
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
9
5
9
3
2

|

d
o
w
n
l
o
a
d
e
d
:

4
.
6
.
2
0
2
4

Journal of Object Technology | RESEARCH ARTICLE

Simulink bus usage in practice: an empirical study
Tiago Amorim†,1, Alexander Boll†,2, Ferry Bachman3, Timo Kehrer2, Andreas Vogelsang1, and Hartmut Pohlheim3

†These authors contributed equally to this work and share first authorship.
1University of Cologne, Germany

2University of Bern, Switzerland
3Model Engineering Solutions, Germany

ABSTRACT Matlab/Simulink is a graphical modeling environment that has become the de facto standard for the industrial
model-based development of embedded systems. Practitioners employ different structuring mechanisms to manage Simulink
models’ growing size and complexity. One important architectural element is the so-called bus, which can combine multiple
signals into composite ones, thus, reducing a model’s visual complexity. However, when and how to effectively use buses is a
non-trivial design problem with several trade-offs. To date, only little guidance exists, often applied in an ad-hoc and subjective
manner, leading to suboptimal designs. Using an inductive-deductive research approach, we conducted an exploratory survey
among Simulink practitioners and extracted bus usage information from a corpus comprising 433 open-source Simulink models.
We elicited 22 hypotheses on bus usage advantages, disadvantages, and best practices from the data, whose validity was later
tested through a confirmatory survey. Our findings serve as requirements for static analysis tools and pave the way toward
guidelines on bus usage in Simulink.

KEYWORDS Modeling, Simulink, Buses, Empirical study.

1. Introduction
Over the last two decades, Matlab/Simulink (Simulink, for
short) has become the de facto standard for the industrial
model-based development of embedded systems in various
domains (e.g., automotive, avionics, industrial automation,
medicine) (Liggesmeyer & Trapp 2009; Vanherpen et al. 2015),
with millions of users (Popoola & Gray 2021) and thousands
of companies1 employing it. While Simulink started as a tool
mainly for modeling and simulating single controllers, today,
it can describe large systems comprising thousands of blocks
communicating over signals (Boll et al. 2021). This increasing
complexity has triggered research on properly structuring large-
scale Simulink models by adopting well-known software design
principles (Dajsuren et al. 2013; Dajsuren 2015; Jaskolka, Scott,

JOT reference format:
Tiago Amorim, Alexander Boll, Ferry Bachman, Timo Kehrer, Andreas
Vogelsang, and Hartmut Pohlheim. Simulink bus usage in practice: an
empirical study. Journal of Object Technology. Vol. 22, No. 2, 2023.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2023.22.2.a12
1 https://enlyft.com/tech/products/simulink

et al. 2020; Jaskolka, Pantelic, et al. 2020; Pantelic et al. 2017;
Whalen et al. 2014). Current studies revolve around hierarchical
decomposition, encapsulation, and information hiding, aiming
at classical quality attributes such as modularity, coupling, and
cohesion.

The subsystem and the bus are Simulink’s architectural ele-
ments that address some of the aforementioned properties. The
former provides the capability for encapsulating blocks and
other nested subsystems. The latter allows combining individ-
ual signals into composite signals to keep them organized and
reduce visual clutter2. However, buses have gained consider-
ably less attention in the literature than subsystems, despite
their importance for large and complex models. For instance, in
one of the largest datasets (Boll et al. 2023) of public Simulink
projects (similar to those used in (Boll et al. 2021; Shrestha et
al. 2022)), we found models that do use buses have a median of
22 subsystems and 239 blocks. In comparison, models without
buses feature three subsystems and 29 blocks in the median.

Additionally, guidelines and best practices on bus use are

2 https://www.mathworks.com/help/simulink/ug/composite-signal-
techniques.html

An AITO publication

http://dx.doi.org/10.5381/jot.2023.22.2.a12

severely limited. The existing ones, namely the MathWorks
Advisory Board (MAB) guidelines and the Motor Industry Soft-
ware Reliability Association (MISRA) guidelines (MathWorks
Advisory Board 2020; Misra 2023), provide little guidance on
bus usage, apart from naming advice, label position, and sug-
gesting not to mix MUX and bus elements. However, more
advanced bus usage principles are implicit, ad-hoc, and sub-
jective. This knowledge gap might lead to suboptimal designs,
making it harder to understand, maintain, and evolve a complex
model (Hu et al. 2012; Plösch et al. 2008).

Regardless of the lack of guidelines, deciding when and
how to use them in a Simulink model is not trivial. Classical
indicators naturally arising from principles such as functional
decomposition or modularization are hardly applicable. Signals
may cross the subsystem hierarchy, and buses are primarily
used for graphically encapsulating a set of signals rather than
physically reducing the coupling of connected elements. Mod-
elers are faced with additional trade-offs regarding bus usage,
such as reducing visual complexity and ease of bulk element
manipulation versus the loss of visual information and the risk
of bundling logically unrelated signals. In addition, modelers
have to organize buses (i.e., ordering and nesting of signals
and choosing start and endpoints) to avoid buses that are too
“clunky” (Jaskolka et al. 2021).

To better understand the trade-offs of using Simulink buses in
practice, we devised an inductive-deductive research approach
in a triangulation fashion (Denzin 2017). We first performed
an exploratory survey with Simulink practitioners and analyzed
bus usage in 433 open-source Simulink models. From the gath-
ered data, we elicited 22 hypotheses concerning the advantages
of bus usage, bus size best practices, and situations when to
use them and when to avoid them. We then conducted a confir-
matory survey with Simulink practitioners, asking about their
agreement with the hypotheses, thus testing their validity.

The majority of the hypotheses gained considerable support
in the Confirmatory survey, making them candidates for being
generally accepted. Thus, our findings provide an empirically
grounded stepping stone that paves the way toward guidelines
on Simulink bus usage. Next to supporting the design of large-
scale Simulink models from a constructive perspective, such
guidelines may further serve as requirements for static analysis
tools.

This study was conducted in the context of a research project3

with an industrial partner, namely Model Engineering Solutions
GmbH4, which develops tools that support various Simulink
model analyses. Our collaboration supports them in making an
evidence-based and informed decision on whether they should
extend their portfolio towards buses and how to extend their
modeling guidelines and tool suite.

2. Background
Simulink is a graphical block-oriented modeling environment
for simulating and analyzing multi-domain dynamical systems.
Moreover, code generation facilities transform a model into a

3 SimuComp, 01IS18091 BMBF
4 https://model-engineers.com/en/

classical programming language, usually C. A Simulink model
is a data flow graph whose vertices and edges are different kinds
of blocks and signal lines, respectively. Blocks receive inputs
from other blocks through signal lines connected by their ports.
These inputs are processed and forwarded as outputs, yielding a
data flow-oriented model (Duran et al. 2009). Two versions of
an exemplary model5 are shown in Figure 1.

Simulink can display different views of a model and offers
three means of abstraction and structuring a model: subsystems,
MUXes, and buses. Their proper usage reduces the number of
visible elements, which is achieved by encapsulating and hiding
their contained elements from the outside. As a benefit, unnec-
essary details from the current view are hidden (Gerlitz et al.
2015), thus, lowering the visual complexity. Further, these can
give context information, making the elements’ relationships
more explicit. Finally, bulk operations are possible by encapsu-
lating several elements, i.e., copying or moving all encapsulated
elements together. A subsystem can be compared to a function,
method, or procedure of classical programming languages. The
MUX can best be compared with an array and a bus with a
struct or a dictionary (Rau 2001). In other words, elements of a
MUX must be of the same type and are accessed by an index,
while elements of a bus can have mixed types and are accessed
by their name.

By default, a bus is only virtual, i.e., it does not change a
model’s functionality if it were to be resolved into its elements.
Therefore, it does not affect the simulation of a model or its code
generation. However, engineers can change this characteristic
to non-virtual, which forces the generation of C structs in the
generated code, preserving the bus elements’ cohesion. This
way, all bus signals will be created in simulations, leading to
decreased performance.

Buses are built by bundling signals in a block called the
bus creator. This block receives multiple signal lines as inputs
and a bus signal as output. To access a bus’ elements, the bus
selector block is used, where the single bus line enters and the
user-selected line(s) exit(s). Both are depicted as black bars in
Figure 1a. In Figure 1b, we resolved all buses of Figure 1a to
show the effect bus usage can have.

On the one hand, without using buses, many new signal
lines appear. It is difficult to say which blocks are connected
due to the clustering of lines that cross each other at several
intersection points. As the number of ports of each block also
increases, some blocks need to be resized to carry all of them,
highlighting another problem: the sheer number of ports makes
it hard, if not impossible, to tell which port of which block is
connected to which other port. Additionally, buses allow for
signal hierarchies by encapsulating elementary signals and other
bus lines.

On the other hand, once signals are encapsulated into a bus;
the outer view loses information. The number and name of
individual signals are no longer visible. Signals of a bus may
be unrelated, or some may never be used but still carried along
the bus. In addition, modelers have to organize buses through

5 We depict the subsystem WECSim_Lib/Body Elements/Rigid Body of the
model source/lib/WEC-Sim/WEC_Sim_Lib.slx from the GitHub project
https://www.github.com/ratanakso/WEC-Sim-OSU-Temp

2 Amorim et al.

(a) One view of a Simulink model, showing blocks connected by signal
lines. The black blocks are bus creator blocks (single output on the right)
and bus selector blocks (single input on the left). The white and shaded
blocks are subsystems, which could be expanded to views of their currently
hidden implementation details.

(b) An altered version of the model of Figure 1a, where we artificially
resolved all buses and sub-buses up to the elementary signal lines. On
the one hand, there are fewer blocks as the bus creators and selectors are
removed. On the other hand, various new signal lines, block inputs, and
outputs are now part of the diagram. Many of the signal lines cross other
lines, and it is hard to discern which blocks are connected by which lines.

Figure 1 Two versions of an exemplary Simulink model showing blocks connected by signal lines. In Figure 1a bus creator and
bus selector blocks encapsulate several signal lines. These signal lines can be seen once all buses are resolved in Figure 1b.

bus creators and selectors, increasing the number of required
blocks.

3. Study Design

3.1. Research Objective
Our research aims to understand better Simulink bus usage to
propose guidelines on how and when to use buses for Simulink
practitioners. To this end, our study is driven by the following
research questions:

RQ1 What are the advantages of bus usage?

RQ2 When is it appropriate to use buses?

RQ3 When should bus usage be avoided?

RQ4 What are best practices for bus sizes?

3.2. Research Design
For this study, we devised an inductive-deductive research ap-
proach in a triangulation fashion (Denzin 2017). The inductive
phase is used to develop hypotheses, which serve as guide-
line candidates. To develop our hypotheses, we conducted
an exploratory survey with Simulink practitioners, analyzed
open-source Simulink models, and derived them from prior lit-
erature. As our developed hypotheses could be invalid (Copi et
al. 2006), we test them in a subsequent deductive phase. Here,
we conducted a confirmatory survey with domain experts to
cross-validate our hypotheses.

3.3. Inductive Phase
In the inductive phase, we followed an exploratory research
approach (Shields & Rangarajan 2013) to identify bus usage
advantages, disadvantages, and best practices. The phase is
composed of three steps; (i) an exploratory survey conducted
through a questionnaire composed of open-ended questions,

Exploratory survey

Survey answers

Thematic analysis

Open source model analysis

Model meta-data

Statistical analysis

Inductive hypotheses Literature
guidelines

Confirmatory survey

Tested hypotheses
Artifact

Process

In
du

ct
iv

e
ph

as
e

D
ed

uc
tiv

e
ph

as
e

Figure 2 Two major phases of our research workflow: (1) the
inductive phase where a survey analysis and model analysis
result in the development of hypotheses, and (2) the deductive
phase where these hypotheses are tested.

(ii) an analysis of a curated corpus of open-source Simulink
models gathered from public repositories, and (iii) a collection
of guidelines from the literature (cf. Figure 2). The following
sections describe how each of these steps was conducted.

3.3.1. Exploratory Survey We created an online survey
with open-ended questions using Google Forms, designed to an-
swer research questions RQ1, RQ2, and RQ3. Three sampling
methods were used to reach out to participants. Voluntary re-
sponse sampling was used through posts in eleven public forum
groups from a professional social network6 related to Simulink
6 https://www.linkedin.com

Simulink bus usage in practice: an empirical study 3

Table 1 Overview of the demographic characteristics of the participants of our Exploratory survey.

ID Application
Domain

Role in Organization Organization
size

Years of
experience

Skill origin

P1 Automotive Engineering service >1000 4 training-on-the-job

P2 Automotive Technical leader >1000 9 training-on-the-job

P3 Avionics Systems engineer >1000 10 university/education

P4 Automotive Test Manager 21–100 24 training-on-the-job

P5 Avionics Chief Software engineer >1000 18 training-on-the-job

P6 Automotive Senior Software Engineer >1000 5 training-on-the-job

P7 Robotics No answer >1000 7 training-on-the-job

P8 Automotive Embedded Software Developer 101–1000 4 university/education

P9 No Domain Technical Lead of Functional Safety Software >1000 6 other

P10 No Domain Software Developer >1000 10 training-on-the-job

P11 Automotive Technical Leader 101–1000 6 self-taught

P12 Automotive Project Engineer 21–100 8 training-on-the-job

P13 Automotive Senior Software Engineer >1000 4 training-on-the-job

P14 Automotive CAE Analyst >1000 2 self-taught

P15 Automotive Tool support and design of modeling patterns >1000 5 university/education

P16 Automotive SW Developer 101–1000 8 training-on-the-job

P17 Automotive Product Owner 21–100 3 training-on-the-job

P18 Electronics MBD Evangelist (self-reported) 1–20 18 university/education

4 Amorim et al.

and model-based development (such as “MATLAB & Simulink”
and “MATLAB-Simulink and Model-based development”). The
survey was also distributed to the authors’ contacts from indus-
try and research (i.e., convenience sampling), which were asked
to share it further with relevant peers (i.e., snowball sampling).

We first asked the participants five demographic and two
qualification questions. The qualification questions were Are
you aware of the concept of buses in Simulink? and Have you
ever used a bus in a Simulink model? They were used to identify
whether the participants were fit to continue the survey. The
demographic questions and their respective answer options were
as follows:

1. What domain of application do you address in your
Simulink models? (Energy, Electronics, Avionics,
Robotics, Automotive, Health, Other (Boll et al. 2021))

2. What is your role in your organization? (open answer)

3. How many employees does your organization have? (1–20,
21–100, 101–1000, >1000)

4. How many years of experience do you have with Simulink?
(open answer)

5. How did you acquire your Simulink skills? (self-taught,
university/education, training-on-the-job, other)

Out of 20 responses, one participant never employed buses
before the survey, and one mainly gave unclassifiable answers;
these two were discarded from the further analysis (data in (Boll
et al. 2023)). A summary of the remaining answers to the
demographic questions can be seen in Table 1. The reader can
use this table to trace the quotes that will be later presented
in Section 4 back to the participants’ backgrounds through the
ID element. The participants’ Simulink experience median is
6.5 years, and 8.4 years on average (cf. Figure 3). Moreover,
Figure 4 summarizes the distribution of the domains in which
the participants are working.

Finally, we asked the participants seven open-ended ques-
tions about buses and their application:

ES1: In which situations do you use buses in Simulink models?
ES2: In which situations do you avoid using buses?
ES3: In your opinion, what are the advantages of bus usage in

Simulink models?
ES4: Describe a situation in which you experienced inadequate

bus usage. How did this impact your work?
ES5: Does a model’s size change how you work with buses? If

so, please describe.
ES6: Do you differentiate between virtual and non-virtual buses?

If yes, in which situations do you use virtual buses, and in
which do you use non-virtual buses?

ES7: Under which conditions do you consider refactoring your
model from several signals to buses or vice versa?

3.3.2. Thematic Analysis Having the survey results for the
questions ES1 through ES7, we performed a thematic analy-
sis (Braun & Clarke 2021) on the responses. First, we pre-
processed the answers by removing those that participants did

not develop far enough such that they could contribute to theory
building, such as “No idea”. Then, we grouped the answers
to each question according to their similarities. We created
hypotheses for each of these groups according to the respective
answers. For instance, we created Hypothesis H8, which states
that buses should be employed to improve efficiency when work-
ing on the model, based on the responses to the question RQ2
When is it appropriate to use buses?. The following responses
were placed together in the same thematic group, which inspired
the creation of Hypothesis 8: “to gain the ability to perform
operations on the whole bus at once in the model” (P9), “[it]
sometimes is easier to manage a bus structure to communicate
software modules instead of updating the interface and adding
inputs/outputs to the models” (P6), “when it becomes imprac-
tical to keep adding inputs outputs” (P6), and “consolidating
signal inputs to scope” (P14). Finally, we had a list of hypothe-
ses traceable to the survey answers. In section Section 4, we
provide the hypotheses and respective responses that sourced
their development.

3.3.3. Open Source Model Analysis Some information
types can be more readily and accurately retrieved from arti-
facts, especially for quantitative information, e.g., the number
of elements bundled in a bus. For answering RQ4, we first col-
lected a set of 4,812 open-source Simulink models on GitHub
stemming from 317 different projects (Boll et al. 2023). To this
end, we mined GitHub with Google BigQuery (Google 2023)
for Simulink projects. While Kalliamvakou et al. warn of the
perils of mining GitHub (Kalliamvakou et al. 2014), Boll et
al. (Boll et al. 2021) found open-source Simulink models to be
diverse and suitable for empirical research, provided one uses an
appropriate subset of models, e.g., by removing ad-hoc and toy
models. Thus, we constructed a subset of 433 from the original
4,812 models that employed at least one bus (bus creator block
or bus output port) for further analysis.

3.3.4. Statistical Analysis We studied several metrics to
quantify how buses are used, which allowed us to differentiate
between typical and atypical bus usage. Our rationale for in-
vestigating this direction is that although open-source models
may not represent best practice, typical usage still represents
common practice, employed by Simulink users. We defined
“atypical” bus usages as outliers below the 5th and above the
95th percentile of a metric’s distribution and typical usage as
everything in between (see Table 2). The metrics we computed
per bus are:

– number of elementary signals: we recursively counted all
elementary signals of all the sub-busses of a bus (minimum
is 1)

– depth of bus: depth of the sub-bus tree (minimum is 1)
– number of sub-buses (minimum is 0)

We then formed hypotheses that atypical bus usage should be
avoided or fixed. For instance, Hypothesis H18, which states
that a bus should contain less than nine sub-buses, was created
after we found that 95% of all busses have less than nine sub-
buses. Thus, we consider having nine or more sub-buses as

Simulink bus usage in practice: an empirical study 5

atypical. In section Section 4, we provide the hypotheses and
respective statistical data that sourced their development.

3.3.5. Literature Guidelines From prior literature sugges-
tions (Doerr & Bachmann 2018; Eessaar & Käosaar 2019; Ger-
litz et al. 2015), we derived hypotheses on possible refactorings
of problematic buses to further answer RQ4. For instance, hy-
pothesis H22, which states that a bus should be made up of at
least two elementary signals, was developed from the “super-
fluous bus signal” smell from Gerlitz et al. (Gerlitz et al. 2015).
The value was derived from the 5th percentile of bus usage,
which includes two signals. In section Section 4, we provide
the hypotheses and respective literature references that sourced
their development. These hypotheses fit our personal experience
and reasoning, so we included them in the confirmatory survey.

3.4. Deductive Phase
Our goal in this phase was to test our previous findings through
triangulation (Denzin 2017). Inductive reasoning allows for the
conclusion to be false (Copi et al. 2006); thus, we tested our
hypotheses with the help of a confirmatory survey.

3.4.1. Confirmatory Survey After eliciting hypotheses in
the inductive phase, we tested them using a confirmatory sur-
vey (cf. Figure 2). The idea was to present our hypotheses
to Simulink practitioners and ask them to state their level of
agreement using a Likert type scale (Likert 1932) of four points
(strongly disagree, disagree, agree, strongly agree). Addition-
ally, participants could decline to give a rating if they lacked
the knowledge or were indecisive on a question (don’t know).
Thus, we employed a forced choice survey (Allen & Seaman
2007), i.e., there was no neutral option. We distributed the
survey using the same sampling methods and channels as we
did with the Exploratory survey, plus among participants of the
workshop Buses in Simulink – A Blessing or a Curse? orga-
nized by the Modeling Guidelines Interest Group (MES 2023).
It included the same qualification and demographic questions
as in the Exploratory survey, described in Section 3.3.1. The
survey received 36 responses, of which we excluded six: one
from a participant answering twice, another answering every
question only with agree, and four participants stated having no
experience with Simulink buses. Finally, 30 responses remained
for further analysis. Participants have a median of 8 years of
experience and an average of 10.8 years (cf. Figure 3). The
participants’ domains are summarized in Figure 4. Besides, the
participants of the confirmatory survey show a similar diversity
and distribution as the participants of the Exploratory survey
(more details can be found in our data set (Boll et al. 2023)).

4. Results

4.1. Inductive phase results
Here, we present the 22 hypotheses developed during the In-
ductive phase of our study. We derived the hypotheses from
multiple sources of evidence, namely the responses of the 18
participants of the Exploratory survey, the Open source model
analysis, and the Literature guidelines. In the following, we de-

0 5 10 15 20 25 30 35
0

5

10

15

Years of experience

%
of

pa
rt

ic
ip

an
ts Exploratory Survey

Confirmatory Survey

Figure 3 Distribution of the years of experience in working
with Simulink of the participants of our surveys. The respon-
dent with 35 years of experience clarified their answer “I
worked on System Build, before Simulink existed.”

Auto
moti

ve

Avio
nic

s

Ene
rgy

Elec
tro

nic
s

No Dom
ain

M
ini

ng

Tran
sp

ort
ati

on

Rob
oti

cs
0

20

40

60

Domain

%
of

pa
rt

ic
ip

an
ts Exploratory Survey

Confirmatory Survey

Figure 4 Distribution of the domains in which the partici-
pants of our surveys are working.

6 Amorim et al.

Table 2 Summary of the distributions of our bus size metrics. We define “atypical” bus usage as below the 5th percentile or above
the 95th percentile (numbers marked in pink). The minimum bus depth and the minimum number of sub-buses equal the fifth
percentiles (the minimal possible values), so there is no lower cut-off. All metrics are long-tail distributions; thus, the averages are
higher than the medians and include extreme outliers.

Per bus min p5 p25 med p75 p95 max avg

of elementary signals 1 2 3 5 12 37 1392 15.49
bus depth 1 1 1 1 2 3 7 1.44
of sub-buses 0 0 0 0 1 8 291 2.15

scribe these hypotheses and provide their source (e.g., excerpts
from the participants’ answers).

4.1.1. RQ1 What are the advantages of bus usage? This
section presents the hypotheses that address RQ1. They were
elicited from the Exploratory survey; in particular, they were
derived from the answers to question ES3.

Hypothesis H1. Buses reduce visual clutter in models.
Generally, the participants value the very purpose of a bus to
bundle together signals into a composite signal (“combine sig-
nals” (P1), “less signal lines” (P8)) to diminish the number of
visible elements (i.e., lines and interfaces). In particular, models
with fewer lines are considered to be cleaner, as indicated by
notions such as “cleaner models” (P10), “cleaner interface”
(P3), or “more clear models” (P16), and to provide a better
overview (“better overview with less signal lines” (P17), “much
better overview in the models, less signal lines” (P15), “better
overview” (P9)). In addition, some participants even mentioned
that the reduction of the number of lines through using buses
fosters “simplification and flexibility” (P6), and that buses may
help in “reducing complicatedness in complex models” (P18).

Hypothesis H2. Buses are useful to provide engineers
with information regarding signal relatedness through the
model design. Buses can be used to convey information to
engineers, who make assumptions about the data flow based on
the signal visual flow (Gerlitz et al. 2015). Bundling signals in a
bus suggests that these signals share a relation. Participants note
that buses “show constructively, which signals belong together
(coming from the same source and mostly be used together)”
(P4) and that they enable a “logical grouping of signals” (P9).

Hypothesis H3. Buses are useful to facilitate signal ma-
nipulation. A bus is a composite signal type that allows el-
ement access through names (i.e., like a struct or hash table),
as opposed to index-based access. Thus, the elements’ order
is irrelevant. Such characteristic eases signal selection, e.g.,

“signal routing is made easier, and I don’t have to care about
the signals order like in MUX” (P12). When the signals are
grouped in a bus, they can be shared between subsystems with
less effort, as fewer diagrammatic operations are needed: “less
manual effort to connect signals one by one” (P13). Engineers
can also “perform operations on the whole bus at once” (P9),
and can “handle a set of signals” (P11).

Hypothesis H4. Buses are useful for configuring simula-
tion and code generation. Non-virtual buses can be used for
configuring model simulation and “generating structs in code”
(P18) (i.e., C-structs), which offers “good cohesion with tradi-

tionally generated code through shared header files” (P5), as
the “structure in the code if non-virtual buses are used” (P17)
is preserved.

4.1.2. RQ2 When is it appropriate to use buses? This
section presents hypotheses derived from the Exploratory survey
addressing RQ2. More specifically, they stem from the answers
to ES1, ES5, ES6, and ES7 questions.

Hypothesis H5. Buses should be employed when struc-
turing diagrams. Many participants mentioned the architec-
tural quality of buses. They noted that buses can be used “as
structure” (P1), “to create structures” (P11), and to “model ar-
chitecture” (P9). It is preferable to have a “structure of signals
[for] too many scalar signals” (P17), or for “multiple signals
with different data types as structure” (P1). They can also facil-
itate encapsulation of subsystem communication and be viewed

“mainly as interfaces” (P7), or as an “interface definition” (P17)
itself.

Hypothesis H6. Buses should be employed when grouping
related signals (i.e., used by the same subsystem or function).
The relatedness of candidate signals is a trigger for bus usage.
Participants advise to “couple related signals” (P3), “to struc-
ture data that belong together” (P10), and employ buses “when
grouping similar signals” (P14), or “when they have a strong
dependency on each other” (P10). The modeled physical entity
also influences bus usage. Some participants use buses when
they “reflect [a] real data network” (P3), and even more explic-
itly choose to “combine CAN data and status signals” (P13).
Two signals can be considered related if the same part of the
system uses them, or they share the same function: “if more than
2 data signals need to go through the same operation” (P2). In
this way, buses “transport signals, which belong together topi-
cally, between subsystems” (P8), or are used for “exchanging
large signals between sub-assemblies” (P14). More generally, it
may be enough if signals take a similar flow through the model.
Participants use buses “to gather large groups of signals and
lead them through the model” (P15), “to bunch the signals
moving between modules” (P13), and “when [signals] are used
in a combination at multiple locations” (P10). One participant
explicitly mentioned that a signal’s value might not be critical
and recommends “routing grouped constants and/or variables”
(P18).

Hypothesis H7. Buses should be employed to improve
model comprehensibility. Upon a high density of signal lines,
the understandability of the diagram becomes impaired. A par-
ticipant noted that the “comprehensibility of the model” (P4)

Simulink bus usage in practice: an empirical study 7

could be improved, as “too many signal lines could be over-
whelming” (P4). In this way, buses can be used “to simplify
drawings by decreasing the number of crossing signals” (P10)
and are “consolidating signals, to get a better signal flow
overview” (P9). In other words, buses should be used as the

“model gets confusing due to too many signal lines” (P8). An-
other important aspect of buses is “to simplify interfaces” (P6),
by “reducing interface size” (P18). This aspect can be viewed
as fewer signals flowing into inports or from outports, and thus
buses “are also used to reduce the number of ports between the
subsystems” (P16). Buses generally also simplify the layout of
subsystems significantly. Both in terms of understanding and
creating the layout. Getting a good routing in Simulink with
many lines is effort intensive.

Hypothesis H8. Buses should be employed to improve
efficiency when working on the model. Signals can be manip-
ulated in bulk when grouped in a bus. Engineers thus want “to
gain the ability to perform operations on the whole bus at once
in the model” (P9). Buses also save the time required to update
interfaces between communicating software modules. Partici-
pants described this as “[it] sometimes is easier to manage a bus
structure to communicate software modules instead of updating
the interface and adding inputs/outputs to the models” (P6),
or “when it becomes impractical to keep adding inputs/outputs”
(P6). Finally, “consolidating signal inputs to scope” (P14) is
also facilitated by buses.

Hypothesis H9. Buses should be employed when defining
C-structs to be created in the auto-generated code. Buses
marked as non-virtual trigger the code generator to transform
the containing signals into C-structs. Several participants men-
tioned this feature, as they note buses are “also useful to in-
terface with C-structs” (P6), and “code generation of structs”
(P18), or even the very general remark: “all models use buses
to generate/access to expected C-structs in the code” (P16).

4.1.3. RQ3 When should bus usage be avoided? The
hypotheses presented in this section address RQ3 and were
derived from the Exploratory survey. More precisely, they were
developed from the answers to questions ES2, ES4, ES5, ES6,
and ES7.

Hypothesis H10. Buses should not be used when the
number of candidate signals for a bus is low. Engineers
may avoid using buses if the number of candidate signals one
considers bundling in a bus is too low. This is usually the case
for “models with few signals” (P18), or “models with simple
interfaces” (P6). The participants considered different numbers
of signals as too low, though: in “small models [with] not so
many signals (many being less than 8 or a bit more)” (P4), when
the “number of signals is ≤ 3” (P8), or even “when it’s only
one signal” (P14). Too few signals in a bus can even lead to
bus refactoring by bus dissolution from “bus to signals: when
only single signals are used in deeper model levels” (P10).
Hypothesis H22 revisits this aspect and suggests a concrete
number for “too low”.

Hypothesis H11. Buses should not be used when signals
have the same data type; a MUX should be employed instead.
This hypothesis is similar to one of the very few guidelines con-

cerning buses of MAB and MISRA (Misra 2023; MathWorks
Advisory Board 2020). One should use MUXes for the same
typed data and buses for mixed typed data, which one participant
also stated as in the case of “same data type signal” (P1).

Hypothesis H12. Buses should not be used when the can-
didate signals are unrelated. This hypothesis is the reverse of
Hypothesis H6, and most participants thus answered with a re-
versed response. One participant noted that “if the combination
of signals into a bus is unpractical, e.g., signals come from/go
to different subsystems, signals don’t belong together” (P16).

Hypothesis H13. Non-virtual buses should not be used
when they affect code generation negatively. To optimize
the code generation, non-virtual buses should be avoided, i.e.,
there is an “autocode optimization need” (P12). Unlike non-
virtual buses, virtual buses reduce memory requirements by
accessing and storing data non-contiguously, “to avoid memory
conception” (P11).

Hypothesis H14. Buses should not be used when testing
models; signals should be used instead. Doerr et al. mentions
that, in testing, all signals of a bus will be created, even when
they are not used elsewhere (Doerr & Bachmann 2018). This su-
perfluous signal creation adds to the cognitive load of the tester.
Two participants also noted “a to be unit tested (referenced)
subsystem shall only get the inputs it needs, to minimize testing
and analysis effort” (P9), and “for testing models, signals are
better” (P11).

Hypothesis H15. Buses should not be used when convey-
ing signal usage information. When located outside buses,
signals and their respective names become more visible and can
convey information to the engineer. This way, one can be ex-
plicit and use a lower abstraction level, e.g., elementary signals.
It is also easier to discern which signals of a bus are used (Doerr
& Bachmann 2018), or more concretely “to show on which sig-
nals the sub-model really relies on” (P10). Participants do not
use buses “if [they] want to model very clearly how submodules
interact with each other (through which signals)” (P6), and

“don’t often remove buses, but if it benefits understanding at the
higher level, [they] can select signals from the bus and route as
scalars into the subsystems” (P18).

4.1.4. RQ4 What are best practices for bus sizes? The
hypotheses in this section were developed either from analyzing
publicly available Simulink models or from suggested refac-
torings of (Eessaar & Käosaar 2019) and (Doerr & Bachmann
2018).

Hypothesis H16. If a bus is becoming too big, it should be
split up into its sub-buses. This hypothesis states a refactoring
proposal for big buses. If a big bus consists of sub-buses, it
could be resolved into its sub-buses (a more radical step would
be exposing even the sub-buses recursively as elementary signal
lines). This refactoring could aid the understanding and han-
dling, as smaller, more manageable buses can now be worked
on, and more information is explicit, see Hypothesis H15.

Hypothesis H17. A bus should contain less than 38 ele-
mentary signals. In our analysis of public Simulink models,
we found that 95% of all busses have less than 38 elementary
signals (see Table 2). Thus, we consider having 38 or more

8 Amorim et al.

signals as atypical. A possible refactoring is splitting the bus
into sub-buses; see Hypothesis H16.

Hypothesis H18. A bus should contain less than nine
sub-buses. We found that 95% of all busses have less than nine
sub-buses (see Table 2). Thus, we consider having nine or more
sub-buses as atypical. A possible refactoring is extracting some
sub-buses (see Hypothesis H16).

Hypothesis H19. A bus should be nested less than five bus
layers deep. We found that 95% of all busses are nested less
than four layers deep (see Table 2). Thus, we consider having
four or more layers of hierarchy as atypical. There was a typo in
our questionnaire: our hypothesis should have stated “less than
four bus layers deep”; it is thus less strong and may have led
to a higher agreement rate. Possible refactorings are splitting
the bus into sub-buses, see Hypothesis H16, or flattening the
sub-bus hierarchy by resolving sub-buses into their elementary
signals.

Hypothesis H20. When less than 50% of a bus’ signals are
used, it should be split up. One intuitive refactoring proposal
for splitting up a bus is excluding unused signals. We suggest
refactoring buses in which too many signals are unused, as
they inflate the bus, making it harder to understand and handle.
One participant in the Exploratory survey stated the following
suggestion: “when only single elements of the bus are necessary
in the sub-models” (P10).

Hypothesis H21. If a bus is too small, its elementary
signals should be used instead. Buses that group up a tiny
number of elements could add unnecessary abstraction (see
Hypothesis H15).

Hypothesis H22. A bus should be made up of at least
two elementary signals. This hypothesis brings a value for the
“superfluous bus signal” smell from Gerlitz et al. (Gerlitz et al.
2015). The value was derived from the 5th percentile of bus
usage, which includes two signals (cf. Table 2). Following this
hypothesis, only buses using single elements must be refactored.
As the minimum number of bus elements is one, this hypothesis
is not particularly strong, but it gives a concrete number for the
imprecisely defined “low” of Hypothesis H10.

4.2. Deductive phase results
The results of the Confirmatory survey are depicted in Figure 5.
The numbers are given as percentages for the agreement level
of the 30 respondents of the Confirmatory survey. We excluded
the “don’t know” answers participants gave, which we show
separately on the right in gray color, as percentages of all re-
sponses. We did this because “don’t know” responses cannot be
rated on our forced-choice Likert type scale, see Section 3.4.1.

5. Discussion
In our discussion of study results, we first focus on the Confir-
matory survey results, then discuss the results’ applicability for
industry and academia and finally consider potential threats to
validity.

5.1. Confirmatory survey results discussion
To discuss the Confirmatory survey results, we first introduce
two dimensions, consensus and mean agreement, as criteria to

analyze a hypothesis’ acceptance. Consensus (Tastle & Wier-
man 2007) measures the dispersion within an ordinal scale’s
answers. It is defined between 0 (complete dispersion between
respondents) and 1 (complete agreement between respondents).
The mean agreement is computed by converting the ordinal
scale into an equidistant interval scale.7 These values for each
hypothesis are depicted in Figure 6, similarly to (Vogelsang et
al. 2020). The x-axis shows the mean agreement value towards
the hypotheses, the y-axis shows the consensus level of the
participants. Color and shape disclose the median agreement
for each hypothesis. In this chart, don’t know answers were
removed. For instance, hypotheses with a lower consensus are
more controversial. They are located in the lower part of the
chart (e.g., H4, H8, H9). These may need some clarification to
be universally accepted or apply only to specific contexts. On
the other hand, hypotheses located on the upper part of the chart
(e.g., H1, H2, H7, H20) had higher consensus, probably because
they are more generalizable and were well understood by the
participants. For the mean agreement, hypotheses located next
to the horizontal extremes have more strong agreement or strong
disagreement. For instance, hypothesis H1 is located very much
to the right side, with 73% of strongly agree. In the following,
we analyze the hypotheses, comparing them according to the
responses received.

5.1.1. Hypotheses with high agreement rate All hy-
potheses from RQ1, RQ2, and RQ4 had a good agreement
rate (i.e., 73% on average). The hypotheses of RQ1 and RQ2
concern the advantages of buses and usage situations; thus,
practitioners recognize buses’ positive attributes and use cases.
Perhaps the cut-off numbers in RQ4’s hypotheses could have
been stricter, as the agreement rate to bus size hypotheses was
fairly high. In any case, bus sizes in the upper and lower fifth
percentiles of open source model usage (cf. Table 2) were con-
sidered problematic by most respondents.

5.1.2. Hypotheses with high disagreement rate Four
hypotheses received more disagreement than agreement: H10,
H11, H14, and H15. They all address RQ3, which focuses on
situations when buses should be avoided. Respondents could not
agree on the hypotheses with a similar consensus to RQ2, which
focuses on when it is appropriate to use buses. For instance,
H10 was created based on the statements of six participants with
a median of 7.5 years and an average of 10.5 years of experience.
However, 55% of the participants of the Confirmatory survey
disagreed with it. One possible reason for this outcome is
the way the hypothesis was formulated (i.e., “the number of
candidate signals for a bus is low.”) since most participants
agreed that buses containing only two signals are too few (H22).
Interestingly, H11 was the second most disagreed hypothesis,
despite being elicited from the official guidelines. This fact
may show the general need for founding or revising guidelines
empirically based on actual practitioners’ needs. Hypothesis
H14 was derived from two survey participants, and we also

7 We are aware, that the responses are scaled ordinally and calculating a mean
value for them is refrained from. Computing them for hypotheses with the
same median values can still give an informative order of the level of agree-
ment, though. We do not interpret mean values in our discussion.

Simulink bus usage in practice: an empirical study 9

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H1 3 23 73

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H2 3 17 50 30

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H3 7 34 41 17 3

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H4 16 28 28 28 17

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H5 3 3 38 55 3

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H6 3 13 40 43

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H7 3 47 50

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H8 19 30 30 22 10

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H9 14 14 23 50 27

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H10 7 48 26 19 7

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H11 19 44 30 7 7

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H12 15 15 44 26 7

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H13 10 33 38 19 28

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H14 20 36 28 16 14

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H15 17 48 35 21

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H16 7 18 50 25 7

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H17 7 37 37 19 10

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H18 11 26 41 22 10

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H19 20 40 40 17

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H20 29 50 21 7

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H21 7 39 32 21 7

“agree” “strongly agree”“disagree”“strongly disagree” “don’t know”

H22 3 14 38 45 3

Figure 5 Confirmatory survey results. The colored bars in the middle show each hypothesis’ agreement rate from the Confirma-
tory survey. The hypothesis IDs are denoted on the left side. The dark pink bars show the percentages of strong disagreement,
light pink bars give the percentages of disagreement, light blue for agreement, and dark blue for strong agreement. Here, the
“don’t know” answers are excluded. They are shown on the right side with gray bars. Their numbers describe percentages of all
responses with and without an agreement rating.

10 Amorim et al.

strongly
disagree

disagree agree strongly
agree

more
contro-
versial

0.5

0.6

more
consen-

sual 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Mean Agreement

C
on

se
ns

us

median disagree

median agree

Figure 6 Mean agreement and consensus of hypotheses. Hypothesis H13 is located behind hypothesis H21.

find reference to it in the literature (Doerr & Bachmann 2018).
Perhaps, a rewritten hypothesis with more information, such
as thus, diminishing testing efforts would have had a higher
agreement rate. In H15, the least agreed hypothesis with only
35% and the only hypothesis without a single strongly agree,
the wording of “conveying signal usage information” similarly
could be open to misinterpretation. Disagreement with H15
was rather consensual, suggesting the opposite of H15 may find
more acceptance: buses should be used to convey signal usage
information. These hypotheses are good candidates for future
work, where we try to understand the reasons for low adherence.

5.1.3. Hypotheses with high “don’t know” rate Over-
all, the ratio of participants answering with don’t know was
low (9.2%), from which we conclude that our hypotheses are
understandable and practitioners indeed have the knowledge
and an opinion about them. Two hypotheses (H9 and H13) had
more than 25% of don’t know responses, and both are concerned
with non-virtual buses, which we assume is a Simulink feature
many engineers do not employ or have little knowledge of. This
phenomenon could also explain why H9 achieved the lowest
consensus in our study (cf. Figure 6). Despite many respon-
dents being unable to provide a stance, the ones who did mostly
agree with these hypotheses. Similarly, H4, where 56% of the
respondents have agreed, shows that buses are used relatively
little for code generation. Having notions of “simulation” and
“code generation” in the same sentence could have confused
the respondents due to their relation, influencing the high rate

(17%) of don’t know answers.

5.2. Applicability of our findings
This section discusses our findings’ applicability to industry and
academia.

5.2.1. Impact for Industry The bus element, when properly
employed, lowers an engineer’s cognitive demand by increas-
ing internal model quality (ISO/IEC 25010 2011). This may
affect static properties, such as analyzability, modifiability, and
testability. Poor internal quality, and smells (Fowler & Becker
1999) can contribute to increased technical debt (Tufano et al.
2015). In this matter, hypotheses H6 and H9 can serve as new
guidelines on when to use buses. H12 and H13 guide when to
avoid bus usage. H16 and H21 give concrete refactoring guide-
lines for buses with suboptimal signal amounts. Additionally,
H17–H20 and H22 present concrete and empirically founded
antipatterns. Detection of these cases is a good candidate to be
implemented in static analysis tools and resolved through one
of the refactorings proposed in H16 or H21.

For Model Engineering Solutions GmbH (MES), our indus-
trial partner, the findings became the input for creating a static
analysis tool prototype to give engineers hints on where buses
can be used sensibly. This prototype represents the first step
before incorporating these functionalities into their commercial
tool. Overall, their perception is that buses are not used as much
as they should; thus, the best practices for recommending when
to use buses are the most interesting ones from their point of

Simulink bus usage in practice: an empirical study 11

view. Our findings are also used in their Simulink teaching
classes for system engineers.

5.2.2. Impact for Academia Hypotheses H1–H5, H7, and
H8 empirically validate knowledge about the basic properties
of bus usage. These describe conceptual grounding knowledge
relevant to engineers new to Simulink. They describe benefits
and define use contexts. This knowledge can also be incorpo-
rated into higher education course programs. Our findings con-
tribute to the body of knowledge of design patterns in visual pro-
gramming languages (Yazar 2014) with a strong focus on their
graphical properties. Dataflow programming languages (Sousa
2012) (e.g., ASCET-DEVELOPER (ETAS 2023)) bearing simi-
lar types of elements to the Simulink buses yields benefits from
the results of our research. Some hypotheses and proposed
guidelines may seem trivial, but they still help beginners by
making tacit knowledge explicit and advanced practicioners by
making the knowledge referable and consultable. We propose
basing guidelines on empirical research, as H11 (based on a
published guideline) was one of the hypotheses participants
disagreed with the most.

5.3. Threats to Validity
During the inductive phase of our research, we used an online
survey with open-ended questions, which could lead to misin-
terpretations of questions. To mitigate this threat, we carefully
reviewed the survey before its execution, reviewed its responses
after its execution, and discarded the ones that clearly showed
some misunderstanding or did not provide helpful information
for theory building. We posted our surveys in professional
public forums (i.e., voluntary response sampling) and asked
our peers to share them with relevant colleagues (i.e., snow-
balling sampling). Therefore, we had little control over who
responded to our survey. This threat was mitigated through five
demographic questions and two qualification questions, where
the respondents were asked whether they had knowledge and
experience using buses. We excluded respondents who never
used buses in Simulink models from both surveys. With this
exclusion criterion, we possibly also have excluded individuals
who got a detailed explanation on why they should never em-
ploy buses. We presume, that most participants who have never
used a bus, also don’t know much about them, though. In any
case, only one participant in the exploratory survey and three
participants in the confirmatory survey may have been affected
as they were excluded because of this criterion.

Webb (Webb et al. 1999) notes that a strength of triangula-
tion is the cross-validation of hypotheses by different methods.
Specifically, “When a hypothesis can survive the confronta-
tion of a series of complementary testing methods, it contains
a degree of validity unattainable by one test within the more
constricted framework of a single method”. However, once
the different methods do not give converging results for a hy-
pothesis, their degree of validity becomes questionable. This
is why we only consider a hypothesis cross-validated by our
confirmatory survey if its median level is in agreement, i.e., blue
circles in Figure 6. Still, this does not guarantee their validity –
and symmetrically neither, that hypotheses H10, H11, H14, and

H15 do not hold.

6. Conclusion

We proposed 22 hypotheses concerning Simulink bus elements,
covering the advantages of bus usage, how and when to apply
buses, and when they should be avoided. Eighteen of these
hypotheses were agreed upon, while only four hypotheses re-
ceived more disagreement. We used three methods to elicit our
hypotheses: an open questions survey applied to experienced
practitioners, an investigation of structuring decisions by study-
ing real-life Simulink models, and a collection of guidelines
from prior literature. In the second step, we applied a confirma-
tory survey to assess practitioners’ agreement with our initial
findings. Our findings help close the knowledge gap on these
elements, which has not yet received enough attention from the
scientific community. They serve as starting point for guide-
lines for Simulink practitioners and the development of smell
detectors. In future work, we want to empirically compare the
usage of buses to other abstraction and structuring methods of
Simulink, namely the subsystem and MUX.

Acknowledgments

This work has been supported by the German Ministry of
Research and Education (BMBF) within project SimuComp
(Simulink Architecture Comprehension and Analysis) under
grant 01IS18091.

References

Allen, I. E., & Seaman, C. A. (2007). Likert scales and data
analyses. Quality progress, 40(7), 64–65.

Boll, A., Amorim, T., Bachmann, F., Kehrer, T., Vogelsang, A.,
& Pohlheim, H. (2023). Data set and calculations of this
study. doi: 10.5281/zenodo.8011478

Boll, A., Brokhausen, F., Amorim, T., Kehrer, T., & Vogelsang,
A. (2021). Characteristics, potentials, and limitations of open-
source Simulink projects for empirical research. Software
and Systems Modeling. doi: 10.1007/s10270-021-00883-0

Braun, V., & Clarke, V. (2021). Thematic analysis: A practical
guide. SAGE Publications Ltd.

Copi, I., Cohen, C., & Flage, D. (2006). Essentials of logic.
Routledge.

Dajsuren, Y. (2015). On the design of an architecture framework
and quality evaluation for automotive software systems (Un-
published doctoral dissertation). Department of Mathematics
and Computer Science, Technische Universiteit Eindhoven.

Dajsuren, Y., van den Brand, M. G., Serebrenik, A., & Roubtsov,
S. (2013). Simulink models are also software: Modularity
assessment. In 9th International ACM Sigsoft Conference on
Quality of Software Architectures (QoSA) (pp. 99–106).

Denzin, N. K. (2017). Sociological methods. Routledge. doi:
10.4324/9781315129945

Doerr, H., & Bachmann, F. (2018). Analysis and improvement
of model architectures for safety related systems (Tech. Rep.).
SAE Technical Paper.

12 Amorim et al.

Duran, F., Atacak, İ., & Ömer Faruk Bay. (2009). Simulink state-
flow for algorithm learning. Procedia - Social and Behavioral
Sciences, 1(1), 554–558. doi: 10.1016/j.sbspro.2009.01.100

Eessaar, E., & Käosaar, E. (2019). On finding model smells
based on code smells. In R. Silhavy (Ed.), Software engi-
neering and algorithms in intelligent systems (pp. 269–281).
Cham: Springer International Publishing.

ETAS. (2023). ASCET-DEVELOPER – Model-based design
and auto c-code generation for embedded systems. Retrieved
from https://www.etas.com/en/products/ascet-developer.php
(Accessed: 06.06.2023)

Fowler, M., & Becker, P. (1999). Refactoring: Improving the
design of existing code. Addison-Wesley.

Gerlitz, T., Tran, Q. M., & Dziobek, C. (2015). Detection and
Handling of Model Smells for MATLAB/Simulink models.
In MASE@ MoDELS (pp. 13–22).

Google. (2023). BigQuery. Retrieved from https://cloud.google
.com/bigquery (Accessed: 06.06.2023)

Hu, W., Loeffler, T., & Wegener, J. (2012). Quality
model based on ISO/IEC 9126 for internal quality of MAT-
LAB/Simulink/Stateflow models. In IEEE International Con-
ference on Industrial Technology (pp. 325–330).

ISO/IEC 25010. (2011). ISO/IEC 25010:2011, Systems and
software engineering — Systems and software Quality Re-
quirements and Evaluation (SQuaRE) — System and software
quality models.

Jaskolka, M., Pantelic, V., Wassyng, A., & Lawford, M. (2020).
Supporting modularity in Simulink models. arXiv preprint
arXiv:2007.10120.

Jaskolka, M., Pantelic, V., Wassyng, A., Lawford, M., & Paige,
R. (2021). Repository Mining for Changes in Simulink Mod-
els. In ACM/IEEE 24th International Conference on Model
Driven Engineering Languages and Systems (MODELS’21)
(p. 46-57). doi: 10.1109/MODELS50736.2021.00014

Jaskolka, M., Scott, S., Pantelic, V., Wassyng, A., & Lawford,
M. (2020). Applying modular decomposition in Simulink.
In IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW’20) (pp. 31–36).

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German,
D. M., & Damian, D. (2014). The promises and perils of
mining github. In Proceedings of the 11th working conference
on mining software repositories (pp. 92–101).

Liggesmeyer, P., & Trapp, M. (2009). Trends in embedded
software engineering. IEEE software, 26(3), 19–25.

Likert, R. (1932). A technique for the measurement of attitudes.
Archives of Psychology, 22(140), 1–55.

MathWorks Advisory Board. (2020). Control Algorithm
Modeling Guidelines Using MATLAB, Simulink, and
Stateflow – Version 5 (Tech. Rep.). The MathWorks,
Inc. Retrieved from https://de.mathworks.com/content/
dam/mathworks/mathworks-dot-com/solutions/mab/
mab-control-algorithm-modeling-guidelines-using-matlab
-simulink-and-stateflow-v5.pdf (Accessed: 06.06.2023)

MES. (2023). Modeling Guidelines Interest Group (MGI-
Group). Retrieved from https://model-engineers.com/en/
academy/mgigroup (Accessed: 06.06.2023)

Misra. (2023). MISRA AC SLSF (Tech. Rep.). MISRA. Re-

trieved from https://www.misra.org.uk/product/misra-ac-slsf/
(Accessed: 06.06.2023)

Pantelic, V., Postma, S., Lawford, M., Jaskolka, M., Macken-
zie, B., Korobkine, A., . . . Wassyng, A. (2017). Software
engineering practices and Simulink: bridging the gap. Inter-
national Journal on Software Tools for Technology Transfer,
20, 95-117.

Plösch, R., Gruber, H., Hentschel, A., Körner, C., Pomberger,
G., Schiffer, S., . . . Storck, S. (2008). The EMISQ method
and its tool support-expert-based evaluation of internal soft-
ware quality. Innovations in Systems and Software Engineer-
ing, 4(1), 3–15.

Popoola, S., & Gray, J. (2021). Artifact Analysis of Smell
Evolution and Maintenance Tasks in Simulink Models. In
2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-
C) (pp. 817–826).

Rau, A. (2001). On model-based development: decomposition
and data abstraction in simulink. Gesellschaft fuer Informatik,
FG, 2(1).

Shields, P. M., & Rangarajan, N. (2013). A playbook for
research methods: Integrating conceptual frameworks and
project management. New Forums Press.

Shrestha, S. L., Chowdhury, S. A., & Csallner, C. (2022).
SLNET: A Redistributable Corpus of 3rd-party Simulink
Models. arXiv preprint arXiv:2203.17112.

Sousa, T. B. (2012). Dataflow programming concept, languages
and applications. In Doctoral Symposium on Informatics
Engineering (Vol. 130).

Tastle, W. J., & Wierman, M. J. (2007). Consensus and dis-
sention: A measure of ordinal dispersion. International Jour-
nal of Approximate Reasoning, 45(3), 531–545.

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M.,
De Lucia, A., & Poshyvanyk, D. (2015). When and Why
Your Code Starts to Smell Bad. In IEEE/ACM 37th IEEE
International Conference on Software Engineering (ICSE)
(Vol. 1, p. 403-414). doi: 10.1109/ICSE.2015.59

Vanherpen, K., Denil, J., Vangheluwe, H., & De Meulenaere, P.
(2015). Model transformations for round-trip engineering in
control deployment co-design. SpringSim (TMS-DEVS), 920,
55–62.

Vogelsang, A., Eckhardt, J., Mendez, D., & Berger, M. (2020).
Views on quality requirements in academia and practice: com-
monalities, differences, and context-dependent grey areas.
Information and Software Technology, 121, 106253. doi:
10.1016/j.infsof.2019.106253

Webb, E. J., Campbell, D. T., Schwartz, R. D., & Sechrest, L.
(1999). Unobtrusive measures (Vol. 2). Sage Publications.

Whalen, M. W., Murugesan, A., Rayadurgam, S., & Heimdahl,
M. P. (2014). Structuring Simulink models for verification
and reuse. In Proceedings of the 6th international workshop
on modeling in software engineering (pp. 19–24).

Yazar, T. (2014, December). Design of dataflow. Nexus Network
Journal, 17(1), 311–325. doi: 10.1007/s00004-014-0222-8

Simulink bus usage in practice: an empirical study 13

https://www.etas.com/en/products/ascet-developer.php
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://de.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/mab/mab-control-algorithm-modeling-guidelines-using-matlab-simulink-and-stateflow-v5.pdf
https://de.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/mab/mab-control-algorithm-modeling-guidelines-using-matlab-simulink-and-stateflow-v5.pdf
https://de.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/mab/mab-control-algorithm-modeling-guidelines-using-matlab-simulink-and-stateflow-v5.pdf
https://de.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/mab/mab-control-algorithm-modeling-guidelines-using-matlab-simulink-and-stateflow-v5.pdf
https://model-engineers.com/en/academy/mgigroup
https://model-engineers.com/en/academy/mgigroup
https://www.misra.org.uk/product/misra-ac-slsf/

About the authors
Tiago Amorim is a guest post-doctoral research fellow at the
University of Cologne (DE), where he also obtained his Ph.D.
Before his doctorate, he worked as a research assistant at the
Technical University of Berlin (DE) and the Fraunhofer Institute
for Experimental Software Engineering (DE). His research in-
terests are model-based systems engineering, process modeling,
software engineering, and empirical research. He is currently
looking for a position as a researcher in academia or industry.
You can contact the author at amorim@cs.uni-koeln.de or visit
https://tbuarque.github.io/.

Alexander Boll is a doctoral student at the University of Bern
and has been part of the Software Engineering Group since
2022. Before that, he studied computer science at Humboldt-
Universität zu Berlin, where he started his doctoral studies. His
research interest is Open Science in the modeling community.
You can contact the author at alexander.boll@inf.unibe.ch or
visit https://model-engineers.com.

Ferry Bachmann works at Model Engineering Solutions GmbH
(MES). He develops professional tools to improve and simplify
model-based software development with Simulink. The focus
is on automatic layout, refactoring support, and complexity
analysis and reduction of Simulink models. You can contact
the author at ferry.bachmann@model-engineers.com or visit
https://model-engineers.com.

Timo Kehrer is a professor at the Institute of Computer Science
of the University of Bern (CH), chairing the Software Engi-
neering Research and Teaching Group. With a PhD from the
University of Siegen (DE) and after holding a post-doctoral
research fellow position at Politecnico di Milano (IT), he previ-
ously was an assistant professor at the Department of Computer
Science at Humboldt-Universität zu Berlin (DE). Kehrer has ac-
tive research interests in various fields of software engineering,
including model-driven methods which enable formal reasoning
and simulation, and which facilitate the automated transition
between informally sketched requirements and implementations.
You can contact the author at timo.kehrer@inf.unibe.ch or visit
https://seg.inf.unibe.ch/.

Andreas Vogelsang is a Full Professor of Software and Sys-
tems Engineering at the Institute of Computer Science at the
University of Cologne. His research focuses on requirements
engineering, model-based systems engineering, and software en-
gineering with and for machine learning. He is a Junior Fellow
of the German Informatics Society (GI), and he was awarded
"Young Scientist of the Year" by academics and the German
Association of University Professors and Lecturers (DHV). You
can contact the author at vogelsang@cs.uni-koeln.de or visit
https://cs.uni-koeln.de/sse.

Hartmut Pohlheim been driving forward the quality assurance
of software models for the automotive industry for more than
20 years. He holds a doctorate in technical cybernetics and
automation engineering from the Technical University of Ilme-
nau and is considered one of the most distinguished experts

in model-based software development. After graduating, he
worked in the research department of Daimler AG, where he
focused on the optimization of technical applications and the vi-
sualization of complex systems. Since 2008 Hartmut Pohlheim
has been Managing Director of Model Engineering Solutions
(MES) and is responsible for technology development as Chief
Technology Officer (CTO). MES provides solutions in various
development chains and highly-automated cloud environments
for safe controller software. The main focus is static model anal-
ysis and model improvement, primarily in MATLAB Simulink,
the automotive industry’s leading development platform. You
can contact the author at pohlheim@model-engineers.com or
visit https://model-engineers.com.

14 Amorim et al.

mailto:amorim@cs.uni-koeln.de?subject=Your paper "Simulink bus usage in practice: an empirical study"
https://tbuarque.github.io/
mailto:alexander.boll@inf.unibe.ch?subject=Your paper "Simulink bus usage in practice: an empirical study"
https://model-engineers.com
mailto:ferry.bachmann@model-engineers.com?subject=Your paper "Simulink bus usage in practice: an empirical study"
https://model-engineers.com
mailto:timo.kehrer@inf.unibe.ch?subject=Your paper "Simulink bus usage in practice: an empirical study"
https://seg.inf.unibe.ch/
mailto:vogelsang@cs.uni-koeln.de?subject=Your paper "Simulink bus usage in practice: an empirical study"
https://cs.uni-koeln.de/sse
mailto:pohlheim@model-engineers.com?subject=Your paper "Simulink bus usage in practice: an empirical study"
https://model-engineers.com

	1

