simulation
period, tumor volume increases in the NSCLC scenario and decreases in the WT scenario.
The simulated free-growing tumor in the NSCLC scenario maintains a compact shape, in
agreement with observation. Its simulated and observed positions at the second imaging
time point are approximately 2 cm apart. Likewise, the COM distance remains in the range
of about 2 cm for the two selected WT cases. Visual comparison of tumor shape shows
that the simulated tumor does not shrink isotropically to a compact bulk tumor with a
smaller radius as expected from the segmentations of the second imaging time points.
Instead, the tumors appear to dissolve from one side, forming a porous and partially
disconnected structure.
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Figure 9. Visual comparison of shape and position between simulated (red) and observed (blue)
tumors at the respective second imaging time point (t2). In the NSCLC scenario, during the simulation
period (Days 1–98), the tumor volume increases (simulation of free growth before start of irradiation).
In the WT scenarios, the tumors decrease (simulation of tumor response to chemotherapy) during the
simulation periods (Case 2: Days 0–28; Case 3: Days 0–41).

4. Discussion

The presented multi-scale hypermodeling framework combines subcellular processes
related to cell proliferation and cellular response to therapeutic agents, as well as macro-
scopic processes such as biomechanical interaction between healthy tissue and tumor. Two
cancer types, Wilms tumor and non-small cell lung cancer, were addressed, considering
chemotherapy and radiation therapy as treatment modalities. The application of this
framework aimed to address different clinical questions related to tumor shrinkage after
neoadjuvant therapy and tumor recurrence.

The selection of cancer types and clinical scenarios is based on their capacity to map
and tackle issues related to the response to preoperative therapy or recurrence following
non-surgical treatment. Roughly 7% of malignant pediatric tumors are renal tumors,
with nephroblastoma or Wilms tumors (WT) accounting for approximately 90% of these
cases [85]. The WT is ideal for the construction and validation of the spatiotemporal
hypermodel due to the consistent administration of chemotherapy before surgery in all
pediatric patients, coupled with regular monitoring utilizing 3D imaging modalities both
pre- and post-chemotherapy. However, around 10–20% of patients do not respond to pre-
operative chemotherapy [86,87]. For these patients, primary surgery would be beneficial.
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Therefore, a primary clinical question that the hypermodel could answer is the following:
Will a given nephroblastoma in a patient respond to pre-operative chemotherapy by tumor
shrinkage, yes or no? Moreover, accurate prediction of tumor localization after chemo is
relevant for surgical planning, particularly in procedures like nephron-sparing surgery.
Knowledge of vascular pathways and potential adherence to other organs like liver, spleen,
pancreas and colon is vital for optimizing patient outcomes and minimizing risks. Finally,
multiparametric analyses [14,19], as well as the proof-of-concept studies presented in the
present work (Section 3.2), reveal that the tumor shrinkage after chemotherapy is not only
influenced by the sensitivity of tumor cells to the drugs administrated but depends largely
on the proliferation profile of the tumor. The histology and proliferation index of WT
at the time of diagnosis is unknown because no biopsy takes place. An indirect way of
determining them would be of paramount importance in order for the clinician to judge
whether or not a particular patient would benefit from chemotherapy. miRNA pattern
from serum and blood at the time of diagnosis may be used as a surrogate indicator of
the actual cell type composition of the tumor and its proliferation characteristics. Machine
learning can be recruited to link the in vivo proliferation estimates, as attempted in the
present work, with the serum miRNA profiling of a patient. The proliferation estimates in
the present work were provided based on the chemo-induced tumor shrinkage measured
from medical images, considering the sensitivity profile of the patient to therapy according
to the output of the molecular model.

Lung cancer ranks as the second most prevalent form of cancer globally and the
primary contributor to cancer-related death [88]. Overall, the 5-year survival rate is low,
amounting to approximately 20% [89]. The poor survival is attributed to resistance to
treatment and local or distant relapses. In the case of radiotherapy, the major treatment of
NSCLC, hypoxia due to disorganized vasculature, cancer stem cells and mutational status
(e.g., EGRF, KRAS, etc.) are believed to be among the key factors in resistance [90]. The
management of local recurrences also remains challenging [91,92]. It may involve radio-
therapy re-treatment using conventional or advanced techniques (i.e., intensity modulated
radiation therapy, stereotactic body radiation therapy, proton beam therapy), chemotherapy,
targeted therapy, or surgery, depending on the stage and previous treatment. Re-irradiation
poses risks of severe toxicity for previously irradiated critical organs and consensus on
the optimal re-irradiation dose is lacking [91,93]. Moreover, the efficacy of combining
re-irradiation with systemic treatments, like chemotherapy, and the ideal delivery sequence
(concurrent or sequential) remain uncertain [93]. The hypermodel serves as a powerful tool
for the analysis of the combined effect of signaling networks, particularly those implicated
in treatment resistance, alongside other resistance mechanisms. Furthermore, it has the
capability to address clinical questions related to the management of inoperable primary
tumors or recurrences. The hypermodel plays a crucial role in evaluating tumor control
probability by assessing surviving clonogens under different treatment approaches, aiding
in the selection of the most suitable strategy to prolong survival. Early detection of recur-
rences is vital for better clinical prognosis [94], especially in lung cases where radiological
assessments alone may not adequately discern small lesions, such as those up to 3 mm in
size. These limitations of imaging modalities in detecting such lesions emphasize the need
to integrate approaches for accurate lesion characterization and timely differentiation be-
tween tumors and other conditions, such as infections, scars or post-treatment changes. In
instances where local recurrence is anticipated, the hypermodel can assess when the tumor
is expected to become clinically detectable, facilitating more effective patient follow-up.

The results are relevant to the specific cancer types. However, the methodology itself
can be adapted, and, more importantly, the models can be adapted and trained to additional
cancer types and clinical questions, leading to further reusability and extensibility of the
overall framework.

Finally, traditional therapeutic advancements in clinical settings predominantly rely
on randomized clinical trials, which aim to identify favorable treatment outcomes on
average. However, patient responses to therapies often vary significantly from this average
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behavior. Integrated approaches like the ones presented here can be of great clinical
value in determining drug effectiveness, dosage, and duration, as well as investigating the
development of resistance to drugs and the effect of intra- and inter-tumoral heterogeneity.
Multiscale cancer modeling holds promise in elucidating why certain treatments fail while
others effectively control tumor progression, as well as why a specific therapy is effective
only in a subset of patients. Eventually, by training the model using individual patient data,
a more precise depiction of disease progression kinetics can be attained.

At the molecular level, the p53-mediated signaling pathways are particularly impor-
tant in determining tumor cell response to DNA damage chemotherapeutic drugs like
doxorubicin and vincristine as well as radiation therapy [95]. In the present work, we
presented an integrated molecular model to model key cell signaling pathways operating at
different time scales—a well-recognized challenge in the field. We model the p53-mediated
DNA damage-response pathway, and we refine its predictions by running a model of
the ErbB receptor-mediated Ras-MAPK and PI3K/AKT pathways. Information is passed
across the identified interfaces in both directions. In order to consider the effect of patient-
specific molecular profiling, we have also incorporated the miRNA expression and various
mutation data to renormalize the initial expression levels of corresponding mRNAs to
a particular patient. In doing so, we have also taken into account the heterogeneity of
the microenvironment and have adopted an ensemble of models approach by averaging
over multiple conditions of receptor expression, growth factor availability, and the nature
of the memory coupling signaling and transcriptional modules. The aim is to provide a
mechanistic foundation to the more empirical models to obtain patient-specific cell kill
rates under particular dosage conditions.

The obtained cell kill rate was directly incorporated as an input to the Oncosimulator.
The Oncosimulator serves as an integrator, effectively bridging scales and facilitating the
“exposure” of molecular mechanisms to the scale where the outcome is formulated. The
Oncosimulator is built based on the cancer stem cell hypothesis and accounts for tumor
repopulation during and after treatment assuming different tumor proliferation dynamics
and varying degrees of adaptation to nutrient-deprived conditions. As the tumor grows
well-vascularized regions providing sufficient nutrients to cancer cells can coexist with
nutrient-limited regions within the tumor mass. In this work, glucose is assumed to be the
only limiting resource, although oxygen can also be incorporated as well as glutamine. The
metabolic component models the dependence of glucose uptake on glucose concentration,
using Michaelis–Menten kinetics at the genome scale. The model encapsulates the metabolic
adaptations exhibited by highly proliferating human cancer cells and provides information
to the Oncosimulator regarding the cell proliferation rate given the available glucose. The
model is developed by utilizing Recon1, the first human Genome-Scale Metabolic Model
(GSMM) and constraining certain metabolic fluxes in a simplified manner. Simulations
suggest that the model adequately mirrors the glycolytic phenotype, showing increased
growth rates, elevated lactate production, and a decline in growth yield with escalating
glucose concentrations. The predicted cellular growth rates align with the characteristics
observed in the studied cancer types. Moving forward, we aim to further refine the model
through advancing algorithms for generating GSMMs specific to cancer cell lines and
tumors. Additionally, we plan to develop patient-specific metabolic models by conducting
transcriptomic profiles of biospecimens at tissue and cellular resolution and performing
in vitro experiments utilizing patient-derived cancer cells. For such in vitro experiments, it
is necessary to define a more physiologically relevant environment, including nutrients
such as BCAAs, fatty acids, and glucose, to better mimic human blood and the tumor
metabolic microenvironment. Through these efforts, we aim to enhance the predictive
capacity of our models, rendering them more reflective of the intricate patient-specific
metabolic landscape of cancer.

The local concentration of glucose is described by the vasculature model. A simple
vasculature model was constructed as the first to be used in the development, verification,
and validation of the WT and NSCLC multi-modeler hypermodels. More detailed models,
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as described subsequently, can be readily incorporated into the framework if justified by
available clinical data. First of all, several ‘nutrient’ fields can be considered such as oxygen
and glutamine. In reality, when used to model glucose transport, oxygen availability should
also be accounted for, as per [50]. Another aspect is that the metabolic hypomodel uses an
independent model of glucose consumption. In theory, the rate of glucose consumption
from the metabolic model could be passed back to the vasculature component and used
to update glucose concentrations. Moreover, the vasculature is assumed to be ‘static’ in
the current model, in that it does not evolve in time. If justified by available data temporal
evolution of the vasculature can be easily included. In addition to the tissue-scale transport
model used in the clinical demonstrators, a range of more spatially resolved models of
transport in tumor micro-vessels have been developed using Chaste [26]. These models
can be used to inform the hypomodel used in the present work.

The hypermodel is found to reproduce realistic tumor shapes in growth scenarios
(Lung), whereas shrinkage scenarios (Nephroblastoma (WT)) tend to result in tumor shapes
that have a more ‘diffuse’ appearance than those observed. The hypermodel achieved a
good prediction of tumor position in the simulated cases. The following limitations may
explain the observed discrepancies and could be the subject of future research. A critical
issue for the Biomechanics Simulator is the uncertainty in mechanical tissue parameters
(not patient-specific) and the lack of well-defined boundary conditions for mechanical
computations that are particularly difficult to establish for the WT and Lung scenarios.
Furthermore, the evaluation relies on image registration techniques to compare simulation
results to imaging data at a later time point. This process introduces an uncertainty in
the relative positioning of the tumors. To reduce the importance of this uncertainty in
future studies, the use of fixed anatomical markers as reference within the respective
imaging frame could be investigated. Another limitation is related to the complexity of the
coupling between OS and BMS. Mapping of the pressure (direction of least-pressure) field
computed by BMS into the discrete model of OS is challenging, as is the update of BMS
with OS cell concentration values. Accuracy in both steps is affected by interpolation. Mesh
creation from image segmentation and mapping of 3D parameter distributions between
domains are commonly used in Finite Element or Finite Difference-based simulations.
These “convenience functions” are crucial for functioning simulator components. We
believe that each of these functionalities could be well encapsulated in a standalone hypo-
model in the future. This would not only greatly facilitate the creation of new personalized
FEM models and the parameter exchange between other component simulators; it would
also ensure consistent handling of these critical simulation and communication aspects
across the platform. Finally, morphological changes in the healthy tissue also influence
tumor evolution. This aspect is not taken into account by the present hypermodels.

It is pointed out that the models proposed/developed originates from a rather macro-
scopic approach to tumor response to treatment as was adopted by classical radiobiology.
Several steps have been made in order to go deeper and deeper into microscopic mecha-
nisms. But due to the great complexity of cancer mechanisms up to now not all possible
factors have been considered such as the microenvironment or the immune system, nev-
ertheless this can be done in a way pretty similar to the one adopted through the use
of hypomodels so far. That means that additional hypomodels each one representing
a not yet addressed factor of phenomenon can be developed and linked to the core of
the oncosimulator.

Before using a hypermodel in clinical settings, it needs to be clinically validated to en-
sure that it is accurate and reliable. It should occur at the levels of both the hypomodels and
the hypermodel. Validation usually follows a 2-step approach, in which first the model has
to be calibrated to a specific patient using information from an early observation point, and
second, the model’s predictions about a later observation point are compared to the actual
disease evolution. For example, in the case of the BMS, the first step involves the creation
of a patient-specific simulation domain, while in the case of the oncosimulator, a cohort
of virtual tumors is created specific to the proliferation characteristics of patients’ tumors
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(e.g., Ki-67, etc.). The next step involves a forward simulation of the calibrated model to a
later time point and a comparison of the simulation results to the patient’s disease evolution,
e.g., in terms of tumor location and shape as presented in this manuscript or tumor volume
reduction. Approaches for recovering important parameters for biomechanically coupled
tumor growth models from single observation points have been investigated in [96]. Fur-
thermore, in vitro data and experiments can serve as valuable tools for the calibration and
preliminary validation of a hypomodel. For example, by conducting experiments in vitro
based on patient-derived cancer cells and testing against experimental data, cancer- and
patient-specific metabolic models can be built, as previously discussed.

The clinical validation of the hypermodel should initially be conducted using retrospec-
tive data from datasets distinct from those utilized for clinical adaptation and calibration.
These datasets may originate from the same or other clinical studies, the latter ensuring ro-
bustness and generalizability of the model’s performance. Following sufficient preliminary
clinical validation, the next step would be to conduct a prospective blinded clinical trial.
This trial aims to investigate whether utilizing the hypermodel’s predictions correlates with
improved treatment outcomes compared to standard approaches that do not incorporate
the hypermodel. For example, a hypermodel indicates whether a preoperative chemother-
apy scheme is better than primary surgery. One should look on tumor volume reduction
predicted by the hypermodel. If the hypermodel predicts a reduction, chemotherapy is
selected; if the hypermodel does not predict a reduction, go to primary surgery. In the
standard arm, all patients will receive preoperative chemotherapy. Comparing the results
between the two arms would reveal whether the model is beneficial for the outcome of
a patient. When utilizing retrospective data or for prospective trials consisting of one
standard arm, one could compare the reduction in tumor volume with the predicted re-
duction by the hypermodel as a validation means of the hypermodel. Currently, there
is an ongoing validation effort concerning nephroblastoma within the context of SIOP
(International Society of Paediatric Oncology) clinical protocols. A new infrastructure has
been established within the University Hospital of Saarland to facilitate the collection,
storage, retrieval, curation, and utilization of multiscale data generated during nephrob-
lastoma treatment. Additionally, this infrastructure is capable of executing the multiscale
mechanistic simulation models comprising the Nephroblastoma Oncosimulator directly
within the hospital environment.

The potential benefits of implementing a hypermodel in a clinical setting include
improved accuracy and efficiency in treatment selection and prognosis prediction, leading
to better patient outcomes and enhanced quality of care. Hypermodels can enable per-
sonalized medicine by tailoring treatments to individual patient characteristics, thereby
maximizing therapeutic efficacy and minimizing side effects, e.g., by avoiding ineffective
pre-surgery chemotherapeutic treatments for certain patients. Moreover, hypermodels can
also help healthcare providers optimize resource allocation, reduce healthcare costs, and
streamline workflows by automating repetitive tasks or providing decision support.

However, integrating a hypermodel in a clinical setting presents several challenges
related to the familiarization of clinical doctors with the new technologies necessary for the
exploitation of the hypermodels, data privacy, security, and integrity as well as increasing
computer power and memory.

Integrating the model into existing workflows without disrupting clinical operations or
overwhelming healthcare providers with additional information or tasks is important [97].
Seamless adoption and effective utilization may involve developing interfaces or APIs for
data exchange between the hypermodel and the clinical workflow software [97]. Resistance
to change among healthcare professionals, skepticism about the utility of the model, and
concerns about job displacement due to automation are common barriers to successful
implementation. Ensuring the hypermodel’s reliability is of outmost importance for clin-
icians to accept it, as incorrect clinical decisions based on inaccurate predictions could
potentially harm the patients. Training healthcare professionals on how to use the hyper-
model is crucial for successful integration. Providing user-friendly interfaces and clear
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guidelines for incorporating the hypermodel’s predictions into clinical decision-making
processes can facilitate adoption among clinicians. The following example can serve as
a model for a generalized guide for the integration of hypermodels into existing clinical
workflows. In the case of nephroblastoma, there are two initial treatment approach options.
To either proceed to the neoadjuvant chemotherapeutic treatment and then proceed to
the surgical excision of the tumor, or to start with the surgical excision of the tumor and
administer chemotherapy afterwards. A relevant hypermodel could predict whether or
not the shrinkage of the tumor due to neoadjuvant chemotherapy would be greater than a
minimal clinically acceptable threshold (e.g., 30% reduction in the sum of lesion diameters
based on imaging studies [98]). In such a case neoadjuvant chemotherapy is applied. This
will lead to a considerable shrinkage of the tumor and therefore a smaller surgical field
in the surgery to follow. Otherwise, surgery takes place since neoadjuvant chemotherapy
would not essentially shrink the tumor, whereas it will only create side effects.

Personalized simulations and virtual digital twins may potentially raise ethical im-
plications related to data privacy, security, and integrity, as well as patient consent [99]. A
multi-faceted approach is required to protect against a possible misuse of sensitive personal
data or an unauthorized or accidental modification/deletion of data, to ensure confidence
in model predictions and to maintain patient trust. Patient data should be subject to perti-
nent legislation, including the General Data Protection Regulation (GDPR) in European
Union, Health Insurance Portability and Accountability Act (HIPAA) in the United States,
and applicable national laws, as well as pertinent ethical guidelines as these are specified
and approved by the clinical center ethical committee. A secured IT infrastructure should
be implemented including firewalls, data encryption, and authentication and authorization
mechanisms, required to guarantee a secure storage of data and models. Furthermore, data
should be either anonymized or pseudonymized while transmitted. The data transmission
can be secured using, for example, HTTPS and DICOM web protocols. Finally, patients
should be informed about the possibility that their data are used for modeling and simula-
tion purposes and they must fully comprehend how their data will be utilized. Any such
use of their data should be made possible only if the patients have provided their written
informed consent unless otherwise specified by the clinical center ethical committee.

Finally, creating and upkeeping virtual digital twins in healthcare necessitate compu-
tational resources, storage capabilities, and data-processing power [100]. The scalability
issue emerges due to the vast amount of patient data involved in or produced by the model
executions. Cloud-based infrastructures can offer dynamic adjustment of resources based
on demand. Distributed computing architectures and data compression techniques can
help optimize resource utilization. Standardized data formats can facilitate interoperability
and scalability across different healthcare settings. Parallelization of model executions,
e.g., concurrent execution of the virtual tumors across multiple processing units, combined
with high-performance computing resources can reduce the overall execution time and can
enhance scalability, particularly in scenarios where large datasets or complex algorithms
are involved.

5. Conclusions

Based on the partial validation results and analyses that have been reported in this doc-
ument, the highly innovative CHIC hypermodels and Oncosimulators appear to possess a
great potential for serving as clinical decision support systems (CDS) and/or cores of future
in silico trial platforms. However, additional retrospective validation work for the devel-
oped hypermodels and Oncosimulators is needed in order to fully substantiate and support
their “candidacy” for undergoing validation through prospective clinical trials. This is a
necessary step for assessing their clinical validity and clinical value. Further retrospective
validation work will be carried out by specific former CHIC partners on a bilateral or small
partner group basis. Regarding the eventual prospective clinical validation of the hyper-
models, certain exploratory steps have already been taken, including focused discussions
within the framework of the International Society for Paediatric Oncology (SIOP).
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Appendix A

Parametrization Methodology of the Oncosimulator

The Latin Hypercube Sampling method is used to generate a plausible collection of
model parameter values that corresponds to virtual tumors having a common proliferation
pattern in terms of volume doubling time, Td, and growth fraction (GF). We consider the
fraction of newborn cells that enter the G0 phase, Psleep, and the necrosis rate of differen-
tiated cells, RNDiff, as the dependent parameters of this multi-constrained problem. The
independent variables comprise the rest of the model parameters that regulate tumor
proliferation pattern, i.e., cell cycle time, TC, the duration of G0 phase, TG0, the duration
of apoptosis, TA, and the duration of necrosis, TN, the apoptosis rate of stem and LIMP
cells, RA, the apoptosis rate of differentiated cells, RADiff, the symmetric division fraction,
Psym, the fraction of stem cells that re-enter cell cycle from a quiescent state, PG0toG1, the
number of mitoses performed by LIMP cells before becoming terminally differentiated
NLIMP, and resistance of stem cells to chemotherapy, CKF, and the above-mentioned tumor
proliferation features: GF and Td.

The analysis has been performed using the Matlab toolbox. The built-in function
“lhsdesign” is run to produce N combinations of the independent model parameters:
TC, TG0, TN, TA, RA, RADiff, PG0toG1, NLIMP, α/β. LHS output is modified in the case of
parameters with value ranges other than [0, 1] and parameters of integer type. For input
parameters bounded in any range [ap, bp] other than [0, 1], the “lhsdesign” output has been
rescaled by applying the formula:

ap +
(
bp − ap

)
∗ xp, (A1)

where xp the vector of the N returned values for parameter p. For integer input parameters
the rescaled values are rounded to the nearest integer.

For each set of the independent parameter values, parameter Psleep is computed
based on the cell proliferation time returned by the metabolic hypomodel as described in
Section 2.2.2.

Then, Psym and RNDiff, are derived from the following formulas, so as to achieve the
given Td and GF.

Initially, the Psym value is computed so as to achieve the given Td: (derived from
Equation (7) in [20])

Psym =
e(a+RA)Tc

1 − Psleep + Psleep ∗ PG0toG1
TG0

/
(

a + RA + 1
TG0

) − 1, (A2)

where α = ln(2)/Td.
RNDiff, is calculated in order to achieve the particular GF: (derived from Equation (47)

in S2 Text in [21])

RNDi f f =
1 − Psym

1
A

(
1

GF − 1
)
− B

− a − RADi f f (A3)

where
A =

a + RA

e(a+RA)TC − 1
(A4)

B =
1 − Psym

a + RA + 1
TG0

Psleep (A5)
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Appendix B

Validity Checks of Vasculature Component

An advantage of the simple nature of the adopted hypomodel is that it allows for
testing and a clear path for model comparison with clinical datasets. This section overviews
verification and testing of the final hypomodel implementation.

For testing it is useful to assume a spherical tumor of radius R. Non-dimensionalising
Equation (4) with spatial coordinate x = xR and concentration c = ccn gives:

∇2c − ϕ1
2c + ϕ2

2 = 0 (A6)

where ϕ2 =
√

R2

D ρV is a Thiele modulus related to vessel delivery efficiency and

ϕ1 =
√

R2

D (λP + ρV) is a Thiele modulus related to tumor consumption efficiency. Assum-
ing a 100.0 mm radius tumor, the parameter values in Table 4, a typical cell number of
1 × 109 in a region of interest and a vessel volume fraction of 1.0 gives ϕ1 = 160 and ϕ2 = 80,
suggesting a reasonably high rate of glucose consumption versus delivery and very high
reaction versus diffusion timescales. Converting Equation (A6) to spherical coordinates
and dropping accents gives:

1
r2

d
dr

(
r2 d2c

dr2

)
− ϕ1

2c + ϕ2
2 = 0 (A7)

with dc
dr = 0 at r = 0 and c = 1 at r = 1. This can be solved explicitly, giving

c(r) =
(

1 − ϕ2
2

ϕ1
2

)
sinh(ϕ1r)
rsinh(ϕ1)

+
ϕ2

2

ϕ1
2 (A8)

Solution values for a range of values of ϕ1 and ϕ2 are shown in Figure A1, along
with hypomodel predictions. This serves as both hypomodel verification and a means for
identifying suitable parameter values when attempting to describe clinical observations.
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one year after the completion of radiootherapy. The clinical tumor volumes, as calculated 
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Figure A1. (a) The test geometry for the hypomodel, a 100 mm radius spherical tumor. (b) The
predicted dimensionless nutrient field for ϕ1 = 160 and ϕ2 = 80. (c) A comparison of the hypomodel
predictions versus Equation (A8). There is good agreement, within deviations at r = 1 due to the use
of a regular grid to discretize the spherical tumor.
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The following model serves as a simple method for relating the hypomodel inputs to
tumor growth rate predictions using the dimensional form of Equation (A8), based on a
more detailed treatment in [101]:

R2 dR
dt

=
∫ R(t)

0
scr2dr (A9)

where s is the tumor cell proliferation rate per unit nutrient concentration. Solution of
Equation (A9) following the steps in [101] allows for the estimation of hypomodel parameter
values from clinical data by fitting of clinically observed tumor growth rates. In the case of
the demonstrator hypermodels and CHIC clinical data, more detailed, integrated, fitting
is required.

Appendix C

Appendix C.1. Clinical Data of the Lung Case Studies Detailed in Section 3

For the Lung cancer case studies detailed in Section 3, three sets of MRI imaging data
have been available, two at a time instant prior to chemotherapy and one approximately
one year after the completion of radiootherapy. The clinical tumor volumes, as calculated
based on the segmentation of the tumors on these imaging sets, are depicted in Figure A2
and Table A1.

The simulation duration and the exact treatment scheme administered for each, as
derived from the available clinical data of the patients, are illustrated in Figure A2.
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Appendix C.2. Clinical Data of the Wilms Case Studies Detailed in Section 3

For the Wilms case studies detailed in Section 3, two sets of MRI imaging data have
been available, one at a time instant prior to chemotherapy (t1) and one after the completion
of chemotherapy and before surgery (t2). The clinical tumor volumes, as calculated based
on the segmentation of the tumors on these imaging sets, are depicted in Table A2.

The simulation duration and the exact treatment scheme administered for each, as
derived from the available clinical data of the patients, are illustrated in Figure A3.
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Figure A3. The simulation durations and chemotherapy protocols for Wilms cases, presented in the
paper (Section 3).

Table A2. Imaging data information of the nephroblastoma patients simulated and presented in
Section 3.

Imaging VCT (cc) DVCT (%)

Case 1
PRE 78.54

90.68POST 7.32

Case 2
PRE 109

52.29POST 52

Case 3
PRE 754.75

80.43POST 147.68
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