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Abstract 

A k e y attribute of some long noncoding RNAs (lncRNAs) is their ability to regulate expression of neighbouring genes in cis. Ho w e v er, such 
‘ cis- lncRNAs’ are presently defined using ad hoc criteria that, w e sho w, are prone to f alse-positiv e predictions. T he resulting lack of cis- lncRNA 

catalogues hinders our understanding of their extent, characteristics and mechanisms. Here, we introduce TransCistor, a framework for defining 
and identifying cis- lncRNAs based on enrichment of targets amongst proximal genes. TransCistor’s simple and conserv ativ e statistical models 
are compatible with functionally defined target gene maps generated by existing and future technologies. Using transcriptome-wide perturbation 
e xperiments f or 268 human and 134 mouse lncRNAs, w e pro vide the first large-scale surv e y of cis- lncRNAs. Kno wn cis- lncRNAs are correctly 
identified, including XIST, LINC00240 and UMLILO, and predictions are consistent across analysis methods, perturbation types and independent 
experiments. We detect cis- activity in a minority of lncRNAs, primarily in v olving activ ators o v er repressors. Cis -lncRNAs are detected by both RNA 

interference and antisense oligonucleotide perturbations. Mechanistically, cis- lncRNA transcripts are observed to ph y sically associate with their 
target genes and are weakly enriched with enhancer elements. In summary, TransCistor establishes a quantitativ e f oundation f or cis- lncRNAs, 
opening a path to elucidating their molecular mechanisms and biological significance. 
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Introduction 

The first characterized long noncoding RNAs (lncRNAs), H19
and XIST , were both found to have cis- regulatory activity:
their perturbation by loss-of-function (LOF) led to increased
expression of protein-coding genes encoded ‘in cis’ – i.e.
within a relatively short linear distance on the same chromo-
some ( 1 ,2 ). Protein-coding genes whose expression responds
to lncRNA LOF are considered ‘targets’ of that lncRNA,
while the direction of this change (up or down) defines the
lncRNA as a ‘repressor’ or ‘activator’, respectively. Since then,
many more cis- regulatory lncRNAs ( cis- lncRNAs) have been
reported ( 3 ,4 ). Conversely, other lncRNAs have no apparent
positional preference for their targets and are termed ‘ trans -
lncRNA’ ( 5 ). This cis / trans duality provides a fundamental
framework for understanding regulatory lncRNAs ( 6 ), yet the
global prevalence of cis- and trans -regulatory lncRNAs re-
mains poorly defined. 

Within reported cis- lncRNAs, there appears to be diver-
sity in terms of regulatory activity (activators and repres-
sors), distance of the target (ranging from one hundred base
pairs to hundreds of kilobases) ( 4 ,7 ) and number of targets
(one to many) ( 4 ,8 ). Two interrelated molecular mechanisms
have been proposed: enhancer elements and chromatin loop-
ing ( 9 ). Some cis- activating lncRNAs, termed ‘enhancer lncR-
NAs’ (e-lncRNAs), have been found to overlap DNA-encoded
enhancer elements ( 9–12 ), similar to lncRNAs more gener-
ally ( 13 ). The expression and splicing of the e-lncRNA tran-
scripts correlate with enhancer activity, implying that RNA
processing somehow promotes target gene activation. Simi-
larly, it has been proposed that cis- lncRNAs find their tar-
gets via spatial proximity, determined by chromatin looping or
within the confines of local topologically associating domains
(TADs) ( 6 ). In contrast, trans -acting lncRNAs are thought to
diffuse through the nucleus or cytoplasm and find their targets
via molecular recognition, for example by hybridization ( 14 ).
An attractive corollary of these models is that cis- regulatory
lncRNAs may act via non-sequence-dependent mechanisms,
perhaps involving phase separation ( 15 ,16 ) and local con-
centration gradients ( 17 ). It has recently been posited that
lncRNAs proceed through an evolutionary trajectory com-
mencing with fortuitous cis- regulatory activity before acquir-
ing targeting capabilities and graduating to trans -regulation
( 18 ). Nonetheless, these conclusions are drawn from piece-
meal studies of individual lncRNAs, and a holistic view of cis-
and trans-lncRNAs, the features that distinguish them, and re-
sulting clues to their molecular mechanisms and biological sig-
nificance, awaits a comprehensive catalogue of lncRNA regu-
latory modes. 

Regulatory lncRNA catalogues will require a rigorous and
agreed definition for cis- lncRNAs, which is presently lacking.
Until now, they have been defined simply by the existence
of ≥1 proximal target. Targets are defined as those whose ex-
pression changes (even weakly) in response to lncRNA LOF, as
measured using single-gene (RT-PCR) or whole-transcriptome
(RNA-seq, CA GE, microarray) techniques ( 3 , 5 , 19 ). ‘Proxim-
ity’ is defined on a case-by-case basis, using a wide range
of windows spanning 10 

2 to 10 

5 bp ( 7 ). A single proximal
target is usually considered sufficient. The problem with this
approach is that, as the total number of targets and / or cis-
window size increases, the chance of observing ≥ 1 cis- target
gene by random chance will also increase. For example, con-
sider a lncRNA having 10 proximally encoded genes and
2000 targets genome-wide (10% of all protein-coding genes);
one would expect to observe one proximal target by ran- 
dom chance alone (10% of 100). Therefore, the conventional 
‘naïve’ definition of cis- lncRNAs, where key parameters of 
global target number, window size and target definition re- 
main unconsidered or undefined, suffers from an inherent risk 

of false-positive predictions. 
In this study, we consider cis- lncRNAs from a quantitative 

perspective. We show that conventional definitions are prone 
to high false positive rates. We introduce statistical methods 
for the definition of cis- lncRNAs at controlled false discov- 
ery rates (FDRs) and use them to classify regulatory lncRNAs 
across hundreds of perturbation datasets. The resulting cat- 
alogue of cis- lncRNAs enables us to evaluate hypotheses re- 
garding their molecular mechanisms of action. 

Materials and methods 

TransCistor 

TransCistor was developed under the R statistical software 
(v4.0). Gene locations were extracted from GENCODE an- 
notation file in GTF format (v38 for humans, v25 for mouse) 
( 20 ) and were converted into a matrix. The TransCistor in- 
put consists of a ‘regulation file’, containing all genes and a 
flag indicating their regulation status: 1 (upregulated after per- 
turbation; repressed by the lncRNA), -1 (downregulated after 
perturbation; activated by the lncRNA) or 0 (not target). Reg- 
ulation status can be defined by the user, and is based here on 

differential expression after lncRNA perturbation. The per- 
turbed lncRNA itself is removed from the regulation file to 

avoid false positive predictions. Results are visualized with 

ggplot2 (v3.3.5), ggpubr (v0.4), pheatmap (v1.0.12) packages 
and custom in-house generated scripts. 

TransCistor includes two modules: digital and ana- 
logue. TransCistor-digital defines cis- lncRNAs based on the 
statistical overrepresentation of proximal targets, defined as 
targets in the same topologically associated domain (TAD) 
as the lncRNA. Membership of a TAD is defined based on 

a gene’s transcription start site (TSS). Digital TransCistor uti- 
lizes a collection of TADs for human and mouse cell types 
accessed via the 3D-Genome Browser ( 21 ). By default, for 
each cell type, TransCistor identifies the lncRNA TAD and 

estimates the number of proximal (within TAD) and distal 
(outside TAD) targets / nontargets, separately for activated and 

repressed genes. Then, it tests for the overrepresentation of 
proximal targets over distal targets using the twoby2Calibrate 
R package. Statistical significance is estimated based on the 
mid- P -value calibrated Fisher’s test, for each TAD dataset / cell 
type. Users may use pre-calculated TAD maps employed here 
or else employ TAD files of their choice in both the stan- 
dalone and webserver versions of TransCistor-digital. The P - 
values for all the cell types are then integrated by their har- 
monic mean. The P -values are corrected for multiple hypoth- 
esis testing using the FDR method and taking into account 
the experiments which show at least one proximal target.
The user also has the option to perform a cell type specific 
analysis. 

TransCistor-analogue evaluates whether the mean distance 
of targets from the same chromosome is closer than ran- 
dom chance. The distance is defined by TSS to TSS. Analy- 
sis is performed separately for activated and repressed targets.
Then, the random distribution is calculated by randomly shuf- 
fling the regulation flags on genes within the same chromo- 
some and recalculating the test statistic each time. By default,
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0 000 simulations are performed. Finally, the empirical P -
alue is calculated from the proportion of simulations with a
est statistic less than the true value. 

Both modules of TransCistor are available as a standalone
 package along with all regulation files ( https://github.

om/ gold-lab/ TransCistor ) and Rshiny webserver ( https://
ranscistor.unibe.ch/). The input comprises metadata about
he lncRNA and a regulation file containing target gene in-
ormation that can be readily derived from any transcriptome-
ide data including RNA-sequencing, cap analysis of gene ex-
ression (CAGE) and microarray experiments. 

ollecting and processing perturbation datasets 

he FANTOM perturbation datasets were downloaded from
he Core FANTOM6 repository ( 19 ,22 ). The differential ex-
ression results were transformed into regulation files by ap-
lying an adjusted P -value threshold of 0.05 and using custom
ash scripts. The respective metadata were also downloaded
rom FANTOM6 and were integrated into the GENCODE
nnotation matrix. Thirty-one perturbation experiments were
emoved because they target protein-coding genes, and an
dditional nineteen were removed because target lncRNAs
ad no ENSEMBL identifier. The LncRNA2Target datasets
ere downloaded from the webserver (Version 2.0) ( 23 ), and

argets were defined by using an adjusted P -value cutoff of
.05. The lncRNA locations were manually obtained from the
ebsite or original publications, when necessary. The rest of

he datasets were accessed through the original publications
nd post-processed to generate the regulation files. All regula-
ion files are available at the project Github repository, linked
bove. 

ransCistor concordance score 

o evaluate the consistency of lncRNA classification for Tran-
Cistor, we calculated a concordance score based on lncR-
As with more than one perturbation experiment for both
odes separately. We then randomly shuffled the classifica-

ion labels ( cis- activator , cis- repressor , not significant, or no
arget / TAD found) 1000 times to create a null distribution
nd recalculated the score. The actual scores for TransCistor-
igital and analogue were then compared with the null
istribution to assess whether they provided consistent
lassifications. 

nalysis of subcellular localization and expression 

he data used in the initial subcellular localization analysis
 Supplementary Figure S4 ) was downloaded from lncATLAS
 24 ). The list of lncRNAs considered cis- or non- cis- acting,
espectively, is based on the predicted activity as reported
n Supplementary File S1 . Excluding genes with no associ-
ted ENSEMBL ID, mouse genes and genes for which either
he cytosolic or nuclear expression level was missing in the
ncATLAS data resulted in a reduction from 33 to 20 cis-
nd 290 to 133 non- cis- acting-lncRNAs for the purpose of
his comparison. The Wilcoxon rank sum test was then used
o check for significant differences between cis- and non- cis-
cting-lncRNAs (1-sided, alternative: cis > non- cis) for (i) log-
ransformed cytosolic / nuclear ratios and (ii) total log2 FPKM
ell expression. A similar analysis with datasets of total RNA
from two cell lines) was also performed. 
LncRNA evolutionary conservation analysis 

Data were obtained from the LnCompare ( 25 ) data tables.
PhastCons scores were utilized for the hg38 human genome
assembly to obtain conservation scores of both promoter and
exon regions. Three models were employed, namely 7, 20 and
100 species. 

For each category, we first classified the lncRNAs into two
groups: cis and non- cis- acting (same groups as for subcellu-
lar localization). Then, we compared the PhastCons scores be-
tween these two groups using a Welch test, with a one-sided
hypothesis that cis lncRNAs have greater conservation com-
pared to non- cis- acting-lncRNAs. The comparisons were per-
formed separately for promoter and exon regions of the lncR-
NAs in each of the three models. 

Target gene expression changes 

For each lncRNA, we defined the proximal and distal tar-
gets based on the considered cis- regulatory region. For
TransCistor-digital, we employed TAD overlap, while for
TransCistor-analogue, we considered the entire chromosome.
In cases the lncRNA was found by both methods, we used
chromosome as the reference for cis- regulation. For cis-
activators, we included only the downregulated targets (-1);
for cis- repressors, we included only the upregulated ones (1);
and for non- cis- acting, we incorporated both (-1,1) values.
Subsequently, we compared the absolute log2 fold change val-
ues of these proximal and distal targets upon lncRNA knock-
down using the Wilcoxon rank sum test (1-sided, alternative:
proximal > distal). 

Analysis of chromatin states 

Chromatin states annotations were retrieved from three
sources: EpiMap ( 26 ), genoSTAN ( 27 ) and dbSUPER ( 28 ).
EpiMap consists of 18 chromatin states across 833 samples;
genoSTAN identifies promoter and enhancer regions genome-
wide across 127 samples, and dbSUPER aggregates 82234 hu-
man superenhancers from 102 cell types / tissues. The annota-
tions were relabelled as follows: Superenhancer – dbSUPER’s
superenhancers, Enhancer (1) – genoST AN’ s enhancers, En-
hancer (2.1) – EpiMap’s Genic enhancer 1, Enhancer (2.2)
– EpiMap’s Active enhancer 1, Enhancer (2.3) – EpiMap’s
Weak enhancer, Promoter (1) – genoSTAN’s promoters and
Promoter (2) – EpiMap’s Active TSS. 

The human TSS annotations were intersected with chro-
matin states at several genomic windows (1, 100, 1000 and
10 000 bp), and a given state-TSS intersection was counted
only if it was present in more samples than a given threshold
(0, 1, 5 or 10 samples). For each pair of genomic windows
and filter, a contingency matrix was computed for each pair
of predicted labels ( cis- activator vs cis- repressor, cis- activator
vs non- cis- acting and cis- repressor vs non- cis- acting) or the
grouped label ( cis vs non- cis- acting), counting the number of
TSSs falling into each category. Fisher’s exact test was used to
compute the P -value of each contingency matrix. 

Chromatin looping analysis 

HiC interaction data were obtained using the Python package
‘hic-straw’ (v1.2.1) ( https:// github.com/ aidenlab/ straw ), using
human HiC datasets from Aiden laboratory ( 29 ). The bin-
ning resolution was set to 25 kb, and interaction scores were
normalized by Knight-Ruiz matrix balancing method. Due to

https://github.com/gold-lab/TransCistor
https://transcistor.unibe.ch/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://github.com/aidenlab/straw
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gaps in the HiC matrices, ∼7% of lncRNA: (non- / )target in-
teractions were approximated by using a ‘next best’ pair of
bins, for which an interaction score was available, instead of
the correct binning. In 6.8% of cases, this only required re-
placing either one of the ideal bins with a direct neighbour
and for the remaining 0.2% either shifting both genes by one
bin or one of the genes by two bins. An estimate for the ex-
pected interaction at a given distance was then calculated by
fitting a regression model to the HiC data with the interac-
tion score as the response and the TSS distance between the
two genes as the explanatory variable. After visual inspection
of the data, an asymptotic regression model was chosen for
this step (‘SSasymp’ and ‘nls’ of the R base package ‘stats’
v4.0.3). Due to model limitations as well as unclear compa-
rability of TAD-based and TAD-independent cis- regulation,
only cis- lncRNAs identified by TransCistor-digital were in-
cluded in this analysis. For 2 / 12 lncRNAs from this subgroup
(RAD51-AS1, NARF-AS2), model generation failed for one or
more of the cell types considered. Modelling the interaction as
a function of the inverse square distance was also considered
(‘glm’ also from stats). This model had the advantage of not
failing for either combination of cis- lncRNA and cell type, but
fit the data visually less well and it had a clear bias to underes-
timate the interaction in close 2D proximity and overestimate
interaction further away ( Supplementary Figure S7 ). The sig-
nificance of interaction on the targeting status was then as-
sessed by fitting a logistic regression model to predict whether
a gene is a target of a given lncRNA based on the difference
between observed and expected interaction (glm function also
from ‘stats’). 

Biochemical interaction analysis 

The All-toAll RNA–DNA interaction, were sourced from
the RNA-Chrom database ( https://rnachrom2.bioinf.fbb.
msu.ru/experiments ) ( 30 ) across various human cell models
(HFFc6, HEK293T, HUVEC, MDA-MB-231, fibroblasts and
K562). 

The dataset consolidates siginicficant interactions between
the transcribed RNA and genomic DNA region from multiple
techniques. To further streamline the dataset for downstream
analysis, all cell line data was unified, retaining only unique
RNA–DNA interaction coordinates. Further, to delineate spe-
cific interaction types, DNA coordinates from this dataset
were intersected with both gene promoters (+ / - 1000 TSS) and
gene body regions, enabling distinct analyses of RNA-to-gene-
promoter and RNA-to-gene-body interactions. 

Subsequently, within the TransCistor dataset focusing on
lncRNA knockdown in human cell models, a statistical anal-
ysis was conducted to asses the biochemical / physical interac-
tions among genes classified as targets (1, -1) and non-targets
(0) on the same chromosome as the identified lncRNA from
the lncRNA’s LOF file (described previously). 

This analysis generated a contingency matrix, comprehen-
sively evaluating biochemical interactions among targets and
non-targets across all lncRNAs, both collectively and at each
individual lncRNA level. Following this, a one-sided Fisher’s
exact test was performed to evaluate the if there was an en-
richment of biochemical interactions among targets compared
to non-targets within the context of these lncRNAs. Fisher’s
exact test was performed separately for interactions occurring
solely within gene promoters and for interactions spanning en-
tire gene regions. 
Results 

A quantitative, functional definition of cis- lncRNAs 

We first catalogued lncRNA target genes by collecting multi- 
ple transcriptomic studies of lncRNA perturbations. We em- 
ployed a functional definition of ‘targets’, as genes whose 
steady-state levels significantly change in response to a given 

lncRNA’s LOF (Figure 1 A). We further define targets as 
activated or repressed, where they decrease / increase in re- 
sponse to lncRNA LOF, respectively. Overall, we collected 

488 lncRNA LOF experiments targeting 268 human lncR- 
NAs from a mixture of sources, including the recently pub- 
lished datasets of ASO knockdowns in human dermal fi- 
broblasts and induced pluripotent stem cells (iPSCs) from the 
FANT OM consortium ( 19 , 22 ). To this, we added 140 exper- 
iments for 134 lncRNAs from mouse (Figure 1 B). Among 
these we included six hand-curated previously reported cis- 
acting lncRNAs ( UMLILO , XIST [x2 independent experi- 
ments], Chaserr , Paupar and Dali ). Approximately 130 lncR- 
NAs were represented by two or more independent experi- 
ments ( Supplementary Figure S1 A), and the median number of 
target genes identified per experiment was 55 ( Supplementary 
Figure S1 B). 

We first evaluated the performance of the widely used naïve 
definition for cis- lncRNAs, defined as ≥1 target within an ar- 
bitrary distance window. Using a range of window sizes from 

50 kb to 1 Mb centred on the lncRNAs’ TSSs, we evaluated the 
fraction of lncRNAs that would be defined as cis- acting under 
this definition. This approach defines ∼2 to 12% of lncRNAs 
as cis- regulators (Figure 1 C, line). To test whether this rate 
is greater than random chance, we shuffled the target / non- 
target labels of all genes and repeated this analysis. Surpris- 
ingly, the rate of cis- lncRNA predictions in these random data 
overlapped the true rates in all windows (Figure 1 C, boxplots).
In other words, the naïve definition of cis- lncRNAs yields high 

rates of false-positive predictions. 
To overcome this issue, we adopted a new definition of 

cis- lncRNAs: cis-lncRNAs are those whose targets are signif- 
icantly enriched amongst proximal genes . This definition has 
the advantage of being quantitative and statistically testable.
LncRNAs that do not fulfil this criterion may be interpreted in 

a number of ways. Firstly, they may simply be non-functional.
Secondly, they may be functional yet not regulate gene ex- 
pression. Thirdly, they may regulate gene expression in trans.
Lastly, they may be cis- regulators, yet their enrichment of 
cis- targets is obscured by large numbers of secondary down- 
stream targets or technical noise arising from off-target per- 
turbations or transcriptome analysis. These possibilities can- 
not be distinguished by TransCistor, and we collectively term 

all these lncRNAs as ‘non- cis- lncRNAs’. 

TransCistor: digital and analogue identification of 
cis- lncRNAs 

We incorporate this definition into two alternative methods 
for identifying cis- lncRNAs, which differ in their approach for 
defining cis- enrichment of targets. The first method considers 
proximal genes to be those whose TSS falls within a defined 

window around the lncRNA TSS. We developed a pipeline,
TransCistor-digital, which takes as input a processed whole- 
transcriptome list of target genes (‘regulation file’), and tests 
for statistical enrichment in proximal genes (Figure 1 D) (Ma- 
terials and Methods). Although in principle any sized win- 
dow may be used, we reasoned that the most biologically 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://rnachrom2.bioinf.fbb.msu.ru/experiments
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
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Figure 1. TransCistor is a quantitative framework for classifying cis- regulatory lncRNAs. ( A ) Definition of target genes: A target gene is defined as one 
whose expression significantly changes after LOF perturbation of a given lncRNA (pink). The direction of that change (down / up) defines the target as 
activated / repressed (green and orange), respectively. ( B ) The perturbation datasets used here: Data were mainly obtained from two sources: 
F ANTOM 

47 and Lnc2T arget 48 ( x -axis). The y -axis displays the number of individual experiments (left panel) or individual lncRNA genes (right panel) (note 
that the difference arises from the fact that many lncRNA genes are represented by > 1 experiment). Some lncRNAs are present in both datasets. ( C ) 
Evaluating accuracy of naïve cis- lncRNA definition: The plot displays the number of lncRNAs classified as ‘ cis- regulatory’ using a definition of ≥1 
proximal target genes ( y -axis), while varying the size of the genomic window (centred on the lncRNA TSS) within which a target is defined as ‘proximal’ 
( x -axis). Line: real data calculated with lncRNAs from (B); B o xplot: Simulations created by 50 random shuffles of the target labels across all annotated 
genes. ( D ) T ransCistor-digital method: T ransCistor-digital e v aluates the enrichment of targets (green) in proximal regions, defined as those residing within 
the same TAD as the lncRNA TSS (pink) (left panel), compared to the background target rate in the rest of the genome (‘Distal’) (centre panel). 
Cis -lncRNAs are defined as those having a significantly higher proximal target rate, defined using p-mid adjusted hypergeometric test (right panel). ( E ) 
TransCistor-analogue method: A distance statistic is defined as the mean genomic distance (bp) of all targets (green) on the same chromosome as the 
lncRNA (pink) (left panel). Approximately 10 0 0 0 simulations are performed where target labels are shuffled across genes within the same chromosome 
(centre panel). Cis -lncRNAs are defined as those whose real statistic (dashed line) falls below the majority of simulations (right panel). 
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meaningful would be the local TAD, in line with previous
studies ( 31 ). Chromatin folding and TADs vary to an extent
between cell types. Therefore, TransCistor-digital calculates
enrichment across a set of experimentally defined cell-type-
specific TADs (45 human and 3 mice) ( 21 ) and aggregates the
resulting P -values by their harmonic mean. 

The above TAD-window approach is effective, yet has
drawbacks. Several reported cis- lncRNAs have individual tar-
gets that are not immediately adjacent ( 7 ) and might be over-
looked by the digital approach. Furthermore, many lncRNAs
may have no neighbouring genes in their local TAD or no
identified local TAD. Therefore, we developed an alternative
method that dispenses with fixed windows, while still testing
for proximal enrichment of targets. This method, TransCistor-
analogue, defines a distance statistic as the mean TSS-to-TSS
distance of all same-chromosome targets of a given lncRNA.
Statistical significance can be estimated empirically, by gen-
erating a null distribution based on randomization of target
labels (Figure 1 E). Now, cis- lncRNAs are defined as those
having a distance statistic that is lower than the majority of
randomizations. 

We sought to test the performance of TransCistor-digital
and evaluate the global landscape of cis- lncRNAs. After filter-
ing out unusable datasets (having no targets, or no overlap-
ping TAD), 195 datasets remained ( Supplementary Table S1 ).
We discovered 23 cis- acting lncRNAs (14 activators and 9
repressors) at a FDR threshold of 0.25 (Figure 2 A–C). The
majority of P -values produced by this analysis follow the
null distribution, underlining the conservative statistical be-
haviour of TransCistor (Figure 2 A,B). All cis- lncRNAs have a
unique activator or repressor assignment, with the exception
of Evx1os , which is classified as having both activating and re-
pressing characteristics (Figure 2 C). Amongst the top-ranked
cis- lncRNAs is UMLILO , previously reported to activate mul-
tiple genes in its local genomic neighbourhood ( 8 ). UMLILO
exhibits a significant enrichment of activated targets amongst
proximal genes, which is not observed for repressed targets
(Figure 2 D,E). 

Analysis of the entire perturbation dataset by TransCistor-
analogue, on the other hand, identified 15 cis- lncRNAs (9
activators and 6 repressors, FDR ≤ 0.25) ( Supplementary 
Table S1 ). Statistical behaviour is good (Figure 2 F,G), while
cis- lncRNAs are cleanly split between activators and repres-
sors (Figure 2 H). LINC00240 was identified as the most sig-
nificant activator cis- lncRNA by both TransCistor-digital and
analogue (Figure 2 I,J). Similar to previous reports, we ob-
served a strong cis- regulation of nearby histone genes (Figure
2 I and Supplementary Figure S2 A) ( 19 ,22 ). Therefore, Tran-
sCistor correctly identifies previously reported cis- lncRNAs. 

The usefulness of these methods is further supported by
their internal and external consistency. Together, the Tran-
sCistor approaches correctly identify previously described cis-
activators H19 ( 32 ), RP11-398K22.12 ( 19 ,22 ), JPX ( 33 ) ,
Evx1os ( 34 ), LINC01615 ( 35 ) and DA125942 ( 36 ) amongst
the top-ranked cis- activators, while both independent exper-
iments for XIST are amongst the top repressors ( 37 ). A full
list of lncRNAs with previously-reported cis- regulatory ac-
tivity, as identified by literature search, may be found in
Supplementary Table S3 . 

TransCistor predicted cis- regulatory activity for several
known lncRNAs that have never been described as such in
prior literature. These include CAT2, NARF-AS2, BANCR
and CD27-AS1 ( cis- activators), and SBF-AS1 , LASTR, NO-
RAD and DANCR ( cis- repressors). However, the latter two 

are only identified in one out of multiple independent pertur- 
bation experiments (6 and 5 for NORAD and DANCR, re- 
spectively). In the case of DANCR , the cis definition arises 
from the repression of two same-strand small RNAs (has- 
mir-4449, SNORA26). It is not yet clear if these results re- 
flect false-positive or false-negative predictions. To investi- 
gate this, we merged all hits across experiments and repeated 

the analysis, but here we found no signal, suggesting that 
they are false-positive predictions. On the other hand, anal- 
ysis of an independent dataset for SBF-AS1 from different 
cells (A549 lung adenocarcinoma) and perturbation (siRNA),
which was not included in our original dataset, yielded con- 
cordant cis- repressor prediction from TransCistor-analogue 
( Supplementary Figure S2 B–D). Both human and mouse or- 
thologues of CHASERR (ENSG00000272888) are identified 

as cis-repressors ( 4 ). Furthermore, Chaserr is concordantly 
classified for independent LOF methods, knockdown by ASO 

and knockout by deletion ( Supplementary Figure S2 G). Fur- 
ther examples were found where ≥2 independent experimen- 
tal perturbations yielded consistent predictions ( XIST and 

DNAAF3-AS1 classified as cis- repressors based on two sep- 
arate experiments each) ( Supplementary Figure S2 E,F). 

Conversely, TransCistor failed to find evidence support- 
ing previously reported cis- lncRNAs, namely Paupar ( 38 ) and 

Dali ( 39 ). Inspection of the originating microarray data re- 
vealed that, for neither case, the reported cis- target genes pass 
cutoffs of differential expression ( Supplementary Figure S3 A–
D), suggesting that these lncRNAs are not cis- regulatory. 

A summary of the entire set of TransCistor predictions is 
found in Figure 3 A and Supplementary Table S2 . We ob- 
served a significant overlap between the two TransCistor 
methods for classified activators ( P = 0.0001) and repressors 
( P = 0.001), with 5 cis- lncRNAs in common (LINC00240,
linc1427, DA125942 DNAAF3-AS1 and XIST). Overall, if we 
consider lncRNAs where at least one method in one dataset 
is called cis- acting, then our data implicate 7.46% (30 / 402) 
of lncRNAs as cis- regulators. When broken down by direc- 
tion of regulation, we find that 4.97% (20 / 402) are activators 
and 2.48% (10 / 402) are repressors, with one being identified 

as both (Figure 3 B). To further test the value of TransCistor 
predictions, we evaluated the consistency of cis predictions 
between independent perturbation experiments of the same 
lncRNA. Using simulations to evaluate significance, we ob- 
served a significant ( P < 0.001) concordance between exper- 
iments for TransCistor-digital and analogue methods (Figure 
3 C). Henceforth, we defined the remaining 372 tested lncR- 
NAs provisionally as ‘non- cis- lncRNAs’. 

In summary, this provides a resource of cis- lncRNAs, to- 
gether with multiple lines of evidence supporting the ability 
of TransCistor to identify true cis- lncRNAs. 

TransCistor cis- lncRNA identification across 

perturbation technologies 

Our transcriptomic dataset contains a mixture of RNA in- 
terference (RNAi) and antisense oligonucleotide (ASO) LOF 

perturbations. While early experiments were performed using 
the two RNAi approaches of siRNA and shRNA, it is widely 
thought that these principally degrade targets located in the 
cytoplasm ( 40 ,41 ) or ribosome ( 42 ). In contrast, ASOs are be- 
coming the method of choice to knockdown lncRNAs, since 
they are thought to act on nascent RNA in chromatin ( 43 ).

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
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Figure 2. Large scale classification of cis- lncRNAs in human and mouse. ( A ) Quantile-quantile plot displa y s the random expected ( x -axis) and observed 
( y -axis) P -values for lncRNAs (points) tested for activated targets by TransCistor-digital. The grey diagonal y = x line indicates the expectation if no hits 
were present. Dotted lines indicate an FDR cutoff of 0.25 (lower line) and 0.10 (upper line), respectively. ( B ) As for (A), for TransCistor-digital and 
repressed targets. ( C ) Comparison of activator and repressor activity detected by TransCistor-digital. For each lncRNA (points), their FDR-adjusted 
significance is plotted on the x -axis (activator) and y -axis (repressor). Note the absence of lncRNAs that are both activators and repressors. ( D ) UMLILO, 
an example cis- activator: The plot shows the number of genes, divided by t argets / non-t argets (colour / grey), location (distal / proximal) and regulation 
direction (activated / repressed). UMLILO is classified as a cis- activator, due to the significant excess (8) of proximal activated targets. Statistical 
significance (uncorrected) is displa y ed abo v e. ( E ) UMLILO genomic locus: Vertical bars denote gene TSS. Gre y: non-targets; green: activ ated targets; 
pink: UMLILO. Black box: Topologically associated domain. ( F ) As for (A), for TransCistor-analogue and activated targets. ( G ) As for (B), for 
TransCistor-analogue and repressed targets. Two experiments supporting the XIST lncRNA appear in the most significant classifications represented by 
"(1)" and "(2)". ( H ) As for (C), for TransCistor-analogue. ( I and J ) LINC00240, an example cis- activator identified by both TransCistor-digital and 
TransCistor-analogue. (I) as for (D). (J) Shown is the target distance statistic ( x -axis) for real data (vertical bar) and simulations (boxes). The number of 
simulations in each distance bin is displa y ed on the y -axis. 
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Figure 3. Rate and consistency of cis- lncRNA inference. ( A ) Summary of TransCistor results across datasets. Significance of o v erlaps is calculated using 
the hypergeometric distribution. ( B ) The rate of lncRNA genes defined to be cis- regulatory based on our analysis (union of digital and analogue). Note 
that one single experiment is sufficient to label a lncRNA gene as cis- regulatory. ( C ) The concordance score is calculated for TransCistor-Digital and 
Analogue, based on the consistency of classification for lncRNAs with multiple supporting experiments ( > 1). To assess the significance, the score is 
recalculated for 10 0 0 simulations with shuffled classification labels. The real concordance score, indicated by the vertical line, exceeds the distribution 
obtained from the simulated data. ( D ) The rate of experiments defined as cis- regulatory, broken down by perturbation method. 
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Given that cis- lncRNAs presumably act locally in chromatin,
then one would expect ASO perturbations to have greater
power to discover cis- lncRNAs. To test this, we evaluated pre-
dictions from each perturbation technology separately (Figure
3 D). We observed broadly similar rates of cis- lncRNA identi-
fication between perturbation methods, supporting the notion
that RNAi is readily active in the nucleus ( 44–46 ). However,
ASO experiments appear to discover similar rates of activators
and repressors, while RNAi perturbations yield an apparent
excess of activators over repressors, together suggesting that
differences do exist between RNAi and ASO perturbations. 

While the small numbers preclude statistical confidence,
these findings broadly support the use of RNAi in targeting
nuclear lncRNAs and identifying cis- lncRNAs, although the 
possibility for perturbation-specific biases should be further 
investigated. 

Clues to cis- lncRNA mechanisms from localization, 
expression and evolutionary conservation 

We next sought insights into cis- lncRNA mechanisms by ex- 
amining a range of features related to functionality and sub- 
cellular localization. Although it has been previously postu- 
lated that cis- acting lncRNAs are more localized in the nu- 
cleus than the cytosol and have an overall lower RNA ex- 
pression level ( 6 ), we found no evidence of any difference 
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n nuclear / cytoplasmic localization between cis- lncRNAs and
ther lncRNAs (Figure 4 A and Supplementary Figure S4 A).
hus, cis- activity does not impact a lncRNA’s rate of nuclear
xport. Since many lncRNAs are non-polyadenylated, we sim-
larly analysed nuclear / cytoplasmic localization of total RNA
polyA + and polyA-) in HepG2 and K562 cells. Here, we
lso observed no difference in localization of cis- lncRNAs
 Supplementary Figure S4 C). 

Similarly, we evaluated the whole-cell expression level of
is- lncRNAs and observed a trend for average expression lev-
ls to exceed those of non- cis- lnRNAs in a number of cases,
lthough these differences did not reach statistical significance
Figure 4 B and Supplementary Figure S4 B). 

Evolutionary conservation and gene expression patterns are
onsidered to yield important clues to lncRNA functionality
 47 ). Promoter conservation and high expression are taken as
eneral evidence for functionality ( 48 ), whereas conservation
pecifically in exons is reflective of the functionality of ma-
ure RNA transcripts ( 49 ). Some mechanistic models for cis-
ncRNAs posit that they act through non-sequence dependent
eatures ( 6 ), predicting that cis- lncRNAs’ exons display back-
round levels of evolutionary conservation, whereas their pro-
oter regions (controlling expression) are more conserved.
o test this, we evaluated the evolutionary conservation for
romoter and exons for three different vertebrate phyloge-
ies (Figure 4 C,D). This revealed no discernible difference in
xonic or promoter conservation for cis- lncRNAs over non-
is- lnRNAs, and suggesting that cis- lncRNAs’ nucleotide se-
uence is important for the functionality. A lack of statistical
ower due to a low sample size and high variance should be
oted. 
Finally, we asked whether proximal gene targets of cis-

ncRNAs are more strongly regulated, compared to distal
ene targets. We compared the fold change in gene expres-
ion of proximal and distal targets for each cis- lncRNA
 Supplementary Figure S5 A). This revealed that distal and
roximal targets tend to have similar degrees of regulation,
owever with notable exceptions including LINC01615 (acti-
ator) and DNAAF3 (repressor), where proximal targets are
ignificantly more strongly regulated. 

Together, these findings suggest that cis- lncRNAs are
roadly similar to other lncRNAs in terms of expression, sub-
ellular localization and overall functionality. 

ssociation of cis- lncRNAs with enhancer elements 

t has been widely speculated that cis- lncRNAs, particularly
ctivators (ie e-lncRNAs), act in concert with DNA enhancer
lements to upregulate target gene expression ( 3 , 9 , 12 ). Our
atalogue of cis- lncRNAs represents an opportunity to inde-
endently test this. To do so, we calculated the rate of over-
ap of lncRNAs with enhancers using epigenomics data across
uman tissues (Figure 5 A,B; Supplementary Figure S6 ). Anal-
ses were performed at a variety of epigenome thresholds (the
inimum number of samples required to define a given epige-
omic state) and window sizes (the distance from the lncRNA
SS to the nearest epigenome element). 
This analysis revealed several intriguing trends of associa-

ion between cis- lncRNAs and enhancer elements, although
one reached statistical significance at the given sample size
Figure 5 B). Broadly, we observed a generalized enrichment
f various enhancer element annotations with cis- lncRNAs,
otably the cis- activators with Superenhancers, and the cis-
repressor with Enhancer (2.2) and (2.3) elements. Inspection
of overlaps at other thresholds and window sizes revealed
a similar effect ( Supplementary Figure S6 ). Within the lim-
its of statistical power given our relatively small sample size,
these findings suggest only a weak relationship between cis-
lncRNAs and enhancer elements that should be re-examined
in future studies. 

Some cis- lncRNAs are brought into spatial 
proximity to their targets by chromatin looping 

A second mechanistic model posits that regulatory interac-
tions between cis- lncRNAs and target genes are defined by
spatial proximity, brought about by chromatin looping (Fig-
ure 6 A). Once again, our cis- lncRNA catalogue makes it pos-
sible to test this. To measure proximity, we utilized published
Hi-C interactions from a range of human cell lines ( 29 ). We
evaluated the importance of proximity for regulatory target-
ing, by combining an asymptotic regression model to pre-
dict an ‘expected interaction’ at a given linear genomic dis-
tance, with a logistic regression model to evaluate whether
strong deviations from this expectation were indicative of tar-
geting (Figure 6 A). This approach revealed a significant (-
log10( P ) ≥ 1.3) contribution of spatial proximity to target-
ing for cis- activator lncRNA UMLILO (eight cell lines) (Fig-
ure 6 B). An alternative approach (inverse square model) con-
firmed this result and additionally yielded DA125942 (eight
cell lines) ( Supplementary Figure S7 A,B). Further confidence
in these results comes from the fact that, for both lncRNAs,
previous studies have implicated chromatin looping in their
targeting mechanism ( 8 ,36 ). An excellent example is repre-
sented by HUVEC cells, where UMLILO target genes tend
to be located in higher proximity (interaction, y -axis), com-
pared to other non-targets at similar distances in linear DNA
( x -axis) (Figure 6 C and Supplementary Figure S7 C). Together,
this indicates that for a subset of cis- lncRNAs, spatial prox-
imity brought about by chromatin looping may determine the
identity of target genes. 

Cis -lncRNA transcripts are biochemically bound to 

their target genes 

Recent studies have mapped RNA:DNA contacts at a global
scale and have demonstrated that the majority of contacts
occur locally to the RNA transcription, suggesting a mecha-
nism for cis- regulation of genes by ‘biochemical’ contact of
a lncRNA transcript ( 50–52 ). To examine this further, we
evaluated the overlap of functional lncRNA–target relation-
ships (defined by LOF experiments) and biochemical relation-
ships (defined by RNA:DNA contacts). Using the entire hu-
man lncRNA set ( cis- and non- cis- ), we assessed significant
lncRNA-to-DNA contacts for all genes promoters on the same
chromosome (Figure 6 D). This revealed that functional target
genes are significantly more likely to also be biochemically
bound by their regulator lncRNA, compared to non-target
genes ( P < 4.05E-13) (Figure 6 E). 

An illustrative case is DNAJC27-AS1 (Figure 6 F), identi-
fied as a cis- activator by TransCistor-digital. Within its local
TAD, DNAJC27-AS1 has significantly more biochemical in-
teractions with its functional target genes (4 out of 5) com-
pared to its non-targets (11 out of 30) ( P = 0.04, Fisher’s exact
test, one-sided). Overall, these findings suggest that functional
regulation of target genes is determined, at least in part, by
biochemical recruitment of the regulatory lncRNA. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae075#supplementary-data
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Figure 4. Subcellular localization, expression and conservation of cis- and non- cis- lnRNAs. ( A ) The distribution of the (log2-scaled) ratio of cytosolic to 
nuclear expression levels for cis- and non- cis- lnRNAs in GM12878 cells. The number of lncRNA genes in each group is displayed below and represents 
the subset of lncRNA genes for which localization data were available. Reported P -values for significance of between group differences are based on 
one-t ailed W ilco x on-rank-sum test. ( B ) As f or (A) e xploring the difference in le v els of whole cell e xpression. R eported P -v alues f or significance are based 
on t wo-t ailed W ilco x on-rank-sum test. ( C and D ) B arplots displa y the mean e v olutionar y conser v ation f or the indicated features ( x -axis). T he number of 
genes in each group is displa y ed in brackets and represents the subset of lncRNA genes for which PhastCons score was available for its promoter and 
e x onic regions. Error bars represent standard deviation. Evolutionary conservation is calculated using PhastCons scores, where promoter conservation 
represents the percentage of promoter nucleotides o v erlapped b y PhastCons conserv ed elements, and e x on conserv ation represents the percentage of 
merged e x onic nucleotides o v erlapped b y PhastCons conserv ed elements. T he reported P -v alues indicate the significance difference betw een cis- and 
non- cis- lnRNAs for each feature, determined using a one-sided Welch test with the alternative hypothesis of ‘greater’ (C is > Non-cis). 
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Discussion 

We have described TransCistor, a pair of quantitative methods
for the identification of cis- regulatory lncRNAs. We applied it
to a corpus of perturbation datasets to create the first large-
scale survey of cis- regulatory RNAs. We evaluated the perfor-
mance of TransCistor in light of the present state-of-the-art
and used the resulting catalogue of cis- lncRNAs to address
fundamental questions regarding their prevalence and molec-
ular mechanisms. 

TransCistor-digital and -analogue represent practical tools
for cis- lncRNA discovery. TransCistor enables researchers to
identify cis- regulatory lncRNAs, based on the distribution of
target genes identified through a perturbation and transcrip- 
tomic analysis. The definition of cis- lncRNAs that we have 
here formulated is rigorous yet also consistent with the field,
which has since the discovery of XIST and H19 employed a 
functional definition of cis- regulation: ‘ Cis -acting lncRNAs…
regulate gene expression in a manner dependent on the loca- 
tion of their own sites of transcription’ ( 14 ). 

Their two distinct statistical methods are designed to cap- 
ture a range of cis- activity, from lncRNAs regulating the most 
proximal neighbour gene’s expression within the local TAD,
such as CHASERR ( 4 ), to those regulating a more distal tar- 
get amongst other non-target genes, such as CCAT1-L ( 7 ).
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Figure 5. Overlap of cis- lncRNAs with enhancer elements. ( A ) Method of calculating o v erlap b y enhancer annotations (horiz ontal purple bars) of lncRNA 

TSS (pink bar). Overlaps are considered while varying two thresholds for defining a lncRNA-enhancer overlap: minimum numbers of individual enhancer 
annotations (epigenome threshold) and window size. Only the TSS spans with overlaps in more samples than a given epigenome threshold are 
considered. ( B ) Enrichment results for epigenome threshold = 1 and span = 100 bp. R o ws sho w enrichment f or super-enhancer, enhancer and promoter 
states while comparing the TSS according to their mechanism of action (see Materials and Methods). 
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he value of resulting predictions is supported by good sta-
istical behaviour as judged by quantile-quantile (QQ) anal-
sis, consistency between methods and datasets, and recall
f numerous known cis- lncRNAs, including founding mem-
ers H19 and XIST . TransCistor is made available both as
 webserver and standalone software. It is compatible with
 wide range of input data, since ‘regulation’ files can be
eadily generated from any experimental dataset comprising
ncRNA perturbation and global readout of gene expression
hanges, including two decades of experiments from microar-
ays to RNA-sequencing and CAGE. Importantly, TransCistor
s ready to deploy with recently-developed and future paral-
elized CRISPR LOF methods such as Perturb-Seq ( 53 ), raising
he possibility of comprehensive mapping of cis- and trans-
egulatory lncRNAs. It is important to note, however, that
dentification of cis- target genes requires whole transcriptome
atasets, meaning that signature methods based on subsets of
enes, such as LINCS ( 54 ), will not be suitable. 

This work builds on important previous attempts to com-
rehensively discover cis- regulatory lncRNAs. Basu and Lars-
on utilized gene expression correlation as a means for in-
erring candidate cis- regulatory relationships ( 55 ). Very re-
ently, de Hoon and colleagues employed genome-wide RNA-
hromatin and chromatin folding to train a predictive model
or cis- regulatory lncRNAs ( 56 ). While these methods are
valuable, they infer target genes based on indirect correlates of
cis- regulation, which often do not reflect causation ( 57 ). Fur-
thermore, we could only find evidence that chromatin folding
links cis- lncRNAs to their target genes in a minority of cases.
What distinguishes TransCistor from these approaches, is its
use of LOF perturbations to directly identify gene targets. We
argue that, due to its direct and functional nature, this ap-
proach should be considered the gold standard evidence for
defining cis- regulatory relationships. Moreover, TransCistor’s
versatile nature allows its widespread adaptation which, in the
future, could be used to build machine learning models of cis-
action utilizing numerous features, such as expression, fold
change of targets and distance. 

A key insight from this work is the low statistical power
available to identify cis- lncRNAs and the consequent high rate
of false-positive predictions. Previous studies used a ‘naïve’
criterion of ≥ 1 cis- target gene within an arbitrarily-sized win-
dow; however, we show that this method is prone to pre-
dominantly false-positive predictions at ≥50 kb windows.
TransCistor improves on this situation by making predictions
at a defined FDR. Nevertheless, the statistics of cis- lncRNA
prediction depend on the distribution of target and non-
target genes around the lncRNA in question. This means that
statistical power to identify cis- lncRNAs is inherently con-
strained by biology. Several likely examples of false positive
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Figure 6. Linking lncRNAs to target genes with DNA:DNA chromatin looping RNA:DNA and ph y sical association. ( A ) A model for proximity-driven target 
selection: (Left panel) Chromatin folding brings lncRNA (pink) into spatial proximity with proximal genes, which are subsequently targeted (green). (Right 
panel) Chromatin proximity maps, such as provided by HiC methodology, enable one to evaluate the spatial proximity ( y -axis) of targets, while 
normalizing for confounder of linear 2D DNA distance ( x -axis). These parameters were modelled using an Asymptotic regression model (right panel, 
inset). ( B ) Evaluating the contribution of proximity to target selection in human cells: The model significance of cis- lncRNAs (identified by 
TransCistor-digital) ( x -axis) was evaluated across HiC interaction data from a panel of human cell lines ( y -axis). Colour scale shows uncorrected P -values; 
Asterisks represent P < 0.05. Dark-coloured cells indicate cases where target genes tend to be significantly more proximal than non-targets. No cases 
of the in v erse w ere observ ed. ( C ) Example data f or UMLILO in HUVEC cells. Note that target genes (green) tend to be more spatially pro ximal ( y -axis) 
than non-target genes (grey) at a similar TSS-to-TSS genomic distance ( x -axis). ( D ) A hypothesis for biochemical interaction of lncRNAs with their 
functional target genes: lncRNA transcripts (pink) are transcribed from their gene locus and ph y sically recruited to target genes (green). Non-specific or 
non-productive recruitment is also observed at non-target genes (grey), yet at a lower rate. ( E ) Rate of observed biochemical interactions between 
lncRNAs and same-chromosome genes ( y -axis), comparing lncRNA–target relationships classified as functional ‘target’ and ‘non-target’ from our data. 
Biochemical interactions were collected from published experimental measurements (see Materials and Methods). Reported P -values for significance 
are based on one-sided Fisher’s exact test. ( F ) Example data for DNAJC27-AS1 (red) depicting observed biochemical interactions with nearby functional 
target genes (in green) and non-target genes (in grey) within its TAD domain. The target genes linked to the lncRNA by biochemical interaction are 
marked with a red box. 
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redictions are well-studied lncRNAs NORAD and DANCR ,
hich are represented by numerous perturbation experiments

n our dataset, where only one was called a hit. Conversely,
everal factors likely contribute to false negatives, including
ow statistical sensitivity (i.e. presence of few cis- targets rela-
ive to trans-targets) and correction for multiple testing. Fur-
hermore, it is likely that direct target mRNAs in turn regulate
umerous, indirect downstream genes, creating a high back-
round that further reduces detection sensitivity. This latter is-
ue might be addressed in future by performing transcriptomic
nalysis at short timepoints immediately after lncRNA LOF to
bserve direct target genes. Finally, the majority of lncRNAs
ere tested in only a single cell type, and it is entirely possible

hat lncRNAs display cis- regulatory activity in a cell-type spe-
ific manner. These considerations should prove useful in the
esign of future experiments to identify cis- lncRNAs. To mini-
ize false-positive predictions, we recommend that colleagues
erform multiple independent perturbations (e.g. two or more
istinct ASO sequences), perform transcriptomic analysis at
arliest possible timepoints and only consider cis- lncRNAs on
he basis of ≥2 consistent results. 

Our results afford important insights into the regulatory
ncRNA landscape. Notwithstanding the caveats discussed
bove, we provide the first global estimate of cis- lncRNA
revalence, suggesting they represent a modest fraction (8%)
f the total, with a slight prevalence of activators over repres-
ors. These values are certainly impacted by a variety of er-
ors discussed above, which we hope will be corrected by fu-
ure, larger-scale studies. The preponderance of cis- activators
ay be an artefact of RNAi perturbations, which appear to

ield an excess of activators over repressors. Our results shed
ight on cis- lncRNAs’ molecular mechanisms, finding evidence
hallenging the notion that spatial proximity defines lncRNA
argets. Surprisingly, cis- lncRNAs are not preferably localized
o the nucleus, nor are they more evolutionarily conserved or
ore expressed than non- cis- acting lncRNAs. On the other
and, we find non-significant associations of cis- lncRNAs
ith enhancer elements, which may point to a mechanistic re-

ationship that awaits further investigation with greater sam-
le sizes. Most important, perhaps, is the finding that lncRNA
arget genes are more likely to have evidence for physical as-
ociation of the lncRNA transcript. This implies that, at least
ome lncRNAs regulate downstream mRNAs by physically as-
ociating with their gene. Overall, these findings show the util-
ty of cis- lncRNA catalogues in examining molecular mecha-
isms of regulation, although larger datasets will be required
n future to draw more conclusive inferences than could be
one here. 
Finally, it is worth revisiting the assumptions we make when

nterpreting lncRNA perturbation experiments. These involve
 small oligonucleotide with perfect sequence complementar-
ty to a lncRNA target in both RNA and DNA, and assess
he outcome in terms of steady-state RNA levels. Two key as-
umptions are made. Firstly, any change in downstream gene
xpression is assumed to occur through changes in the tar-
eted lncRNA transcript. It is well known that small oligos
re not only capable of hybridizing to genomic DNA ( 58 ) but
lso affecting local chromatin modifications ( 59 ), raising the
ossibility of chromatin / DNA-mediated cis- regulatory mech-
nisms that could be misinterpreted as lncRNA-mediated ef-
ects. The second assumption is more fundamental:, when lo-
al gene changes are observed to occur, such changes reflect the
iological function of the lncRNA ( 60 ,61 ). The alternative ex-
planation is that perturbations of a lncRNA lead to changes
to local gene expression, but that this is a by-product of al-
tering lncRNA expression (e.g. by disrupting local transcrip-
tion factories), and that the evolutionarily-selected function
of the lncRNA is something quite different. In other words,
is observed cis- activity a reflection of a genuine, adaptive bio-
logical regulatory pathway, or is it merely a technical artefact
without biological relevance? Testing these alternative expla-
nations will be an interesting challenge for the future, facili-
tated by the tools provided here. 
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