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Abstract
Deformable image registration (DIR) is a versatile tool used inmany applications in radiotherapy
(RT). DIR algorithms have been implemented inmany commercial treatment planning systems
providing accessible and easy-to-use solutions. However, the geometric uncertainty ofDIR can be
large and difficult to quantify, resulting in barriers to clinical practice. Currently, there is no agreement
in the RT community on how to quantify these uncertainties and determine thresholds that
distinguish a goodDIR result from a poor one. This review summarises the current literature on
sources ofDIR uncertainties and their impact onRT applications. Recommendations are provided on
how to handle these uncertainties for patient-specific use, commissioning, and research. Recommen-
dations are also provided for developers and vendors to help users to understandDIR uncertainties
andmake the application ofDIR inRT safer andmore reliable.

1. Introduction

Deformable image registration (DIR) is used inmultiple applications in radiotherapy (RT), including image
fusion, contour propagation, dosemapping, and dose accumulation.Many improvements in patient quality of
caremay be facilitated byDIR, including clinical delineations usingmultiple images (Brock et al 2017, Barber
et al 2020), organ sparingwith adaptive techniques (Albertini et al 2020, Glide-Hurst et al 2021), and better
understanding of patientmorbidity andmortality risks incorporating adaptive RT (ART)with accumulated
dose (Murr et al 2023, Smolders et al 2023b). The efficacy of these techniques relies on the accuracy and
reproducibility of the results ofDIR. Incorporation ofDIR-facilitated processes without an understanding of the
impact of uncertaintiesmay affect RTpatient treatments.
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The potential and risks ofDIR inRT arewell covered in current literature (Brock et al 2017, Paganelli et al
2018, Lowther et al 2022,Murr et al 2023). TheAmericanAssociation of Physicists inMedicine TaskGroup 132
(AAPMTG-132) report (Brock et al 2017) provided early guidance forwork on qualification and commissioning
ofDIR algorithms and processes. AAPMTG-132 remains an excellent review ofDIR and quality assurance
(QA), but the report does suffer from some limitations. Latifi et al noted difficulties in applying the AAPMTG-
132 recommendations in clinical practice (Latifi et al 2018) . Hussein et al andRigaud et al report barriers toDIR
clinical implementationwith a lack of suitable evaluation tools and consensus on their implementation (Rigaud
et al 2019,Hussein et al 2021). Barber et al andPaganelli et al addressed the requirements of patient-specificDIR
QAand commissioning, and discussed the difficulties of consensusDIRQAmetrics (Paganelli et al 2018, Barber
et al 2020). Recent position papers out of theAustralasianCollege of Physical Scientists and Engineers in
Medicine (ACPSEM) (Barber et al 2020) and theMedical Image Registration Special Interest Group (MIRSIG)
(Lowther et al 2022) have proposed consensus evaluation strategies for local geometric accuracy and vector grid
suitability.

Despite recommendations on geometric tolerances present in the literature, the reporting of uncertainty
quantification in clinically implementedDIR is not well standardised for RT applications in today’s literature,
particularly with respect to dosimetricmeasures. This review aims to summarise the current understanding of
uncertainties inDIR-facilitated processes and their clinical impact. The authors analysed the current literature
about uncertainties inmultiple DIR-facilitated applications, and summarised and extended recommendations
with the general aim of raising awareness.

This review is structured as follows:Wefirst summariseDIR algorithms used in RT (Chapter 2), and give a
short explanation about the sources ofDIR uncertainties (Chapter 3). Next, we reviewmethods to quantifyDIR
uncertainties geometrically and dosimetrically (Chapter 4), and describe the effects and severity of these
uncertainties for different RT applications (Chapter 5). Finally, we discuss uncertainty tolerances (Chapter 6)
and summarise and expand current recommendations and recommend future research avenues (Chapter 7).

2.DIR algorithms

DIR is applied between two images, aiming at aligning corresponding anatomic regions in both images. The
result of aDIR is a transformation, which is often represented as a displacement vector field (DVF), which can be
applied to images, structures, or dose distributions (figure 1). The earliest DIR algorithmswere based on optical
flow (Horn and Schunck 1981) or thin plate splines (Bookstein 1989). Classical algorithms, such as intensity-
basedmatching or biomechanicalmodels remain popular, but recently research in deep-learning (DL)methods
is increasing. For a comprehensive overview ofDIR algorithms, we refer the reader to review articles (Maintz and
Viergever 1998,Holden 2008,Haskins et al 2020, Chen et al 2021, Teuwen et al 2022, Zou et al 2022).

2.1. Classical image registration
Classicalmethods, in their simplest form, follow a process illustrated infigure 2. There are two input images, a
moving image and afixed image, where the goal is to deform themoving image into the coordinate systemof the
fixed image. The algorithmproceeds by iteratively optimising transformation parameters tofind a registration

Figure 1. Schematic overview of radiotherapy applications influenced by uncertainty inDIR-generated transformations. DIR:
deformable image registration, ART: adaptive radiotherapy.
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thatminimises a similaritymetric. The transformation parameters represent a displacement field, a velocity
field, spline parameters, or other deformable transform representations. The similaritymetric typically includes
a regularisation term,which limits permissible transformations to those considered desirable or physically
plausible, in addition to a similaritymetric thatmatches intensity, such asmutual information or correlation
coefficient.

Intensity-basedDIRmatching criteria are developed to use image intensity to optimisemetrics such as
mutual information (MI), sumof the squared difference (SSD) of image intensity, or cross-correlation (CC) (Oh
andKim2017, Li et al 2021). Intensity-basedDIR can achieve high accuracy for image areas with clear image
features and high contrast. In poor contrast regions, intensity-basedDIR accuracymay be less robust (Elmahdy
et al 2019, Li et al 2021, Tascón-Vidarte et al 2022). To improveDIR accuracy, hybridDIR algorithms consider
point landmarks or structures defined on both image sets to improve registration results (Zhong et al 2012,
Weistrand and Svensson 2015, Qin et al 2018,Motegi et al 2019, Shah et al 2021). Some algorithms rely on
distance criteria to determine correspondence and transformations (Xiong et al 2006, VásquezOsorio et al 2009,
Zakariaee et al 2016) others use biomechanical properties.

Biomechanical algorithms are influenced bymodelled physical properties of the tissues (Sotiras et al 2013,
Polan et al 2017, Velec et al 2015, 2017). Finite elementmethods (FEM)model the properties of the tissues under
mechanical force. Although the use of FEM requires the challenging definition ofmaterial properties, geometry,
and boundary conditions, its robustness and plausibility are well demonstrated (Sotiras et al 2013). Compared to
intensity-basedDIR, it can improvemulti-modal registration and registration in low-contrast regions (Velec
et al 2015).

2.2.Deep learning-basedDIR
In the past decade,machine learning algorithms in radiotherapy have increased dramatically, andDLhas
likewisemade advances in the field ofmedical DIR (Teuwen et al 2022, Zou et al 2022). Topical reviews of the
literature present extensive summaries of the current state ofDL algorithmswithinDIR (Boveiri et al 2020, Xiao
et al 2021, Zou et al 2022). DL in image registration is implemented through two approaches: deep similarity
metrics in classical image registration algorithms, and deep neural networks that directly estimate theDVF.

2.2.1. Deep similaritymetrics (DSMs)
As described in section 2.1, classical algorithms approach the problemof image alignment through a process of
iterative optimization. These algorithms search for a globalminimumof the solution space, but the choice of
similaritymetric remains problematic. DSMs aim to improve classical iterative image registration by improving
the similarity term. This approach is particularly useful inmulti-modal imagingwhere it has been shown to
outperformmutual information (Wu et al 2013, Simonovsky et al 2016). Improvements in difficultmonomodal
registration problems, low contrast regions and large transformations, have been reported in the literature
(Zhao and Jia 2015).

2.2.2. Direct determination of DVFs bymachine learning algorithms
Direct DVFDL algorithms use historic DVFs or artificial DVFs as training data to determine registrations. The
optimization phase happens in the training phase, wheremodel parameters are determined. The vastmajority of
DLmodels aim for a direct regression ofDVF transforms in a supervised approach. Variation betweenmodels is
primarily a result of algorithmdesign andmethodology.

Reviews (Boveiri et al 2020) cover a range of algorithm architectures. DL architectures include staked auto-
encoders (SAEs) (Wang et al 2017, Krebs et al 2018), bayesian frameworks (Deshpande andBhatt 2019,
Khawaled and Freiman 2020, 2022a), implicit neural representations (Wolterink et al 2022) and convolution

Figure 2.Classical image registration optimises transformation parameters by comparing afixed image against awarpedmoving
image. Thisfigure is inspired by and adapted from the ITK SoftwareGuide, reproducedwith change under theCreative Commons
Attribution 3.0Unported License (Johnson et al 2019).
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neural networks (CNNs) (Cao et al 2018, Ferrante et al 2018,Hu et al 2018, Balakrishnan et al 2018, 2019, Kim
et al 2019, Kuang and Schmah 2019, Liu et al 2019, Jian et al 2022,Wolterink et al 2022, Xi et al 2022, Liang et al
2023). CNNs have been researched for direct DVF regression, with reported improvements inDVFwhen
coupledwith spatial transformer networks (Jaderberg et al 2015). CNN architecture use encoder-decoder
networks, rather than a fully connected layer. Such approaches are currently implemented inwell-cited
solutions (VoxelMorph (Balakrishnan et al 2018, 2019) andU-NET (Liang et al 2023)). Despite the growth of
multimodal foundationalmodels in image creation, these reviews do notfind application in image registration.

In general, DL training is divided between supervised and unsupervised learningmethods (Chen et al 2021).
For supervised registrationmethods, ground truth is either aDVFor a segmentation. TheDVFmay be created
by a conventional DIR algorithmor from synthetic deformations, and the segmentationsmay be created by
manual contouring or othermethods. Unsupervised registrationmethods are further split into training by
similaritymetrics or generative adversarial networks (GANs) (Mahapatra et al 2018, Elmahdy et al 2019). If
similaritymetrics are used no ground truth is needed for the learning process but, as in traditional image
registration, thesemodels are limited by the same issues as similaritymetrics in classical DIR optimization. If
GAN is used, a discriminator judges if thewarpedmoving image can be discriminated from the fixed image.
When thewarped image cannot be distinguished from the fixed image, the registration is deemed to be optimal
(Goodfellow et al 2014). GANs showpromise formulti-modality DIR problems as they do not require image
similarity terms.

One advantage ofDL algorithms is improvements inmulti-modal registration, which is challenging for
classical similaritymetrics. Additionally, DL-based algorithms aremore computationally efficient (Rohé et al
2017, Cao et al 2018, Balakrishnan et al 2018, 2019).

3. Source of uncertainties

The uncertainties ofDIR can arise from a variety of sources.Many are image-based uncertainties, caused by
anatomical changes, artifacts and different imagemodalities, as well as algorithm-based uncertainties, caused by
intrinsicmathematical limitations and similaritymetrics.

3.1. Image-based
3.1.1. Anatomical changes
Non-rigid variations in patient anatomy, such as weight gain or loss, neck flexion and tumour changes can be
poorlymapped by rigid and affine registrations. DIR can improve the locally accurate alignment of anatomy
(Hill et al 2001).While regularisation is useful to reduce the likelihood of physically unrealistic deformations, the
magnitude of anatomical changesmay exceed those allowed by an algorithm’s settings. This can result in large
DIR errors in areas near significant shape changes, particularly in low contrast image regions (Kashani et al 2008)
or due to forced anatomical changes such as between external beamRT and brachytherapy
(VásquezOsorio et al 2015) (figure 3(a)).

Anatomical changes can be elastic, where the surrounding tissue follows the change and occupies the
previous space (e.g.movement, position changes, or displacement) or inelastic, where the surrounding tissue
stays in place (e.g. tissue growth, regression or emptying/filling cavities) (Amugongo et al 2022)figures 3(b) and
(c).Modelling these changes is challenging (Sonke andBelderbos 2010,Mencarelli et al 2014, Sonke et al 2019).
Certain implementations of regularisation can result in significant registration inaccuracies in sites inwhich
naturally sliding boundaries occur, such as a rib bone and its adjacent lung (Sonke et al 2019). Some solutions
were proposed to incorporatemissing tissue during theDIR (Nithiananthan et al 2012, Vishnevskiy et al 2017,
Eiben et al 2018).

3.1.2. Artifacts/Image quality
The anatomical changes caused by natural patientmotion, such as respiration,muscle contraction, and blood
flow can lead to image artifacts (Nehmeh and Erdi 2008, Zhang et al 2012, Spin-Neto andWenzel 2016, Giganti
et al 2022). For example,motion artifacts during the image acquisition can result in implausible anatomy
(Yamamoto et al 2008, Persson et al 2010) and implants such as prostheses in the imaging area can lead to
streaking or voids (Ritter et al 2009, Fontenele et al 2018, Lee et al 2021). As these artifacts disrupt the true image
intensity gradients of the patient tissue several papers have demonstrated decreased intensity-basedDIR quality
in their presence (Serban et al 2008, Sonke andBelderbos 2010, Fusella et al 2016) (figure 4).

Sensitivity ofDIR algorithms to image noise, resolution (Constable andHenkelman 1991, Verdun et al 2015,
Zhao et al 2016, Sarrut et al 2017),field of view (Barber et al 2020) and image contrast (Mencarelli et al 2014,
Barber et al 2020,Dowling andO’Connor 2020) has been demonstrated in the literature. However, other studies
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find that the effect of image noise has onlyminor effects onDIR results for computed tomography (CT) toCT
registrations (Nesteruk et al 2022).

Research on the implementation of iterative image reconstruction algorithms has shown reduced noise and
improved image quality for bothCT and cone-beamCT (CBCT) (Held et al 2016, Giacometti et al 2019, Jarema
andAland 2019, Greffier et al 2020, Loi et al 2020), whichmay allow for improved quality intensity-basedDIR.

Figure 3.Examples of large anatomical changes. (a) Large changes during combined treatments with external beam radiotherapy
(EBRT) and brachytherapy (BT) of the uterus. Image from (VásquezOsorio et al 2015)with permission. (b) Large anatomical changes
in the lung. (c)Weight loss for a head andneck patient during the course of treatment.

Figure 4.Examples of (a)dental artifacts (image from theUnited StatesNational Cancer Institute (NCI) ‘The cancer imaging archive’
(TCIA) (Clark et al 2013, Ang et al 2014, Bosch et al 2015)), (b) 4D artefacts in lung (image fromTCIA (Roman et al 2012, Balik
et al 2013, Clark et al 2013,Hugo et al 2017)) and (c)metal artifact in liver.
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3.1.3.Multimodal registration
MultimodalDIR offers considerable clinical benefit in contour propagation (Söhn et al 2008, VásquezOsorio
et al 2012, Barber et al 2020, Zachiu et al 2020). However,multimodal DIR remains challenging, and similarity
metricsmust be selectedwith care.

For example,magnetic resonance imaging (MRI) to CT registration in the lung is difficult because of low
contrast and resolution inMRI (Yang et al 2015) and in the prostate, lack of a clear boundary of the prostate
gland inCTmay lead to failures inMR-CTDIR (Zhong et al 2015). In theHN, limited soft tissue contrast and
dental artifacts inCT images compared toMR influence theDIR uncertainty (Nix et al 2017, Kiser et al 2019).
Additionally, gradient contrast artifacts inMRImay impair theDIR quality between different imagemodalities
(figure 5) (VásquezOsorio et al 2012).McKenzie at el. foundmonomodal registration from synthetic CT
(generated from theMRI) to CT to bemore accurate than themultimodal registration from the originalMRI to
CT for large deformations ofHNpatients (McKenzie et al 2020). Of course, the synthetic CT generation also
faces uncertainties, for example the resultingHounsfield units (HUs) differ betweenCT and synthetic CT.
Boulanger et al report amean absolute error of 76HU in head and liver, and 42HU in the pelvic area in average
overmultiplemethods generating synthetic CTs (Boulanger et al 2021). Geometric differences between
structures can also appear (Palmér et al 2021).

3.2. Algorithm-based
The choice of theDIR algorithm and parameter settings influences theDVF obtainedwhen registering the same
image pair. Several studies investigate the performance of different DIR algorithms, for example inHN
(Hardcastle et al 2012,Močnik et al 2018, Qin et al 2018, Lee et al 2020, Kubli et al 2021), lung (Kadoya et al 2014,
Scaggion et al 2020a), liver (Zhang et al 2012, Sen et al 2020) or pelvis (Hammers et al 2020). Some commercial
DIR algorithms offer the possibility of parameter adjustments, such as registrationmetrics, guiding structures,
regularisation levels, regularisationweights, or contrast level sensitivity, which causes uncertainty of the
algorithm to vary (Ziegler et al 2019). However,most commercial algorithms are closed systems and not
adjustable. Some studies find that even a single commercial DIR software can show variability in the results
(Kadoya et al 2016,Miura et al 2017), depending on the specificworkflows used. The performance of the same
DIR algorithmmight also vary between anatomical sites. For example, in a series of three separate studies
comparing theVelocity andMIMalgorithms (Kadoya et al 2016, Pukala et al 2016, Fukumitsu et al 2017) on
different patient anatomies, the published results come to different conclusions regarding the performance.

4.Quantification of uncertainties

The quantification and evaluation of uncertainties in the applications ofDIR are difficult due tomultiple aspects.
Firstly, a true ground truth is lacking and secondly, there are awide range ofDIR-facilitated applications which
have differing requirements for accuracy. For dosemonitoring, a low point-to-point error is necessary in steep
dose gradients, while in low gradient or homogeneous dose regions, even larger point-to-point errors will not
impact themapped dose. For contour propagation, a high correspondence between organ boundaries is of
importance (Rigaud et al 2019). QuantifyingDIR uncertainties is crucial, as theDIR results are used for
consecutive steps (Brock et al 2017, Paganelli et al 2018). So far, there is no standard procedure for uncertainty
quantification ofDIRs. Indeed,most commercial and research systems omit uncertainties entirely.

Figure 5.Example of gradient effects inMRI thatmay increaseDIR uncertainties. Figure from (VásquezOsorio et al 2012), with
permission.MRI:magnetic resonance imaging, DIR: Deformable image registration.
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4.1. Using a digital or physical phantom as ground truth
The validation ofDIR results is challenging due to the lack of ground truth. Therefore, evaluation strategies have
been developed, questioned, and improved over the past decades. To create a ground-truth surrogate, digital
phantoms and physical phantoms have been proposed. Digital phantoms (Castillo et al 2009,
Vandemeulebroucke et al 2011, Brock et al 2017) are created using voxel-based reference deformations, which
DIR algorithms are expected to recover. This can cause bias in results. For example, a digital phantomdeformed
with displacements generated by a B-splinemight result in better agreementwhen testing algorithms that use
B-spline transformations (Fatyga et al 2015, Loi et al 2018, Balakrishnan et al 2019, Boyd et al 2021). Digital
phantoms allow for the comparison of contour-based evaluationmethods and direct evaluation ofDVF errors.
In contrast, physical phantoms (Graves et al 2015,Niebuhr et al 2019, Kadoya et al 2021) provide geometrical
verification through landmarks or structures. Therefore, physical phantoms suffer from a similar lack of ground
truth as patient images. Intrinsic errors due to inter- and intra-observer variability due to themanual
identification (Machiels et al 2019, Roach et al 2019) remain present in phantoms. The use ofmarkers (Machiels
et al 2019), guidelines (Lin et al 2020), auto segmentation (Rey et al 2002, Yang et al 2018, Cardenas et al 2019,
Schipaanboord et al 2019, Vrtovec et al 2020,Harrison et al 2022) and automated landmark extraction (Paganelli
et al 2018) can reduce observer uncertainties, but are not necessarilymore accurate. Also, just as with patient
images, thesemethods quantifyDIR performance only near the points or structures under consideration (Shi
et al 2021) and do not provide a holistic assessment of theDIR performance. The deformations of physical
phantomsmight not always be anatomically realistic.While both, digital and physical phantoms, are useful for
commissioning andQAof applications involvingDIR, it is important to keep their weaknesses inmind.

4.2. Geometric and dosimetric uncertainty quantification
With the lack of ground truth, alternativemeasures have to be used to quantify the effects ofDIR uncertainty.
Most commonly geometricmeasures are used, comparingwarped points of interest or structures to reference
points and structures. These reference-based geometricmeasures are however not always available and have
their ownuncertainties, such as intra- and inter-observer variability. Reference-freemeasures have also been
proposed, they can be appliedwithout reference data. A short summary of various geometric uncertainty
measures is given in table 1. For amore detailed overview about geometricmeasures andwhichmethods are
proposed for specific applications please refer to the AAPMTG132 (Brock et al 2017) andMIRSIG (Lowther
et al 2022). In addition to geometricmeasuresmultiplemethods to visualise and quantify dosimetric
uncertainties have been proposed (table 1).

In this review, we refer to dosemapping as the process of warping/projecting/transferring a dose
distribution, defined in one image, to a second image of the same patient.We refer to dose accumulation as the
summation of themapped dose distribution and a secondary dose distribution defined in the second image.
Quantifying the correctness of dosemapping is challenging but essential in RT (Murr et al 2023). Some authors
suggest using TG-132 thresholds (Xiao et al 2020), but the TG-132 report explicitly states ‘[t]he use of
deformable registration for dose accumulationK is outside of the scope of this task group.’ (Brock et al 2017).
For this reason, we feel that themetrics and thresholds proposed byTG-132 are not sufficient to evaluate image
registration for dosemapping/accumulation. Instead, dosimetry uncertaintymeasures for clinical practice are
needed.

4.2.1. Correlation withinmeasures
Geometricmeasures are not independent and self-correlate. Loi et al found a linear relationship betweenmean
distance to agreement (MDA) and dice similarity coefficient (DSC) (Loi et al 2018). Also, a correlation between
distance discordancemetric (DDM) andHarmonic energy (HE) has been found (Kierkels et al 2018). Reporting
multiplemeasures is still useful despite being redundant. For example, theDSC limitations can be critically
analysed in conjunctionwith othermetrics, such asMDA for different structures and volumes (Jena et al 2010,
Brock et al 2017, Loi et al 2018). Combining different geometricalmetrics can improve the understanding of the
overall quality of theDIR for a specific application.

Different implementations and specificways to use the samemeasure can lead to vastly different results. For
example variations of up to 50% inDSC, 50% inHausdorff distance (HD) and 200% inMDAwere found
between the same structure sets, evaluated by different institutions (Gooding et al 2022). Comparing results
fromdifferent studies and centres should therefore be takenwith care. The correlation between geometric and
dosimetricmeasures was found to be low (Hvid et al 2016, Pukala et al 2016, Poel et al 2021,Nash et al 2022,
Kamath et al 2023).
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Table 1.Description, strengths and limitations of commonly used geometric and dosimetric uncertainty quantificationmetrics. DVH:Dose-volume-histogram.

Metric Description Strengths (+) /Limitations (−)

Reference- based Target registration

error (TRE)
•Distance between anatomical landmarks defined by differentmethods, e.g. warpedwithDIR versus

physician-drawn reference (Fitzpatrick et al 1998, Datteri andDawant 2012, Brock et al 2017)
+Distance, inmm

| ( ) |= -TRE T p p• f m + Spatially resolved

( )T p• :f estimated transformation of point fromfixed image, pm position of point onmoving image −Reference points required (manual or automatic defi-

nition), additional inherent uncertainties, and time con-

suming definition

−Validity depends point quantity and relevance

− Limited to areas with sufficient image contrast

−Requires reference/ground truth

Dice similarity

coefficient (DSC)
•Measure of the overlap between two contours (Dice 1945, Brock et al 2017) +Widely used, useful to compare to literature

| |⋂| |
| | | |

⋂=
+

DSC X Y• :
X Y

X Y

2
volume covered by both structures, | | | |+X Y : volume covered by at least one of the

structures

− Strongly volume dependent, lacks sensitivity for large

structures

− Special care needed for tubular structures

−Hard to interpret/nomeaningful unit

−Requires reference/ground truth

Hausdorff distance (HD) •Maximumdistance of the closest approach of each point on one contour to all points of the other contour

(Hausdorff 1920,Huttenlocher et al 1993)
+Distance, inmm

( ) ( ( ) ( ))=HD X Y d X Y d Y X• , max , , , with || ||( ) = -Î Îd X Y x y, max minx X y Y ( )d X Y, distance between two

pointsets

− Sensitive to outliers

−Requires reference/ground truth

Mean distance to agree-

ment (MDA)
•Mean distance of the closest approach of each point on one contour to all points of the other contour

(Vrtovec et al 2020)
+Distance, inmm

( ) ( ( ) ( ))=HD X Y mean d X Y d Y X• , , , , + Less sensitive to outliers thanHD

−Misses local uncertainties

−Requires reference/ground truth

Centre ofmass displace-

ment (COM)
• Shift in center ofmass between two structures (Choi et al 2011, Takayama et al 2017) +Distance, inmm

= D + D + DCOM x y z• 2 2 2 with
     

D = - D = - D = -x R R y R R z R R, ,x x y y z z
2

1, 2,
2

1, 2,
2

1, 2, and

( )
  

ò ò ò r=R r rdV
M

1
M:mass of the structure, ( )r r density distribution structure

− Lacks sensitivity to variations in contour boundary

−Requires reference/ground truth

+Useful in contrast-poor areas
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Table 1. (Continued.)

Metric Description Strengths (+) /Limitations (−)

Reference- free

measures

Distance discordance

metric (DDM)
•Mean distance of points frommoving images which are registered to the same point in the afixed reference

image (Saleh et al 2014)
• Formathematical description please refer to the original publication (Saleh et al 2014) + Spatially resolved, reference-free

−Needs at least four registered images

Local uncertainty

metric (LU)
•Uncertainties within a uniformly-dense structures can be calculated based on points defined on the organ edges

(Takemura et al 2018)
+ Spatially resolved, reference-free

• Formathematical description please refer to the original publication (Takemura et al 2018) +Works in uniformly-dense regions

−Requires contours

Jacobian determinant •The first derivative of theDVF, distinguish between regions which are locally expanding in volume J>1 and those

shrinkingwith volume J<1 (Chung et al 2001)
+ Local volume gain/loss detection

( ) ( )= =J• det detdT

dx

dT

dx

dT

dy

dT

dz

dT

dx

dT

dy

dT

dz

dT

dx

dT

dy

dT

dz
x x x y y y z z z withT the transformation + Spatially resolved, reference-free

−Misleading for actualmass change

−Necessary but not sufficient

Harmonic energy (HE) •Ameasure of the nonlinearity of the transformation, inversely proportional to the smoothness of the deformation

(Forsberg et al 2012, Varadhan et al 2013)
+Measure for smoothness

|| | | | |= = å å= =HE Jac t• F i j ij1
3

1
3 2 beeing the Frobenius normof the Jacobian + Spatially resolved, reference-free

−Hard to interpret

− Fails with sliding surfaces

Inverse consistency error

(ICE) /Transitivity
error (TE)

•Applying a registration from imageA to image B and then back to image A, it is assumed that all points will bemapped

on their original position. ICE is defined as the difference between the original point and the transformed pointmap-

ped back to thefixed image grid (Bender andTomé 2009), TE extends this idea tomore than two images (Bender et al
2012)

+Related to algorithm repeatability

+ Spatially resolved, reference-free

−No indication of accuracy in the result

−Necessary but not sufficient

Dosimetric

measures

Dose parameter variations

andDVHbands

•Report of relevant dosimetric point variations (e.g. V95%,D2%,V10Gy,mean dose) andDVHbands caused by

uncertainties in propagated structures or dosemapping/accumulation (Nassef et al 2016, Lowther et al 2020a, 2020b,
García-Alvarez et al 2022)

+Clinically relevant dosimetric parameters

•Aknownor estimatedDIR uncertainty is necessary, either simulated (Wang et al 2018, Smolders et al 2022b), DIR
variations (Nenoff et al 2020, Amstutz et al 2021b) orwith known reference deformations (Kirby et al 2016, Covele et al

2021)

+Applicable for illustrating uncertainties caused by pro-

pagated structures and/ormapped/accumulated doses

+No reference required

−Previousmeasure forDIRuncertainty is necessary
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Table 1. (Continued.)

Metric Description Strengths (+) /Limitations (−)

Local uncertaintymaps •Highlights regions with anticipated discrepancies due to voxel-wise uncertainties + Spatially resolved dosimetric uncertainty information

•Voxel-wise uncertainties can be based on geometric factors (Salguero et al 2011), principal component analysis (Mur-

phy et al 2012) or stochasticmethods (Hub et al 2012)
+No reference required

−PreviousDIR uncertaintymeasure required

Energy-conservation-based

criterion

• Structure-wise comparison of delivered energy with the energy of thewarped representation of the dose (Zhong and
Chetty 2017,Wu et al 2023)

+Reliabilitymeasure for regions withmass/volume

change

−References required

−Only structure-wise information
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4.3. AI/DL-based uncertainty quantification
Further to its implementation as aDVF generator for the registration process, DL can also be used for the
quantification or prediction of uncertainties inDIR (Smolders et al 2022b, 2022a, 2023a). DSM that are not used
in the optimization of outputDVFs, provide further uncertainty quantificationmetrics that can be used to
determine the quality of the overall registration and highlight regions of poor accuracy (Galib et al 2020). The
implementation of algorithms for automated image segmentation allows for the potential use of reference-based
DIR evaluations (table 1)with limited or no user interaction. In this case the segmented structuresmust be
consistent between the datasets used in the image registration. Additionally, DL-basedDIR showed the potential
of having inherent uncertainty assessments within theDL framework (Grigorescu et al 2021, Gong et al 2022,
Khawaled and Freiman 2022b).

4.4. Treatmentmargins
Uncertainties in anyDIR-facilitated process that is used to generate contours (e.g., image registration for
standard treatment planning or atlas-based segmentation) should be quantified and included in the treatment
margins. To achieve this, population-based studies would be requiredwhere the calculated uncertainties can be
used in themargin formula (vanHerk et al 2000). However, guidelines detailing the quantification and inclusion
of these uncertainties aremissing.

5. Application-specificDIRuncertainty

In this chapter, studies investigating the effect ofDIR uncertainties for the deformation of images, structures and
doses used in RT are reviewed (figure 1).

5.1.Deformed images
5.1.1. Applications at planning
TheTG-132 report and other recommendations suggest imaging the patient in the treatment positionwhenever
possible tominimise themagnitude of the required deformation during registration (Brock et al 2017, Barber
et al 2020).

5.1.2. Intrafraction applications
DIRhas been used to derivemotion-corrected images from4DCT scans (Wolthaus et al 2008)with average
landmark-position differences of 0.5 mm for all directions in the tumour region. DIR is also used to reconstruct
time-resolved 4DMRI (Nie et al 2020), with reported centre ofmass differences of 2.9±0.6 mm.We expect the
geometrical uncertainties of propagated images to be similar to those of structure propagation, considering both
utilise the same input data.

5.1.3. Interfraction applications
WithMRI linac or CBCT-based online adaptation becomingmore commonly available, the interest in
deforming images between fractions for dose calculation and optimization is increasing (Kraus et al 2017,
Tenhunen et al 2018, Irmak et al 2020, Byrne et al 2021). In these workflows, the calculated dose distribution is
unlikely to be accurate considering the spatial uncertainties in the deformedCT, especially in areas with large
density changes.

To correct for density changes that are not represented by the deformed image such asmoving air in the
gastro-intestinal organs, the density in these areas is often overwrittenwith the density of air or water (van
Timmeren et al 2020). Research investigating the impacts of these overwrites on photonRThas found these
impacts to be not clinically relevant (Pham et al 2022), except for very large air cavities (Thapa et al 2019). For
protons, these density corrections are likelymore relevant.

To avoid the use ofDIR andmanual density overwrites, direct dose calculation on theMRI orCBCT images
has been investigated. The generation of synthetic CT images fromMRI is reviewed elsewhere (Owrangi et al
2018,Hoffmann et al 2020, Boulanger et al 2021).Methods of scatter correction tomakeCBCTusable for dose
calculation are widely explored (Kurz et al 2016, Giacometti et al 2019, Jarema andAland 2019, Lalonde et al
2020, Trapp et al 2022).

5.1.4. Intervention follow-up
Follow-up images after intervention can be registered to a planningCT to understand the relation and location
of local failure such as recurrence or necrosis with a planned dose distribution and planning structures (Chang
et al 2018, Kamal et al 2020, Abdel-Aty et al 2022). In these cases, dramatic changes are observed caused by the
time between images, surgical intervention, or othermedical issues. Systematic studies quantifying the impact of
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DIRuncertainties for intervention follow-up are rare and further work needs to be done to quantify and account
for them in patterns of failure.

5.2. Propagated structures
5.2.1. At planning
For treatment planning, structures are commonly defined on the planningCT. Structure definition can be
challenging onCTdue to low contrast compared to other imagingmodalities such asMRI. Includingmultiple
imagingmodalities for contouring can lead to a reduction in inter-observer variability (Caldwell et al 2001,
Farina et al 2017,Hall et al 2018). Though it is common tomerge CTwith PET,MRI or other images for
contouring, the effect of deformable registration errors is not well investigated. (Barber et al 2020) therefore
suggested using rigid registrationwherever possible.

DIR is also used in atlas-based auto-segmentation, which is increasingly used in clinics to assist contouring.
In this case, DIR is applied between images fromdifferent patients (Vrtovec et al 2020). Research showing a time
benefit in using altas-based contours also show the necessity ofmanual corrections (Gooding et al 2013,
Cardenas et al 2019,Welgemoed et al 2023). To our knowledge, there are no systematic studies on the impact of
DIR implementation andDIR uncertainty for atlas-based segmentation. Studies do however investigate the
impact of atlas selection (Schipaanboord et al 2019) or institution-specific implementation (Gooding et al 2013).
As an alternative to atlas-based auto-segmentation, DL-based auto-segmentationwas developed. Different auto-
segmentationmethods are reviewed elsewhere (Cardenas et al 2019, Schipaanboord et al 2019, Vrtovec et al
2020,Harrison et al 2022). The details of auto segmentationmethods are out of the scope of this study.

5.2.2. Intrafraction applications
DIR is used tomap contours between different breathing phases, or intrafraction changes in patient treatment
positions, to reduce the time needed for contouring. In clinical practice, the propagated structures are visually
checked and corrected if necessary (Gaede et al 2011, Peroni et al 2013, Liu et al 2016,Ma et al 2017,Willigenburg
et al 2022).

5.2.3. Interfraction applications
Structure propagation can speed up recontouring for repeated imaging of a patient (Sonke et al 2019). This can
be used for evaluation of recalculated doses or adaptive planning, but it is especially important for online
adaptive workflows. The clinical availability of regular or daily imaging, such as scheduled repeatedCTor daily
CBCT, and the implementation of online adaptive workflows has led tomultiple studies on the quality of
deformed structures for adaptive planning.

Table 2 summarises recent studies investigating geometricDIR uncertainties for structure propagation for
different anatomical sites and imagingmodalities. The structures have been evaluated using geometrical
measures introduced in table 1. Commercial and open access algorithms show similar performance (Scaggion
et al 2020b). Themajority of studies incorporate reference structures of a single expert physician. Variations
between structures defined by different physicians are observed inmany studies, and these inter-expert structure
variations are currently de-facto the clinically accepted variability. Research comparingDIR propagated
structure uncertainties to physician-to-physician uncertainties, has demonstrated results approaching inter-
expert contour variation (Riegel et al 2016,Woerner et al 2017, Rigaud et al 2019,Nash et al 2022).

Currently, there is no consensus on the use ofDIR propagated structures for plan adaptation in the
literature. Some authors conclude that propagated structures can be used for reoptimization and/or dose
evaluation (Beasley et al 2016,Hvid et al 2016,Qiao et al 2019,Nenoff et al 2021b,Nash et al 2022), while others
found thatmanual corrections are still necessary (Li et al 2017, Christiansen et al 2020, 2021). Generally, the
literature agrees that a visual inspection of theDIR propagated structures remains necessary for dose evaluation
and optimization. Furthermore, it has been observed that formost organs at risk (OARs) geometric
uncertainties correlated onlyweakly to dosimetric errors (Hvid et al 2016, Pukala et al 2016,Nash et al 2022).

There are a small number of studies evaluating the dosimetric effect of uncertainties in propagated structures
for dosimetric evaluation or plan optimization during adaptive RT (table 3). For pancreas stereotactic body
radiotherapy (SBRT), physician-drawn structures were compared to propagated structures byMIMand
PrecisionDIR algorithms (Magallon-Baro et al 2022). They compared uncorrected propagated structures with
physician-drawn structures in 0.5, 1 and 3 cmdistance rings from the target. They found that replanningwith
uncorrected propagated structures improves the target coverage andOAR sparing compared to no adaptation.
For themajority of fractions,manual correction of propagated structures could be avoided or be limited to the
region closest to the target. Ray at al. evaluated the use of automatic deformedCTVs compared to physician
definedCTVs and proposed a framework to determine PTVmargins based on automatic deformedCTVs for
adaptive planning (Ray et al 2020). Nash et al showed that even large geometrical structure differences rarely had
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Table 2. Literature review of quantified geometric uncertainties inDIR-facilitated processes for different anatomical regions and imagingmodalities.

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

Brain MRI toMRI Demons,HAMMER, and

state-of-the-art registra-

tionmethodswith inte-

grated learned features

fromunsupervised deep

learning. ICA: Indepen-

dent Component Analysis

Compare to seg-

mented structures in

the datasets

IXI dataset and

ADNI dataset

XI dataset: (Wu et al

2013)Demons: 0.752

M+PCA: 0.790

M+ISA: 0.789

HAMMER: 0.789

H+PCA: 0.754

H+ISA: 0.801

ADNI dataset:

Demons: 0.869

M+PCA: 0.789

M+ISA: 0.844

HAMMER: 0.821

H+PCA: 0.820

H+ISA: 0.873

Brain MRI toMRI ANTs, VoxelMorph-1

(DL-based), Vox-
elMorph-2 (DL-based)

Compare to segmen-

tations performed by

FreeSurfer checked

by visual inspection

7829 T1weighted

brainMRI scans

from eight publicly

available datasets

AverageDICE: Affine only: 0.567 (Balakrishnan
et al 2018)

ANTs: 0.749

VoxelMorph-1: 0.724

VoxelMorph-2: 0.750

Brain MRI toMRI Cue-AwareDeep Regres-

sionNetwork (DL-based)
Compare to seg-

mented structures in

the dataset

Three databases, i.e.

LONI LPBA40, IXI,

andADNI

Average overall DICE: 0.7526 Average surface distance (ASD) in
mm:Overall≈ 0.6–0.7 (25th-75th

percentile)

(Cao et al
2018)

Brain MRI toMRI (2D) UnsupervisedDL-based

(Bayesian Framework)
Compare to 4 largest

anatomical structures

in the reference

dataset

MGH10 dataset, 10

subjects, 10 sli-

ces each

Overall DICE (Khawaled
and

Freiman 2020)

VoxelMorph: 0.7109

Proposed: 0.736

Brain Inter-patientMRI TransMorph: Transfor-

mer for unsupervised

image

Inter-patientMRI:

compare to 30 anato-

mical structures

labeled by FreeSurfer

Inter-patientMRI:

260 T1-weighted

brainMRI images

from JohnHopkins

University

Please consult (Chen et al 2022) for
en extensive comparison ofDICE

values

Please consult (Chen et al 2022)for
en extensive comparison ofHD

values

Please consult (Chen et al 2022)for
en extensive comparison of SDlogJ

and SSIMvalues

(Chen et al
2022)
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Table 2. (Continued.)

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

Atlas-to- patient

MRIXCAT-to-CT

registration Atlas-to-patientMRI:

compare to 30 anato-

mical structures

labeled by FreeSurfer

Atlas-to-

patientMRI:

576 T1-weighted

brainMRI images

from the IXI

database

XCAT-to-CT:

XCATphantomand

50non-contrast

chest-abdomen-pel-

vis CT scans

Head and neck CT toCT MIM,Velocity, Raysta-

tion, Pinnacle, Eclipse

Compared to physi-

cian drawn reference

10 virtual head and

neck phantoms

(DIREP)

MeanTRE: 0.5 mm− 3 mm (Pukala et al
2016)

MaximumTRE: 22 mm

Head and neck CT toCT MIM,Velocity, Eclipse Compared to physi-

cian drawn reference

35 institutions, 10

virtual headandneck

phantoms (DIREP)

MeanTRE: (Kubli et al
2021)

Velocity 2.04±0.35 mm;

MIM1.10±0.29 mm; Eclipse 2.35

±0.15 mm

AllmeanTRE< 3 mm

Maximumerrors> 2 cm

Head and neck CT toCT Raystation (simple Ana-

conda, detailed Ana-

conda, simpleMorfeus,

detailedMorfeus)

Compared to physi-

cian drawn reference

10 head and neck

cancer patients

GTVDSC:Simple Anaconda 0.78±
0.11;Detailed Anaconda 0.96±
0.02;SimpleMorfeus 0.64± 0.15;

DetailedMorfeus 0.91± 0.03;Lar-

gerDSC forOARs larger than the

eye compared to smallerOARs

(Zhang et al
2018)

Head and neck CT toCT 10DIR combinations

using demons and free

formdeformations (FFD)

Compared against

each other and 2

expers using

landmarks

15 patients, 6

weekly CTs

Landmark Registration Error: inter-

observer distance 2.01 mm (1.29
mm), most effectiveDIRs 2.44 mm

(and 1.30 mm)

(Rigaud et
al 2019)

Head and neck CT toCBCT NiftyReg Compared to physi-

cian drawn reference

5 head and neck

patients

MeanDSC: 0.850 External con-

tour: 0.986

(Veiga et al
2014)

Bony anatomy: 0.846

Soft tissue: 0.790

(DIR better than rigid registration)
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Table 2. (Continued.)

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

Head and neck CT toCBCT Five commercially avail-

ableDIRs (RayStation,
ADMIRE,Mirada, Pro-

Soma, Pinnacle)

Compared to physi-

cian drawn and STA-

PLE reference

10 head and neck

patients: 5 orophar-

yngeal, 2 oral cavity,

1 hypopharynx, 1

supraglottic and 1

of unknownpri-

mary (target below
nasal region)

clinician drawn reference: Brain-

stem 0.68(0.09),Spinal Cord, 0.62
(0.14),Larynx 0.75(0.1),Left Parotid
0.72 (0.08),Right Parotid 0.76(0.06)
STAPLE reference:Brainstem 0.93

(0.04),Spinal Cord 0.87(0.04),Lar-
ynx 0.93(0.04),Left Parotid 0.93
(0.06),Right Parotid 0.92(0.03)

clinician drawn reference:Brain-

stem 10.8(3.5),Spinal Cord,7.1
(2.8), Larynx 10.2(4.5),Left Parotid
12.9(4.8),Right Parotid 12.2(3.9)
STAPLE reference:Brainstem 4.4

(2.7), Spinal Cord 4.3(2.7),Larynx
3.5(1.1),Left Parotid 3.5(1.1),Right

Parotid 3.4(1.1)

MDA: clinician drawn reference:

Brainstem2.9(0.1),SpinalCord, 1.5
(0.5),Larynx 2.2(1.1),Left Parotid 2.2
(0.5),Right Parotid 2.0(0.5)STAPLE
reference:Brainstem0.8(0.5),Spinal
Cord, 0.5(0.2),Larynx 0.5(0.3),Left
Parotid 0.5(0.2),Right Parotid 0.5
(0.2)Centroid separation inmm:

clinician drawn reference:Brainstem

5.7(2.9),SpinalCord, 9.7(5.8),Larynx
3.2(2.7),Left Parotid 3.6(1.6),Right
Parotid 3.1(1.4)STAPLE reference:
Brainstem1.6(1.3),SpinalCord, 2.8
(2.1),Larynx 0.9(1.0),Left Parotid 0.9

(0.6),Right Parotid 0.9(0.6)

(Nash et al
2022)

Head and neck CT toCBCT MIMDIR Compared to physi-

cian structures

30HNpatients,

squamous cell car-

cinoma of the oral

cavity, pharynx or

larynx, DIR to first

and last CBCT

First CBCTParotid L 0.95Parotid R

0.95Submandibular L 0.91Sub-

mandibular R 0.93Esophagus

0.85Spinal cord 0.89Last CBCTPar-

otid L 0.95Parotid R 0.95Sub-

mandibular L 0.85Submandibular R

0.87Esophagus 0.84Spinal cord 0.87

First CBCTParotid L 0.7 cmParotid

R 0.7 cmSubmandibular L

0.6 cmSubmandibular R

0.6 cmEsophagus 0.5 cmSpinal

cord 0.3 cmLast CBCTParotid L

0.7 cmParotid

0.7 cmSubmandibular

0.7 cmSubmandibular

0.7 cmEsophagus 0.8 cmSpinal

cord 0.3 cm

(Hvid et al

2016)

Head and neck CT toCBCT 10DIRs (opticalflow,
Demons, Level set, Spline)

Compared to physi-

cian reference

21HNpatients data not shown in tables, please

refer to the plots in the paper.

data not shown in tables, please

refer to the plots in the paper.

(Li et al 2017)

Head and neck MRI toMRI MonacoDIR Compared tomanual

defined structures

and intra observer

variability

17 patients, larynx

(3), oropharynx
(10), oral cavity (1)
and hypopharynx

(3), planningMRO

+ 3 repeatedMRI

MRI toMRIGTV-T 0.55GTV-N

0.58Brain Stem0.89Spinal cord

0.86 R parotid 0.81 L parotid 0.82 R

submand 0.77 L submand

0.78Thyroid 0.74IOVGTV-T

0.68GTV-N0.72Brain Stem

0.96Spinal cord 0.89 R parotid

0.93 L parotid 0.88 R submand

0.89 L submand 0.88Thyroid 0.81

IOVGTV-T 9.8 mmGTV-N

5.0 mmBrain Stem3.0 mmSpinal

cord 2.8 mm Rparotid 3.7 mm L

parotid 4.4 mm R submand

3.1 mm L submand

3.3 mmThyroid 4.3 mmMRI to

MRIGTV-T 7.6 mmGTV-N

5.7 mmBrain Stem4.3 mmSpinal

cord 5.0 mm Rparotid 7.7 mm L

parotid 7.1 mm R submand

5.0 mm L submand

4.6 mmThyroid 7.2 mm

mean surface distance,IOVGTV-T

2.2 mmGTV-N1.1 mmBrain Stem

0.2 mmSpinal cord 0.5 mm Rpar-

otid 0.4 mm Lparotid 0.8 mm R

submand 0.5 mm L submand

0.6 mmThyroid 0.8 mmMRI to

MRIGTV-T 2.0 mmGTV-N

1.6 mmBrain Stem1.0 mmSpinal

cord 0.6 mm Rparotid 1.2 mm L

parotid 1.1 mm R submand

1.1 mm L submand

0.9 mmThyroid 1.4 mm

(Christiansen
et al 2021)
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Table 2. (Continued.)

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

Head and neck, thorax,

pelvis

CT toCT Velocity Compared to two

observers

30 head and neck

and 20 prostate can-

cer patients

meanHD, structure dependenceH-

NIntraobserver variation 0.7mm-

2.3 mm, interobserver variation

1.0mm-5.0 mm,DIR error 1.1mm-

3.0 mmPelvisIntraobserver varia-

tion 1.3mm-2.5 mm, interobserver

variation 1.6mm-3.1 mm,DIR

error 1.9mm-3.1 mm

(Riegel et al
2016)

Head and neck, thorax,

pelvis

CT toCT RayStation,MIM,Velo-

city AI and Smart Adapt,

MiradaXD, ABAS

Compared to refer-

ence contours gener-

atedwith a ground

truthDVF

synthetic CT images

(simQA), thirteen
institutions

HN0.84–0.93Thorax

0.52–0.97Pelvis 0.45–0.87

MeanDistance toConformity

(MDC) inmmHN2.26–3.36Thorax

2.38–4.57Pelvis 3.69–6.03

(Loi et al 2018)

Head and neck, pelvis CT toCT MIM-Maestro, Raysta-

tion, Velocity

Compared to refer-

ence contours gener-

atedwith a ground

truthDVF

9 pairs of synthetic

CTs (simQA)
trachea, esophagus, spinal cord, and

spinal canal0.95–0.98pituitary

0.34–0.92

MDA (mm):trachea, esophagus,
spinal cord, and spinal canal

2.10–2.70pituitary 3.02–3.81

(Shi et al 2021)

Head and neck, Pros-

tate, Pancreas

CBCT toCT Physician-to-physician,

Velocity

Compared to physi-

cian drawn reference

HN6patients,

prostate 5 patients,

pancreas 5 patients

HNMeanDSC:Physician-to-physi-

cian 0.87DIR 0.77ProstateMean

DSC:Physician-to-physician

0.9DIR 0.74Pancreas:MeanDSC:

Physician-to-physician

0.93DIR 0.84

All:MeanHD:Physician-to-physi-

cian 11.32 mmRigid 12.1 mmDIR

12.0 mm

(Woerner et al

2017)

virtual phantoms and

brain,HN, cervix,

prostate

CT toCT Smart Adapt (Eclipse) Compared to physi-

cian structures

10 virtual phan-

toms, and brain

(n= 5), HN (n= 9),
cervix (n= 18) and
prostate (n= 23)

patients

Brain 0.91 (0.04)HN0.84 (0.03)
Prostate 0.81 (0.05)Cervix 0.77

(0.05)per-structure DSCs in paper

Brain 1.37 (0.97)HN1.06 (0.22)
Prostate 2.70 (0.24)Cervix 3.23
(0.78)per-structureHD in paper

Center ofmass,Brain 1.69 (0.84)HN

1.63 (0.30)Prostate 5.19 (1.34)Cer-
vix 5.79 (1.42)per-structure COM

in paper

(Jamema et al

2018)

Abdominal, Head and

neck,Thoracic

4DCT Mirada Compared to physi-

cian drawn reference

3 abdominal

patients,7 thoracic

patients, two ima-

ges from extreme

respiratory phases

Abdominal:Nearly all OARs

DSC> 0.90, pancreas 0.74-0.88HN:

LowerDSC, lowest for pharyngeal

constrictor low contrast in this

region, small size of structure and

proximity to air cavities, Thorax:

Nearly all OARsDSC> 0.90, eso-

phagus 0.79-0.85

Thoracic:Mean TRE: 3.4–8.9 mm

(aboveAAPMreport recommenda-

tion)MaximumTRE:

10.1–29.0 mm

(Latifi et al
2018)

Retina andHeart Retina: Colour

fundus images to

GAN (DL-based) Retina: Compare to

registration ground-

Retina: 26 image

pairsHeart:

AverageDICE:RetinaGAN:

0.946DIRNet: 0.911Elastix:

HD95 (95th percentile HD):Retina-
GAN: 4.2DIRNet: 5.9Elastix:

Mean absolute surface distance

(MAD):RetinaGAN: 3.1DIRNet:
(Mahapatra

et al 2018)
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Table 2. (Continued.)

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

fluorescein angio-

graphyHeart:MRI

toMRI

truth derivedwith

ITKHeart: Compare

tomanual segmented

structures

Sunybrook cardiac

dataset, 45 cardiac

cineMRI scans

(short-axis cardiac
image slices each

containing 20

timepoints)

0.874Before registration:

0.843Heart:GAN: 0.85DIRNet:

0.80Elastix: 0.77Before registra-

tion: 0.62

9.7Before registration: 11.4Heart:

GAN: 3.9DIRNet: 5.03Elastix:

5.21Before registration: 7.79

5.0Elastix: 8.7Before registration:

9.1Heart:GAN: 1.3DIRNet:

1.83Elastix: 2.12Before registratio

abdomen, thorax,

pelvis

4DCT,MR-MR,

CT-MR

Morpheus (Raystation) Compared tomanu-

ally defined contours

and langmarks

74 patients, thoracic

and abdominal

4DCT andMR,,

liver CT-MR, pros-

tateMR-Mr

meanDTA<1 mm for controlling

strucutres and 1.0–3.5 mm for

implicitly deformed strucutresTRE:

2.0 mm− 5.1 mm

(Velec et al
2017)

Thorax/Esophagus 4DCT Bspline (Velocity), free
formdeform (FDD),
Horn-Schunk optical

flow (OF), Demons

Compared tomanual

landmarks

5 esophagus

patients fromDIR

lab dataset

3D registration errors B-spline 1.84

(0.97)−3.72 (3.17)mmFDD2.49

(1.21)−4.52 (3.45)OF1.42 (0.92)
−3.40 (2.93)Demons 1.40 (0.96)

−4.39 (4.23)

(Kadoya et al
2014)

Thorax CT toCT 4RayStation (RaySearch5
MIMSoftware (Cleve-

land,OH),3 usedVelocity

Compared to expert

defined anatomical

landmarks (DIR-Lab
references)

10 patients with

esophageal or lung

cancer

3D registration errorRayStation

1.26–3.91 mm,MIM

2.17–3.61 mmVelocity

4.02–6.20 mm

(Kadoya et al
2016)

Lung CT toCT Demons, Salient Feature

BAsed registration (PIn-
nacle),Morphons

Compared to physi-

cian structures

17NSCLCpatients,

4DCTs (50%
exhalewas used)

data not shown in tables, please

refer to the plots in the paper.

data not shown in tables, please

refer to the plots in the paper.

COMGTV-tumor

0.27–0.29 cmnodal-GTVs

0.31–0.37 cm

(Hardcastle

et al 2013)

Lung 4DCT-4DCBCT Demons, SICLE Compared to physi-

cian drawn reference

10 locally advanced

non-small cell lung

cancer patients, one

4D fan-beamCT

and 7weekly cone-

beamCT;Day-to-

day and phase-to-

phase registrations

Day-to-dayMeanDSC:SICLE

0.75Demons 0.70Rigid-tumor

registration 0.66Rigid-bone regis-

tration 0.6Phase-to-phase (4D
CBCT):SICLE 0.8Demons: 0.79

(Balik et al
2013)

Lung 4DCT In-house Bspline,MIM

freeform

Compared to physi-

cian drawn reference

4D-CTs of 12 lung

cancer patients

acquired in prone

and supine

positions

MeanDSC:In-house Bspline

0.8MIM0.8

MeanHD:In-house Bspline

22.5 mmMIM22.6 mm

MeanMDA:In-house Bspline

2.3 mmMIM2.1 mm

(Guy et al
2019)

Lung 4DCT
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Table 2. (Continued.)

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

10DIR algorithms (opti-
calflow, demons)

Compared to physi-

cian defined refer-

ence/fiducials (FM)

5 patients implan-

tedfiducialmarkers

(FM) as ground
truth

TREFMpositions

1.82–1.98 mmtumor position TREs

1.29–1.78 mm

(Han et al

2022)

Heart MRI toMR SVF-Net (DL-based) Compare to seg-

mented structures in

the dataset

187 3DMRI cardiac

images

Nonumbers reported, only plots,

box-plot (25%-75%):Left ventricle
myocardium≈ 0.75–0.8Right ven-

triclemyocardium≈ 0.45–0.55Left

ventricle blood pool≈
0.85–0.9Right ventriclemyo-

cardium≈ 0.75–0.85

Nonumbers reported, only plots,

box-plot (25%-75%):Left ventricle
myocardium≈ 4–5.5 mmRight

ventriclemyocardium≈
5–6 mmLeft ventricle blood pool≈

4–5 mmRight ventriclemyo-

cardium≈ 4.5–6 mm

(Rohé et al
2017)

Cervical cancer CT toCT Velocity, Elastix Compared to physi-

cian drawn reference

5 cervical bra-

chytherapy patients

MeanDSC:Bladder Velocity

0.85RectumVelocity 0.72Recto-

sigmoidVelocity 0.47Bladder Elas-

tix 0.76RectumElastix

0.68Rectosigmoid Elastix 0.50

MeanHDRectosigmoid Velocity

35.94 mmRectosigmoid Elastix

40.76 mm

(Belon et al
2015)

Intraheptic cholangio-

carcinoma (IHCC)
CT toCT Five commercially avail-

ableDIRs (Demons,

B-splines, salient feature-

based, anatomically con-

strained,finite element-

based algorithm)

Compared to physi-

cian drawn reference

29 IHCCpatients MeanTRE:Demons 4.6±2.0 mm;

B-splines 7.4±2.7 mm; salient fea-

ture-based 7.2±2.6 mm; anatomi-

cally constrained 6.3±2.3 mm;

finite element-based 7.5±4.0 mm;

Maximumerrors> 1 cm for all

techniques

(Sen et al
2020)

Liver CT toCT MIM ,Velocity., Compared to fiducial

markers (FM) as
ground truth

24 Patients with

liver tumor, pre and

post treatment ima-

ges (median 10

months)

FMerrorMIM: 0.4–32.9 (9.3± 9.9)
mmVelocity 0.5–38.6 (11.0±

10.0)mm

(Fukumitsu

et al 2017)

Liver CT toCT Unsupervised Cycle-Con-

sistent CNN (DL-based)
Compare to 20 anato-

mical points in the

liver and adjacent

organsmarked by

radiologists

Liver cancer (HCC)
patients at Asan

Medical Center,

Seoul, South

Korea:555 scans for

training, 50 scans

for testing

TREArterial to PortalElastix:

3.26VoxelMorph: 6.67CNN:

4.91Delayed to PortalElastix:

2.96VoxelMorph: 5.35CNN: 3.76%

of Jacobian determinant� 0Arterial

to PortalVoxelMorph: 0.0327CNN:

0.0175Delayed to PortalVox-

elMorph: 0.0311CNN:

0.0181NMSE (normalizedmean

(Kim et al

2019)
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Table 2. (Continued.)

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

square error)Arterial to PortalVox-
elMorph: 0.0278CNN:

0.0277Delayed to PortalVox-

elMorph: 0.0213CNN: 0.0199

pancreatic CT toCBCT B-spline regis-

trationmutual-informa-

tion (MI), mattesmutual-

information (mattes) and
gradientmagnitude (GM)
and also different regular-

ization levelsλä {0.05;
0.005; 0.00025},
GM(λ= 0.05),

Compared to physi-

cian drawn reference

Fifteen pancreatic

cancer patients

best registration outcome for the

visual comparison, the lowestmed-

ian deviationwas obtainedwith

GM(λ= 0.005) andGM(λ= 0.05),
whereas the variation over the

patient collective wasmuch smaller

forGM(λ= 0.05).

(Ziegler et al
2019)

Prostate CT to ultrasound Rigid,MIM 10 prostate patients,

HDR-brachy

therapy

MeanDSC:Rigid 0.78±0 .06DIR

0.93± 0.01

MeanHD:Rigid 11.64±
2.38 mmDIR 5.19± 1.47 mm

MeanMDA:Rigid 2.50±0

.70 mmDIR 0.69± 0.06 mm

(Vozzo et al
2021)

Prostate CT toCT intensity based Elastix Compared tomanual

delineation

18 prostate cancer

patients, 7–10

repeat CT

prostate 0.87± 0.05, seminal vesi-

cles 0.63± 0.18, lymph nodes 0.89

± 0.03, Rectum0.76± 0.06, Blad-

der 0.86± 0.09

95 percentileHDprostate 3.35±
1.19 mm, seminal vesicles 4.76±
2.77 mm, lymphnodes 3.57±
0.99 mm,Rectum10.83±

5.93 mm ,Bladder 8.91± 6.76 mm

mean surface distance (MSD)pros-
tate 1.42± 0.48 mm, seminal vesi-

cles 1.97± 1.22 mm, lymphnodes

1.46± 0.44 mm, Rectum3.29±
1.31 mm , Bladder 2.92± 1.90 mm

(Qiao et al
2019)

Prostate CT toCT improvedAIDIR in

Elastix

Compared tomanual

delineation

evaluation on 2

datasets 14+18

patients, follow up

onQuiao et al,

improved adaptive

dose constraints

with this one

results on twodatasetsProstate 0.87

± 0.08/0.87± 0.12seminal vesicles

0.70± 0.13/0.75±
0.18Lymphnodes 0.87± 0.07/ –

Rectum0.82± 0.12/0.78±
0.15Bladder0.89± 0.12/0.83

± 0.17

results on twodatasets inmmPros-

tate 3.07± 1.30/3.93± 2.24semi-

nal vesicles 3.82± 3.19/4.92±
5.13Lymphnodes 3.74± 1.02/ –

Rectum8.66± 6.92/10.4±
7.77Bladder 5.11± 4.38/11.5

± 12.5

mean surface distance (MSD)results
on two datasets inmmProstate 1.29

± 0.39/1.54± 0.67seminal vesicles

1.48± 1.16/1.67±
1.38Lymphnodes 1.49± 0.44/ –

Rectum2.39± 1.92/2.67±
1.76Bladder 1.72± 1.17/3.89

± 4.00

(Elmahdy et al

2019)

prostate CT-CBCT anaconda Compared to physi-

cian drawn reference

10 prostate patients bodyROI controlling:prostate 0.84

± 0.05rectum0.75± 0.05bladder

0.69± 0.07seminal vesicles 0.65±
0.11all ROIs controlling:prostate

0.98± 0.00rectum0.97± 0.01blad-

der 0.98± 0.00seminal vesicles 0.94

± 0.03

COMbodyROI controlling (mm):
prostate 2.0± 1.5rectum3.7±

1.4bladder7.8± 2.2seminal vesicles

3.6± 1.2all ROIs controlling (mm):
prostate 0.1± 0.0rectum0.3±

0.2bladder 0.2± 0.1seminal vesicles

0.6± 0.6

(Takayama

et al 2017)

Prostate CT toCT andCT

toCBCT

3DIR algorithms imple-

mented inMIM (DIR
Compared tomanu-

ally drawn reference

20 patients (453
fractions)

CT toCTbladder:

0.729–0.943rectum: 0.737–0.913CT

CT toCTbladder: 7.26–18.40

mmrectum: 9.63–16.37mmCT to

MDA inmmCT to

CTbladder:0.86–4.47rectum:

(Hammers

et al 2020)
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Table 2. (Continued.)

Indication Imagemodality

DIR algorithm and/or

vendor Assessmentmethod Study type DICE HD others (TRE,MDA,COM,K) Reference

Profile, normalized inten-

sity-based (NIB) and sha-
dowedNIBDIR

algorithms)

to CBCTbladder:

0.713–0.906rectum: 0.710–0.879

CBCTbladder:12.24–22.57mmrec-

tum: 11.25–18.49mm

0.89–2.96CT to

CBCTbladder:1.51–4.68rectum:

1.31–3.29

Prostate CT toMRI,MRI

toMRI

MonacoDIR Compared tomanual

defined structures

and intra observer

variability

12 high-risk pros-

tate cancer patients,

prostate and pelvic

lymphnodes trea-

ted onMRI linac

CT toMRIProstate 0.84, Seminal

Vesicles 0.68,Rectum0.77, Bladder

0.87, R fem.Head 0.93, L fem.Head

0.91MRI toMRIProstate 0.90,

Seminal Vesicles 0.76,Rectum0.87,

Bladder 0.92, R fem.Head 0.95, L

fem.Head 0.94Inter observerPros-

tate 0.92, Seminal Vesicles 0.81,Rec-

tum0.95, Bladder 0.97, R fem.Head

0.95, L fem.Head 0.94

CT toMRIProstate 7.16 mm,

Seminal Vesicles 6.55 mm,Rectum

12.36 mm,Bladder 10.88 mm,R

fem.Head 4.96 mm, L fem.Head

4.98 mmMRI toMRIProstate

5.10 mm, Seminal Vesicles

5.54 mm,Rectum8.89 mm,Blad-

der 5.71 mm, R fem.Head

4.77 mm, L fem.Head

4.75 mmInter observerProstate

4.89 mm, Seminal Vesicles

5.31 mm,Rectum07.65 mm, Blad-

der 4.05 mm, R fem.Head

4.41 mm, L fem.Head 5.21

mean surface distance,CT toMRI-

Prostate 1.6 mm, Seminal Vesicles

1.48 mm,Rectum 2.41 mm, Blad-

der 1.96 mm,R fem.Head

1.09 mm, L fem.Head

1.37 mmMRI toMRIProstate

1.00 mm, Seminal Vesicles

1.17 mm,Rectum 1.25 mm, Blad-

der 1.11 mm,R fem.Head

0.81 mm, L fem.Head

0.81 mmInter observerProstate

0.88 mm, Seminal Vesicles

0.86 mm,Rectum 0.65 mm, Blad-

der 0.55 mm,R fem.Head

0.75 mm, L fem.Head 1.05 mm

(Christiansen
et al 2020)

Prostate MRI to transrectal

ultrasound

Weakly-supervised CNN

(DL-based)
Compare tomanually

segmented structures

108 pairs of T2-

weightedMRand

TRUS images

Composite-NetMedian: 0.82Per-

centiles [25th, 75th]: [0.78,0.86]
TRE (mm):Composite-NetMedian:

4.7Percentiles [25th, 75th]: [3.3,7.5]
(Hu et al 2018,

p 218)

Phantoms Elastix, BRAINS, Plasti-

match, Raystation

Compared to results

from synthetic image

datasets from apply-

ing synthetic DVFs

4 computational

anthropomorphic

phantoms

MostlyDSC> 0.85Only smallest

structuresmild failureDSC< 0.75

In case of severe deformations

MDC> 3 mm

(Scaggion et al
2020a)

DIR: deformable image registration,HN:Hausdorff distance, TRE: target registration error,MDA:mean distance to agreement, COM: center ofmass, HD:Hausdorff distance
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Table 3. Literature review of quantified dosimetric uncertainties inDIR-facilitated processes for different anatomical regions and imagingmodalities. DIR: deformable image registration, SBRT: stereotactic body radiotherapy, VMAT:
volumetricmodulated arc radiotherapy, IMPT: intensitymodulated proton therapy, DDMdistance discordancemetric.

Application Indication

Image

modality

DIR algorithm

and/or vendor

Assessment

method Study type Dosimetric uncertainty Reference

Structure

propagation

Photons

interfraction

dose

recalculation

Head

and neck

CT toCBCT MIM compared to

physician

reference

30 head andneck

patients, squamous

cell carcinoma of the

oral cavity, pharynx or

larynx, DIR to first and

last CBCT

Dose difference when dose is evaluated on propagated versus reference structures (Hvid et al

2016)First CBCT Last CBCT

Parotid

L 0.1 Gy

Parotid

L 0.1 Gy

Parotid

R−0.1 Gy

Parotid

R−0.1 Gy

Submandibular

L 0.1 Gy

Submandibular

L−0.3 Gy

Submandibular

R 0.1 Gy

Submandibular

R−0.5 Gy

Esophagus

0.0 Gy

Esophagus

0.3 Gy

Spinal

cord 0.1 Gy

Spinal

cord 0.0 Gy

Photons

interfraction

dose

recalculation

Head

and neck

CT toCBCT Five commer-

cially available

DIRs (RaySta-
tion, ADMIRE,

Mirada, Pro-

Soma, Pinnacle)

compared to

physician

drawn and

STAPLE

reference

10 head andneck

patients: 5 orophar-

yngeal, 2 oral cavity, 1

hypopharynx, 1 supra-

glottic and 1 of

unknownprimary

(target belownasal

region)

Spinal cordD1cc occasionally exceeds planning tolerance (44 Gy) by
7–250 cGyBrainstemD1cc occasionally exceeds planning tolerance (54 Gy) by
(29–199 cGy)Despite poor geometric agreement, theDVHparameters of propa-

gated contours gave a reliable estimate of the organ dose

(Nash et al
2022)

Photon adap-

tive planning

(cyberknife)

Pancreas CT toCT Precision,MIM compared to

physician

reference

35 pancreas patients,

98 fxCTs, breathhold

Plans optimized on propagated and reference contours, evaluated on reference

contours

(Magallon-

Baro et al

2022)
Dose difference between no adaptation and

a)Physician
reference

b)Precision c)MIM

PTV−2.0% PTV−2.7% PTV−5.1%

GTV−0.1% GTV−0.4% GTV−1.6%

StomachV35

Gy−0.2 cc

StomachV35

Gy−0.1 cc

Stomach

V35

Gy−0.1 cc
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Table 3. (Continued.)

Application Indication

Image

modality

DIR algorithm

and/or vendor

Assessment

method Study type Dosimetric uncertainty Reference

Duodenum

V35Gy−0.4 cc

Duodenum

V35Gy−0.2 cc

Duodenum

V35

Gy−0.2 cc

Proton adap-

tive planning

Prostate CT toCT Elastix compared to

manual

delineation

18 prostate cancer

patients, 7–10

repeat CT

Plans optimized on propagated and reference contours, evaluated on reference con-

tours Propagated contours could be directly used for reoptimization (V95%� 98%

for each target volume) in 89%of cases

(Qiao et al
2019)

Proton adap-

tive planning

Lung CT toCT Plastimatch (B-
splines, demons,

Velocity,Mirada,

Raystation (Ana-
conda,Morfeus)

compared to

physician

reference

5NSCLCpatients with

9 repeatedDIBHCTs

Plans optimized on propagated and reference contours, evaluated on reference con-

tours0.04% average difference inCTVV95withDIR versus 0.06%with rigid propa-

gation and 9.7%without adaptation

(Nenoff
et al

2021b)

Proton adap-

tive planning

Lung&

Head

and neck

CT toCT Rigid registra-

tion, Plastimatch

B-splines, Com-

mercial CNN,

patient-spe-

cificCNN

autocontouring

techniques

compared to

manual

delineation

5NCSLCpatients 9

repeatedCTs and 5

head and neck cancer

patients with 4–7 repe-

atedCTs

Plans optimized on automaticOARs contours showed small dependence on the

contouringmethod (<5%). For automatic target contours the dosimetric effect can

be larger than 5%. Compared to non-adaptive approaches the automatic contour-

ing showed improved target coverage.

(Smolders

et al 2023a)

Dose accumu-

lation

Photon adap-

tive planning

Head

and neck

CT toCT RaystationAna-

conda (simple&

detailed)Raysta-
tionMorfeus

(simple&

detailed)

Not applicable 10 head andneck

patients withweekly

offline replanning

Deformedweekly doses accumulated and compared to primary planning dose-

Difference to primary planned dose:

(Zhang
et al 2018)

Simple

Anaconda

Detailed

Anaconda

Simple

Morfeus

Detailed

Morfeus

Homogeneity

index

0.137± 0.115 0.006

± 0.032

0.197

± 0.096

0.006

± 0.033

Main difference between simple and detailed algorithms.

Simple presetting: 344.6 cGy, 109.9 cGy, 329.0 cGy forD95,Dmean,Dmin in

average

Detailed presetting: less than 20 cGy

Photon 4D

dose

calculation

Lung,

liver

4DCT 6 open sourse

algorithms from

EMPIRE chal-

lenge (ANTS,

Not applicable 5 patients withmulti-

ple lungmetastasis, 5

patients withmultiple

GTVD95%difference between plan on average CT and 4Ddose simulationLung

metastasis: Variationsmostly negligible (<0.5 Gy), but up to 7.85 GyLivermetas-

tasis: Lager variationsmore diverging, higher negative, up to−29.09 Gy

(Mogadas

et al 2018)
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Table 3. (Continued.)

Application Indication

Image

modality

DIR algorithm

and/or vendor

Assessment

method Study type Dosimetric uncertainty Reference

VarReg, DIR-

ART,NiftyReg,

Elastix,

Plastimatch)

livermeta-

satsis, VMAT

Photon 4D

dose

calculation

Lung 4DCT SmartAdapt,

Velocity, Ana-

conda

(Raystation)

Not applicable 6 lung SBRT

patients, VMAT

If results are limited to visually acceptable deformed images:Maximumdifference in

the evaluatedDVHparameters was�3.0% forGTVD98, spinal cordD2%, heart

D2%and�3.6%of the total structure volume for the ipsilateral lung

(Sarudis
et al 2019)

Proton 4D

dose

calculation

Liver 4DCT (gen-
erated from

4DMRI)

Plastimatch (B-
splines, demons,

in-houseDIR,

Mirada, Raysta-

tion (Anaconda,
Morfeus)

Not applicable 9 liver cancer patients

with generated

4DCTs, applying

motion from

4DMRI, IMPT

CTVV95 differences up 11.34±12.57% for single fieldswithout rescanning, large

motionCTVV95 differences up to 3.46±1.40% for three-field planswith rescan-

ning, largemotionCTVV95 differences up to 0.37±0.38% for three-field planswith

rescanning, smallmotion

(Ribeiro
et al 2018)

Photon dose

calculation

inter and

intra-fraction

Lung CT toCBCT Admire (Eleta) Not applicable 20 lung SBRTpatients,

comparison if inter-

and intrafractional

differences

95-percenteile ofDDM (inmm) and dosimetric errors (inGy) (Huesa-

Berral et al

2022)

Structure DDMIntrafrac-

tion inmm

DDMInter-

fraction

inmm

DDMInter-

fraction

dosimetric

inGy

GTV 0.93 1.54 1.67

Lung 1.86 2.16 0.86

Ribs 1.66 5.13 1.05

Heart 6.26 2.34 0.57

Esophagus 1.38 2.55 0.29

Spinal cord 0.16 8.00 1.28

The dosimetric impact of Interfraction changes is larger than intrafractionmotion

Photon dose

calculation

Abdomen CT toCT Thin Plate Spline

—Robust Point

Matching

Not applicable 16 liver SBRTpatients,

DIRuncertaintymod-

eled by systematic

After selection of ‘realistic’ deformations, average difference between the 1st and

99th percentile of the cumulativemaximumdoses:1.4 Gy for esophagus0.7 Gy for

stomach0.9 Gy for duodenum (maximumdifference for one patient: 3.3 Gy)

(Wang et al

2018)
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Table 3. (Continued.)

Application Indication

Image

modality

DIR algorithm

and/or vendor

Assessment

method Study type Dosimetric uncertainty Reference

algortuhmwith

variable settings

variation of registra-

tion parameters

Tomotherapy Head

and neck

CT tomega-

voltageCT

PreciseART

(Accuray)
Not applicable 20Head and neck

patients with daily

MVCTs

Doses fromdailyMVCTs reconstructed and accumulated on the planningCT and

compared to planned dosewithwarped contours on the dailyMVCTs.Average dose

uncertainty bounds (and confidence interval) for the cumulative treatmentwere:

Parotidsmean dose: 3.5% (97.1%–107.0%)ParotidsD50%: 6.6% (98.2%–110.4%)
Parotids V20Gy: 4.6% (95.6%–111.1%)PTVD95%: 0.4% (98.2%–100.2%)

(García-
Alvarez

et al 2022)

Photon adap-

tive planning

Head

and neck

CT toCBCT 4 differentNif-

tyReg

approaches

Not applicable 5Head and neck can-

cer patients with

weekly CBCTs

The fourDIRmethods resulted in similar geometricalmatching, but smoothness

and inverse consistency differed.The rootmean squared dose difference of the dif-

ferent warped doseswas 1.9%±0.8%.9%±4%of voxels within the treated volume

failed a 2%dose difference test, this valuewas larger in high dose gradient regions

(21%±6%) and for poorCBCTquality regions (28%±9%).

(Veiga et al
2015)

Photon

VMAT

Head

and neck

CT toCBCT BsplineDIR ,

Varian’s

demonsDIR

Not applicable 12Head and neck

patients with 4CBCTs

In-silico reference createdwith a B-spline algorithm. Inverse consistenywas asses-

sed by forward and backward deformation. Dosewas reconstructed by the demons

algorithm and compared to the in-silico ground truth.98.5%of all voxels were

inverse consistent with the following confidence interval for the dose reconstruction

of a single fraction relative to planned dose:Target structures: [2.3%;+2.1%]Critical
OARs: [10.2%;+15.2%]Non-critical OARs: [9.5%;+12.5%]Inverse inconsistent

voxels were associatedwith higher uncertainties.

(Lowther
2020a,

2020b)

Photon dose

calculation

Prostate CT toCT Demons

algorithm

Not applicable 1 prostate patient with

9CTs

Quantification of errors with unbalanced energy (UE) and compared to standard

displacement error (SDE). High Pearson correlation above 70%betweenUE and

SDE.Mean dose reconstruction error in target over nine fractions 1.68%.

(Zhong
et al 2008)

Photon dose

calculation

inter-fraction

Prostate CT toCBCT Demons

algorithm

Not applicable 24 prostate patients

with 8weeklc CBCTs

for 21 patients and

daily CBCTs for 3

patients

Quantification of differences between planned and cumulated doses usingDIR-

based dose accumulation and quantifying the dose accumulation uncertainties with

a numerical pelvis phantom.Standard deviation of the dose difference between

planned and accumulated doseMean bladder dose: 6.9 GyMean rectumwall dose:

2.0 GyDose accumulation uncertainty:Mean bladder dose: 2.7 GyMean rectumwall

dose: 1.2 Gy

(Nassef
et al 2016)

Proton adap-

tive planning

Lung CT toCT Plastimatch (B-
splines,

demons),

Not applicable 5NSCLCpatients with

9 repeatedDIBHCTs

PTV-V95 decrease without adaptation by 14% (range: 1.5%− 40.5%)DIR-caused
variations in PTV-V95 of accumulated doses on average 8.7% (range 1.0%

− 26.3%)

(Nenoff
et al

2021b)
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Table 3. (Continued.)

Application Indication

Image

modality

DIR algorithm

and/or vendor

Assessment

method Study type Dosimetric uncertainty Reference

Velocity,Mirada,

Raystation (Ana-
conda,Morfeus)

Proton adap-

tive planning

Head

and neck

CT toCT Plastimatch (B-
splines,

demons),
Velocity,

Not applicable 1Head and neck

patient with 8 repe-

atedCTs

After individually warping the dosewith the different DIR algorithms, the volume

for which the dose uncertainty in the accumulated dosewas larger than 10%was

(Vdosediff>10%):Contralateral parotid: 28.1%Ipsilateral parotid: 13.9%Contralateral

Retina: 9.4%ContralateralMacula: 8.9%

(Amstutz

et al 2021a)

Proton, Pho-

ton and

Combined

proton-pho-

ton adaptive

planning

Lung CT toCT Plastimatch (B-
splines,

demons), Velo-
city,Mirada,

Raystation (Ana-
conda,Morfeus)

Not applicable 5NSCLCpatients with

3 repeatedDIBHCTs

Difference between the deposited fractional energy and the energy in the representa-

tion of thewarped dose on the planningCT:Energy conservation violation in the

accumulated energy averaged over treatmentmodalities andDIR algorithms com-

pared to fractional deposited energy:GTV: 40.9%PTV: 32.1%OARs: randomly dis-

tributedwithin±10%Energy conservation violation in traditional intensity-based

DIR is linearly correlated tomass/volume variations.

(Wu et al

2023)
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a statistically significant impact onOARdose-volume-histograms (DVH) parameters and concluded thatDIR
propagated structures are suitable for dose evaluation (Nash et al 2022). Similar conclusions were found byHvid
et al (2016).

Also for proton therapy the dosimetric impact of using propagated structures for proton dose evaluation and
optimization has been investigated:Qiao et al and Elmahdy et al investigated prostate structures propagated
fromCT toCTwith the open sourceDIRs in Elastix (Elmahdy et al 2019,Qiao et al 2019). They gave an extensive
geometrical evaluation (included in table 2) and dosimetric evaluation (included in table 3) that showed thatDIR
propagated structures can be used for optimization in online-adaptive intensity-modulated proton therapy
(IMPT). Similar conclusions were found for lung cancer patients byNenoff et al, showing that daily IMPT
optimization onCTbased on propagated, uncorrected structures was better than no adaptation (Nenoff et al
2021b). Dailymanual recontouring on eachCT gives a small additional benefit for some patients andOARs.
They also investigated if including the inter-algorithm variation between structures propagatedwithDIR in the
adaptive IMPToptimization could improve the adapted plan against structure uncertainties (Nenoff et al 2022).
They found that adaptation on propagated, uncorrected structures showed a benefit over no adaptation for
MRI-to-MRI registrations for pancreas and liver patients andCT-to-CT registrations forHNpatients. Only for
theHNpatients including structure propagation uncertainties in the optimization significantly improved the
adapted plan. Recently, Smolders et al compared the effect of different auto-segmentationmethods, among
thoseDIR based structure propagation, for the dosimetric quality of online adaptive proton therapy plans. They
found the dosimetric influence of using automatic contours for the optimization to be small forOARs and larger
for targets, withDIR propagated structures performing best for bothOARs and targets (Smolders et al 2023a).

5.3.Mapped/Accumulated doses
In this sectionwe outline the influence ofDIR uncertainty on dosemapping and accumulation. Formore details
about dosemapping and accumulation, including direct dosemapping versus energy/massmapping, biological
considerations and (dis)appearing tissue please refer to the recent review of (Murr et al 2023).

5.3.1. Intrafraction applications
A commonly proposed use of dose accumulation is for 4D treatment planning or the dose reconstruction of the
dose in amoving area. Both, 4D optimisation (Graeff et al 2013, Engwall et al 2018, Spautz et al 2023) and 4D
dose evaluation (Zhang et al 2019,Meijers et al 2020) requireDIR and therefore showDIR-related uncertainties.
Both aremostly applied in anatomical areas affected by breathingmotion, registering all phases of a 4DCTor 4D
MRI scan into a reference phase or average image (Rosu andHugo 2012, Engwall et al 2018,Meijers et al 2020).
Most 4Ddose optimisation and dose calculation studies do not investigateDIR-facilitated dosimetric
uncertainties (table 3). Thosewho do, report differentmetrics between different studies, to quantify these
uncertainties. For example, (Ribeiro et al 2018) found differences in the target V95%of up to 11.34% for 4D
dose accumulation of liver cancer proton therapy. In contrast, (Sarudis et al 2019) found only dose deviations of
�3.0%between different visually acceptable DIRs in 4D lung volumetricmodulated arc therapy (VMAT) dose
accumulations.Mogadas et al testedfive open-source registration algorithms on lung and liver SBRT, using the
deltaD95%of the target using 4Ddose reconstruction compared to the static plan. For lungmetastases,
accumulated dose distributions were similar regardless of theDIR algorithm. In contrast, for livermetastases,
accumulated dose distributions strongly varied, due to largeDIR uncertainties in low contrast regions (Mogadas
et al 2018).

5.3.2. Interfraction applications
AnotherDIR-facilitated application has been tomap doses re-calculated (or re-optimized) on 3D images from
different fractions on the planningCT, to get an estimation of the total delivered treatment dose (Chetty and
Rosu-Bubulac 2019, Ziegler et al 2019, Nenoff et al 2020). This technique has been extended to evaluate the
validity of treatment planswith reducedmargins (Wu et al 2009, vanKranen et al 2016, Lowther et al 2020b, van
der Bijl et al 2022). The reporting of the uncertainties is very application-dependent and not standardised, which
makes direct comparisons challenging (table 3). Examples of themagnitude of dosemapping uncertainties for
interfractional changes include (Nenoff et al 2020), reporting differences caused byDIR uncertainties of 8.7% in
theCTVof accumulated proton doses and (Wang et al 2018) reporting amaximumdose variation of 3.3 Gy for
holloworgans in the abdomen for interfraction dosemapping.More recently, (Huesa-Berral et al 2022) reported
a dosimetric uncertainty between fractions below 2 Gy in tumour andOAR in lung SBRT. This study also
concluded that inter-fraction variations dominated and that dose accumulation for these patients should
prioritise day-to-day changes over respiratorymotion.
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There have been several propositions to also predict uncertainties on the geometrical and the dosimetric
level. The inter-algorithm variability was proposed to be used for geometric aswell as dosimetric DIR
uncertainties (Nenoff et al 2020, Amstutz et al 2021b). Probabilistic unsupervisedDLmethods have also been
proposed to predict the variance ofDVFs in interfraction datasets (Gong et al 2022, Smolders et al 2022b, 2022a).

5.3.3. Intertreatment applications
Dosemapping and accumulation have been used inwork on treatmentmethod combinations andpatient re-
irradiation. Applicationof the technology presents thepossibility of greater outcomemodelling in combined
methodologies, and long termoutcomes in re-irradiation. Research regarding the combination of external beam
RTandbrachytherapywas done for cervical cancer patients (VásquezOsorio et al2015, Swamidas et al2020, Zeng
et al 2020). VanHeerden did notfind clinically relevant improvementswhenusingDIR for dose accumulation
compared to adding uniformexternal beamRTdoses or overlappinghigh dose volumes (vanHeerden et al 2017).

In recent years, improved survival has led to an increase in thenumbersof re-irradiations (Nieder et al2013,
Andratschke et al2022)withparticular focusmadeoncancers of thebrain (glioma), lung,HN, abdomen,pelvis and
spine (Abusaris et al2012,Mantel et al2013,DeRuysscher et al2014,Nieder et al2016).Dose fromprevious treatments
canbedeformed to the current anatomy to evaluatepotential doseoverlap (Meijneke et al2013,Nix et al2022).
Thereby, beingused todefine safe dose tolerances in thosepreviously treated regions (Embring et al2021,Andratschke
et al2022,Brooks et al2022,Nix et al2022). In addition,DIR-facilitateddosewarping canbeused to correlate places of
local failurewithpreviouslyplannedand/ordelivereddosedistributions (Boman et al2017,McVicar et al2018,
Skjøtskift et al2018,Embring et al2021,Nix et al2022). Registration algorithmsare challengedbydramatic anatomical
changes causedby the timebetween treatments, oftenmonthsor years, not tomention sequels of treatments such as
fibrosis resulting fromradiationor surgery (Nix et al2022,VasquezOsorio et al2023b). Systematic studies about the
DIRuncertainties in the re-irradiation setting are rare, but some reports indicate thatDIRuncertainty increaseswith
themagnitudeof anatomical changes, inparticular for lung radiographic changes after SBRT (Mahon et al2020).DIR
uncertainty is onlyoneofmultiple uncertainty factorswhichmakes thedefinitionof organ constraints for re-
irradiation challenging.The lackof standardised toxicity scoringor cumulativeDVHsovermultiple treatments,
partially influencedbyDIRuncertainty remain reasonswhy the recoveryof organsover time isnotwell quantified.The
calculationof biologically effectivedose can improve theunderstandingofnormal tissue responsesover time (Brooks
et al2022,Nix et al2022) andallowabetter estimationof safe dose constraints during re-irradiation.

5.4.OtherDIR-facilitated applications
DIRuncertainties can affect othermedical physics and imaging applications.

5.4.1. TCP andNTCP calculation
Currently, tumour control probability (TCP) and normal tissue complication probability (NTCP)models are
built on planned doses. They are however designated to correlate to delivered doses which can differ from the
planned dose. Dose accumulation of reconstructed doses on repeated images, requiringDIR inmost anatomical
areas, is the closest surrogate to the delivered dose that is available. The impact ofDIR uncertainty on the
accumulated doses directly affects the outcome calculation (Nenoff et al 2021a, Smolders et al 2023b).
Deformation-freemethods (Niemierko 1997, Niebuhr et al 2021) have their own (notwell quantified)
uncertainties. Niebuhr et al found larger differences when assuming a registration error of 3 mm, compared to
changing alpha-beta values for prostate RT. (Niebuhr et al 2021)There ismore research needed to fully
understand and quantify the impact ofDIR uncertainty for outcome calculation.

5.4.2. Outcomemodelling based on spatial/voxel-based analyses
Conventional outcomemodelling simplifies the planned dose distribution to a single value, often usingDVH
statistics. Voxel-based analysis techniques thatmaintain the spatial distribution of doses have been used to
explore local correlations between dose and treatment outcomes. Voxel-based analysis (figure 6) relies onDIR to
‘spatially normalise’ dose distributions into a common reference anatomy (Palma et al 2020, Shortall et al 2021).
In summary, DIR isfirst performed between the planningCTs of each patient and an arbitrarily selected
reference CT scan. TheDIR result is then used tomap the dose distributions to the reference anatomy allowing
the local dose to be correlatedwith the studied outcome. The region is evaluatedwith statisticalmodelling, often
quantifying the improvement inmodel discriminationwhen the dose to the identified region is included in a
multivariable predictivemodel (including other demographic and clinical variables). The region is then used to
generate hypotheses which are then tested and validated in external cohorts aiming at generating dose
constraints to ultimately improve treatment outcomes.

With voxel-based techniques, doses to anatomical subregions have been linked to outcomes, such as the
dose to the base of the heart to overall survival in lung RT (McWilliam et al 2017, Green et al 2020), the
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inferior–anterior hemi-anorectum dose to rectal bleeding in prostate RT (Dréan et al 2016) and the
cricopharyngeusmuscle, cervical oesophagus and the base of the brainstem dose to dysphagia inHNRT
(Monti et al 2017).

Figure 6.Voxel-based analysis applied to exploring local relationship between dose and a given outcome. This technique relies on
deformable image registration tomap the dose distributions of the studied patients to a selected reference anatomy.
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Severalmeasures to evaluateDIR uncertainty for voxel-based analysis have been proposed (Palma et al 2020,
Shortall et al 2021,McWilliam et al 2023). QuantifiedDIR uncertainties are often incorporated in the analysis by
treating them as random errors and blurring themapped dose distributions (McWilliam et al 2017, Beasley et al
2018, Green et al 2020, VasquezOsorio et al 2023a). Therefore, DIR uncertainties can result in a decrease of
significance for small radiosensitive regions and local changes in their shapes.

6.Uncertainty tolerances ofDIR-facilitated dosimetric procedures

Specifying tolerances for the uncertainty inDIR-facilitated procedures is a challenging task and these should be
based on clinical needs rather than achievable results. The demands on the accuracy ofDIR vary by application.
In a retrospective analysis, larger tolerancesmight be sufficient, while for interventional applications tighter
tolerancesmight be indicated. For example, visualising a voxel-wise dose uncertaintymapmight be sufficient for
a crude estimation of the dose in a re-irradiation casewhile preciseDVHmetrics alongwith their uncertainty
estimation are necessary for correlating the dose to organswith outcome and toxicity data in clinical trials. In
contrast to tolerances for geometric uncertainties, there is a scarcity of literature describing these for dose
mapping or accumulation. There is no generally accepted approach on how to analyse and report DIR-related
dosimetric uncertainties. Publications evaluatingDIR-facilitated dosimetric differences are summarised in
chapter 5 and table 3. A common finding in dose accumulation studies is that areaswith steep dose gradients are
more sensitive toDIR-facilitated uncertainties (Saleh-Sayah et al 2011, Swamidas et al 2020, Amstutz et al
2021b). Therefore, in areas with steep dose gradients DIR uncertainties aremore relevant than in homogeneous
dose areas or areas with low doses. Table 4 shows clinically relevant examples of dose gradients aswell as
geometricDIR uncertainties.Multiplying the dose gradient with the geometric DIR uncertainty gives an
assessment of the dosimetric uncertainties expected in these situations. Low dose gradients are typically found in
the central region of the target.Mediumdose gradients are found inOARs in the beampath and high dose
gradients are found close to the target boundary. As both the dose gradient andDIR uncertainty typically vary
within an organ, voxel-wise dose uncertaintymaps can visualise dose distribution uncertainties (figure 7).

Figure 7.Examples of dose accumulation uncertainty, calculated as the voxel-wise difference between themaximumandminimum
dose accumulatedwith one of six deformable image registration algorithms. Figure from (Nenoff et al 2020)with permission.

Table 4.Voxel-wise dosimetric uncertainty as a function of the
dose gradient and the uncertainty of theDIR. DIR: deformable
image registration.

Dose gradient

Low Medium High

DIR uncertainty 1 %/mm 10 %/mm 25 %/mm

Low1 mm 1% 10% 25%

Medium5 mm 5% 50% 125%

High 10 mm 10% 100% 250%
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Since there is no standard agreed upon in the literature on how to quantify dosimetric DIR uncertainties or
tolerances, we propose a short ‘recipe’ (figure 8). Thefirst step is the selection of theDIR algorithm. Second, the
algorithmmust be commissioned for the specified application (recommendations in chapter 7 and
commissioning document in the supplement). Third, theDIR uncertainty is evaluated using geometric
measures.We consider geometricmeasures in dimension of distance (e.g. target registration error (TRE),MHD)
necessary to define tolerances. The quantification of geometricmeasures needs to be done for different
structures and points of interest such as targets, OARs, anatomical landmarks close to the target or in the
beampath.

Steps 1–3 are described inmultiple recommendations (Brock et al 2017, Barber et al 2020, Lowther et al
2022). In step 4 a voxel-wise geometric uncertaintymap of geometricalmeasures is created (Amstutz et al
2021b). The simplestmethod is using theworst-case or average difference distance in all directions for all voxels
of a given region or structure.More individualisedmethods have been investigated (Amstutz et al 2021b,
Smolders et al 2022b, 2023c) and provide patient specific voxel-wise uncertaintiesmaps.We recommend using
such voxel-wise uncertaintymapswhenever possible. However, due to the lack of commercial implementations,
simpler global geometricalmetrics are easy-to-implement alternatives. Using thesemetricsmay lead to locally
over- or underestimated geometric uncertainties, but its use is an improvement over no geometric uncertainty
estimation, andwill help pave theway to include such concepts in clinics.

In step 5 the geometric uncertaintymap is applied to the dose by calculating the scalar product of the dose
gradient and the geometric uncertainty of theDIR transformation on a voxel-wise level. This uncertaintymap
can be used to calculateDIR-facilitated variations ofDVHparameters orDVHbands. To define geometric

Figure 8.An example approach on how to assess dosimetric uncertainties of accumulated dose caused byDIR-uncertainties. The
shading indicates the level of knowledge/confidence of the individual steps.
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tolerances ofDVFs, steps 6 to 3 can be propagated backwards: startingwith amaximumallowedDVHvariation
or uncertainty in a given voxel resulting in amaximumallowedDVFuncertainty. Sincemultiple relevant
methods are not yet widely available or still require future research the definition of tolerances is not trivial.

Anothermethod to calculate the required accuracy of a registration to achieve a given tolerance is the
distance-to-dose difference (DTD), proposed by Saleh-Sayah et alTheDTD indicates how large local
registration errors can be before they introducemapping errors breaching the given tolerance. For example
accurateDVFs (1 mm) are required in high dose gradient regionswhile largeDVF errors (>20 mm) are
acceptable in low dose gradient regions. Another approach is to divide the acceptable dosimetric tolerance by the
dose gradient (TDG). Compared to the TDG, theDTDgives amore conservative assessment (Saleh-Sayah et al
2011, Saleh et al 2014).

7. Recommendations

Several publications have offered recommendations formethods and action thresholds for assessing registration
quality.We endorse these efforts. This section summarises these recommendations and extends
recommendations for the community.

7.1. Recommendations for patient-specific use
TG-132 recommends visual inspection for patient-specific use, using split-screen, fusion, contour overlay, or
other tools (Brock et al 2017). Visualisation should focus on alignment of anatomic landmarks, organ or tissue
boundaries, vessels, and other distinct features.When software allows, the displacement field should be
inspected to identify implausible deformations. Qualitative assessment can optionally be verified using
quantitativemetrics such as those summarised in table 2. TG-132 also recommends a threshold of 2–3 mm
accuracy in TRE andMDA, although this is not achievable in practice (Rong et al 2021). Vector field smoothness
should be tested for locationswith negative Jacobian determinant.We suggest this thresholdmight lie between
0.2 and 2.0.MIRSIG recommends additional tests on the displacement field usingDVFhistograms, transitivity
errors, and harmonic energy, but no thresholds are provided. TG-132 recommends a 2–3 mm threshold for
inverse consistency, and a 0.8–0.9 threshold forDSC,with the caveat thatDSC varies widely by structure
volume.

Applications using dose deformation or dose accumulation should focus on the important regions of
interest. Usually these are the volumeswithmeaningful dose levels, relevant structures and high dose gradients.
The recipe proposed in chapter 6 can provide guidance how to calculate dosimetric uncertainties on a voxel-wise
level.

7.2. Recommendations for commissioning
System commissioning requires testing software interchange, andTG-132 recommends using a physical
phantom for this purpose. It also recommends testing on digital phantoms to recover known, artificial
deformations. Best practices prospectively evaluate registration software on treatment sites of interest, but there
are few guidelines on this. Glide-Hurst et al recommend centralised review of each fraction for at least thefirst
three cases in adaptive therapy clinical trials (Glide-Hurst et al 2021).We recommend five representative patient
cases to assess with quantitativemetrics. Thesemetrics should be compared to typical values from the literature
(tables 2 and 3, commissioning document in the supplement) andwith inter-observer variability.

7.3. Recommendations for developers, vendors, and the community
TG-132 recommends that vendors provide a basic description of the registration algorithm, vector field export,
and basic quantitative tools (DSC,MDA,TRE). Unfortunately software providers still fail to apply these
quantitative assessment tools (Rong et al 2021).More recently,Murr et al evaluated contour distancemetrics and
DVF analysis tools, such asDVF visualisation, transitivity analysis, and Jacobian determinant (Murr et al 2023).
They recommend vendors to implement dose uncertainty tools, a region of interest (ROI) tool to limit
registration domain,multiple algorithms for sensitivity analysis, and a greater selection of state-of-the-art
algorithms.

In additional to these recommendations, we add:

• Tools for generating artificial warps

• ROI tools for quantitativemetrics within a contour or dose level

• DIR correction tools, such as a smudge tool to locally push the registration, vector field smoothing tool,
landmark-based correction, and contour-based correction
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• Open access resources of reference images, structures, landmarks, and vector fields

• Tools to restrict DIR to be locally rigid or locallymass-preserving

• Tools to import and export DVFs in a consistent dicom format

• Voxel-wise uncertainty quantification and visualisation

7.4. Recommendations for future research
Finally, we propose areas where research is still needed.

TCP andNTCPmetrics. It is unclear howDIR-generated dose distributions are related to clinical outcomes,
considering uncertainties. Uncertainties inDIR-generated doses should be quantifiedwith themetrics described
in table 1 and utilisedwith the aimof generatingmore accurate TCP andNTCPmodels.

DIR failuremodes.While it is possible to obtain typical uncertainty estimates during commissioning,many
DIR algorithms have unexpected failuremodeswhich are hard to enumerate. It is desirable to better understand
the causes of these failures so that automated tests can be performed.

Uncertainty estimationmethodology.There aremultiplemethods in use for estimating the uncertainty of
DIR, and they are difficult to compare as theymeasure different aspects. Efforts should bemade tofind
consensus onwhichmethods should be preferred for each application.

AvoidingDIR. For online ART, improvements in imaging and dose calculation could eliminate the need to
deform images withDIR for daily dose calculation and plan optimisation, and thereby eliminate it as a source of
overall uncertainty. To evaluate the total accumulated treatment dose, DIRwill remain necessary.

8. Summary

DIR is a powerful and versatile tool for RT. It hasmany applications, but is also associatedwith considerable
uncertainties.Many clinical DIR solutions have been implemented, but they generally lack tools for uncertainty
quantification. In the community, there are no agreed thresholds to distinguish between a good or badDIR
result when using a combination of geometric and dosimetricmeasures.Multiple quantificationmetrics,mostly
using geometricalmeasures, and tolerances have been proposed. The reporting of dosimetricmeasures and
uncertainties caused byDIR uncertainty is less standardised and highly application dependent. It is important to
reach an agreement and standardisation in the evaluation ofDIR uncertainties for different RT applications. In
this reviewwe summarisedDIR-facilitated uncertainties for different applications and gave recommendations
on the quantification ofDIR uncertainties.We then outlined a potential path towards definition of tolerances. It
should be emphasised that the presented recommendations are only a starting point, they should be challenged
and refined by the community.
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