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A B S T R A C T

El Barmi and Mukerjee (2016, Journal of Multivariate Analysis 144, 99–109) studied the
estimation of survival functions of 𝑘 samples under uniform stochastic ordering constraints.
There were two crucial errors in the consistency proof. Here, we provide alternative estimators
and show consistency.

1. Introduction

Two distributions on the positive half-line with survival functions (SFs) 𝑆1 and 𝑆2 are uniformly stochastically ordered (USO),
𝑆1 ≤𝑢𝑠𝑜 𝑆2, if 𝑆1∕𝑆2 is nonincreasing. The uniform stochastic order is equivalently known as the hazard rate order (Shaked and
Shanthikumar, 2007, Section 1.B.1). We use the term uniform stochastic order, since some parts of the literature restrict the definition
of the hazard rate order to absolutely continuous distributions, and we do not make such a restriction. If 𝑆1 ≤ 𝑆2 holds pointwise,
then 𝑆1 is smaller than 𝑆2 in the (usual) stochastic order. The terminology USO is motivated by the fact that 𝑆1 ≤𝑢𝑠𝑜 𝑆2 is equivalent
to the stochastic ordering of certain conditional distributions, that is, for 𝑋1 ∼ 𝑆1 and 𝑋2 ∼ 𝑆2, it holds that

𝑃 (𝑋1 > 𝑡 + 𝑠|𝑋1 > 𝑡) ≤ 𝑃 (𝑋2 > 𝑡 + 𝑠|𝑋2 > 𝑡), 𝑠, 𝑡 ≥ 0. (1.1)

In particular, USO always implies the stochastic ordering of the distributions. Eq. (1.1) shows that USO is of interest in reliability
and life testing if e.g. 𝑋1 and 𝑋2 describe the life times of two different items. We refer to Rojo and Samaniego (1993) or Mukerjee
(1996) for a more extensive illustration of situations where USO seems to be a natural order constraint.

With this paper, we are contributing the first consistent distribution estimators for 𝑘 samples under an USO constraint. Statistical
inference under USO is a classical topic in non-parametric modeling and inference. For 𝑘 life distributions, it was started by Dykstra
et al. (1991). Based on independent random samples, they derived the nonparametric maximum likelihood estimators (NPMLEs)
for general SFs, with and without censoring. Rojo and Samaniego (1991) and Mukerjee (1996) gave counterexamples to show that
the NPMLEs are inconsistent for 𝑘 = 2 in the 1-sample (one 𝑆𝑖 known) and the 2-sample cases, respectively, when the SFs are
continuous. When 𝑆1 ≤𝑢𝑠𝑜 𝑆2, Rojo and Samaniego (1993) provided a consistent estimator of one SF when the other is known by
using the sample analog of the fact that 𝑆1∕𝑆2 is nonincreasing if and only if 𝑆1(𝑥)∕𝑆2(𝑥) = inf𝑦≤𝑥[𝑆1(𝑦)∕𝑆2(𝑦)] for 𝑆2(𝑥) > 0, or
equivalently, 𝑆2(𝑥)∕𝑆1(𝑥) = sup𝑦≤𝑥[𝑆2(𝑦)∕𝑆1(𝑦)] for 𝑆1(𝑥) > 0. For any SF 𝑆 of a life distribution, let 𝑏𝑆 denote the right endpoint of

∗ Corresponding author.
E-mail addresses: sebastian.arnold@unibe.ch (S. Arnold), hammou.elbarmi@baruch.cuny.edu (H. El Barmi), mukerjee@math.wichita.edu (H. Mukerjee),

johanna.ziegel@unibe.ch (J. Ziegel).
vailable online 19 January 2024
167-7152/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.spl.2024.110045
Received 28 September 2022; Received in revised form 16 March 2023; Accepted 11 January 2024

https://www.elsevier.com/locate/stapro
https://www.elsevier.com/locate/stapro
mailto:sebastian.arnold@unibe.ch
mailto:hammou.elbarmi@baruch.cuny.edu
mailto:mukerjee@math.wichita.edu
mailto:johanna.ziegel@unibe.ch
https://doi.org/10.1016/j.spl.2024.110045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2024.110045&domain=pdf
https://doi.org/10.1016/j.spl.2024.110045
http://creativecommons.org/licenses/by/4.0/


Statistics and Probability Letters 208 (2024) 110045S. Arnold et al.

r

I
i
𝑆

m

w

t
l

2

o
s

𝐼

𝛼
𝑆
𝑆

h

𝑚

the support of 𝑆. Denoting the empiricals by 𝑆̂1 and 𝑆̂2 based on independent random samples of sizes 𝑛1 and 𝑛2, respectively, the
estricted estimators are given by

𝑆∗
1 (𝑥) = inf

𝑦≤𝑥

𝑆̂1(𝑦)
𝑆2(𝑦)

𝑆2(𝑥)𝐼(𝑥 < 𝑏𝑆2
) when 𝑆2 is known,

𝑆∗
2 (𝑥) = sup

𝑦≤𝑥

𝑆̂2(𝑦)
𝑆1(𝑦)

𝑆1(𝑥)𝐼(𝑥 < 𝑏𝑆1
) + 𝑆̂2(𝑥)𝐼(𝑥 ≥ 𝑏𝑆1

) when 𝑆1 is known.
(1.2)

n the 2-sample case, when both SFs are unknown, they suggested setting 𝑆̂1 or 𝑆̂2 fixed and estimating the other SF under USO as
n the 1-sample case. Mukerjee (1996) showed that the 2-sample estimators can be improved by holding the combined empirical,
̂1∶2 ≡ (𝑛1𝑆̂1 + 𝑛2𝑆̂2)∕(𝑛1 + 𝑛2) fixed and estimating 𝑆1 and 𝑆2 under the constraint 𝑆1 ≤𝑢𝑠𝑜 𝑆̂1∶2 ≤𝑢𝑠𝑜 𝑆2 as two 1-sample estimators:

𝑆∗
1 (𝑥) = inf

𝑦≤𝑥

𝑆̂1(𝑦)
𝑆̂1∶2(𝑦)

𝑆̂1∶2(𝑥)𝐼(𝑆̂1∶2(𝑥) > 0),

𝑆∗
2 (𝑥) = sup

𝑦≤𝑥

𝑆̂2(𝑦)
𝑆̂1∶2(𝑦)

𝑆̂1∶2(𝑥)𝐼(𝑆̂1∶2(𝑥) > 0).
(1.3)

Mukerjee (1996) showed that these estimators are strongly uniformly consistent if 𝑛𝑖∕(𝑛1 + 𝑛2) → 𝛼𝑖 > 0 for 𝑖 = 1, 2 as 𝑛1, 𝑛2 → ∞.
In the 𝑘-sample case, El Barmi and Mukerjee (2016) introduced what they thought to be consistent estimators. We found some

istakes in that paper, which are discussed in Section 3. The purpose of this paper is to provide new consistent estimators.
We assume that for 𝑘 populations under the order constraint

𝑆1 ≤𝑢𝑠𝑜 𝑆2 ≤𝑢𝑠𝑜 … ≤𝑢𝑠𝑜 𝑆𝑘, (1.4)

e have independent random samples of sizes 𝑛1,… , 𝑛𝑘 that satisfy

𝛼̂𝑖 = 𝑛𝑖
/

𝑘
∑

𝑗=1
𝑛𝑗 → 𝛼𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑘 as min

𝑖∶1≤𝑖≤𝑘
𝑛𝑖 → ∞. (1.5)

For 1 ≤ 𝑖 ≤ 𝑘, assume that we have consistent but unrestricted estimators of 𝑆𝑖 available which we denote by 𝑆̂𝑖. Here 𝑆̂𝑖 will
ypically be the empirical survival function or the Kaplan–Meier estimator in case of randomly right censoring. For 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑘,
et

𝛼𝑟∶𝑠 =
𝑠
∑

𝑗=𝑟
𝛼𝑗 , 𝛼̂𝑟∶𝑠 =

𝑠
∑

𝑗=𝑟
𝛼̂𝑗 , 𝑆𝑟∶𝑠 =

∑𝑠
𝑗=𝑟 𝛼𝑗𝑆𝑗

𝛼𝑟∶𝑠
, 𝑆̂𝑟∶𝑠 =

∑𝑠
𝑗=𝑟 𝛼̂𝑗 𝑆̂𝑗

𝛼̂𝑟∶𝑠
.

Note that (𝑆𝑖∶𝑖 𝑆̂𝑖∶𝑖) is simply (𝑆𝑖 𝑆̂𝑖) for all 1 ≤ 𝑖 ≤ 𝑘. For 1 ≤ 𝑟 < 𝑢 < 𝑠 ≤ 𝑘, we have 𝑆𝑟∶𝑠 = (𝛼𝑟∶𝑢𝑆𝑟∶𝑢+𝛼𝑢+1∶𝑠𝑆𝑢+1∶𝑠)∕(𝛼𝑟∶𝑢+𝛼𝑢+1∶𝑠).

. Suggested estimators and their consistency

We suggest a set of estimators where all the order restrictions are active. In Section B of the Supplementary Material, we discuss
ther consistent estimators that are simpler to implement, but that do not exploit all the order constraints; heuristically and in
imulations, these are suboptimal. We start by assuming complete observations with 𝑆̂𝑖 as the estimator of 𝑆𝑖. The censored case

using the Kaplan–Meier estimators is actually simpler even though consistency will be limited to a narrower range. We discuss it at
the end of this section.

On numerous occasions, we examine properties of ratios of nonnegative functions of the form 𝑓 (𝑥)∕𝑔(𝑥) with the multiplier
(𝑔(𝑥) > 0). Instead of tedious repetition of this qualifier, we will assume this without explicit mention.

Shaked and Shanthikumar (2007, Theorem 1.B.22) show that if 𝑈1 ≤𝑢𝑠𝑜 𝑈2 are SFs and 0 < 𝛼 < 1. Then 𝑈1 ≤𝑢𝑠𝑜 𝑈12 ≡
𝑈1 + (1 − 𝛼)𝑈2 ≤𝑢𝑠𝑜 𝑈2. We will frequently use this result without explicit mention. An example of an application is showing
1∶4 ≤𝑢𝑠𝑜 𝑆3∶5 by arguing sequentially 𝑆1∶2 ≤𝑢𝑠𝑜 𝑆2 ≤𝑢𝑠𝑜 𝑆3 ≤𝑢𝑠𝑜 𝑆3∶4, implying 𝑆1∶4 ≤𝑢𝑠𝑜 𝑆3∶4 ≤𝑢𝑠𝑜 𝑆4 ≤𝑢𝑠𝑜 𝑆5, which in turn implies
1∶4 ≤𝑢𝑠𝑜 𝑆3∶4 ≤𝑢𝑠𝑜 𝑆3∶5.

We build up a pyramidal structure of {𝑆𝑟∶𝑠} with 𝑆1∶𝑘 at the apex, and with fewer and fewer components going down until we
it {𝑆𝑖∶𝑖 = 𝑆𝑖, 1 ≤ 𝑖 ≤ 𝑘} in the bottom row. By our claim above,

𝑆1∶𝑘−1 ≤𝑢𝑠𝑜 𝑆1∶𝑘 ≤𝑢𝑠𝑜 𝑆2∶𝑘

𝑆1∶𝑘−2 ≤𝑢𝑠𝑜 𝑆1∶𝑘−1 ≤𝑢𝑠𝑜 𝑆2∶𝑘−1 ≤𝑢𝑠𝑜 𝑆2∶𝑘 ≤𝑢𝑠𝑜 𝑆3∶𝑘

⋮

𝑆1∶𝑘−𝑚+1 ≤𝑢𝑠𝑜 𝑆1∶𝑘−𝑚+2 ≤𝑢𝑠𝑜 𝑆2∶𝑘−𝑚+2 ≤𝑢𝑠𝑜 𝑆2∶𝑘−𝑚+3 ≤𝑢𝑠𝑜 ⋯ ≤𝑢𝑠𝑜 𝑆𝑚−1∶𝑘 ≤𝑢𝑠𝑜 𝑆𝑚∶𝑘

⋮

𝑆1∶1 ≤𝑢𝑠𝑜 𝑆1∶2 ≤𝑢𝑠𝑜 𝑆2∶2 ≤𝑢𝑠𝑜 ⋯ ≤𝑢𝑠𝑜 𝑆𝑘−1∶𝑘 ≤𝑢𝑠𝑜 𝑆𝑘∶𝑘

Fig. 1 gives a graphical presentation for 𝑘 = 4 with an → representing ≤𝑢𝑠𝑜 and where the gray path illustrates the 𝑚th row for
= 3.
2
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Fig. 1. Graphical presentation of {𝑆𝑟∶𝑠} for 𝑘 = 4..

We estimate from top to bottom of the pyramidal structure. There are no restrictions on 𝑆1∶𝑘, and we set 𝑆̄1∶𝑘 = 𝑆̂1∶𝑘. In the
outward boundaries of 𝑚th row of the pyramid, 𝑆1∶𝑘−𝑚+1 ≤𝑢𝑠𝑜 𝑆1∶𝑘−𝑚+2 and 𝑆𝑚∶𝑘 ≥𝑢𝑠𝑜 𝑆𝑚−1∶𝑘 have only single ordering restrictions
rom the row above for 2 ≤ 𝑚 ≤ 𝑘, and we define their 1-sample type restricted estimators sequentially:

𝑆̄1∶𝑘−𝑚+1(𝑥) = inf
𝑦≤𝑥

𝑆̂1∶𝑘−𝑚+1(𝑦)
𝑆̄1∶𝑘−𝑚+2(𝑦)

𝑆̄1∶𝑘−𝑚+2(𝑥), 2 ≤ 𝑚 ≤ 𝑘,

𝑆̄𝑚∶𝑘(𝑥) = sup
𝑦≤𝑥

𝑆̂𝑚∶𝑘(𝑦)
𝑆̄𝑚−1∶𝑘(𝑦)

𝑆̄𝑚−1∶𝑘(𝑥), 2 ≤ 𝑚 ≤ 𝑘.
(2.1)

For 2 ≤ 𝑟 ≤ 𝑠 ≤ 𝑘 − 1, we have a double ordering restriction from above: 𝑆𝑟−1∶𝑠 ≤𝑢𝑠𝑜 𝑆𝑟∶𝑠 ≤𝑢𝑠𝑜 𝑆𝑟∶𝑠+1. We define our restricted
estimators inductively. First note that 𝑆̄1∶𝑘, 𝑆̄1∶𝑘−1 and 𝑆̄2∶𝑘 are defined by (2.1). Assume that for some 3 ≤ 𝑚 ≤ 𝑘, the restricted
estimators, 𝑆̄1∶𝑘−𝑗+1, 𝑆̄2∶𝑘−𝑗 ,… , 𝑆̄𝑗∶𝑘 have been defined for all 𝑗 = 3,… , 𝑚 − 1. For 2 ≤ 𝑟 ≤ 𝑠 ≤ 𝑘 − 1 with 𝑠 − 𝑟 = 𝑘 − 𝑚, define

𝑆†
𝑟∶𝑠(𝑥) = inf

𝑦≤𝑥

𝑆̂𝑟∶𝑠(𝑦)
𝑆̄𝑟∶𝑠+1(𝑦)

𝑆̄𝑟∶𝑠+1(𝑥), 𝑆‡
𝑟∶𝑠(𝑥) = sup

𝑦≤𝑥

𝑆̂𝑟∶𝑠(𝑦)
𝑆̄𝑟−1∶𝑠(𝑦)

𝑆̄𝑟−1∶𝑠(𝑥),

𝑆‡†
𝑟∶𝑠(𝑥) = inf

𝑦≤𝑥

𝑆‡
𝑟∶𝑠(𝑦)

𝑆̄𝑟∶𝑠+1(𝑦)
𝑆̄𝑟∶𝑠+1(𝑥), 𝑆†‡

𝑟∶𝑠(𝑥) = sup
𝑦≤𝑥

𝑆†
𝑟∶𝑠(𝑦)

𝑆̄𝑟−1∶𝑠(𝑦)
𝑆̄𝑟−1∶𝑠(𝑥), (2.2)

nd

𝑆̄𝑟∶𝑠 = [𝑆‡†
𝑟∶𝑠 + 𝑆†‡

𝑟∶𝑠]∕2, 2 ≤ 𝑟 ≤ 𝑠 ≤ 𝑘 − 1. (2.3)

ote that 𝑆†
𝑟∶𝑠 (𝑆‡

𝑟∶𝑠) is not necessarily uniformly stochastically larger (smaller) than 𝑆̄𝑟−1∶𝑠 (𝑆̄𝑟∶𝑠+1). However, a second projection,
s in the last line of (2.2) works, i.e., both SFs 𝑆‡†

𝑟∶𝑠 and 𝑆†‡
𝑟∶𝑠 obey the order restrictions,

𝑆̄𝑟−1∶𝑠 ≤𝑢𝑠𝑜 𝑆
‡†
𝑟∶𝑠 ≤𝑢𝑠𝑜 𝑆̄𝑟+1∶𝑠, and 𝑆̄𝑟−1∶𝑠 ≤𝑢𝑠𝑜 𝑆

†‡
𝑟∶𝑠 ≤𝑢𝑠𝑜 𝑆̄𝑟+1∶𝑠,

s shown by the following lemma.

emma 2.1. Let 𝑆1, 𝑆2 and 𝑆3 be SFs.
(i) Assume 𝑆1 ≤𝑢𝑠𝑜 𝑆3 and 𝑆2 ≤𝑢𝑠𝑜 𝑆3. Then 𝑆‡

2 ≤𝑢𝑠𝑜 𝑆3, where

𝑆‡
2 (𝑥) = sup

𝑦≤𝑥

𝑆2(𝑦)
𝑆1(𝑦)

𝑆1(𝑥).

(ii) Assume 𝑆1 ≤𝑢𝑠𝑜 𝑆2 and 𝑆1 ≤𝑢𝑠𝑜 𝑆3. Then 𝑆†
2 ≥𝑢𝑠𝑜 𝑆1, where

𝑆†
2 (𝑥) = inf

𝑦≤𝑥

𝑆2(𝑦)
𝑆3(𝑦)

𝑆3(𝑥).

Proof. We prove only (i) since the proof of (ii) is similar. By assumption the functions 𝜃1 = 𝑆1∕𝑆3 and 𝜃2 = 𝑆2∕𝑆3 are nonincreasing.
We claim that

𝜃(𝑥) ∶=
𝑆‡
2 (𝑥)

𝑆3(𝑥)
= sup

𝑦≤𝑥

𝑆2(𝑦)𝑆3(𝑦)
𝑆1(𝑦)𝑆3(𝑦)

𝑆1(𝑥)
𝑆3(𝑥)

= sup
𝑦≤𝑥

𝜃2(𝑦)
𝜃1(𝑦)

𝜃1(𝑥)

is nonincreasing. Assume that 𝑥 ≤ 𝑥̃. Then 𝜃1(𝑥) ≥ 𝜃1(𝑥̃), and we can write

𝜃(𝑥̃) =
𝜃1(𝑥̃) max

{

sup
𝜃2(𝑦) 𝜃1(𝑥), 𝜃(𝑥)

}

.

3

𝜃1(𝑥) 𝑥<𝑦≤𝑥̃ 𝜃1(𝑦)
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If the maximum is attained in 𝜃(𝑥), we are done. Otherwise,

sup
𝑥<𝑦≤𝑥̃

𝜃2(𝑦)
𝜃1(𝑦)

≥ sup
𝑦≤𝑥

𝜃2(𝑦)
𝜃1(𝑦)

,

and hence

𝜃(𝑥̃) = sup
𝑥<𝑦≤𝑥̃

𝜃2(𝑦)
𝜃1(𝑦)

𝜃1(𝑥̃) ≤
𝜃2(𝑥)
𝜃1(𝑥̃)

𝜃1(𝑥̃) = 𝜃2(𝑥).

Since 𝜃(𝑥) ≥ 𝜃2(𝑥), this implies the claim. □

Considering the original projections by Rojo and Samaniego (1993) and Mukerjee (1996) given at (1.2), one might wonder why
there is never a second summand in our construction. This second term vanishes since the support of the survival function in the
denominator contains the one of the numerator.

We apply part (i) of the lemma with 𝑆1 = 𝑆̄𝑟−1∶𝑠, 𝑆2 = 𝑆†
𝑟∶𝑠 and 𝑆3 = 𝑆̄𝑟∶𝑠+1 and part (ii) with 𝑆1 = 𝑆̄𝑟−1∶𝑠, 𝑆2 = 𝑆‡

𝑟∶𝑠 and
𝑆3 = 𝑆̄𝑟∶𝑠+1. Unfortunately, 𝑆†‡

𝑟∶𝑠 is generally not equal to 𝑆‡†
𝑟∶𝑠. We could use either or any convex combination due to transitivity of

SO. Having no prior preference, we choose their arithmetic average. Our pyramidal construction goes from the top to the bottom
ntil we reach 𝑆∗

𝑖 = 𝑆̄𝑖∶𝑖, which satisfy the order constraints 𝑆∗
1 ≤𝑢𝑠𝑜 𝑆∗

2 ≤𝑢𝑠𝑜 ⋯ ≤𝑢𝑠𝑜 𝑆∗
𝑘 by construction. Next we show that these

stimators are consistent. The argument follows the same sequential pattern as the construction of the estimators.

emma 2.2. Assume that 𝑈̂ and 𝑉 are SFs that estimate the SFs 𝑈 and 𝑉 , respectively. Assume ‖𝑈̂ −𝑈‖ → 0 𝑎.𝑠., and ‖𝑉 −𝑉 ‖ → 0 𝑎.𝑠.,
here ‖ ⋅ ‖ denotes the sup-norm.

(i) Assume 𝑈 ≤𝑢𝑠𝑜 𝑉 and let 𝑈∗ be defined by

𝑈∗(𝑥) = inf
𝑦≤𝑥

𝑈̂ (𝑦)
𝑉 (𝑦)

𝑉 (𝑥)𝐼(𝑉 (𝑥) > 0).

Then ‖𝑈∗ − 𝑈‖ → 0 a.s.
(ii) Assume 𝑈 ≥𝑢𝑠𝑜 𝑉 and let 𝑈∗∗ be defined by

𝑈∗∗(𝑥) = sup
𝑦≤𝑥

𝑈̂ (𝑦)
𝑉 (𝑦)

𝑉 (𝑥)𝐼(𝑉 (𝑥) > 0) + 𝑈̂ (𝑥)𝐼(𝑉 (𝑥) = 0).

Then ‖𝑈∗∗ − 𝑈‖ → 0 a.s.

Proof. The proof uses the following result (Rojo and Samaniego, 1993, Lemmas 1 and 2): If 𝑓 and 𝑔 are bounded functions on
[0, 𝑥], then

| inf
𝑦≤𝑥

𝑓 (𝑦) − inf
𝑦≤𝑥

𝑔(𝑦)| ≤ sup
𝑦≤𝑥

|𝑓 (𝑦) − 𝑔(𝑦)|, (2.4)

| sup
𝑦≤𝑥

𝑓 (𝑦) − sup
𝑦≤𝑥

𝑔(𝑦)| ≤ sup
𝑦≤𝑥

|𝑓 (𝑦) − 𝑔(𝑦)|. (2.5)

For the proof of (i), consider 𝐸 = {𝜔 ∶ ‖𝑈̂ − 𝑈‖ → 0, ‖𝑉 − 𝑉 ‖ → 0} with 𝑃 (𝐸) = 0. For 𝑉 (𝑥) > 0, we have

|𝑈∗(𝑥) − 𝑈 (𝑥)| =
|

|

|

|

|

inf
𝑦≤𝑥

𝑈̂ (𝑦)
𝑉 (𝑦)

𝑉 (𝑥) − inf
𝑦≤𝑥

𝑈 (𝑦)
𝑉 (𝑦)

𝑉 (𝑥)
|

|

|

|

|

≤ sup
𝑦≤𝑥

|

|

|

|

|

𝑈̂ (𝑦)
𝑉 (𝑦)

𝑉 (𝑥) −
𝑈 (𝑦)
𝑉 (𝑦)

𝑉 (𝑥)
|

|

|

|

|

≤ sup
𝑦≤𝑥

𝑉 (𝑥)
𝑉 (𝑦)

|𝑈̂ (𝑦) − 𝑈 (𝑦)| + sup
𝑦≤𝑥

𝑈 (𝑦)
𝑉 (𝑦)

|𝑉 (𝑥) − 𝑉 (𝑥)|

+ sup
𝑦≤𝑥

𝑉 (𝑥)𝑈 (𝑦)
𝑉 (𝑦)𝑉 (𝑦)

|𝑉 (𝑦) − 𝑉 (𝑦)|

≤ sup
𝑦≤𝑥

|𝑈̂ (𝑦) − 𝑈 (𝑦)| + 2 sup
𝑦≤𝑥

𝑈 (𝑦)
𝑉 (𝑦)

sup
𝑦≤𝑥

|𝑉 (𝑦) − 𝑉 (𝑦)|

≤ sup
𝑦≤𝑥

|𝑈̂ (𝑦) − 𝑈 (𝑦)| + 2 sup
𝑦≤𝑥

𝑉 (𝑦)
𝑉 (𝑦)

sup
𝑦≤𝑥

|𝑉 (𝑦) − 𝑉 (𝑦)|, (2.6)

here we have used (2.4) for the first inequality, the triangular inequality in the next, the facts that 𝑉 (𝑥)∕𝑉 (𝑦) ≤ 1 and 𝑉 (𝑥)∕𝑉 (𝑦) ≤ 1
for all 𝑦 ≤ 𝑥, |𝑉 (𝑥) − 𝑉 (𝑥)| ≤ sup𝑦≤𝑥 |𝑉 (𝑦) − 𝑉 (𝑦)|, and an elementary inequality about supremum of products in the next, and
𝑈 (𝑦) ≤ 𝑉 (𝑦) for all 𝑦 in the last.

Uniform consistency of 𝑈∗ on [0,∞) is equivalent to uniform consistency on [0, 𝑥] for all 𝑥 ≥ 0. Suppose an arbitrary 𝜖 > 0 is
given. First assume there exists 𝜏 > 0 such that 0 < 𝑉 (𝜏) < 𝜖. On 𝐸 we know that ‖𝑉 −𝑉 ‖ < 𝑉 (𝜏)∕2 and ‖𝑈̂ −𝑈‖ < 𝜖 for a sufficiently
large sample size and

𝑉 (𝑦) ≤ 𝑉 (𝑦) ≤ 𝑉 (𝜏)
= 2,
4

𝑉 (𝑦) 𝑉 (𝑦) − 𝑉 (𝜏)∕2 𝑉 (𝜏) − 𝑉 (𝜏)∕2
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using 𝑉 (𝑦)∕[𝑉 (𝑦) − 𝑉 (𝜏)∕2] is increasing in 0 ≤ 𝑦 ≤ 𝜏. From (2.6) we have

sup
𝑦≤𝜏

|𝑈∗(𝑦) − 𝑈 (𝑦)| < 5𝜖 on 𝐸. (2.7)

If there is no 𝜏 such that 0 < 𝑉 (𝜏) < 𝜖, then there must be a jump ≥ 𝜖 at the right endpoint of 𝑉 . In this case, we can use 𝜖 in place
of 𝑉 (𝜏) in the proof of the first case to get (2.7), using the fact that 𝑉 (𝑦) ≥ 𝜖 for all 𝑦 where 𝑉 (𝑦) > 0. Since 𝜖 > 0 is arbitrary, this
completes the proof of (i).

For the proof of (ii), by using the triangular inequality, we note that (recall our notation at the beginning of Section 2 about
omitting an indicator function)

|𝑈∗∗(𝑥) − 𝑈 (𝑥)| ≤
|

|

|

|

|

sup
𝑦≤𝑥

𝑈̂ (𝑦)
𝑉 (𝑦)

𝑉 (𝑥) − sup
𝑦≤𝑥

𝑈 (𝑦)
𝑉 (𝑦)

𝑉 (𝑥)
|

|

|

|

|

+ |𝑈̂ (𝑥)𝐼(𝑉 (𝑥) = 0) − 𝑈 (𝑥)𝐼(𝑉 (𝑥) = 0)|.

The proof of uniform convergence of the first term using (2.5) is similar to that in (i); that of the second term follows from standard
probability results. □

The estimators 𝑆∗
𝑖 are strongly and uniformly consistent by the following Theorem 2.1, and the construction ensures that they

satisfy the desired order constraints 𝑆∗
1 ≤𝑢𝑠𝑜 𝑆∗

2 ≤𝑢𝑠𝑜 ⋯ ≤𝑢𝑠𝑜 𝑆∗
𝑘 .

Theorem 2.1. The estimator 𝑆∗
𝑖 = 𝑆̄𝑖∶𝑖 in (2.1)–(2.3) is strongly and uniformly consistent for 𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑘 under the USO in (1.4)

and the relative sample size assumption (1.5).

Proof. Under assumption (1.5), 𝑆̂𝑟∶𝑠 is strongly and uniformly consistent for 𝑆𝑟∶𝑠 for all 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑘 from standard probability
theory. The conclusion of the theorem then follows simply by applying Lemma 2.2(i) and (ii) alternately to the adjacent pairs

𝑆̄1∶𝑘−𝑚+1 ≤𝑢𝑠𝑜 𝑆̄1∶𝑘−𝑚+2 ≤𝑢𝑠𝑜 𝑆̄2∶𝑘−𝑚+2 ≤𝑢𝑠𝑜 𝑆̄2∶𝑘−𝑚+3 ≤𝑢𝑠𝑜 ⋯ ≤𝑢𝑠𝑜 𝑆̄𝑚−1∶𝑘 ≤𝑢𝑠𝑜 𝑆̄𝑚∶𝑘

sequentially for 𝑚 = 2, 3,… , 𝑘−1. For example, for 𝑚 = 2, we let 𝑈 = 𝑆1∶𝑘−1 and 𝑉 = 𝑆1∶𝑘 in Lemma 2.2(i) for consistency of 𝑆̄1∶𝑘−1
nd 𝑈 = 𝑆2∶𝑘 and 𝑉 = 𝑆1∶𝑘 in Lemma 2.2 (ii) for consistency of 𝑆̄2∶𝑘. For 𝑚 = 3, consistency of 𝑆̄1∶𝑘−2 and 𝑆̄3∶𝑘 follow similarly.
or 𝑆̄2∶𝑘−1, we first get consistency of 𝑆†

2∶𝑘−1 using 𝑈̂ = 𝑆̂2∶𝑘−1 and 𝑉 = 𝑆̄2∶𝑘 in Lemma 2.2(i), and then of 𝑆†‡
2∶𝑘−1 using 𝑈̂ = 𝑆†

2∶𝑘−1
nd 𝑉 = 𝑆̄1∶𝑘−1 in Lemma 2.2 (ii). Consistency of 𝑆‡†

2∶𝑘−1, and hence of 𝑆̄2∶𝑘−1, follow similarly. □

In the case of random right censoring of the life distributions, we assume that the entire set of life distributions and censoring
istributions are jointly independent. We use the KM estimator 𝑆𝐾𝑀

𝑖 of 𝑆𝑖 when there are no order restrictions. It is well known that
he KM estimator 𝑆𝐾𝑀

𝑖 is strongly and uniformly consistent on [0, 𝑏] for all 𝑏 < 𝑏𝑖, where 𝑏𝑖 is the minimum of the right endpoints
f the supports of the 𝑖th life distribution and the corresponding censoring distribution. We consider the estimation under USO only
n [0, 𝑏] for some 𝑏 < min{𝑏𝑖 ∣ 𝑖 = 1,… , 𝑘}.

Now consider the uncensored case with the empirical being generalized by a step function, with possibly unequal jumps, with all
he SFs having the support [0, 𝑏]. Then the estimation and consistency will follow exactly as described above using the empiricals.
hus, the estimators replacing the empiricals by the KM estimators will have the desired consistency on [0, 𝑏].

. Errors in El Barmi and Mukerjee (2016)

For the 𝑘-sample problem considered above with the assumption of zero mass at the origin for all populations, let 0 < 𝑡1 < 𝑡2 <
< 𝑡𝑐 be the distinct observation points of the combined sample, and define 𝑡0 = 0. Dykstra et al. (1991) showed that the USO

n (1.4) is equivalent to 𝜃𝑖 = 𝑆𝑖(𝑡𝑗 )∕𝑆𝑖(𝑡𝑗−1) is increasing in 𝑖 for each 𝑡𝑗 and 𝑆𝑖(𝑡) =
∏

𝑡𝑗≤𝑡 𝜃𝑖(𝑡𝑗 ). The empirical estimate of 𝜃𝑖(𝑡𝑗 ) is
̂𝑖(𝑡𝑗 ) = 𝑆̂𝑖(𝑡𝑗 )∕𝑆̂𝑖(𝑡𝑗−1). Then they showed that the NPMLE (𝜃∗1 (𝑡𝑗 ),… , 𝜃∗𝑘(𝑡𝑗 )) is the isotonic regression of (𝜃̂1(𝑡𝑗 ),… , 𝜃̂𝑘(𝑡𝑗 )) with the

eight vector (𝑛1𝑆̂1(𝑡𝑗−1),… , 𝑛𝑘𝑆̂𝑘(𝑡𝑗−1)) for all 𝑗, performed independently. El Barmi and Mukerjee (2016) considered essentially the
PMLEs, but, instead of assigning the weight 𝑛𝑖𝑆̂𝑖(𝑡𝑗−1) at 𝑡𝑗 , which is the number of items in the 𝑖th population at risk at time 𝑡−𝑗 , they
ssigned the weight 𝑛𝑖𝑆∗

𝑖 (𝑡𝑗−1) at 𝑡𝑗 , arguing that this is the updated ‘‘effective’’ number at risk at time 𝑡−𝑗 using the past information.
his forces the estimation to be constructed sequentially. For 𝑘 = 2, Mukerjee (1996) showed that this estimator is the same as the

nf/sup definition of his 2-sample estimator in (1.3). The estimator turned out to have nice properties in simulations, but two crucial
istakes were made in proving consistency. Unable to find any direct methods, they looked at the pyramidal structure of {𝑆𝑟∶𝑠} by

heir orderings as shown in the last section, and suggested a roundabout proof. Consider the case 𝑘 = 3. They defined the estimators
f all of the {𝑆𝑟∶𝑠} the same way as in Section 2, except for that of 𝑆2∶2 = 𝑆2. The estimators of 𝑆1∶1, 𝑆1∶2, 𝑆2∶3, 𝑆1∶3 and 𝑆3∶3 are all
onsistent as shown in Section 2 since they are estimated under no order restrictions or just one. Letting 𝜃(⋅)(𝑡𝑗 ) = 𝑆(⋅)(𝑡𝑗 )∕𝑆(⋅)(𝑡𝑗−1),
nd noting that 𝜃12(𝑡𝑗 ) ≤ 𝜃2(𝑡𝑗 ) ≤ 𝜃23(𝑡𝑗 ) They claimed that their original estimator of 𝑆2(𝑡) is given by

𝑆∗
2 (𝑡) =

∏

𝑡𝑗≤𝑡
𝜃̄2(𝑡𝑗 ), where 𝜃̄2(𝑡𝑗 ) = 𝜃̄1∶2(𝑡𝑗 ) ∨ 𝜃̂2(𝑡𝑗 ) ∧ 𝜃̄2∶3(𝑡𝑗 ). (3.1)

nce 𝜃̄1∶2, 𝜃̄2∶3 and 𝜃̂2 have been computed, one can compute 𝑆∗
2 (𝑡𝑗 ) for all 𝑗 simultaneously. However, in the original estimation

rocess, it is not possible to compute 𝑆∗
2 (𝑡𝑗 ) without first computing 𝑆∗

2 (𝑡𝑗−1) except for some trivial cases. Thus, 𝑆∗
2 in (3.1) cannot

e the original estimator.
5
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Moreover, El Barmi and Mukerjee (2016) claimed that 𝑆†
2 , defined by

𝑆†
2 (𝑡) =

∏

𝑡𝑗≤𝑡
[𝜃̂2(𝑡𝑗 ) ∧ 𝜃̄23(𝑡𝑗 )], (3.2)

s consistent, quoting the consistency of the 2-sample estimator of Mukerjee (1996) that was shown to be equivalent to the original
stimator for 𝑘 = 2. However, this equivalence occurred when 𝜃(⋅)(𝑡𝑗 ) was defined to be 𝑆(⋅)(𝑡𝑗 )∕𝑆∗

(⋅)(𝑡𝑗−1), not 𝑆(⋅)(𝑡𝑗 )∕𝑆̂(⋅)(𝑡𝑗−1). In
act, (3.2) defines precisely the NPMLE given in Dykstra et al. (1991) for 𝑘 = 2, and Mukerjee (1996) showed that the estimators
re typically inconsistent when all the SFs are continuous. El Barmi and Mukerjee apologize for such serious mistakes.

We conclude in remarking that the computational cost of the estimators suggested in this paper grows at rate 𝑘2 by the nature
f the pyramidal structure in Section 2 and therefore estimation will be costly if we are given a large number 𝑘 of classes. The
stimators originally given in El Barmi and Mukerjee (2016) are more attractive in this regard since we can compute them by
equentially isotonizing certain thresholds at all distinct observations and hence the computational cost grows only linearly with
he sample size. However, the problem of consistency remains unresolved.
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ppendix A. Supplementary material

The supplementary material to this article contains a short simulation study and the characterization of some alternative
onsistent estimators which are slightly simpler but less optimal than the estimators we presented in Section 2. We also show
eak convergence of the restricted estimators in a special case and analyze a real data example taken from Dykstra et al. (1991)
hich gives a graphical comparison of the restricted and unrestricted estimators of the survival times for patients with carcinoma
f the oropharynx. The data is found in Table 1 of Dykstra et al. (1991).

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2024.110045.
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