
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
9
6
5
7
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
4
.
6
.
2
0
2
4

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and 

Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution -

NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, 

distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re -use, 

please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be 

obtained through our RightsLink service via the Permissions link on the article page on our site—for further 

information please contact journals.permissions@oup.com. 1 

Unpredictability of the fitness effects of antimicrobial resistance mutations across 1 

environments in Escherichia coli 2 

 3 

Aaron Hinz1,2,3*, André Amado4,5,6, Rees Kassen2,3, Claudia Bank4,5,6, Alex Wong1 4 

 5 

 6 

1 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada 7 

2 Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada 8 

3 Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada 9 

4 Institute of Ecology and Evolution, University of Bern, Switzerland  10 

5 Swiss Institute of Bioinformatics, Lausanne, Switzerland 11 

6 Gulbenkian Science Institute, Oeiras, Portugal  12 

 13 

* Corresponding author 14 

Email: aaron.hinz@mcgill.ca (AH) 15 

 16 

Keywords: Antimicrobial Resistance, Costs of Resistance, Genotype-by-Environment 17 

Interactions, Epistasis, Fitness Landscapes, Rough Mount Fuji Model 18 

  19 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



2 
 

Abstract 1 

The evolution of antimicrobial resistance (AMR) in bacteria is a major public health 2 

concern, and antibiotic restriction is often implemented to reduce the spread of resistance. These 3 

measures rely on the existence of deleterious fitness effects (i.e., costs) imposed by AMR 4 

mutations during growth in the absence of antibiotics. According to this assumption, resistant 5 

strains will be outcompeted by susceptible strains that do not pay the cost during the period of 6 

restriction. The fitness effects of AMR mutations are generally studied in laboratory reference 7 

strains grown in standard growth environments; however, the genetic and environmental context 8 

can influence the magnitude and direction of a mutation’s fitness effects. In this study, we 9 

measure how three sources of variation impact the fitness effects of Escherichia coli AMR 10 

mutations: the type of resistance mutation, the genetic background of the host, and the growth 11 

environment. We demonstrate that while AMR mutations are generally costly in antibiotic-free 12 

environments, their fitness effects vary widely and depend on complex interactions between the 13 

mutation, genetic background, and environment. We test the ability of the Rough Mount Fuji 14 

fitness landscape model to reproduce the empirical data in simulation. We identify model 15 

parameters that reasonably capture the variation in fitness effects due to genetic variation. 16 

However, the model fails to accommodate the observed variation when considering multiple 17 

growth environments. Overall, this study reveals a wealth of variation in the fitness effects of 18 

resistance mutations owing to genetic background and environmental conditions, that will 19 

ultimately impact their persistence in natural populations.  20 
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Introduction 1 

 2 

Pervasive antibiotic use selects for bacteria with antimicrobial resistance (AMR) and has 3 

led to rising prevalence of multidrug-resistant pathogens (World Health Organization 2015; 4 

Holmes et al. 2016; Council of Canadian Academies 2019; CDC 2020). Considering the slow 5 

pace of antibiotic discovery (Jackson et al. 2018), effective stewardship of existing antibiotics is 6 

essential. Antibiotic restriction is a widely used approach that aims to reverse the spread of 7 

resistance by reducing the selective pressure that maintains AMR in bacterial populations. 8 

Antibiotic restriction was observed to correlate with decreased resistance in medical, 9 

agricultural, and veterinary settings, although responses vary widely, with resistance rarely 10 

eliminated, and some efforts failing entirely (Enne 2010; Dierikx et al. 2016; Pitiriga et al. 2017; 11 

Tang et al. 2017; Veldman and Mevius 2018). The ability to predict success or failure of 12 

antibiotic restriction will be important for implementing more rational interventions. 13 

 The premise behind antibiotic restriction is that resistant microbes are outcompeted by 14 

susceptible microbes in antibiotic-free environments due to fitness costs imposed by resistance 15 

determinants. These costs can derive from functional tradeoffs of altering antibiotic targets, 16 

unregulated expression of drug efflux pumps, or burdens of maintaining replicating resistance 17 

plasmids (Durão et al. 2018). However, while evidence indicates that AMR mutations are 18 

generally costly (Melnyk et al. 2015), several mechanisms can promote AMR persistence even in 19 

the absence of direct antibiotic selection. First, resistance to a restricted antibiotic can be 20 

indirectly selected by the presence of non-restricted antibiotics via mechanisms of cross-21 

resistance (Alekshun and Levy 1999; Bhardwaj et al. 2017; Brown et al. 2019) or co-selection of 22 

genetically linked resistance determinants (Enne et al. 2001; Sundqvist et al. 2010; Hughes and 23 
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Andersson 2017). Second, some AMR mutations may incur little or no cost to the microbe, 1 

allowing resistance to be maintained in antibiotic-free environments (Melnyk et al. 2017). Third, 2 

costs might be heterogeneous across different environments, allowing for resistance to be 3 

maintained in cost-free environmental refuges (Leale and Kassen 2018). Finally, second-site 4 

compensatory mutations, either segregating in the population or arising after resistance 5 

evolution, can reduce fitness costs without loss of resistance (Durão et al. 2018). 6 

Knowledge of the range of fitness effects caused by AMR mutations is crucial to guide 7 

decision-making but comprehensive data are lacking. Standard practice is to obtain experimental 8 

measures of the fitness effects of AMR mutations from well-characterized laboratory strains 9 

grown in standard growth media (Melnyk et al. 2015; Vogwill and MacLean 2015); however, it 10 

has become increasingly evident that these fitness effects can be modulated by both genetic and 11 

environmental variation (Hall 2013; Vogwill et al. 2016; Wong 2017; Clarke et al. 2020). For 12 

example, the magnitude or the direction (costly vs. beneficial) of a mutation’s fitness effect may 13 

change depending on the genetic background in which the mutation evolved, a form of genotype 14 

by genotype (G x G) interaction known as epistasis (Trindade et al. 2009; Vogwill et al. 2016; 15 

Wong 2017). The growth environment can also impact fitness effects in ways that are hard to 16 

anticipate, a form of genotype by environment (G x E) interaction (Hall 2013; Maharjan and 17 

Ferenci 2017). Furthermore, higher-order interactions between the nature of the AMR mutation 18 

itself (modification of a target site versus deregulation of an efflux pump, for example), the 19 

genetic background on which the mutation occurs, and the growth environment (G x G x E 20 

interactions) can further complicate matters, potentially undermining predictions based on data 21 

from single genotypes and environments (Flynn et al. 2013; Hall 2013; Ghenu et al. 2023). 22 

Currently we know very little about the extent to which the fitness effects of AMR mutations are 23 
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consistent or variable across genotypes and environments. Obtaining such data is an important 1 

step towards predicting the success of antibiotic restriction strategies. 2 

Ultimately, it will never be possible to empirically measure fitness for every mutation-3 

genotype combination in all environments a microbial strain could encounter. Theoretical 4 

modeling could offer a complementary approach to predict the fitness of microorganisms across 5 

the various environments they populate. Two different types of models provide a rough 6 

prediction of antibiotic resistance fitness landscapes. Hill curve models predict fitness across 7 

antibiotic gradients but disregard other sources of environmental variation (Das et al. 2020). 8 

Alternatively, approaches based on Fisher’s Geometric Model tend to have more general 9 

applicability, but have many parameters, require extensive datasets, and are in practice 10 

cumbersome to fit (Blanquart et al. 2014; Blanquart and Bataillon 2016; Harmand et al. 2017). 11 

Probabilistic fitness landscape models, such as the Rough Mount Fuji (RMF) model (Aita et al. 12 

2000), are a third type of model that capture the relationship between genotype and fitness. 13 

These models are appealing because they feature tunable epistasis and are determined by few 14 

parameters (Bank 2022). In addition, they reasonably approximate some experimental fitness 15 

landscapes (e.g., Bank et al. 2016). 16 

In this study, we present an empirical analysis of genetic and environmental factors that 17 

contribute to the variation in fitness effects among resistance mutations in Escherichia coli and 18 

evaluate the performance of an RMF-based genotype-fitness model to reproduce the empirical 19 

results. We introduced 7 resistance mutations individually into each of 12, primarily clinical, 20 

strains and quantified each resistance mutation’s fitness effect in four distinct growth 21 

environments. Overall, we show that fitness effects are extensively modulated by all three 22 

sources of variation: the type of AMR mutation, the genetic background, and the growth 23 
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environment. The RMF model reproduced single-environment empirical results well but was 1 

unable to recover their full complexity when all environments were considered together. Our 2 

study highlights the challenges of predicting fitness effects from empirical data obtained from 3 

limited genetic backgrounds and environments while at the same time calling for improved 4 

fitness landscape models that account for these important sources of variation. 5 

 6 

Results 7 

 8 

Library of E. coli clinical isolates with introduced resistance 9 

mutations 10 

 11 

We constructed a factorial mutant library by introducing each of 7 antimicrobial 12 

resistance mutations into 12 E. coli isolates using oligonucleotide-mediated mutagenesis (Lennen 13 

et al. 2016). The total number of mutant constructs was 67, after accounting for failed 14 

constructions and isolates that were resistant to the respective antibiotic or already harbored the 15 

mutation (fig. 1). The genetic backgrounds sampled were the laboratory strain MG1655 and 11 16 

clinical isolates, including enterohemorrhagic (EHEC) and  extraintestinal pathogenic (ExPEC) 17 

E. coli, that vary in serotype, antibiotic resistance profile, and plasmid presence (Basra et al. 18 

2018; McCarthy 2020). For generalizability, we selected mutations that confer resistance to 19 

multiple antibiotic classes (fluoroquinolone, rifampicin, aminoglycoside) by modifying drug 20 

binding sites or by upregulating antibiotic efflux (Alekshun and Levy 1999; Nakamura et al. 21 

1989; Vila et al. 1994; Morgan-Linnell et al. 2009). Fitness effects of mutations in gyrA, rpoB, 22 
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and rpsL have been extensively characterized in E. coli reference strains (Trindade et al. 2009; 1 

Trindade et al. 2012; Durão et al. 2015), but not in clinical isolates. Mutations in the selected 2 

genes contribute to clinical resistance in E. coli (gyrA, marR) and other pathogens such as 3 

Pseudomonas aeruginosa and Mycobacterium tuberculosis (gyrA, gyrB, rpoB, rpsL) (Sreevatsan 4 

et al. 1996; Hopkins et al. 2005; Lee et al. 2005; Goldstein 2014; Melnyk et al. 2015; Huseby et 5 

al. 2017; Bhatnagar and Wong 2019). Overall, the mutant library includes a range of AMR 6 

mutations causing resistance to multiple antibiotic types introduced in genetic backgrounds that 7 

sample the genomic diversity of pathogenic E. coli populations found in nature. 8 

 9 

Mutations cause similar increases in antibiotic resistance across E. 10 

coli genetic backgrounds 11 

 12 

 We expected the mutants to exhibit increased resistance to antibiotics whose inhibitory 13 

action or efflux was directly impacted by the introduced mutation. However, indirect effects of 14 

the mutations against non-target antibiotics (i.e., cross-resistance or collateral sensitivity), and 15 

the extent to which antibiotic susceptibilities depended on the genetic background were 16 

unknown. We therefore performed minimum inhibitory concentration (MIC) assays to quantify 17 

fold-changes in susceptibility to both target and non-target antibiotics (fig. 2). We found that the 18 

introduced mutations significantly increased resistance to target antibiotics across the genetic 19 

backgrounds. Thus, fluoroquinolone resistance mutations (in gyrA, gyrB, and marR) increased 20 

ciprofloxacin resistance, rpoB mutations increased rifampicin resistance, and rpsL mutations 21 

increased streptomycin resistance. Although several instances of collateral sensitivity were 22 

observed, none were significant when considering all genetic backgrounds. 23 
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There was little variation in the fold increases in antibiotic resistance for mutants sharing 1 

the same mutation but differing in genetic background. In a mixed effect linear model, 2 

knowledge of the identity of the mutation explained 89% of the fold change variance, with 3 

random effects of genetic background contributing only 9.7% of the explained variance. 4 

Moreover, some of the variation in MIC fold increase to the target antibiotics could be explained 5 

by differences in the initial resistance of the ancestral isolates. For one mutation (RpoB 6 

(H526Y)), there was a negative correlation between fold increase in rifampicin MIC and the 7 

initial resistance of the ancestor (supplementary fig. S1). This result is suggestive of ‘diminishing 8 

returns’ epistasis, where mutations confer smaller beneficial effects in more fit genotypes (Diaz-9 

Colunga et al. 2023), although the generally low MIC variation among the isolates prevented a 10 

robust test of this phenomenon. In conclusion, analysis of the antibiotic susceptibilities found 11 

that the introduced AMR mutations predictably increased AMR to target antibiotics across 12 

genetic backgrounds with few collateral effects against non-target antibiotics. 13 

 14 

Fitness effects of mutations vary widely across genetic backgrounds  15 

 16 

We next investigated whether the consistent increases in antibiotic resistance caused by 17 

the mutations were also reflected in predictable competitive fitness effects in antibiotic-free 18 

environments. Though AMR mutations are generally expected to be costly, fitness effects could 19 

vary depending on the identity of the mutation, genetic background, or growth environment. We 20 

measured fitness effects in head-to-head competition assays in four discrete antibiotic-free 21 

growth environments: rich (LB) and minimal (M9-Glucose) laboratory media, and two media 22 

that simulate urinary tract and colon environments colonized by pathogenic E. coli (Laube et al. 23 
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2001; Polzin et al. 2013). The growth yields of the environments varied, with an over 10-fold 1 

change in carrying capacity between the highest yield (LB) and lowest yield (synthetic urine) 2 

media (supplementary fig. S2).  Fitness effects were estimated by calculating the fitness of each 3 

mutant relative to its unmutated ancestor, thus allowing for comparisons between mutants 4 

generated from different genetic backgrounds. 5 

 The fitness effects of the studied AMR mutations are summarized in fig. 3, where 6 

individual points in each boxplot represent different genetic backgrounds sharing the same 7 

mutation. The mutations were generally costly (with relative fitness < 1); however, there was 8 

wide variation in the fitness effects across genetic backgrounds including neutral and, 9 

surprisingly, even beneficial effects. This variation contrasts with the antibiotic susceptibility 10 

phenotypes, which varied little across genetic backgrounds (fig. 2). The dependence of the 11 

fitness effects on the genetic background is evidence of epistasis between AMR mutations and 12 

genetic backgrounds, a type of G X G interaction. 13 

We summarized the fitness effects for all combinations of the focal mutations and genetic 14 

backgrounds in each environment with three statistics: (1) the mean fitness effects across 15 

mutations and genetic backgrounds; (2) the overall variance in fitness effects; and (3) the amount 16 

of epistasis between mutations and genetic backgrounds (fig. 4). Epistasis was estimated using 17 

the summary statistic gamma (γ), defined as the correlation of fitness effects of the set of AMR 18 

mutations across multiple genetic backgrounds (Ferretti et al. 2016). We found that despite 19 

similar mean fitness effects (between -0.06 and -0.092), the variance of the fitness effects and 20 

amount of epistasis varied considerably depending on the growth environment. Fitness effect 21 

variance was much larger in the media mimicking the infection environments (synthetic urine 22 

and synthetic colon media), whereas epistasis was stronger (i.e., there was a lower correlation of 23 
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fitness effects across genetic backgrounds) for synthetic urine and M9-Glucose media, compared 1 

to synthetic colon and LB media. Despite differences in the total strength of epistasis, the four 2 

environments exhibited roughly similar proportions of epistasis types (supplementary fig. S4), 3 

with ~60-70% classified as magnitude epistasis, in which the genetic background affects fitness 4 

non-additively in the same direction, and ~30-40% as sign epistasis, in which the genetic 5 

background affects the direction of the fitness effect (e.g., deleterious to beneficial or vice versa). 6 

Taken together, our results demonstrate the important role of epistasis in determining fitness 7 

effects of AMR mutations and, furthermore, the influence of the growth environment on both the 8 

overall variation in fitness effects and strength of epistasis between mutations and genetic 9 

backgrounds. 10 

 11 

Variation in fitness effects is governed by irreducible G x E 12 

interactions 13 

 14 

 The experimental fitness data highlight the dramatic influence of the growth environment 15 

on the fitness effects of AMR mutations. Changing the growth environment can lead to 16 

differences in fitness that depend on both the identity of the mutation and the genetic background 17 

(fig. 3). For example, the gyrB mutation was highly costly in synthetic colon medium but less 18 

costly (and sometimes beneficial) in synthetic urine medium. The gyrA and marR mutations, on 19 

the other hand, exhibited the opposite response in these two environments. These results 20 

demonstrate that the impact of growth environments on fitness can vary from mutation to 21 

mutation (i.e., mutation by environment interaction). 22 
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 The genetic background also played a major role in determining fitness effects across 1 

environments. Reaction norm plots of the fitness effects (supplementary fig. S5) indicate that 2 

differences in a mutation’s fitness effect caused by shifting the growth environment depended on 3 

the genetic background, which impacts both the magnitude and direction (i.e., beneficial vs. 4 

deleterious) of the fitness effect. G x E interactions are also illustrated by the idiosyncratic 5 

genetic backgrounds that frequently yielded outlier fitness values depending on the introduced 6 

mutation and environment (e.g., strains OLC682 and PB1). Overall, our results clearly illustrate 7 

that the fitness effects of the AMR mutations we sampled are influenced by complex interactions 8 

between AMR mutations, genetic backgrounds, and growth environment. 9 

 We next leveraged the factorial design of the experiment to quantify the importance of 10 

genetic background by environment (G x E) interactions in explaining the variation of fitness 11 

effects in the experimental data. We quantified the variance contributed by genetic background 12 

and environment in a linear mixed effect model treating genetic background, environment, and 13 

their interaction as random factors. We found that for each of the mutations, over 50% of the 14 

variation in fitness was explained by the interaction between genetic background and 15 

environment (fig. 5). Although the main effect of environment explained a portion (up to 17%) 16 

of the variation for several mutations, in general, the effect of environment on a mutation’s 17 

fitness effects strongly depended on its genetic background. In other words, neither knowledge 18 

of the growth environment nor of the identity of the genetic background were by themselves 19 

sufficient to predict fitness effects of each of the mutations. 20 

 21 

 22 
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The complex G x G x E interactions in the experimental data are not 1 

captured by a probabilistic fitness landscape model 2 

 3 

Our dataset provides a powerful test case for investigating the predictability of mutational 4 

fitness effects. For example, given data from one environment, can we predict the fitness effects 5 

of AMR mutations in a second environment? In the previous section we showed that the data 6 

exhibit strong variation in fitness effects and epistasis within and between environments, 7 

indicating ubiquitous G x G and G x E interactions (figs. 4 and 5). Would such variation be 8 

expected under a simple fitness landscape model, and would the data be consistent with the same 9 

fitness landscape being sampled independently for each of the environments? If yes, this 10 

indicates that at least statistical properties of the data (such as the variance in fitness effects and 11 

epistasis) are predictable, even in the absence of detailed mechanistic knowledge of the cellular 12 

and physiological effects. We chose the Rough-Mount-Fuji (RMF) model (Aita et al. 2000) to 13 

address this question due to its success in describing single environment fitness landscapes and 14 

its reliance on few parameters (Szendro et al. 2013; Bank et al. 2016). The model considers a 15 

genotype as a set of alleles at diallelic loci, which each contribute additively to fitness, plus a 16 

random epistatic component, specific to each genotype, which also contributes to fitness. The 17 

model can be tuned from completely additive to completely epistatic by adjusting the 18 

distributions from which the additive and epistatic components of fitness are drawn. 19 

To test whether the experimental data were consistent with an underlying RMF fitness 20 

landscape, we simulated a total of 100,000 fitness landscapes with 7 diallelic loci on 12 different 21 

genetic backgrounds (i.e., 84 genotypes) for 10,000 sets of model parameters (𝜎𝑎 and 𝜎𝑏), 22 
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encompassing a total of 109 simulated fitness landscapes (see Methods section for details).  We 1 

then computed the three fitness statistics (fig. 4; mean fitness, fitness variance, and gamma 2 

epistasis) of the sampled data. We first computed which set of model parameters could best 3 

reproduce the fitness statistics observed in the experimental data for each environment 4 

separately, and how well this best model fits the data. Each statistic of the experimental data was 5 

then computed under the RMF model with the given parameters. Fig. 6A shows a projection of 6 

the log-likelihood of each statistic, where the other dimensions are fixed for the parameters that 7 

provide the overall best fit. For LB and M9-Glucose environments, we found similar RMF model 8 

parameters as best fits for the experimental fitness statistics. The parameters that described 9 

synthetic urine and synthetic colon media best were very different from the other two 10 

environments, requiring a much larger variance in the epistatic component of the model for both 11 

environments, and a larger variance in the additive component in the case of synthetic urine 12 

medium. This discrepancy made it difficult to find shared model parameters to characterize the 13 

entire dataset. 14 

We next tested how well the model could capture the four different environments 15 

simultaneously. In other words, could the fitness effects of genotypes across different 16 

environments be explained by independent samples of the same underlying RMF landscape? 17 

Notably, the model failed entirely to accommodate the multi-environment data. Fig. 6B 18 

illustrates the tradeoff that occurs when optimizing the parameter space for fitness variance vs 19 

epistasis by overlaying the model-generated fitness statistics (grey probability distributions) with 20 

the experimental values obtained for each environment (vertical lines). The results demonstrate 21 

that when optimized for fitness variance, the model completely fails to produce the epistasis 22 

values associated with any of the four environments in the experimental data. Conversely, 23 
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optimizing the model for epistasis fails to capture the fitness variance. Thus, no single set of 1 

RMF parameters could adequately capture key features of the data across all environments.  2 

 3 

Fitness effects weakly correlate across pairs of environments 4 

 5 

 The complex G x G and G x E interactions observed in the experimental data, as well as 6 

the inability of the RMF model to accommodate the multi-environment dataset indicate that 7 

fitness effects measured in one environment do not necessarily translate to alternative 8 

environments. To directly ask whether fitness data from one environment can be used to predict 9 

fitness in another environment, we calculated the correlations of fitness effects between pairs of 10 

environments. Grouping all mutations together (fig. 7A), we found that, in general, fitness effects 11 

correlated poorly between environments (Pearson’s r < 0.2), with only one pair (M9-Glucose and 12 

synthetic urine media) showing a modest correlation. 13 

 Despite the poor overall correlations, it is possible that some individual mutations might 14 

show stronger relationships than others. Therefore, we disaggregated the data and determined the 15 

correlation of fitness effects for each mutation (fig. 7B; supplementary fig. S6). Each data point 16 

in fig. 7B represents the correlation in fitness effects between two environments for an AMR 17 

mutation introduced into multiple genetic backgrounds. In general, the mutation-specific 18 

correlations were highly dependent on the environments under comparison, with only gyrB 19 

mutations yielding consistently positive correlations. The strongest overall environmental 20 

correlation, between M9-Glucose and synthetic urine media, was driven by positive correlations 21 

for the fluoroquinolone mutations (gyrA, gyrB, and marR mutations). In contrast, the lack of 22 
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correlation observed between synthetic urine and synthetic colon media fitness effects was 1 

driven by a combination of positive and negative mutation-specific correlations, suggesting that 2 

genetic backgrounds associated with higher costs in synthetic urine medium were associated with 3 

reduced costs in synthetic colon medium and vice versa.  4 

 Variation in the strength of correlation between environments is indicative of mutation by 5 

genetic background by environment (G x G x E) interactions. Mutations with high correlations in 6 

fitness effects can be considered to have low levels of genetic background by environment (G x 7 

E) interaction, i.e., different genetic backgrounds respond similarly to both environments. On the 8 

other hand, a low correlation indicates high levels of G x E interaction, i.e., environmental 9 

effects on fitness depend on the genetic background. By this logic, the differences in correlations 10 

that we observe between mutations are indicators of G x G x E interactions, since the level of G 11 

x E interaction changes depending on the mutation. Although our sampling of genetic 12 

backgrounds is too sparse to make strong claims about mutation-level correlations, the variation 13 

in correlation coefficients that we observe in fig. 7B further supports that G x G x E interactions 14 

underlie the AMR mutation fitness effects. 15 

  16 

Genetic background fitness and phylogenetic relatedness are poor 17 

predictors of fitness effects 18 

 19 

 Although the experimental data show that genetic background is a significant source of 20 

variation on AMR fitness effects, further information about the isolates might help untangle the 21 

genetic background effects. We investigated whether two properties of the genetic backgrounds 22 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



16 
 

might explain the variation in fitness effects: their comparative relative fitness in each 1 

environment, and their phylogenetic relatedness. Beneficial mutations are expected to have 2 

smaller effect sizes for starting genotypes closer to a fitness peak (i.e., well-adapted to the 3 

growth medium) than genotypes further from the peak (Wang et al. 2016) . However, less is 4 

known about the expected magnitude of fitness effects for deleterious mutations at different 5 

distances from the peak (Diaz-Colunga et al. 2023). Therefore, we investigated whether any 6 

correlation existed between the starting fitness of the genetic backgrounds and the fitness effects 7 

of the introduced AMR mutations. We estimated genetic background fitness in each of the four 8 

growth environments by competing each of the 12 unmutated isolates against a common 9 

competitor (supplementary fig. S8A). We observed some variation in the background fitness of 10 

the isolates, suggesting that some genotypes were better adapted to each growth environment 11 

than others. However, apart from a weak positive correlation in the M9-Glucose environment 12 

(fig. 8A; supplementary fig. S9), we found no evidence that background fitness could predict the 13 

fitness effects of AMR mutations. 14 

We also tested whether phylogenetic relatedness could predict differences in fitness 15 

effects observed between genetic backgrounds. We reasoned that closely related genetic 16 

backgrounds would be more likely to share mutations that interact with the introduced AMR 17 

mutations, and would hence exhibit more similar fitness effects. We constructed a whole-genome 18 

maximum-likelihood phylogeny of our genetic backgrounds, from which we calculated genetic 19 

distances between all pairs of strains. We found weak positive correlations between differences 20 

in fitness effects and genetic distance for the M9-Glucose and synthetic urine media (fig. 8B), 21 

but no correlation for the LB and synthetic colon media. Interestingly, a subset of mutations was 22 

responsible for the positive correlations observed for the M9-Glucose and synthetic urine media 23 
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(supplementary fig. S10). Nevertheless, despite these exceptions, our analysis suggests that 1 

genetic background fitness and phylogenetic relatedness were poor overall predictors of AMR 2 

mutation fitness effect variation. 3 

 4 

Discussion 5 

 6 

The predictability of evolutionary processes depends crucially on the impact of 7 

environmental and genetic variation on the fitness effects of mutations. Given the threat of 8 

antimicrobial resistance (AMR) to human health, knowledge of the factors determining the 9 

fitness effects of AMR mutations has important implications for antimicrobial stewardship. To 10 

the extent that resistance mutations are generally costly, antibiotic restriction is expected to 11 

reduce the prevalence of resistance. However, if costs of resistance are highly variable because 12 

they depend on environment and/or genetic background, then resistance might persist in 13 

favorable environmental or genetic refuges. Thus, we sought to measure, and ultimately predict, 14 

the effects of genetic background and environment on the fitness of AMR mutants. 15 

We systematically measured the fitness effects of 7 resistance mutations across a range of 16 

E. coli genetic backgrounds and environments. The 12 genetic backgrounds included a standard 17 

laboratory strain and 11 clinical isolates, and the four growth environments included standard 18 

laboratory media, as well as media designed to mimic important sites of infection for E. coli. 19 

AMR mutations caused fairly uniform increases in resistance itself (fig. 2) and were on average 20 

costly in the absence of antibiotics (fig. 3). However, the magnitudes of their impacts on fitness 21 

were highly variable (fig. 3). Importantly, these fitness effects could not be predicted simply by 22 

knowing the identity of the resistance mutation, but instead depended to varying degrees on the 23 
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assay environment, the genetic background of the host strain, and interactions between individual 1 

terms. These complex interactions rendered the fitness effects of resistance mutations highly 2 

unpredictable. 3 

Genotype-by-environment interactions are well documented in the quantitative and 4 

evolutionary genetics literature. Across a broad range of organisms, mutations may have 5 

drastically different effects in different environments (reviewed in Des Marais et al. 2013; Rauw 6 

and Gomez-Raya 2015). Likewise, there is growing evidence that AMR mutations, although 7 

typically deleterious, can have widely varying fitness effects depending on the environmental 8 

context (Trindade et al. 2012; Durão et al. 2015; Gifford et al. 2016; Clarke et al. 2020). We 9 

similarly find that the fitness effects of resistance mutations depend on the assay environment – a 10 

given mutation may be deleterious in some environments but neutral on average in others (fig. 3, 11 

GyrB (D426N)), or even beneficial in some environments but not others (e.g., the beneficial 12 

effect of MarR (R77H) in synthetic colon medium). Although not the focus of the study, several 13 

genotype-by-environment interactions we observed have biologically plausible mechanisms 14 

based on the presence of specific constituents or nutritional complexity of the media. For 15 

example, marR mutations, which cause elevated expression of the AcrAB-TolC multidrug efflux 16 

pump (Oethinger et al. 1998; Alekshun and Levy 1999; Barbosa and Levy 2000), could be 17 

beneficial in synthetic colon medium due to increased efflux of bile salts, a known substrate of 18 

the pump (Rosenberg et al. 2003). Similarly, differential fitness effects of RpoB (H526Y) 19 

mutations are thought to reflect alterations to global transcription that are beneficial specifically 20 

during growth in nutritionally poor media (Conrad et al. 2010). 21 

In addition to widespread G x E, we found that the fitness effects of AMR mutations 22 

depend on genetic context. In contrast to the relatively uniform effects of the mutations on 23 
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resistance (fig. 2), the fitness effects in the absence of antibiotics could be deleterious, neutral, or 1 

beneficial depending on the genetic background. Our results reinforce the conclusions of 2 

empirical studies demonstrating the influence of genetic background on AMR fitness costs 3 

(Wong 2017). Trindade et al. (Trindade et al. 2009) observed widespread epistasis among AMR 4 

mutations in E. coli, with combinations of resistance mutations introduced in the same genetic 5 

background frequently exhibiting non-additive fitness effects. Similarly, but at a larger 6 

phylogenetic scale, Vogwill et al. (2016) identified large variation in the costs of rifampicin-7 

resistance mutations across 8 different species within the genus Pseudomonas, with much of the 8 

variance attributed to the interaction between mutation and genetic background. Taken together, 9 

these experimental studies suggest that the costs of AMR are strongly influenced by epistatic 10 

interactions between AMR mutations and other loci over broad scales of relatedness, ranging 11 

from single nucleotide to strain and species level differences. 12 

Our multi-factorial study design also allowed us to detect three-way interactions between 13 

mutation, background genotype, and environment (fig. 7). Here, different resistance mutations 14 

demonstrate contrasting G x E interactions. For example, fitness effects across genetic 15 

backgrounds are well correlated for MarR (R77H) between synthetic urine and M9-Glucose 16 

media (i.e., low G x E), but not for RpoB (H526Y) (i.e., high G x E). Relatedly, we also find that 17 

overall levels of epistasis between mutations and genetic backgrounds differ from one 18 

environment to another (fig. 4C). Crucially, G x G x E interactions make it difficult to predict 19 

costs of resistance between environments, implying that mutation-genotype combinations will 20 

respond idiosyncratically to a change in environment. Thus, estimates of fitness using standard 21 

lab strains or growth environments may be poor predictors of fitness in clinical settings, limiting 22 

our ability to predict which types of resistance will respond to antibiotic restriction, and how 23 
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quickly they will do so. Furthermore, although resistance (as measured by MIC) was similar 1 

across genotypes, resistance was only assessed in LB medium, and it is possible that growth in 2 

alternative growth environments could reveal G x E interactions undermining this predictability. 3 

The complex gene by environment interactions underpinning the mutational fitness 4 

effects in our experimental dataset provided a test case for the ability of a fitness landscape 5 

model to statistically reproduce the observed patterns in the data. For this purpose, we chose one 6 

of the simplest probabilistic fitness landscape models, the Rough Mount Fuji (RMF) model, 7 

which features tunable epistasis with few parameters and thus lends itself as a base model to test 8 

hypotheses regarding the consequences of epistasis in evolution (Bank 2022). Although the RMF 9 

model does not incorporate any explicit expectations of how a fitness landscape may differ 10 

between environments, its probabilistic nature results in a large variation of fitness landscapes 11 

that can be produced under the same parameters. Therefore, we tested 1) how well the model 12 

could fit the data of each single environment, and 2) whether it could accommodate the data 13 

from all environments with the same set of parameters.  We found that the RMF model was able 14 

to fit the statistics of individual environments well (fig. 6), considering the variation in fitness 15 

effects observed across genetic backgrounds. The model parameters suggest substantial epistasis 16 

for all environments, with the standard deviation of the epistatic contribution to the fitness 17 

effects typically larger than the standard deviation of the mean additive contribution. Although 18 

the RMF model could accommodate the fitness effect statistics for each environment separately, 19 

we found that no set of parameters could successfully explain the same statistics when all 20 

environments were considered together. In other words, the fitness landscapes in different 21 

environments could not be described as independent draws from a model with common 22 

parameters. We conclude that because even the most general features of the underlying fitness 23 
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landscape (i.e., the average additive and epistatic contributions to fitness) are irreconcilable 1 

between environments, successful prediction of fitness will require sophisticated models that 2 

incorporate additional, environment-specific factors.  3 

The failure of our RMF-like model to predict fitness across environments raised the question 4 

of what additional information would be required. We investigated two possibilities here – 5 

phylogenetic relatedness, and relative fitness of the ancestral genotypes. Phylogenetic relatedness 6 

could in principle help to predict epistatic interactions, since closely related genotypes share 7 

more polymorphisms than distant relatives. The fitness effects of focal resistance mutations 8 

should be similar for close relatives to the extent that these effects are modulated by these shared 9 

polymorphisms. However, we found no correlation between relatedness and the fitness effects of 10 

resistance mutations (fig. 8B). One potential explanation for this lack of correlation is that 11 

different mutations which interact with our focal resistance mutations arise so frequently that 12 

they are not shared even between closely related genotypes. It is also possible that complex 13 

genetic interactions between mutations modulate fitness effects such that phylogenetic 14 

relatedness may not provide enough resolution to be predictive.  15 

Alternatively, the fitness effects of a mutation may not be determined by specific interactions 16 

with other mutations in a given genetic background, but rather by global properties of a 17 

genotype. Fitness is a clear candidate for such a property – in the widely observed phenomenon 18 

of ‘diminishing returns’ epistasis, beneficial mutations confer a smaller gain for genotypes with 19 

higher starting fitness (Khan et al. 2011; Kryazhimskiy et al. 2014; Perfeito et al. 2014; Wang et 20 

al. 2016). Wang et al. (2016), for example, provided clear evidence that the fitness effects of 21 

several beneficial mutations were predicted well by the fitness of the ancestral genotype, but not 22 

by relatedness or by metabolic similarity. Likewise, there is some theoretical and empirical 23 
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support for ‘increasing costs’ epistasis, in which deleterious mutations are more costly on fitter 1 

genetic backgrounds (Diaz-Colunga et al. 2023; Johnson et al. 2023). In our dataset, we found 2 

some evidence for ‘diminishing returns’ epistasis for level of resistance (supplementary fig. S1) 3 

– that is, for the trait towards which these mutations provide a direct benefit. However, there was 4 

no evidence that ‘increasing costs’ epistasis underlies the fitness effects in the absence of drug 5 

(fig. 8A).  6 

We suggest that predictability may be improved by specific information concerning the assay 7 

environments. Characteristics of environments that could be quantitatively compared, such as 8 

nutrient concentrations, could be valuable to inform the direction in which the model should be 9 

expanded to account for differences between environments. It is worth noting that, overall, 10 

fitness effects were best correlated between the M9-Glucose and synthetic urine media (fig. 7A). 11 

These environments offer lower nutritional complexity than do LB and synthetic colon media, 12 

both of which contain relatively large amounts of complex nutrient mixtures (e.g., tryptone). 13 

Further exploration of the impact of nutritional environment on predictability may thus be 14 

warranted. 15 

In conclusion, this study provides a systematic view of the impact of both genetic 16 

background (i.e., epistasis) and environment (i.e., G x E interactions) on the fitness effects of 17 

AMR mutations. In the context of antimicrobial stewardship, our results suggest that the 18 

response of resistant bacteria to antibiotic restriction might be difficult to predict. The outcome 19 

of a restriction protocol might depend on the genetic background(s) of the resistant microbial 20 

population and on the availability of environment refuges where costs are diminished. 21 

Nevertheless, although we found that in some genetic and environmental contexts AMR 22 

mutations were neutral or beneficial, overall the mutations tended to be costly and variation in 23 
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fitness effects was driven more by differences in the magnitudes of the costs rather than changes 1 

in sign from costly to beneficial (supplementary fig. S4). Thus, to the extent that our findings 2 

translate to clinical settings, we would expect antibiotic restriction interventions to be successful 3 

on average in reducing the prevalence of resistance, but at an unpredictable pace. Furthermore, 4 

some mutations were more consistently costly across environments and genetic backgrounds 5 

(i.e., RpsL (K43R) and RpoB (S531L)), suggesting that knowledge of the mutation could 6 

provide some level of predictive value for antibiotic restriction outcomes. In addition, our study 7 

calls for the further development of fitness landscape models across environments and their 8 

evaluation in the light of data such as those presented in this study. Such models could help 9 

identify the variables that influence predictability and inform subsequent experimental study 10 

design. 11 

 12 

Materials and Methods 13 

 14 

Bacterial strains, growth conditions, and antibiotics 15 

 16 

The E. coli isolates sampled for AMR mutagenesis include the K-12 reference strain 17 

(MG1655) (Blattner et al. 1997), six extra-intestinal isolates collected from patients during the 18 

2007-11 CANWARD survey of antibiotic-resistant pathogens in Canada (Zhanel et al. 2013; 19 

Basra et al. 2018), and three enterohemorrhagic strains from the Ottawa Laboratory Carling 20 
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culture collection (McCarthy 2020). Additional E. coli strains used for molecular cloning 1 

procedures include DH5α λpir and WM3064 (Saltikov and Newman 2003). 2 

Bacteria were routinely cultured at 37 °C in LB broth (Sambrook and Russell 2001) with 3 

shaking (150 rpm) and plated on LB with 1.5% agar. Antibiotics were added to LB media from 4 

stocks prepared at the following concentrations: Ampicillin (100 mg/ml in water), Ciprofloxacin 5 

(10 mg/ml in 0.1 M NaOH), Rifampicin (50 mg/ml in DMSO), Streptomycin (100 mg/ml in 6 

water). Media were also supplemented when appropriate with 0.2% Arabinose (from sterile-7 

filtered 10% solution in water), 5-10% Sucrose (from sterile-filtered 50% solution in water), 0.3 8 

mM Diaminopimelic acid (DAP; from 60 mM solution in water), 1 mM IPTG (from 100 mM 9 

solution in water), 40 µg/ml X-Gal (from 20 mg/ml solution in Dimethylformamide). 10 

 11 

Construction of AMR mutants by site-directed mutagenesis 12 

 13 

AMR mutations were introduced into E. coli genomes by oligonucleotide-mediated 14 

recombineering as described by Lennen et al. (Lennen et al. 2016). The Lambda Red plasmid 15 

(pMA7-SacB) encodes arabinose inducible Lambda Beta and Dam methylase functions. Lambda 16 

Beta promotes chromosomal recombination of single-stranded DNA with short (< 100 base pair) 17 

regions of homology (Ellis et al. 2001), while Dam methylase induction increases recombination 18 

efficiency by transiently disabling the E. coli DNA mismatch repair system (Lennen et al. 2016). 19 

Recombineering oligonucleotides were designed with the MAGE Oligonucleotide Design Tool 20 

(MODEST) (Bonde et al. 2014), and encoded AMR point mutations centered within 90 bp of 21 

sequence homologous to E. coli (MG1655) genomic sites (supplementary table S1). 22 
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Oligonucleotides were synthesized by Integrated DNA Technologies (standard desalting with no 1 

additional purification) and suspended in water to 100 µM. pMA7-SacB was a gift from Morten 2 

Sommer (Addgene plasmid # 79968; http://n2t.net/addgene:79968; RRID: Addgene_79968). 3 

pMA7-SacB was transformed into E. coli strains by electroporation with selection on LB agar 4 

with 100 µg/ml ampicillin (or 6400 µg/ml ampicillin for the β-lactam resistant isolate PB6). 5 

Site-directed mutagenesis was performed according to the protocol described by Lennen 6 

et al. (Lennen et al. 2016). Strains carrying pMA7-SacB were inoculated in LB broth with 7 

ampicillin, incubated overnight at 37 °C with shaking, subcultured (1:100) in LB with ampicillin, 8 

and incubated for another 2-3 h. Arabinose (0.2%) was added to the cultures to induce Lambda 9 

Beta and Dam methylase functions. Cultures were incubated for 15 min at 37 °C with shaking, 10 

then transferred to an ice bath and chilled for 15 min. Electrocompetent cells were prepared by 11 

pelleting 10 ml of culture, resuspending and pelleting the cells three times with ice-cold sterile 12 

water (twice with 5 ml and once with 1 ml), with a final resuspension in 0.25 ml ice-cold water. 13 

For each electroporation, 25 µl of competent cells were mixed with 25 µl of oligonucleotide 14 

(diluted to 4 µM in water) in an Eppendorf tube, transferred to a chilled 0.2 cm cuvette (Bio-15 

Rad), and electroporated at 2.5 kV (Bio-Rad MicroPulser; Ec2 setting). Cells were suspended in 16 

3 ml LB broth and incubated with shaking overnight in test tubes. 17 

Mutants were selected by plating serial dilutions of the cultures on LB agar supplemented 18 

with the antibiotic corresponding to the introduced mutation (ciprofloxacin: 0.025-0.05 µg/ml; 19 

rifampicin: 25-50 µg/ml; streptomycin: 25-50 µg/ml). Successful transformations yielded higher 20 

colony counts (typically 104 to 106 cfu/ml) on the selective media in comparison to negative 21 

controls (i.e., cells electroporated with no added oligonucleotide). Candidate mutants were 22 

streaked on LB containing 5% sucrose to cure strains of the Red plasmid by SacB-mediated 23 
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counterselection (Blomfield et al. 1991; Lennen et al. 2016). Successfully introduced mutations 1 

were identified by sequencing (Genome Quebec) PCR products amplifying the genomic locus 2 

targeted by the recombineering oligonucleotide (supplementary table S2). 3 

The final mutant library comprised 67 sequence-confirmed mutants, with 17 mutants 4 

unable to be constructed for the following reasons. Thirteen mutants were not constructed in 5 

cases where the ancestor exhibited elevated resistance to the respective antibiotic. PB10, PB13, 6 

and PB15 already harbored the gyrA mutations (S83L and D87N) and their fluoroquinolone 7 

resistance compromised selection of gyrB and marR mutants. Likewise, although PB6 and 8 

OLC969 did not originally harbor mutations in rpsL, their high intrinsic streptomycin resistance, 9 

presumably by other mechanisms, compromised selection of rpsL mutations. Finally, the 10 

recovery of four mutants failed despite their attempted construction (gyrB mutations in PB6 and 11 

OLC969; rpoB S531L in PB1 and PB4). 12 

 13 

Construction of YFP-marked E. coli strains 14 

 15 

We marked E. coli strains with yellow fluorescent protein (YFP) to distinguish bacteria 16 

by fluorescence in competitive fitness assays. A constitutive YFP expression cassette was 17 

inserted in the chromosome of  E. coli isolates, replacing lac operon sequences (Ullmann 2009) 18 

spanning 62 bp upstream from the lacI start codon to 56 bp upstream from the lacA stop codon. 19 

We constructed a custom  allelic replacement (AR) plasmid (pR6KT-SacB-ΔlacIZYA::YFP) with 20 

YFP sequences flanked by lac operon-targeting sequences on a suicide plasmid (pR6KT-SacB) 21 

(Lebeuf-Taylor et al. 2019; Hinz et al. 2022) that replicates only in hosts carrying the lambda pir 22 
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gene (Rakowski and Filutowicz 2013). Selectable (ampicillin and tetracycline resistance genes) 1 

and counterselectable (sacB) markers on the plasmid facilitate two-step allelic exchange between 2 

plasmid and chromosomal sequences (Melnyk et al. 2017; Lebeuf-Taylor et al. 2019). We used 3 

the primers listed in supplementary table S2 to PCR-amplify the YFP cassette from a source 4 

plasmid (pAH1T-PA1/04/03-YFP) (Hinz et al. 2022) and the lac targeting sequences from MG1655 5 

chromosomal DNA. The three PCR products were spin-column purified and ligated to pR6KT-6 

SacB in one-pot Golden Gate assembly reactions containing the Type IIS restriction enzyme 7 

BsaI and T4 DNA ligase, as described by Hinz et al. (Hinz et al. 2022). Assembly reactions were 8 

transformed into chemically competent E. coli DH5α λpir by the Inoue method (Sambrook and 9 

Russell 2001), and ampicillin-resistant clones carrying the assembled YFP AR plasmid were 10 

identified based on PCR screening and detection of fluorescence in liquid cultures. 11 

The allelic replacement procedure involved plasmid conjugation from donor to recipient 12 

E. coli strains, followed by two sequential recA-mediated recombination events between 13 

homologous sequences shared by the plasmid and recipient chromosome. The YFP AR plasmid 14 

was transformed into the auxotrophic donor strain WM3064, a pir-expressing E. coli that 15 

requires diaminopimelic acid (DAP) supplementation in growth media (Saltikov and Newman 16 

2003). Conjugations were performed between the plasmid-bearing donor (grown in LB with 0.3 17 

mM DAP and 100 µg/ml ampicillin) and recipient strains on LB agar containing 0.3 mM DAP. 18 

Exconjugates harboring chromosomally integrated plasmid were selected on LB agar containing 19 

100 µg/ml ampicillin or 10 µg/ml tetracycline (selecting for recombinant recipients) and lacking 20 

DAP (preventing growth of the WM3064 donor). Selection for the second recombination event 21 

(loss of AR plasmid sequences) was accomplished by plating the exconjugates on LB agar 22 

containing 10% sucrose, to eliminate genotypes carrying the plasmid-borne sacB gene. Sucrose 23 
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resistance could result from chromosomal excision of plasmid backbone sequences, leading to 1 

either replacement of the lac operon with the YFP cassette or reversion to the wild-type lac+ 2 

sequence. These two possibilities were distinguished by including 1 mM IPTG and 40 µg/ml X-3 

Gal in the sucrose selection media, enabling blue-white screening of lac genotypes. White (lac-) 4 

sucrose-resistant colonies were subsequently screened for loss of plasmid antibiotic resistance 5 

markers and presence of fluorescent signal. 6 

The YFP cassette was successfully transferred into 7 E. coli genetic backgrounds: 7 

MG1655, PB1, PB4, PB13, PB15, OLC682, and OLC969. Introduction of the marker failed in 8 

the remaining 5 genetic backgrounds (PB2, PB5, PB6, PB10, OLC809) due to the inability to 9 

select for successful recombinants during the allelic replacement procedure. 10 

 11 

Minimum inhibitory concentration assays 12 

 13 

Antibiotic susceptibilities of AMR mutants and their ancestors were determined by broth 14 

dilution Minimum Inhibitory Concentration (MIC) assays (Andrews 2001). Two-fold serial 15 

dilutions of antibiotics were prepared in 100 µl of LB broth in 96-well plates, and 100 µl of 1: 16 

1:1000 diluted E. coli overnight cultures (approx. 3 x 105 cells) were added to each well. Similar 17 

overnight culture densities were observed among ancestral genotypes (see supplementary fig. 18 

S2); therefore, inoculum differences were unlikely to confound the MIC comparisons. Plates 19 

were incubated statically at 37 °C for 20 h, and the OD600 of each well was measured with a 20 

microplate reader (Biotek Synergy H1). MICs were defined as the lowest antibiotic 21 

concentration yielding an OD600 signal of 0.15 after subtraction of values for uninoculated 22 
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blanks. The following antibiotics and two-fold concentration ranges were tested: ciprofloxacin 1 

(0.003125 to 204.8 µg/ml), rifampicin (3.125 to 3200 µg/ml), and streptomycin (3.125 to 3200 2 

µg/ml). MICs for each of the antibiotics were determined for all 67 AMR mutants and their 12 3 

ancestors in three replicate assays inoculated from the same overnight cultures. Two rpoB 4 

mutants [PB4 RpoB (H526Y) and PB15 RpoB (S531L)] and all except one rpsL mutant [PB13 5 

RpsL (K43R)] grew at the maximum tested concentrations (3200 µg/ml) of rifampicin and 6 

streptomycin, respectively. Their MICs (6400 µg/ml) should be considered lower-bound 7 

estimates, and therefore, variation in streptomycin resistance among rpsL mutants was not 8 

accurately determined. Plots show the median fold change in MIC due to mutation for the three 9 

replicate estimates (calculated by dividing the MIC of the mutant by the median MIC of the 10 

ancestor). 11 

Differences in antibiotic susceptibility caused by the introduced mutations across 12 

different genetic backgrounds were determined by a multiple comparison t-test in R Version 13 

4.2.2 (R Core Team 2021) with the compare_means function in the ggpubr package. Median 14 

fold-changes in MIC (log2-transformed) were compared between mutants and ancestors (with 15 

antibiotic as a grouping variable) and significance was assessed using Bonferroni-adjusted p-16 

values. The predictability of MIC fold increases was determined by fitting a mixed -effect linear 17 

model using the lmer function in the lme4 package. The model predicts the fold -change in MIC 18 

(log2-transformed) for target antibiotics from the identity of the introduced mutation (fixed 19 

effect), with the genetic background and interaction between genetic background and mutation 20 

included as random effects. Correlations between MIC fold-increases and ancestral MIC were 21 

determined using stat_cor in the ggpubr package. 22 

 23 
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Growth media and carrying capacity estimates 1 

 2 

Competition experiments were performed in lysogeny broth (LB), M9-Glucose, synthetic 3 

urine medium, and synthetic colon medium. LB and M9-Glucose were prepared as described 4 

(Sambrook and Russell 2001). Synthetic urine medium is a defined medium containing 416 mM 5 

urea and 10 mM creatinine and was modified from published recipes (Laube et al. 2001; Clarke 6 

2018) by the addition of 0.001% Casamino acids to augment bacterial growth. Synthetic colon 7 

medium is a tryptone-based medium supplemented with 0.4% bile salts and was prepared as 8 

described (Polzin et al. 2013). The concentrations of each media component and details on 9 

preparation are found in supplementary tables S3, S4, S5, and S6. 10 

The carrying capacity was assessed for each ancestral isolate following 20 h of growth in 11 

each competition growth medium. Isolates were inoculated in duplicate in LB broth and 12 

incubated 24 h at 37 °C with shaking. Cultures were diluted (1:100) into each of the competition 13 

growth media (LB, M9-Glucose, synthetic urine medium, and synthetic colon medium) and 14 

incubated 24 h for media acclimation. Acclimated cultures were diluted (1:100) into fresh 15 

competition growth media and incubated for 24 h. Growth yields were determined by plating 16 

serial dilutions of the cultures on LB agar, and calculating the number of colony forming units 17 

per ml. 18 

 19 

 20 

 21 

 22 
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Competitive fitness assays 1 

 2 

Relative fitness was determined in head-to-head competitions (Melnyk et al. 2015) 3 

between unmarked AMR mutant constructs and YFP-marked competitors co-cultured in each 4 

growth environment (LB, M9-Glucose, synthetic urine medium, and synthetic colon medium). 5 

Focal strains were competed against isogenic YFP-marked competitors or, when the isogenic 6 

competitor could not be constructed, a common competitor (MG1655-YFP). Four replicate 7 

competitions derived from independently inoculated cultures were performed for each genotype 8 

by environment combination. Pure cultures of unmarked mutants, unmarked ancestral isolates, 9 

and YFP-marked competitors were prepared in 24-well microplates by inoculating 1.5 ml of 10 

competition growth medium with colonies from freshly streaked LB plates. After 24 h of 11 

incubation at 37 °C with 150 rpm shaking, 100 µl of each unmarked strain was mixed with 100 12 

µl of its corresponding YFP-marked competitor. 15 µl of each mix was diluted in 1.5 ml growth 13 

medium (1:100 dilution), and the remainder was reserved for immediate flow cytometry analysis 14 

(initial timepoint). After 24 h of incubation at 37 °C, competition cultures were analyzed by flow 15 

cytometry (final timepoint). 24 h was determined to be sufficient incubation time for cultures to 16 

reach stationary phase. Therefore, the number of generations of growth during the competitions 17 

was estimated as 6.64, the number of doublings required to reach stationary phase following the 18 

1:100 dilution (i.e., log2(100) ≅ 6.64). The relative frequencies of unmarked and YFP-marked 19 

cells in initial and final timepoints of the competitions were determined by flow cytometry 20 

analysis. Cultures were diluted in 1 ml of freshly filtered (0.2 µm pore size) 1X M9 salts prior to 21 

analysis (1:1000 for LB, 1:500 for M9-Glucose, 1:50 for synthetic urine medium, and 1:500 for 22 

synthetic colon medium). Cells were counted using a Gallios Flow Cytometer (Beckman 23 
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Coulter) with a minimum of 20,000 counts per sample. Fluorescence was detected using the 488 1 

nm excitation laser and 525/40 nm detection filter. Numbers of fluorescent and non-fluorescent 2 

cells were estimated using Kaluza analysis software. Signal thresholds for distinguishing 3 

fluorescent from non-fluorescent cells were established for each YFP-marked genotype by 4 

analyzing pure cultures of marked and unmarked strains. To distinguish cells from non-specific 5 

particles, gates were drawn in forward vs. side scatter plots that maximized the proportion of 6 

YFP-positive counts in pure cultures. The number of unmarked cells in each sample were 7 

estimated by subtracting the number of YFP-positive gated counts from the total number of gated 8 

counts. 9 

 10 

Relative fitness calculations 11 

 12 

Relative fitness (⍵) was calculated as previously described (Melnyk et al. 2015) from the 13 

initial (i) and final (f) counts of the unmarked focal (n1) and marked competitor (n2) strains and 14 

the number of generations (estimated as 6.64 as described above): 15 

 16 

𝜔 = 1 +
𝑙𝑛(

𝑛1𝑓

𝑛1𝑖
)− 𝑙𝑛(

𝑛2𝑓

𝑛2𝑖
)

𝑁𝑜. 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
        (Eq. 1) 17 

To account for fitness effects caused by the YFP marker or use of a non-isogenic competitor, the 18 

relative fitness value for each AMR mutant was divided by the relative fitness of its wild -type 19 

ancestor (competed against the same YFP-marked strain). These scaled fitness values, therefore, 20 

indicate the effects of the introduced AMR mutations alone. The common competitor MG1655-21 

YFP was used for competitions involving genetic backgrounds OLC809, PB2, PB5, PB6, and 22 
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PB10. In control experiments, we determined that MG1655-YFP was a valid common 1 

competitor since strong negative interactions were not observed between MG1655-YFP and the 2 

5 ancestral strains (supplementary fig. S11). Furthermore, similar relative fitness trends were 3 

observed in competitions regardless of whether an isogenic or common competitor was used 4 

(supplementary fig. S12). 5 

Variance component analysis of the relative fitness estimates was performed in R using 6 

the lmer function in the lme4 package. For each mutation, a random effects model was fit that 7 

included genetic background, environment, and their interaction as random factors contributing 8 

to variance in relative fitness. The plots show the fitness effects variance explained by each 9 

random effect, as well as the proportion of total variance explained. 10 

 11 

Epistasis analysis 12 

 13 

To quantify epistasis, we used the gamma statistic (γ), introduced by (Ferretti et al. 2016). 14 

γ is defined as the average correlation of fitness effects across diverse genetic backgrounds in 15 

which a mutation manifests. This can be mathematically expressed as  16 

       (Eq. 2) 17 

where g and g’ index all possible genotypes, i all existing mutations, and si(g) represents the 18 

effect of mutation i in the g background. 19 

When the correlation is close to 1, the effect of the mutations is relatively consistent 20 

across the genetic backgrounds they appear, implying minimal epistasis. As the value of γ 21 
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decreases, the correlation between mutation effects in different backgrounds weakens, indicating 1 

more pronounced epistasis. In the extreme, when the correlation approaches zero, the mutation 2 

effects in different genetic backgrounds become independent, signifying the highest level of 3 

epistasis. 4 

In supplementary fig. S4, we present an additional measure of epistasis, the difference in 5 

fitness effects when the genetic background is changed. We present its absolute value as this 6 

difference can be positive or negative. We further partition this epistasis into two categories: 7 

magnitude epistasis, where the direction of the fitness effect remains consistent, and sign 8 

epistasis, where a mutation transitions from advantageous to deleterious (or vice versa) when its 9 

genetic background is modified. 10 

 11 

Modeling 12 

 13 

We employed a general version of the Rough Mount Fuji (RMF) model to try to capture 14 

the essential statistical features of the data. The model considers a genotype composed of L 15 

diallelic loci. Each allele is assigned an additive effect; on top of the additive effect, an epistatic 16 

component specific to each genotype is added. We treat both contributions as normally 17 

distributed random variables. This way, the fitness of a genotype g is given by 18 

         (Eq. 3) 19 
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where 𝑎𝑖 ∼ 𝒩(𝜇𝑎 , 𝜎𝑎) and 𝑏(𝑔) ∼𝒩(0,𝜎𝑏); i.e., the additive contributions 𝑎𝑖 of each locus 𝑖 1 

follow a normal distribution with mean 𝜇𝑎 and standard deviation 𝜎𝑎 and the epistatic 2 

components 𝑏(𝑔) follow a normal distribution with zero mean and standard deviation 𝜎𝑏 . Each 3 

allele 𝑔𝑖 takes the values one or zero, indicating the state of locus 𝑖 in genotype 𝑔, with a value 4 

of one denoting a resistance mutation present in the genotype and the value of zero marking the 5 

absence of a resistance mutation at that locus. 6 

This model produces a fitness effect 𝑠𝑗(𝑖) of a mutation 𝑖 in a background 𝑗 given by 7 

      (Eq. 4) 8 

where 𝑔 is the genotype of the background 𝑗 and 𝑔[𝑖] the genotype of the background with the 9 

mutation in locus 𝑖. 10 

To compare the model's predictions to the data, we constructed a fine grid of pairs of 𝜎𝑎 11 

and 𝜎𝑏 , for 𝜎𝑎/𝑏 ∈ [0,0.24] with intervals of 0.002. We assumed the mean fitness effect in the 12 

model, represented by the parameter 𝜇𝑎, to be equal to the mean of the experimentally measured 13 

fitness effects. For each of these pairs, we generated 106 instances of the model and calculated 14 

three summary statistics of the landscape: the mean of fitness effects, the variance of fitness 15 

effects, and the gamma epistasis parameters. We used this generated data to obtain the 16 

distribution of each summary statistic. 17 

With these distributions, we estimated the likelihood of obtaining the data statistics given 18 

the set of model parameters for each summary statistic. In the plots, the likelihood values are 19 

represented relative to the maximum likelihood, so all log-likelihoods shown have a maximum of 20 

0. 21 
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To compute the experimental data statistics, we used a parametric bootstrap assuming 1 

that the fitness effects' replicate values are normally distributed, taking the mean and standard 2 

variation of the replicates as the normal distribution parameters. We also used an alternative 3 

bootstrap strategy that produced no qualitative changes in the results, as a test to the assumption's 4 

robustness. 5 

 6 

Analytical estimates of the parameters 7 

 8 

A simpler approach is matching the statistics' mean values directly to the model's 9 

parameters. This method is possible to calculate analytically but less statistically robust since it 10 

does not consider the variation among replicates. Eq. 4, shows that the mean 𝜇 of the fitness 11 

distribution and the corresponding variance 𝜎𝑠
2 are given respectively by 12 

 13 

and 14 

 15 

The mean γ parameter is approximated for RMF model as (Ferretti et al. 2016) 16 

        (Eq. 5) 17 

Equating these values to their experimental means 𝜇, 𝜎𝑠
2 and 𝛾 we can solve the system and find 18 
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       (Eq. 6) 1 

which corresponds to an estimate of the best model parameters based only on the experimental 2 

mean values of the statistics. These provide good estimates for the best parameters for the case of 3 

single environment landscapes, but fail to describe multiple environment landscapes because the 4 

distribution of the statistics is not well approximated by their mean value. 5 

 6 

Analysis of genetic relatedness 7 

A whole-genome phylogeny was generated using the REALPHY webserver (Bertels et al. 2014) 8 

(https://realphy.unibas.ch/realphy/). FASTA formatted genome sequences were uploaded and 9 

aligned to the reference K-12 (MG1655) sequence using Bowtie2 (Langmead and Salzberg 10 

2012) with default parameters. A maximum likelihood tree was then inferred using PhyML 11 

(Guindon et al. 2010), again with default parameters. 12 
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Data Availability 1 

 2 

All relevant data are within the manuscript and its Supporting Information files. The code and 3 

data files underlying the figures and analyses are available in a GitHub repository 4 

(https://github.com/andreamado/unpredictability_hinz_et_al) and archived in Zenodo (DOI to be 5 

provided at proof stage). 6 

 7 

References 8 

  9 

Aita T, Uchiyama H, Inaoka T, Nakajima M, Kokubo T, Husimi Y. 2000. Analysis of a local fitness 10 

landscape with a model of the rough Mt. Fuji-type landscape: application to prolyl endopeptidase 11 

and thermolysin. Biopolymers. 54:64–79. 12 

Alekshun MN, Levy SB. 1999. The mar regulon: multiple resistance to antibiotics and other toxic 13 

chemicals. Trends Microbiol. 7:410–413. 14 

Andrews JM. 2001. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 15 

48:5–16. 16 

Bank C. 2022. Epistasis and Adaptation on Fitness Landscapes. Annu Rev Ecol Evol Syst. 53:457–479. 17 

Bank C, Matuszewski S, Hietpas RT, Jensen JD. 2016. On the (un)predictability of a large intragenic 18 

fitness landscape. Proc Natl Acad Sci U S A. 113:14085–14090. 19 

Barbosa TM, Levy SB. 2000. Differential expression of over 60 chromosomal genes in Escherichia coli 20 

by constitutive expression of MarA. J Bacteriol. 182:3467–3474. 21 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



39 
 

Basra P, Alsaadi A, Bernal-Astrain G, O’Sullivan ML, Hazlett B, Clarke LM, Schoenrock A, Pitre S, 1 

Wong A. 2018. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic 2 

Escherichia coli. Genome Biol Evol. 10:667–679. 3 

Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. 2014. Automated reconstruction of 4 

whole-genome phylogenies from short-sequence reads. Mol Biol Evol. 31:1077–1088. 5 

Bhardwaj P, Hans A, Ruikar K, Guan Z, Palmer KL. 2017. Reduced Chlorhexidine and Daptomycin 6 

Susceptibility in Vancomycin-Resistant Enterococcus faecium after Serial Chlorhexidine 7 

Exposure. Antimicrob Agents Chemother. 62:e01235-17. 8 

Bhatnagar K, Wong A. 2019. The mutational landscape of quinolone resistance in Escherichia coli. PLOS 9 

One. 14:e0224650. 10 

Blanquart F, Achaz G, Bataillon T, Tenaillon O. 2014. Properties of selected mutations and genotypic 11 

landscapes under Fisher’s geometric model. Evolution. 68:3537–3554. 12 

Blanquart F, Bataillon T. 2016. Epistasis and the Structure of Fitness Landscapes: Are Experimental 13 

Fitness Landscapes Compatible with Fisher’s Geometric Model? Genetics. 203:847–862. 14 

Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode 15 

CK, Mayhew GF, et al. 1997. The Complete Genome Sequence of Escherichia coli K-12. 16 

Science. 277:1453–1462. 17 

Blomfield IC, Vaughn V, Rest RF, Eisenstein BI. 1991. Allelic exchange in Escherichia coli using the 18 

Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol. 5:1447–19 

1457. 20 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



40 
 

Bonde MT, Klausen MS, Anderson MV, Wallin AIN, Wang HH, Sommer MOA. 2014. MODEST: a 1 

web-based design tool for oligonucleotide-mediated genome engineering and recombineering. 2 

Nucleic Acids Res. 42:W408-415. 3 

Brown EEF, Cooper A, Carrillo C, Blais B. 2019. Selection of Multidrug-Resistant Bacteria in Medicated 4 

Animal Feeds. Front Microbiol. 10:456. 5 

CDC. 2020. Antibiotic-resistant Germs: New Threats. Centers for Disease Control and Prevention  6 

[Internet]. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html 7 

Clarke L. 2018. The Effect of Environmental Heterogeniety on the Fitness of Antibiotic Resistant 8 

Escherichia Coli. Available from: https://curve.carleton.ca/3ac2116e-80fa-45ba-ab7e-9 

c2ad40101bca 10 

Clarke L, Pelin A, Phan M, Wong A. 2020. The effect of environmental heterogeneity on the fitness of 11 

antibiotic resistance mutations in Escherichia coli. Evol Ecol. 34:379–390. 12 

Conrad TM, Frazier M, Joyce AR, Cho B-K, Knight EM, Lewis NE, Landick R, Palsson BØ. 2010. RNA 13 

polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal 14 

growth in minimal media. Proc Natl Acad Sci U S A. 107:20500–20505. 15 

Council of Canadian Academies. 2019. When Antibiotics Fail: The Expert Panel on the Potential Socio -16 

Economic Impacts of Antimicrobial Resistance in Canada. Available from: 17 

http://www.deslibris.ca/ID/10102747 18 

Das SG, Direito SO, Waclaw B, Allen RJ, Krug J. 2020. Predictable properties of fitness landscapes 19 

induced by adaptational tradeoffs. eLife. 9:e55155. 20 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



41 
 

Des Marais DL, Hernandez KM, Juenger TE. 2013. Genotype-by-Environment Interaction and Plasticity: 1 

Exploring Genomic Responses of Plants to the Abiotic Environment. Annu Rev Ecol Evol Syst. 2 

44:5–29. 3 

Diaz-Colunga J, Skwara A, Gowda K, Diaz-Uriarte R, Tikhonov M, Bajic D, Sanchez A. 2023. Global 4 

epistasis on fitness landscapes. Philos Trans R Soc B. 378:20220053. 5 

Dierikx CM, Hengeveld PD, Veldman KT, de Haan A, van der Voorde S, Dop PY, Bosch T, van 6 

Duijkeren E. 2016. Ten years later: still a high prevalence of MRSA in slaughter pigs despite a 7 

significant reduction in antimicrobial usage in pigs the Netherlands. J Antimicrob Chemother. 8 

71:2414–2418. 9 

Durão P, Balbontín R, Gordo I. 2018. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic 10 

Resistance. Trends Microbiol. 26:677–691. 11 

Durão P, Trindade S, Sousa A, Gordo I. 2015. Multiple Resistance at No Cost: Rifampicin and 12 

Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance. Mol Biol Evol. 13 

32:2675–2680. 14 

Ellis HM, Yu D, DiTizio T, Court DL. 2001. High efficiency mutagenesis, repair, and engineering of 15 

chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A. 98:6742–16 

6746. 17 

Enne VI. 2010. Reducing antimicrobial resistance in the community by restricting prescribing: can it be 18 

done? J Antimicrob Chemother. 65:179–182. 19 

Enne VI, Livermore DM, Stephens P, Hall LM. 2001. Persistence of sulphonamide resistance in 20 

Escherichia coli in the UK despite national prescribing restriction. Lancet. 357:1325–1328. 21 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



42 
 

Ferretti L, Schmiegelt B, Weinreich D, Yamauchi A, Kobayashi Y, Tajima F, Achaz G. 2016. Measuring 1 

epistasis in fitness landscapes: The correlation of fitness effects of mutations. J Theor Biol. 2 

396:132–143. 3 

Flynn KM, Cooper TF, Moore FB-G, Cooper VS. 2013. The Environment Affects Epistatic Interactions 4 

to Alter the Topology of an Empirical Fitness Landscape. PLOS Genet. 9:e1003426. 5 

Ghenu A-H, Amado A, Gordo I, Bank C. 2023. Epistasis decreases with increasing antibiotic pressure but 6 

not temperature. Philos Trans R Soc B. 378:20220058. 7 

Gifford DR, Moss E, MacLean RC. 2016. Environmental variation alters the fitness effects of rifampicin 8 

resistance mutations in Pseudomonas aeruginosa. Evolution. 70:725–730. 9 

Goldstein BP. 2014. Resistance to rifampicin: a review. J Antibiot. 67:625–630. 10 

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New Algorithms and 11 

Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 12 

3.0. Syst Biol. 59:307–321. 13 

Hall AR. 2013. Genotype-by-environment interactions due to antibiotic resistance and adaptation in 14 

Escherichia coli. J Evol Biol. 26:1655–1664. 15 

Harmand N, Gallet R, Jabbour-Zahab R, Martin G, Lenormand T. 2017. Fisher’s geometrical model and 16 

the mutational patterns of antibiotic resistance across dose gradients. Evolution. 71:23–37. 17 

Hinz AJ, Stenzler B, Poulain AJ. 2022. Golden Gate Assembly of Aerobic and Anaerobic Microbial 18 

Bioreporters. Appl Environ Microbiol. 88:e01485-21. 19 
ACCEPTED M

ANUSCRIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



43 
 

Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV. 1 

2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 387:176–2 

187. 3 

Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and 4 

Salmonella: Recent developments. Int J Antimicrob Agents. 25:358–373. 5 

Hughes D, Andersson DI. 2017. Evolutionary Trajectories to Antibiotic Resistance. Annu Rev Microbiol. 6 

71:579–596. 7 

Huseby DL, Pietsch F, Brandis G, Garoff L, Tegehall A, Hughes D. 2017. Mutation Supply and Relative 8 

Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia coli. Mol Biol Evol. 9 

34:1029–1039. 10 

Jackson N, Czaplewski L, Piddock LJV. 2018. Discovery and development of new antibacterial drugs: 11 

learning from experience? J Antimicrob Chemother. 73:1452–1459. 12 

Johnson MS, Reddy G, Desai MM. 2023. Epistasis and evolution: recent advances and an outlook for 13 

prediction. BMC Biol. 21:120. 14 

Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF. 2011. Negative Epistasis Between Beneficial 15 

Mutations in an Evolving Bacterial Population. Science. 332:1193–1196. 16 

Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. 2014. Global epistasis makes adaptation predictable 17 

despite sequence-level stochasticity. Science. 344:1519–1522. 18 

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. 19 
ACCEPTED M

ANUSCRIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



44 
 

Laube N, Mohr B, Hesse A. 2001. Laser-probe-based investigation of the evolution of particle size 1 

distributions of calcium oxalate particles formed in artificial urines. J Cryst Growth. 233:367–2 

374. 3 

Leale AM, Kassen R. 2018. The emergence, maintenance, and demise of diversity in a spatially variable 4 

antibiotic regime. Evolution Letters. 2:134–143. 5 

Lebeuf-Taylor E, McCloskey N, Bailey SF, Hinz A, Kassen R. 2019. The distribution of fitness effects 6 

among synonymous mutations in a gene under directional selection. eLife. 8:e45952. 7 

Lee JK, Lee YS, Park YK, Kim BS. 2005. Alterations in the GyrA and GyrB subunits of topoisomerase II 8 

and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of 9 

Pseudomonas aeruginosa. Int J Antimicrob Agents. 25:290–295. 10 

Lennen RM, Nilsson Wallin AI, Pedersen M, Bonde M, Luo H, Herrgård MJ, Sommer MOA. 2016. 11 

Transient overexpression of DNA adenine methylase enables efficient and mobile genome 12 

engineering with reduced off-target effects. Nucleic Acids Res. 44:e36. 13 

Maharjan R, Ferenci T. 2017. The fitness costs and benefits of antibiotic resistance in drug-free 14 

microenvironments encountered in the human body. Environ Microbiol Rep. 9:635–641. 15 

McCarthy A. 2020. Identification of Hypermutator Enterohemorrhagic Escherishia coli (EHEC) Using a 16 

High Throughput Screening Method to Inform Food Safety Investigations. Available from: 17 

https://repository.library.carleton.ca/concern/etds/qr46r1659 18 

Melnyk AH, McCloskey N, Hinz AJ, Dettman J, Kassen R. 2017. Evolution of Cost-Free Resistance 19 

under Fluctuating Drug Selection in Pseudomonas aeruginosa. mSphere. 2:e00158-17. 20 

Melnyk AH, Wong A, Kassen R. 2015. The fitness costs of antibiotic resistance mutations. Evol Appl. 21 

8:273–283. 22 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



45 
 

Morgan-Linnell SK, Becnel Boyd L, Steffen D, Zechiedrich L. 2009. Mechanisms accounting for 1 

fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob Agents Chemother. 2 

53:235–241. 3 

Nakamura S, Nakamura M, Kojima T, Yoshida H. 1989. gyrA and gyrB mutations in quinolone-resistant 4 

strains of Escherichia coli. Antimicrob Agents Chemother. 33:254–255. 5 

Oethinger M, Podglajen I, Kern WV, Levy SB. 1998. Overexpression of the marA or soxS Regulatory 6 

Gene in Clinical Topoisomerase Mutants of Escherichia coli. Antimicrob Agents Chemother. 7 

42:2089–2094. 8 

Perfeito L, Sousa A, Bataillon T, Gordo I. 2014. Rates of Fitness Decline and Rebound Suggest Pervasive 9 

Epistasis. Evolution. 68:150–162. 10 

Pitiriga V, Vrioni G, Saroglou G, Tsakris A. 2017. The Impact of Antibiotic Stewardship Programs in 11 

Combating Quinolone Resistance: A Systematic Review and Recommendations for More 12 

Efficient Interventions. Adv Ther. 34:854–865. 13 

Polzin S, Huber C, Eylert E, Elsenhans I, Eisenreich W, Schmidt H. 2013. Growth Media Simulating Ileal 14 

and Colonic Environments Affect the Intracellular Proteome and Carbon Fluxes of 15 

Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933. Appl Environ Microbiol. 79:3703–16 

3715. 17 

R Core Team. 2021. R: A Language and Environment for Statistical Computing. Available from: 18 

https://www.R-project.org/ 19 

Rakowski SA, Filutowicz M. 2013. Plasmid R6K replication control. Plasmid. 69:231–242. 20 

Rauw WM, Gomez-Raya L. 2015. Genotype by environment interaction and breeding for robustness in 21 

livestock. Front Genet. 6:310. 22 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



46 
 

Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H. 2003. Bile salts and fatty acids induce 1 

the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with 2 

Rob regulatory protein. Mol Microbiol. 48:1609–1619. 3 

Saltikov CW, Newman DK. 2003. Genetic identification of a respiratory arsenate reductase. Proc Natl 4 

Acad Sci U S A. 100:10983–10988. 5 

Sambrook J, Russell D. 2001. Molecular cloning : a laboratory manual. New York: Cold Spring Harbor 6 

Laboratory Press. 7 

Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM. 1996. Characterization of 8 

rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from 9 

diverse geographic localities. Antimicrob Agents Chemother. 40:1024–1026. 10 

Sundqvist M, Geli P, Andersson DI, Sjölund-Karlsson M, Runehagen A, Cars H, Abelson-Storby K, Cars 11 

O, Kahlmeter G. 2010. Little evidence for reversibility of trimethoprim resistance after a drastic 12 

reduction in trimethoprim use. J Antimicrob Chemother. 65:350–360. 13 

Szendro IG, Schenk MF, Franke J, Krug J, de Visser JAGM. 2013. Quantitative analyses of empirical 14 

fitness landscapes. J Stat Mech. 2013:P01005. 15 

Tang KL, Caffrey NP, Nóbrega DB, Cork SC, Ronksley PE, Barkema HW, Polachek AJ, Ganshorn H, 16 

Sharma N, Kellner JD, et al. 2017. Restricting the use of antibiotics in food-producing animals 17 

and its associations with antibiotic resistance in food-producing animals and human beings: a 18 

systematic review and meta-analysis. Lancet Planet Health. 1:e316–e327. 19 

Trindade S, Sousa A, Gordo I. 2012. Antibiotic resistance and stress in the light of Fisher’s model. 20 

Evolution. 66:3815–3824. 21 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



47 
 

Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, Gordo I. 2009. Positive Epistasis Drives the 1 

Acquisition of Multidrug Resistance. PLOS Genet. 5:e1000578. 2 

Ullmann A. 2009. Escherichia coli Lactose Operon. In: Encyclopedia of Life Sciences (ELS). Available 3 

from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000849.pub2  4 

Veldman KT, Mevius DJ. 2018. Monitoring of Antimicrobial Resistance and Antibiotic Usage in 5 

Animals in the Netherlands in 2017 (Maran 2018). Available from: 6 

https://www.wur.nl/nl/show/Maran-rapport-2018.htm 7 

Vila J, Ruiz J, Marco F, Barcelo A, Goñi P, Giralt E, de Anta TJ. 1994. Association between double 8 

mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. 9 

Antimicrob Agents Chemother 38:2477–2479. 10 

Vogwill T, Kojadinovic M, MacLean RC. 2016. Epistasis between antibiotic resistance mutations and 11 

genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc R 12 

Soc B. 283:20160151. 13 

Vogwill T, MacLean RC. 2015. The genetic basis of the fitness costs of antimicrobial resistance: a meta-14 

analysis approach. Evol Appl. 8:284–295. 15 

Wang Y, Diaz Arenas C, Stoebel DM, Flynn K, Knapp E, Dillon MM, Wünsche A, Hatcher PJ, Moore 16 

FB-G, Cooper VS, et al. 2016. Benefit of transferred mutations is better predicted by the fitness 17 

of recipients than by their ecological or genetic relatedness. Proc Natl Acad Sci U S A. 113:5047–18 

5052. 19 

Wong A. 2017. Epistasis and the Evolution of Antimicrobial Resistance. Front Microbiol. 8:246. 20 

World Health Organization. 2015. Global Action Plan on Antimicrobial Resistance. Available from: 21 

http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ 22 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sae086/7665593 by U
PD

 E-Library user on 07 M
ay 2024



48 
 

Zhanel GG, Adam HJ, Baxter MR, Fuller J, Nichol KA, Denisuik AJ, Lagacé-Wiens PRS, Walkty A, 1 

Karlowsky JA, Schweizer F, et al. 2013. Antimicrobial susceptibility of 22746 pathogens from 2 

Canadian hospitals: results of the CANWARD 2007-11 study. J Antimicrob Chemother. 68 Suppl 3 

1:i7-22. 4 

 5 

Figure Legends 6 

 7 

Fig 1. Library of E. coli isolates with introduced AMR mutations. The gene and specific 8 

amino acid change of the 7 introduced mutations are indicated. The mutations confer resistance 9 

to three antibiotic classes and alter the indicated cellular targets. The 12 E. coli genetic 10 

backgrounds include a common laboratory strain (MG1655) and 11 clinical isolates collected 11 

from patients in Canadian hospitals. 67 of the 84 potential mutation-by-genotype combinations 12 

were successfully constructed. 13 combinations were not attempted due to elevated resistance of 13 

the ancestor to the respective antibiotic (Resistant), and four combinations were unsuccessfully 14 

introduced (NA). PB10, PB13, and PB15 already harbored both S83L and D87N mutations in 15 

gyrA, likely contributing to elevated fluoroquinolone resistance. No other isolates carried known 16 

resistance mutations in the genes under investigation.  17 

 18 

Fig 2. Mutations introduced in different genetic backgrounds consistently increase 19 

resistance to target antibiotics. Median fold-changes in antibiotic susceptibility [log2 (MICmutant 20 

/ MICancestor)] are plotted for mutants with introduced (A) fluoroquinolone, (B) rifampicin, and 21 

(C) aminoglycoside resistance mutations. MICs were determined for three antibiotics (one target 22 

and two non-target) in triplicate. Individual points within each category represent different 23 
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genetic backgrounds with the same introduced mutation. Each of the mutations significantly 1 

increased resistance to target antibiotics across genetic backgrounds (multiple comparison t -test 2 

with Bonferroni correction; padj<0.05) with no significant effects on susceptibility to off-target 3 

antibiotics. The collateral streptomycin sensitivity observed for the RpoB (H526Y) mutants was 4 

not significant when adjusting for multiple comparisons (padj=0.54). 5 

 6 

Fig 3. AMR mutations exhibit wide variation in fitness effects across genetic backgrounds. 7 

The fitness effects of AMR mutations were determined in four antibiotic-free environments: LB, 8 

M9-Glucose, synthetic urine medium, and synthetic colon medium. The data are grouped by 9 

mutation and environment, with individual points indicating fitness effects measured in different 10 

genetic backgrounds. The boxplots summarize the distributions of fitness effects (median, first 11 

and third quartiles, and nonoutlier minimum and maximum values). Additional fitness effect 12 

information including genetic background identities, relative fitness values, and significance 13 

levels is provided in supplementary fig. S3. 14 

 15 

Fig 4. Fitness effects variance and epistasis between AMR mutations and genetic 16 

backgrounds differed between environments. The overall mean (A) and variance (B) of 17 

fitness effects of all mutation-genetic background combinations (67 mutants) were determined in 18 

each growth environment. Global epistasis (C) was estimated as gamma epistasis. Analysis of 19 

the amount and proportion of epistasis types (i.e., magnitude vs. sign epistasis) underlying the 20 

epistasis measure are found in supplementary fig. S4. 21 

 22 
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Fig 5. Genotype by environment interactions explain most of the variation in fitness effects 1 

for each AMR mutation. The experimental fitness effects data for each mutation was fit to a 2 

random effects model to determine the amount (A) and proportion (B) of variance explained by 3 

Genotype (i.e., the genetic background), Environment, and the Genotype by Environment 4 

interaction. Reaction norm plots showing the responses of specific genotypes in each 5 

environment are found in supplementary fig. S5. 6 

 7 

Fig 6. A Rough Mount Fuji genotype-fitness model only partially reproduces the 8 

experimental fitness effect statistics.  (A) Log-likelihood surfaces for the mean of fitness 9 

effects, the variance of fitness effects, and the gamma epistasis parameter of the experimental 10 

data under a RMF model. x-axis represents the variance of the additive component (σa) and y-11 

axis the variance of the epistatic contribution (σb). Each row shows log-likelihood surfaces for 12 

single environments and the last row for the conjugation of the four environments. The red dot 13 

represents an analytical estimate of the best parameters based on the mean values of the 14 

experimental data statistics only. The mean of the additive fitness effects (model parameter μ a) 15 

was fixed to the experimentally measured mean. (B) The RMF model cannot simultaneously 16 

capture the distribution of the variance of fitness effects and the epistasis for the four 17 

environments. The figure shows the distribution of the mean of fitness effects, the variance of 18 

fitness effects, and the gamma parameter under a RMF model. The top row represents a RMF 19 

landscape with parameters optimized to describe the variance of fitness effects and the bottom 20 

row optimized to describe the gamma parameter. The vertical colored lines represent the 21 

experimental value for each environment, with the dashed lines delimiting one standard 22 
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deviation. The blue corresponds to LB, the orange to M9-Glucose, the green to synthetic urine 1 

medium, and the red to synthetic colon medium. 2 

 3 

Fig 7. Fitness effects of the AMR mutations correlate weakly between pairs of 4 

environments.  We determined the correlation of fitness effects of mutations when measured in 5 

different environments. For each environmental pair, the correlation coefficients (Pearson’s r) 6 

are plotted when including all mutants in the library (A), or when grouped by introduced 7 

mutation (B). Error bars indicate a one standard deviation range and horizontal lines indicate the 8 

mean of the correlation coefficients for all 6 comparisons. Correlation scatterplots, correlation 9 

coefficients, and significance values are provided in supplementary figs. S6 and S7. 10 

 11 

Fig 8. The fitness effects are not explained by differences in fitness or phylogenetic 12 

relatedness of the ancestral genetic backgrounds. The results of all pairwise comparisons 13 

between the 67 AMR mutants are shown, with difference in fitness effects plotted against 14 

difference in background fitness (A) or phylogenetic distance (B) for each comparison. Genetic 15 

background fitness was measured in head-to-head competitions between the twelve E. coli 16 

ancestors and a common competitor in each of the four growth environments (supplementary fig. 17 

S8A). Phylogenetic distance was estimated from a phylogeny based on whole genome 18 

alignments of the E. coli isolates (supplementary fig. S8B). The correlation lines and 95% 19 

confidence intervals are depicted for all mutants tested in each environment. Supplementary figs. 20 

S9 and S10 show the correlations grouped by mutation. 21 

  22 
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