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Artificial Intelligence
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Purpose: The purpose of this study was to develop a deep learning algorithm, to detect
retinal breaks and retinal detachments on ultra-widefield fundus (UWF) optos images
using artificial intelligence (AI).

Methods:OptomapUWF images of the databasewere annotated to four groups by two
retina specialists: (1) retinal breaks without detachment, (2) retinal breaks with retinal
detachment, (3) retinal detachmentwithout visible retinal breaks, and (4) a combination
of groups 1 to 3. The fundus image data set was split into a training set and an indepen-
dent test set following an 80% to 20% ratio. Imagepreprocessingmethodswere applied.
An EfficientNet classificationmodel was trainedwith the training set and evaluatedwith
the test set.

Results: A total of 2489 UWF images were included into the dataset, resulting in a train-
ing set size of 2008 UWF images and a test set size of 481 images. The classification
models achieved an area under the receiver operating characteristic curve (AUC) on the
testing set of 0.975 regarding lesion detection, an AUC of 0.972 for retinal detachment
and an AUC of 0.913 for retinal breaks.

Conclusions: A deep learning system to detect retinal breaks and retinal detachment
using UWF images is feasible and has a good specificity. This is relevant for clinical
routine as there can be a high rate of missed breaks in clinics. Future clinical studies
will be necessary to evaluate the cost-effectiveness of applying such an algorithm as an
automated auxiliary tool in a large practices or tertiary referral centers.

Translational Relevance: This study demonstrates the relevance of applying AI in
diagnosing peripheral retinal breaks in clinical routine in UWF fundus images.

Introduction

Rhegmatogenous retinal detachment (RRD) is a
possible devastating complication of retinal breaks that
can lead to permanent vision loss.1 It mostly affects
the older working population around the globe and
is currently of growing concern, because an impor-
tant risk factor for both complicated and uncompli-
cated retinal breaks is high myopia,2 which preva-
lencemight double before 2050.3 Because retinal breaks

might remain asymptomatic until a retinal detachment
has already taken place,1 it is of high importance to
develop machine-learning based algorithms that can
detect them in an automatedmanner. Such a tool could
be of great value, because visual impairment due to
RRD can be averted with surgical treatment if recog-
nized early enough.4

The preferred method for detecting retinal breaks
relies on careful indirect ophthalmoscopy.1 Fundus
photography can assist in finding retinal breaks,5 but
cannot fully replace clinical ophthalmoscopy.1 Recent
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advances in wide field imaging techniques, namely
ultra-widefield (UWF) imaging, have increased the
sensitivity of those imaging modalities, especially for
the peripheral retina.6 UWF imaging devices enable
the acquisition of 200 degrees of the retina in a
single image, whereas conventional fundus photog-
raphy is restricted to the central 30 degrees to 60
degrees. However, the increased sensitivity of the newer
imaging modalities comes along with a more challeng-
ing, time-consuming analysis for the clinical practi-
tioner, because a standard single UWF fundus image
device generates an image series consisting of up to
15 images per eye. Here, machine learning plays an
important role thanks to its efficiency and accuracy in
processing large data sets.7 In addition, the use of wide-
field imaging to diagnose retinal breaks without the
help of machine learning does not appear to have high
enough sensitivity and specificity to be implemented as
an effective screening tool.8

In ophthalmology, image computing using artifi-
cial intelligence (AI)-based technology has found its
way into clinics due to robust capability in detect-
ing and classifying retinal lesions.9–11 Recently, Oh
et al. even demonstrated the automated detection of
retinal breaks on video streams taken from an operat-
ing microscope.12 However, automatic classification
of retinal detachment or retinal tears from UWF
remains a quite understudied field of research, with
most studies having tested their methods on controlled
and selected data.10,12–14 Especially in the setting of
a tertiary referral center, where patients are imaged
before consultation with a resident doctor or specialist,
an accurate automated review of the vast amount of
images takenwould be desirable to avoidmissing retinal
breaks. This may also have medico-legal implications,
as lesions missed in clinical examination leading to
subsequent complications may be found documented
on UWF imaging in hindsight.

The aim of this study was to build a deep learning
system, based on a pretrained model which reduces the
amount of data needed to establish a solid classifier,
to collectively detect retinal breaks and detachments,
and then correctly classify the images of non-healthy
retinas into three subgroups.

Materials and Methods

Data Set

Data Collection
In this study, UWF Optos images (Daytona, Optos

PLC, Dunfermline, UK) of retrospectively enrolled
patients with a diagnosis of rhegmatogenous retinal

detachment with or without visible retinal break and
retinal breaks without detachment who have consulted
the Department of Ophthalmology at the Univer-
sity Hospital Bern, Bern, Switzerland, were retrieved.
Ethical approval for this study was obtained with
the study identification number 2019-01588. Written
informed consent was waived due to the retrospective
and irreversible anonymization of the data. Duplicate
acquisitions were excluded. Additionally, UWF images
of healthy age- and sex-matched subjects without
retinal pathologies, including history of retinal break
or rhegmatogenous detachment, were collected. The
images were fully anonymized and further processed on
a per image basis.

Data Labeling
The anonymized UWF images were included or

excluded independently by two retinal specialists.
We applied following exclusion criteria: (1) image
was acquired less than 3 months after any surgi-
cal procedure addressing RRD. (2) Insufficient image
quality due to artifacts (e.g. insufficient lighting of the
fundus due to intraocular medium opacities, eyelash
images) making less than 60% of the peripheral region
being assessable. (3) Other distinct retinal patholo-
gies/lesions (such as hemorrhages, cotton-wool lesions,
and exudates) or visible manifestations of prior surgi-
cal interventions rendering the assessment of retinal
lesions specious. Therefore, a UWF image of an eye
having undergone a surgical intervention can remain
included if the image was acquiredmore than 3months
after any surgery and the assessment of retinal lesions
is still sufficiently possible.

The included images were classified into the follow-
ing groups: 0 = “No Study Lesion” being the healthy
control group, 1 = retinal breaks without detach-
ment, 2 = retinal breaks with retinal detachment, 3 =
retinal detachment without visible retinal break, and
4 = a combination of groups 1 to 3. An example of
each category is presented in Figure 1. Any classifi-
cation disagreement was conciliated by a third senior
retinal specialist with over 20 years of clinical experi-
ence. When no consensus was reached, the image
was excluded. Figure 2 displays the image processing
workflow. The labeling process of the images generated
the ground truth for the deep learning system develop-
ment.

After reviewing the eligible UWF images, 2489
images remained to develop the deep learning system.
The Table shows their distribution per group. The
chosen images were randomly split into 2 exclusive
sets, one for training and one for testing, in a ratio
of approximately 8:2. This was made on a per-patient
basis, ensuring that no patient was present in both sets
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Figure 1. Examples of ultra-widefield fundus images. (a) Image with no study lesion. (b) Retinal detachment (dashed circle). (c) Two retinal
breaks (dotted circle). (d) Retinal detachment (bigger dashed circle) and retinal break (smaller dotted circle).

Figure 2. The workflow of establishing the Optos image dataset.

simultaneously. Furthermore, the split was stratified so
that the proportions of elements of each group were
similar in both the training and testing sets.

Deep-Learning System

Our deep learning system consists of a single convo-
lutional neural network with three binary outputs.
The first two outputs produce the log-probability
of retinal break and retinal detachment. The third

output produces the log-probability of the joint study
lesion as a linear combination of the first two
log-probabilities. PyTorch 1.10 was used to imple-
ment and train the neural network, scikit-learn to
compute the evaluation metrics, and Matplotlib for
visualization.

Convolutional Neural Network Architecture
We chose an EfficientNet-b0 architecture with

wide squeeze-and-excitation layers pretrained on the
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Table. Number of Images Obtained Per Group

Images Images

Groups N % of Total Groups 1–3 n % of Group 4

0) No study lesion 915 36.8
4) Groups 1–3 1574 63.2

1) Retinal break only 685 43.5
2) Retinal break with retinal detachment 546 34.7
3) Retinal detachment only 343 21.8

Total n = 2489 100% Total group 4 1574 100%

Figure 3. Examples of UWF images with corresponding grad-CAM overlay. (a) Image with no study lesion. (b) Image with retinal break.
(c) Image with retinal detachment.

ImageNet dataset as the backbone of our convolu-
tional neural network (CNN). We appended a linear
layer with two outputs to this backbone to produce the
log-probabilities for each lesion type. We also stacked
an additional linear layer combining these two outputs
to predict the joint study lesion.

Training
The network was trained with the training split of

2008 annotated images for 200 epochs. To compen-
sate for the small amount of training data and the
high variance of the model, we applied Polyak averag-
ing by keeping two copies of the network: the first
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network is updated following a typical training proce-
dure with Adam optimizer with learning rate 10−3, and
the second network is updated computing the running
average of the weights of the first network. Polyak
averaging helped to smooth and stabilize the training.
Additionally, we applied online data augmentation as
detailed in the following section.

Data Augmentation
At training time, images were resized to 1060 by

1060 pixels and randomly cropped to 1024 by 1024
pixels. We applied random horizontal flipping, random
rotation between −5 degrees and 5 degrees, random
brightness shift with a factor between 0.8 and 1.6 and
random contrast scale in the range of 0.8 to 1.2.

At inference time, we resized test images to 1060 by
1060 pixels and then cropped the central region of 1024
by 1024 pixels. No additional random augmentations
were applied.

In all cases, pixel values were normalized to the
range [0, 1] before passing the images to the network.

Evaluation Methodology
To assess performance, each output of our system

(retinal break, retinal detachment, and study lesion)
was evaluated independently using the collection of
481 annotated images of the test set. For each output,
we measured the area under the receiver operating
characteristic (ROC) curve and the average precision.
Additionally, we chose an operating point of the model
maximizing the training performance and measured
the sensitivity, specificity, precision, and recall of the
model on the test data.

We trained 100 models to provide 95% confidence
intervals for all considered metrics. The 100 models
were obtained by running 10 independent training
procedures with different random seeds, and then
keeping 10 models from the last 10 epochs of each
training sequence.

To understand regions of interest in each image for
the model to make its prediction, a gradient-weighted
class activation mapping (grad-CAM) function was
implemented to visualize which part of the image is
detected to make the prediction of an image. Examples
are visible in Figure 3.

Results

Performance

The EfficientNet-b0 classification model with three
binary outputs was trained with the training set and the
final prediction computed for the test set. The perfor-

Figure 4. Receiver operating characteristic (ROC) curves for retinal
breaks, retinal detachment, and study lesions with area under the
curve (AUC) and standard deviation (SD) values.

mance is presented in Figure 4. An area under the curve
(AUC) of 0.975 was achieved for lesion recognition,
whereas AUCs of 0.972 and 0.913 were obtained for
retinal detachment and retinal breaks, respectively.

Error Analysis

To investigate errors made by the deep-learning
system, one model with representative performance
was chosen. At the operating point for the selected
model, we found the following metrics. Study lesion:
Sensitivity = 0.919, Specificity = 0.979, Precision =
0.985, Accuracy = 0.943; Detachment: Sensitivity =
0.869, Specificity = 0.954, Precision = 0.916, Accuracy
= 0.923; Break: Sensitivity= 0.863, Specificity= 0.828,
Precision = 0.808, and Accuracy = 0.844. The perfor-
mance and confusion matrices of the chosen model
is visible in Figure 5. All images misclassified by this
model were manually analyzed.

The common characteristics of false-negative cases
for the study lesion or no study lesion model (n = 23)
included visible artifacts of prior laser photocoagu-
lation (n = 14, 60.8%) and break localizations in the
temporal superior quadrant (n = 16, 69.5%). Many of
the false-negative cases (n = 17, 73.9%) were images
only showing a retinal break but no retinal detachment,
a minority (n = 4, 19%) revealed retinal breaks and
detachment and only two (n = 2, 9.5%) showed retinal
detachment and no retinal break.
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Figure 5. ROC curves and confusion matrices of the one model chosen for error analysis.

The analysis of false-positive cases for the study
lesion or no study lesion model (n = 4) revealed that all
four images were impacted by obvious eyelash artifacts,
whereas one image (n = 1) additionally displayed a
small reflection artifact and signs of a thin retinal layer.

The false-negative cases in the retinal break subcate-
gory (n= 30) consisted of amajority of images (n= 20,
66.7%) revealing retinal detachment as well. Signs of
prior laser photocoagulation or cryocoagulation were
found in seven images (n = 7, 23.3%) and one (n =
1, 3.3%) image, respectively. In a few images (n = 10,
33.3%), eyelash artifacts optically covered part of the
retinal break, as displayed in Figure 6.

False-positive cases in the retinal break subcate-
gory (n = 45) commonly presented retinal detach-
ment (n = 33, 73.3%) and/or lattice degeneration (n
= 27, 60%). Signs of intravitreous hemorrhage (n =
15, 33.3%) or prior laser photocoagulation (n = 21,
46.7%) were visible occasionally. During manual analy-

Figure 6. Image with visible retinal break (inside dotted circle)
partially covered by eyelash, wrongly classified as “no retinal break”
by the algorithm.
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Figure 7. Presumably false-positive retinal break image with retinal detachment (dashed circle), which actually shows a small retinal break
(small dotted circle in enlarged section).

sis of misclassified images, one photo originally labeled
by the retinal team as no retinal break and presumably
wrongly classified as a retinal break by the classifica-
tion model, showed a small retinal break in the tempo-
ral inferior quadrant, as highlighted in Figure 7.

In the retinal detachment subcategory, false-
negative cases (n = 23) shared following common
characteristics: visible retinal break (n = 19, 82.6%),
retinal detachment location in the superior half of the
retina (n = 17, 69.5%), signs of prior laser photocoag-
ulation (n = 10, 43.4%), and intravitreous hemorrhage
(n = 4, 17.4%).

The false-positive cases in the retinal detachment
subcategory (n = 14) demonstrated an impacted image
quality due to eyelash artifacts (n = 7, 50%), visible
retinal breaks (n = 5, 35.7%), reflection artifacts (n =
5, 35.7%), and visible signs of a thin retinal layer (n =
2, 14.2%).

Discussion

Our results demonstrate that the evaluated
algorithm can predict the presence of retinal breaks
and retinal detachment with a high degree of accuracy,
with an AUC of 91.36% for retinal break and 97.23%
for retinal detachment. The relatively lower AUC for a
retinal break could be explained by the fact that retinal
breaks are usually smaller in size and therefore visually
less apparent in comparison to retinal detachment.

Importantly, most (60.8%) of the false-negatives
were associated with prior laser photocoagulation,
which supports the fact that this algorithm would
probably show better performance in primary screen-
ing for retinal breaks and detachments prior to therapy,
in comparison to being used as an auxiliary tool
at a tertiary referral center. However, up to 14% of
patients with prior laser photocoagulation develop

new breaks elsewhere15,16 and, as such, we consid-
ered it important to include these patients into our
study.

On the contrary, false-positives seem to be partially
avoidable with a better triage of the images excluding
poor quality images (e.g. Opticmediumopacity), which
could thus certainly be further improved.

In 2017, Ohsugi et al.9 demonstrated promising
results with a deep learning system for detecting RRD
using UWF imaging. In 2019 and 2020, Li et al.10,14
specifically pointed the potential of a deep learning
method in the detection of different retinal patholo-
gies using UWF images. Direct comparison to recent
studies relating to detection of retinal breaks or detach-
ments using deep learning is limited due to different
inclusion and exclusion criteria concerning baseline
requirements or included retinal lesions. Although the
system developed in this study showed good perfor-
mance for retinal breaks (AUC = 0.913) and for
retinal detachment (AUC = 0.972), other deep learn-
ing systems aiming to detect these conditions achieved
even higher performance. Li et al. obtainedAUCvalues
of 0.989 for retinal detachment in 2020.14 Zhang et al.
developed a deep learning method, which achieved an
AUC of 0.953 and 1.000 for the detection of retinal
breaks and retinal detachment, respectively, in tessel-
lated eyes in 2021.13 Oh et al. achieved an AUC of
0.957 for retinal breaks with their novel object detec-
tion based algorithm.12

Although the mentioned deep learning systems
were trained with UWF images labeled by trained
retina specialists, different grading parameters includ-
ing experience, exclusion criteria, and number of
involved graders can further influence the quality of
the grading process. Zhang et al. specifically excluded
fundus images of eyes with visible signs of previous
vitreoretinal surgery or retinal photocoagulation.13 In
our data set, we deliberately included images with
signs of previous surgery or retinal photocoagulation,
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if the image was acquired at least 3 months after
any surgical intervention, with the aim to create a
data set that better corresponds to real clinical condi-
tions. Indeed, nearly 6 to 7% of patients having under-
gone laser photocoagulation of the retina because of a
retinal break experience progression to retinal detach-
ment.17,18 Li et al. and Oh et al. do not further elabo-
rate if such images were included or excluded in their
study.10,12,14 In a clinical setting where technicians are
performing UWF imaging as preliminary examination
before clinics and clinicians are faced with a large
number of images per eye, which they may not be able
to examine in detail, this tool may be useful to avoid
missing breaks. Even more so, as medico-legal conse-
quences could arise as breaks may be documented on
UWF but may have been missed in clinical examina-
tion by resident doctors or even retina specialists. The
rate of missed retinal breaks in large practices has been
reported to be as high as 27%.19

The strengths of our study include the robust train-
ing data set (>2000 images) and a high threshold for
image exclusion (e.g. prior photocoagulation not being
an exclusion criterion), with the aim of approaching
real clinical data conditions.

Several limitations should be mentioned. First, the
final data set used to train the deep learning system
consisted of only approximately one third of images
with no study lesion. In real-world settings, less than
18% of people are found to have retinal breaks, if
not substantially fewer.2 Whereas the data set used for
training and testing in this study has been balanced
for machine learning purposes, it does not properly
represent the real-world situation in this relation. If
this system was to be applied as a sort of screen-
ing approach in clinical settings, this may inflict new
challenges. Second, the image database used for data
collection only contained images from a single Univer-
sity Eye Clinic. Different patient population, devices,
or workflows in other institutions could impact the
generalizability of our findings. Third, although UWF
imaging enables the acquisition of 200 degrees of the
retina in a single image, some peripheral regions are still
not covered.8 As our study evaluated the performance
regarding the detection of retinal breaks or detach-
ments on UWF images, lesions outside the image
acquisition area remain unnoticed by the algorithm.
This aspect would have to be assessed if such a system
is to be further developed with the idea of a screening
tool.

The current gold standard to screen for and detect
retinal breaks or retinal detachment is through clinical
examination, generally by binocular indirect ophthal-
moscopy with or without indentation. The current
performance of our system would need to be improved

in order to come into consideration for screen-
ing purposes in a general population. However, this
technique would be useful as an auxiliary tool for
ophthalmology referral centers.

In conclusion, the deep learning system developed
in this study was able to achieve good performance for
identifying retinal detachment and retinal breaks using
UWF images. Future clinical studies will be neces-
sary to evaluate the cost-effectiveness of applying this
algorithm as an automated approach to detect retinal
detachment and retinal breaks in clinical settings.
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