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Abstract
Variable binding is an open problem in both neuroscience and machine learning relating to how neural
circuits combine multiple features into a single entity. Emergent Symbols through Binding in External
Memory is a recent development tackling variable binding with a compelling solution. An emergent
symbolic binding network (ESBN) is able to infer abstract rules through indirection using a dual-stack
setup—whereby one stack contains variables and the other contains the associated keys—by autonomously
learning a relationship between the two. New keys are generated from previous ones by maintaining a
strict time-ordering through the usage of recurrent networks, in particular LSTMs. It is then a natural
question whether such an expensive requirement could be replaced by a more economical alternative.
In this work, we explore the viability of replacing LSTMs with simpler multi-layer perceptrons (MLPs)
by exploiting the properties of high-dimensional spaces through a bundling-based positional encoding.
We show how a combination of vector symbolic architectures and appropriate activation functions can
achieve and surpass the results reported in the ESBN work, highlighting the role that imbuing the latent
space with an explicit structure can play for these unconventional symbolic models.

Keywords
Emergent symbolic binding network, vector symbolic architectures, symbolic reasoning, siren, sparse
distributed memory, variable binding, recurrent neural network

1. Introduction

In the fields of neuroscience and philosophy, the binding problem [1] refers to the ability of
the human brain to form a cohesive experience out of the myriad of inputs it receives from
both the external environment as well as the continuous feedback signals which are generated
internally. Visual sensation has been perhaps most studied in this regard [2, 3]. Particularly
relevant nowadays is the ability of the human brain to process and decompose sentences (and
more in general language [4]) into their constituent components [5].

Neural binding can be subdivided further with each sub-problem being of great interest in
its own right. However, here we will focus exclusively on the variable-binding aspect. The
inverse of the binding problem is the unbinding problem, or the best match problem, which
deals with how to effectively separate the neural correlates into their foundational components.
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Both binding and unbinding play a critical role in the human brain’s ability to produce abstract
concepts, elaborate them, and more in general to reason symbolically. For a neural network
to exhibit the latter behaviours, it is therefore necessary for it to solve the former problems as
well [6, 7].

Neuro-symbolic artificial intelligence (NSAI) [8, 9, 10, 11] with its many incarnations combines
a symbolic and structured representation with the end-to-end learning capabilities of neural
networks. This enables competitive, and even superior, performance with the current state of
the art in visual abstract reasoning tasks [12]. By leveraging the capabilities of NSAI, emergent
symbolic binding networks (ESBNs) [13] enable a form of variable-binding and indirection. Its
central component is a hetero-associative memory, or external memory, which self-optimises the
relationship between keys and values through pure back-propagation. This external memory
bears a resemblance with Kanerva’s sparse distributed memory (SDM) [14] as a flexible model
that can be both hetero-associative, where the key and value are different, and auto-associative,
where the key and value are the same. The keys in SDM are carefully selected random vectors to
maintain minimal destructive interference (thanks to the properties of high-dimensional spaces
we detail in Section 2.1). Recently, SDM has been identified as a close analogue of Transformer
attention [15].

It has been shown in many NSAI models that imbuing the latent space with implicit structure
(e.g. creating a semantic hierarchy among concepts) significantly improves performance in
reasoning tasks. In this work, we establish that this effect is also relevant in ESBNs. We
exploit the properties of vector symbolic architectures (VSAs) [16, 17, 18, 19] in order to modify
interactions within the key space, without altering the value space. This is made possible by
VSA’s great flexibility and allows us to keep the original indirection mechanism intact and
strengthen our conclusions.

We present a simpler alternative to cumbersome recurring networks in ESBNs. By combining
a multi-layer perceptron (MLP) with appropriate activation functions and positional binding
based on VSA, we can successfully replace an LSTM and still solve visual abstract reasoning
tasks. Moreover, we characterise the regularising effect of LSTMs in ESBNs, and show that while
they effectively constrains over-parametrisation, this also leads to under-expressiveness in some
situations. Taken together, our findings show that MLPs are capable of the same time-ordering
sensitivity as LSTMs and clarify that the resulting increase in expressiveness is beneficial.

2. Background

2.1. Vector symbolic architectures

To address the variable-binding problem we have opted here to use an approach based on
VSAs [16, 17, 18, 19], which explicitly define functions to bind keys to values. This is in contrast
to ESBNs [13] which learn how to do indirection on their own. VSAs are computational
paradigms which exploit the properties of high dimensional spaces to represent and manipulate
symbols. A detailed overview can be found in [20] and [21].

There are a variety of possible representations residing under the term VSA ([22]) and, while
it is not necessary here to present all of them, it is nonetheless of interest to remark that not
one solution can be found to fit all problems. It is indeed often the case that some tasks perform
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better with one or another. The element which binds all these representations together is their
ability to imbue a high dimensional space with some structure. We focus precisely on this
common aspect to better highlight the strengths of VSA.

In contrast with the well-known curse of dimensionality, high dimensional spaces also exhibit
extremely beneficial properties, not the least of which is the concentration of measure [23].
This plays a role in the generation of the positional code-book, i.e. the set of vectors used to
distinguish one time step from another. For example, it is possible to randomly draw an arbitrary
number of vectors while still guaranteeing that all of the vectors remain quasi-orthogonal and
easily distinguishable from one another. This allows for greater flexibility in the number of
time steps that can be emulated, with the understanding that LSTMs and other recurrent neural
networks are much more limited in how long they can be run continuously before encountering
gradient issues.

In VSAs, two operations, bundling and binding, form the bedrock of any model. Binding, as
the name suggests, performs key-value binding, while bundling creates sets of symbols. Within
the space, bundling preserves the similarity of the inputs (i.e. the cosine similarity of the output
with each of the inputs is high), while binding does not. We have given an abstract definition
which outlines the necessary properties these two operators must possess; however, the specific
instantiation is left to the implementer.

A definite realisation of binding and bundling, together with the accompanying space, identify
a particular member of the VSA family (for more information see [22]). As binding is taken
care of by the ESBN, we need only focus on bundling and we do so by choosing the simplest
and most general form: component-wise addition. It must be noted that this kind of bundling is
also performed (with a specific code-book) by Transformers [24] under the name of positional
encoding. A detailed description of our VSA implementation is presented in Section 3.1.

Now that we have explored the bundling aspect of the architecture we can focus on binding,
which follows the ESBN model.

2.2. ESBN

The ESBN architecture has been introduced in [13] as a possible solution to the variable binding
problem. ESBNs have been developed to solve reasoning tasks in the form of extrapolating
relationships from sets of images. As we believe this is a relevant setting for assessing human-
like capabilities, we do the same. Therefore, the input to the network are black and white
images, and the output a variable length binary vector encoding such relationship. For more
information refer to Section 2.2.2. Here, we provide a brief overview of the fundamentals details
for the function of the model, for a more in-depth treatment of the model please refer to the
paper above.

2.2.1. Architecture

Symbolic binding networks are composed of two mostly independent components, which we
explicitly term the value pathway and the key pathway (cfr. Figure 1, top panel) to make further
analysis easier. We present now an overview of both pathways, exposing their machinery and
describing their underlying components.
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Figure 1: Schematic of the original ESBN architecture with a focus on our modifications. We replace
the LSTM with a triple consisting of our positional encoding 𝑏, an MLP, and an activation function 𝑓𝑎.
Highlighted in blue is the key pathway, in red the value pathway. Our work reduces the number of
parameters by ∼2.4×.

At each step, an image sample 𝑥𝑡 passes through the value pathway (cfr. Listing 1), where an
encoder 𝑓𝑒 generates a feature vector 𝑧𝑡 and appends it to the value stack 𝑀𝑣 . At the same time,
𝑧𝑡 is compared to each element in 𝑀𝑣 to form a vector of weights 𝑤𝑡. This mechanism closely
resembles attention in that the weight of a given memory item is proportional to its similarity
with 𝑧𝑡. In the key pathway (cfr. Listing 2), the similarity vector 𝑤𝑡 is used to combine the keys
in 𝑀𝑘 in a weighted sum (or superposition) to generate 𝑘𝑟 . The newly generated 𝑘𝑟 is then fed
into an LSTM which outputs a prediction and a new key 𝑘𝑤 . Finally, 𝑘𝑤 is appended to 𝑀𝑘 , not
𝑘𝑟 .

Listing 1: One step in the value pathway.

𝑧𝑡 = 𝑓𝑒(𝑥𝑡)
𝑤𝑡 = 𝜎(𝑀𝑣 · 𝑧𝑡)
p(𝑧𝑡,𝑀𝑣)

Listing 2: One step in the key pathway.

𝑦𝑡, 𝑔𝑡, 𝑘𝑤𝑡 = 𝑓𝑠(𝑘𝑟𝑡−1)
𝑐𝑡 = S(𝑀𝑘 · 𝑤𝑡)
𝑘𝑟𝑡 = 𝑔𝑡

∑︀
𝑖(𝑤𝑡)𝑖(𝑀𝑘, 𝑐𝑡)𝑖

p(𝑘𝑤𝑡 ,𝑀𝑘)

Listings 1 and 2: 𝜎 is the softmax function. S is the sigmoid function. (a, b) refers to concatena-
tion. p pushes an element onto the stack.
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While the two pathways never interact explicitly, their computational graphs are connected
through 𝑤𝑡 such that back-propagation is possible. Each image in the task, including both
question and answer panels, is fed through the network. The final output 𝑦, be it a binary or
one-hot-encoded vector, is used to determine the answer in a task-dependent manner.

A key contributor to the performance of ESBNs in [13] is the introduction of a temporal
context norm (TCN). This scheme acts as a regulariser by normalising over temporal windows
similarly to how batch norm does over batches. It has been shown that TCN is fundamental for
ESBNs in the original paper, and also improves performance for non-ESBN architecture in the
tasks outlined above. To provide as representative a comparison as possible, we also include
TCN in our architectures. However, we further show in Section 4.1.2 that its inclusion may not
be as essential.

To highlight our intended comparison between LSTM and VSA-enhanced MLPs, we focus here
only on the key pathway. We manipulate it as follows: we replace (cfr. Figure 1, bottom panel)
the key encoder 𝑓𝑠 with a simpler feed-forward neural network instead of an LSTM, and we add
a positional encoding component to its input. This allows us to emulate the time progression of
an LSTM with a much more economical and well-behaved alternative. In Section 3, we analyse
in more detail how these modifications are implemented and how the behaviour of the model
changes.

2.2.2. Tasks

The tasks (cfr. Figure 2) chosen in the original work serve to showcase the ability of the ESBN to
infer abstract rules from visual cues in varying degrees of difficulty. Generally, visual reasoning
datasets like CLEVR [25] and RAVEN [26] represent the litmus test for architectures — be they
neurosymbolic or not — which purport to approach human-like cognition capabilities. The
same tasks are, therefore, particularly suited for evaluating the performance of our architecture
as well.

(a) Same/different task (b) Relational match-to-
sample task

(c) Distribution of three (d) Identity rules

Figure 2: Summary of the tasks. Figure adapted from [13].

It has been shown [27] that conventional neural networks are unable to solve even extremely
simple visual reasoning tasks like the same/different task, in which the model is asked to deter-
mine whether two shapes are equal. An ESBN is not only capable of successfully determining
this straightforward relationship, but can also extend it to novel image pairs such as in the
relational match-to-sample task. Finally, a subset of RAVEN progressive matrices [28] can be
used to test cognition more at a human level with the distribution of three and identity rules
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tasks. These two final tasks put some strain on both the ESBN and our architecture, which
further serves to highlight the difference in performance.

For each scenario a certain number of samples is held out for testing, with percentages
varying from 0% to 98%. Naturally, training with fewer samples proves more difficult and also
emphasises the sample-efficiency of the different architectures.

3. Approach

Given the minimalism of the value pathway, we focus our efforts on the key pathway. As
explained in Section 2.2, keys are generated by feeding the attention weighted superposition
of previous keys to the LSTM. This process intrinsically keeps tabs on the order in which it
receives its inputs. We hypothesise this ordered structure to be crucial to the success of the
model such that a straightforward replacement with a non-recurrent architecture would not be
suitable. To preserve the properties outlined above, we introduce a new model which combines
a more amenable representation of time as a discrete set of vectors (positional encoding through
bundling) with an efficient feedforward network which makes use of state-of-the-art activation
functions such as SIREN [29].

To better elucidate the key elements of our model we provide a ’in the footsteps’ view of a
key (cfr. 𝑘𝑟 in Figure 1) that has been newly generated by superposition. First, is is bundled with
the corresponding time-representing vector, in order to relocate it into our structured space.
Then it is fed through an MLP which extracts the relevant features. Finally, it is passed to the
activation function which favourably transforms these features to be added back onto the key
stack.

3.1. Bundling

As discussed in Section 2.1, the bundling operation of our choice is component-wise addition.
The goal of this step is to embed 𝑘𝑟 with information about its position in the sequence, in such
a way that a non-recurrent network should accurately infer the corresponding time-step from
the key alone. We hypothesise that an appropriate VSA model is able to structure the space so
that this embedding is successful. On its own, bundling is not sufficient to completely identify a
VSA implementation. For this reason we also need to define the code-book (𝑏 in Figure 1). The
code-book does not easily yield itself to a generalised representation, so we try three variants
to avoid possible missteps.

The first and easiest setup amounts to choosing random vectors (Rand strategy) in a high
dimensional space, which a priori have almost no similarity to each other. This approach allows
us to maximally separate the time-steps in latent space. The second retraces the positional
encoding of the Transformer (TF strategy). For more information on the benefit of this choice
refer to [24]. The third and final code-book is created using fractional power encoding (FPE
strategy) [16]. This method can generate any number of vectors with a controlled distance
to each other. This specific property, when used to create equally-spaced codes, embeds a
sequential structure in the space which more closely follows the concept of time in RNNs.

Once the key vector has been bundled (i.e. summed) with the code vector, it contains
information both about the relationship with previous keys and its position in the sequence. It
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is then fully equipped to be correctly interpreted by a feedforward network and does necessitate
any recurrent structure. The dimensionality of each code vector needs to be equal to the key,
which in our case is 256. As control the same experiments are performed with no code-book at
all, meaning the position in the sequence is unknown to the MLP and can at most be inferred
by correlation with the other keys.

3.2. MLP

As a drop-in replacement to LSTMs for feature extraction we chose an MLP, which performs
well on unstructured data and is also efficient parameter-wise. Unstructured here means that,
in contrast to the original image samples, keys do not necessarily possess any visual patterns
which models such as CNN are better suited to pick up. The model must be, however, powerful
enough to understand the bundled structure and decompose it in order to correctly process the
key. This choice gives us maximum flexibility and parameter efficiency, while also affording us
optimal performance during testing. The only parameters we vary in the MLP are its hidden
and output activation functions, which we explore in the following section.

3.3. Activation function

Given the abundance of activation functions in the MLP space, we chose to test three variants.
The two most common choices for many models are tanh and ReLU. ReLU is a biologically
inspired activation function which squashes negative values while being unbounded on the
positive semi-axis. By contrast, the hyperbolic tangent is a well-behaved sigmoid function
which has the benefit of being bounded, and as such tends to lessen the effect of gradient issues.
It was chosen as control given ReLU is used in the original ESBN.

Recently there has been renewed interested in sinusoidal activation functions, for example
SIREN [29]. It has also been shown that these functions are particularly useful in reconstructing
complex spaces by preserving some underlying mathematical structures such as first and second
derivatives. This adaptability to time-dependent signals made SIREN an important comparator
in our testing strategy.

As output of the MLP we now have a vector that is analogue to the output of the LSTM, and
can therefore be used to obtain predictions by following the rest of the key pathway laid out in
an ESBN. To evaluate the different architectural choices, and trade blows with the state-of-the
art, we use the tasks outlined in Section 2.2.2.

4. Results

Table 1 reports a summary of all results on the maximum holdout for each task and architecture.
Fully detailed Tables are presented in the Appendix.

Given the popularity of Transformers and their a priori aptness for such attentional focused
tasks, we sought to reproduce the results of [13] for a Transformer encoder architecture (TFEnc).
Our results were consistent with previous reports and further confirmed that Transformers do
not represent a compelling alternative to ESBNs.
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Table 1
Accuracy (%) with standard deviation based on ten runs of each architecture on the maximum holdout
per task. LSTM refers to the original ESBN, MLP to our architectures. We also provide a comparison
with a purely attentional model — in the form of a Transformer encoder — referred to as TFEnc. In green
the best performing architecture based on the average across all tasks and holdouts (see Appendix for
details). † indicates the original architectures from [13].

Model Activation Positional encoding same_diff rmts dist3 identity_rules

LSTM
† † 100.0 (0.0) 95.9 (1.4) 99.5 (0.4) 99.4 (0.6)

None None 100.0 (0.0) 100.0 (0.0) 97.9 (1.0) 99.8 (0.1)

MLP

SIREN FPE 100.0 (0.0) 100.0 (0.0) 99.4 (0.5) 98.8 (0.6)

SIREN TF 100.0 (0.0) 100.0 (0.0) 98.7 (1.2) 99.3 (0.5)

SIREN None 100.0 (0.0) 100.0 (0.1) 98.9 (0.8) 66.3 (0.4)

SIREN Rand 100.0 (0.0) 100.0 (0.0) 99.7 (0.3) 99.1 (0.9)

ReLU FPE 100.0 (0.0) 100.0 (0.0) 94.5 (2.1) 90.8 (2.2)

ReLU None 100.0 (0.0) 100.0 (0.0) 95.8 (2.0) 63.2 (0.7)

Tanh FPE 100.0 (0.0) 100.0 (0.0) 96.2 (7.6) 98.6 (0.9)

TFEnc † † 58.7 (12.0) 79.1 (7.5) 25.0 (0.3) 32.8 (3.6)

Our architectures proved fully competitive with the original ESBN, with the sinusoidal
activation function being clearly superior to the alternatives across the board. Initially we
hypothesised this to be due to the unbounded nature of ReLU, but after observing the same
behaviour on the bounded Tanh, we believed it to be the case that a periodic activation produces
better latent neural representations than a monotone one. This phenomenon corroborates the
findings of [29].

All positional encoding schemes behaved similarly, with Rand outperforming the alternatives
on the maximum holdout. A more detailed analysis revealed that this observation does not hold
in general, and in fact fractional power encoding has an edge when considering all holdouts
(see Table 4). For this reason, we only test ReLU and Tanh activations with FPE encoding. Both
SIREN and ReLU MLP architectures without positional encoding appeared to be unable to solve
the identity_rules task, which validated our hypothesis that notion of position is key in replacing
the LSTM

One must note that in the original ESBN, the attention vector 𝑤𝑡 was computed by means of
the dot product. While in principle a valid choice, dot product is not robust as it can overshoot
and lead to issues in both gradient computations and consistency between different samples.
Normalisation is a common choice in these cases, and here we specifically chose to use the
cosine similarity, which is bounded between −1 and 1. To ensure that such a modification does
not significantly hinder performance, we reproduced the results of [13] both with dot product
and cosine similarity. We found that cosine similarity significantly improves performance on
the rmts task bringing it up to 100%. All other models were tested using cosine similarity. The
learning rate is kept constant at 5−5.

Interestingly SIREN outperformed every other variant, with FPE and Transformer encoding
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performing especially well and often surpassing the original model. By keeping the same hyper-
parameters across the original ESBN and our models, we are able to report a ∼2.4× reduction
in size1. This also improved results across the board by a straightforward implementation of
VSA bundling.

4.1. Ablations

We investigate the limits of model size on performance and the relevance of temporal context
normalisation for our architectures.

4.1.1. Model size

Given we achieved a ∼2.4× size reduction without loss of performance while keeping the same
hyperparameters, we next explored how much we could shrink both the original ESBN and our
MLP model while keeping approximately the same performance. Moreover, we investigated
whether instead increasing the size of the MLP to match the LSTM could yield further perfor-
mance improvements at the expense of training speed. This appears unlikely as accuracy is
already saturated in the current state.

Table 2 indicates that the two models do not scale the same. Our model can be reduced to
a smaller size maintaining almost perfect accuracy, while the LSTM starts underperforming
significantly, especially on the same_diff task. Increasing the parameter space did not yield
increased performance, as predicted.

Table 2
Accuracy (%) with standard deviation based on ten runs of each architecture on the maximum holdout
per task. LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power
encoding consistent with the best results in Table 1. The number of parameters for each architecture is
also reported.

Model Parameters same_diff rmts dist3 identity_rules

LSTM 300k 79.9 (33.2) 92.3 (1.2) 96.3 (7.4) 95.3 (2.5)

MLP
300k 100.0 (0.0) 100.0 (0.0) 99.2 (0.6) 99.0 (1.0)

1.9M 100.0 (0.0) 100.0 (0.0) 98.9 (1.4) 99.1 (0.4)

4.1.2. Temporal context norm

In the original work of [13], the temporal context norm plays a crucial role in the performance
of ESBNs and the other architectures tested. In particular on the maximum holdouts per task it
increases accuracy from near-chance to near-perfect level.

Given its importance, we tested our MLP model including its usage for a fair comparison.
In addition, we also investigated whether TCN can be done away with in our architecture. To
evaluate the regularising effect of TCN, we tried to both increase and decrease model size as in
the previous ablation (Table 3).

1The original ESBN has ∼1.9M parameters, while our SIREN model with fractional power encoding has ∼800 k.
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Table 3
Accuracy (%) with standard deviation based on ten runs of each architecture on the maximum holdout
per task. LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power
encoding consistent with the best results in Table 1. The number of parameters for each architecture is
also reported. Temporal context normalisation is not used.

Model Parameters same_diff rmts dist3 identity_rules

LSTM 1.9M 50.1 (0.1) 51.0 (0.5) 62.0 (4.0) 95.2 (0.4)

MLP

300k 41.3 (20.2) 64.5 (19.0) 91.3 (5.6) 88.0 (7.7)

800k 52.9 (4.9) 90.0 (3.0) 84.4 (10.6) 79.8 (4.3)

1.9M 51.1 (1.0) 88.0 (5.8) 72.1 (13.3) 77.41 (16.3)

A marked drop in performance was observed, especially in the same_diff task. Despite this,
however, the accuracy stayed well above chance level and surpassed the original LSTM-based
ESBN in both the rmts and dist3 tasks. Increasing model size did not yield increased accuracy. On
the contrary, decreasing model size regularises in its own right, and hence increases performance.
These results show that while TCN is an effective regulariser, it is not a necessary enabler of
ESBN performance. For further analysis, refer to Section B.2.

5. Discussion

In this work, we have shown that enhancing simple MLP with VSA yields an effective and
efficient alternative to LSTM when applied to ESBNs by simplifying the architecture and
enhancing performance. Furthermore, we have demonstrated that a structured representation
of time-ordering is entirely capable of replacing the complex machinery of an LSTM without
loss of generalisation capability. We also observed a clear saturation of results, whereby the
more efficient models have displayed near-perfect results on all tasks and have made further
distinguishing and improvement unfeasible. It would be, therefore, of interest to test ESBNs
and our SIREN alternative on more challenging datasets such as the full RAVEN, and possibly
expand to other non strictly reasoning tasks.

We have identified in the LSTM a key regularising effect which reduces the degrees of
freedom of the vanilla ESBN, thus mitigating its marked over-parametrisation. At the same time
we have demonstrated that it is feasible to straightforwardly reduce the model size through
VSA-enhanced MLP, without losing performance. Following the same principle, we have also
identified in the temporal context norm another regulariser, which proves fundamental for an
LSTM but not so for MLPs. This finding leads us to hypothesise that any sufficiently powerful
regularising technique can be employed in place of the TCN, but further investigation would be
needed for confirmation.

The recently found similarities between attentional models and symbolic memories such as
SDM might shed more light towards the replacement schema we have presented here, and future
work should focus on more complex tasks and architecture. Specifically, it would be interesting
to explore to what extent embedding VSA into other symbolic framework might enhance
performance and yield results similar or better to other more conventional architectures.
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6. Appendices

A. Supplementary results

Table 4 shows the average performance across all holdouts. While there is clear saturation
towards perfect accuracy, SIREN activation and FPE positional encoding prove to be the best
combination. LSTM with cosine similarity outperforms its sibling with dot product in all but
one task, same_diff, where it drastically underperforms on the m = 95 holdout (cfr. Table 5). This
behaviour has been validated on 100 runs and cannot be reproduced on other architectures.

Table 4
Average performance (%) of each architecture for each task on all holdouts. Final full average is presented
in the last column. In green the best architecture based on the overall result, which is bolded. † indicates
the ESBN from [13] with dot product similarity.

Model Activation Positional encoding same_diff rmts dist3 identity_rules Overall

LSTM
† † 100 99.0 99.2 99.7 99.5

None None 94.0 100.0 99.5 99.9 98.3

MLP

SIREN FPE 100.0 100.0 99.8 99.6 99.8
SIREN TF 99.0 100.0 99.5 99.7 99.6

SIREN None 100.0 100.0 99.7 66.5 91.5

SIREN Rand 99.0 100.0 99.8 99.7 99.6

ReLU FPE 100.0 100.0 98.2 96.9 98.8

ReLU None 100.0 100.0 98.6 65.5 91.0

Tanh FPE 100.0 100.0 98.9 99.5 99.6

On the identity_rules task (cfr. Tables 11,12) all variants perform relatively similarly, with
SIREN and tanh matching the vanilla model in all instances. ReLU is competitive, but on the
hardest 95% holdout performance drops by about 9% w.r.t. to SIREN. All variants without
positional encoding do not solve the task successfully, validating our hypothesis that a structured
space significantly improves results and is key in replacing the LSTM.

On dist3 (cfr. Tables 9,10) SIREN surpasses LSTM, with ReLU and tanh trailing behind by
about 4 percentage points in the maximum holdout. Interestingly here a lack of positional
encoding does not seem to harm performance.

Tables 7,8 and 5,6 show that all tested architectures find the same_diff and RMTS tasks
particularly easy, and all perform very well (except LSTM with cosine similarity as mentioned
above).
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Table 8
Performance comparison on rmts task. For each variant and holdout percentage the loss is reported
together with the standard deviation in parentheses. In each case 10 runs are completed. † indicates the
ESBN from [13] with dot product similarity.

Activation Positional encoding m = 0 m = 50 m = 85 m = 95

LSTM
† † 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.22 (0.12)

None None 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

MLP

SIREN FPE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SIREN TF 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SIREN None 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SIREN Rand 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ReLU FPE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ReLU None 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Tanh FPE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
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Table 10
Performance comparison on dist3 task. For each variant and holdout percentage the loss is reported
together with the standard deviation in parentheses. In each case 10 runs are completed. † indicates the
ESBN from [13] with dot product similarity.

Activation Positional encoding m = 0 m = 50 m = 85 m = 95

LSTM
† † 0.04 (0.03) 0.03 (0.02) 0.04 (0.05) 0.06 (0.05)

None None 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.07 (0.03)

MLP

SIREN FPE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.02)

SIREN TF 0.00 (0.00) 0.00 (0.01) 0.02 (0.02) 0.05 (0.04)

SIREN None 0.00 (0.00) 0.00 (0.01) 0.01 (0.00) 0.04 (0.03)

SIREN Rand 0.00 (0.00) 0.00 (0.00) 0.02 (0.03) 0.01 (0.01)

ReLU FPE 0.00 (0.00) 0.01 (0.01) 0.07 (0.03) 0.25 (0.13)

ReLU None 0.00 (0.00) 0.01 (0.00) 0.06 (0.04) 0.17 (0.10)

Tanh FPE 0.00 (0.00) 0.01 (0.01) 0.03 (0.03) 0.10 (0.18)
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Table 12
Performance comparison on identity_rules task. For each variant and holdout percentage the loss is
reported together with the standard deviation in parentheses. In each case 10 runs are completed.
Highlighted in grey are the architectures without positional encoding, which perform significantly
worse than the rest. † indicates the ESBN from [13] with dot product similarity.

Activation Positional encoding m = 0 m = 50 m = 85 m = 95

LSTM
† † 0.01 (0.01) 0.01 (0.01) 0.03 (0.03) 0.08 (0.09)

None None 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)

MLP

SIREN FPE 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.06 (0.03)

SIREN TF 0.00 (0.00) 0.01 (0.01) 0.04 (0.03) 0.05 (0.05)

SIREN None 0.70 (0.05) 0.65 (0.05) 0.54 (0.03) 0.51 (0.01)

SIREN Rand 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.05 (0.07)

ReLU FPE 0.02 (0.01) 0.03 (0.01) 0.15 (0.07) 0.91 (0.29)

ReLU None 0.65 (0.07) 0.62 (0.04) 0.59 (0.06) 0.77 (0.12)

Tanh FPE 0.00 (0.00) 0.00 (0.00) 0.03 (0.02) 0.08 (0.06)
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B. Ablation results

B.1. Model size

We report here the full results for the model size ablation. For all tasks (cfr. Tables 14,15,16)
except same_diff accuracy remains high until the highest holdout. In the same_diff task (cfr.
Table 14) we observe a proportional worsening of performance as holdout increases.

Table 13
Performance comparison on same_diff task. For each variant and holdout percentage the accuracy (%)
is reported together with the standard deviation in parentheses. In each case 10 runs are completed.
LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding
consistent with the best results in Table 1. The number of parameters for each architecture is also
reported.

Model Parameters m = 0 m = 50 m = 85 m = 95 m = 98

LSTM 300k 100.00 (0.00) 100.00 (0.00) 90.06 (19.87) 84.97 (22.96) 79.92 (33.24)

MLP
300k 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

1.9M 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 14
Performance comparison on RMTS task. For each variant and holdout percentage the accuracy (%) is
reported together with the standard deviation in parentheses. In each case 10 runs are completed. LSTM
refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding consistent
with the best results in Table 1. The number of parameters for each architecture is also reported.

Model Parameters m = 0 m = 50 m = 85 m = 95

LSTM 300k 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 92.34 (1.18)

MLP
300k 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

1.9M 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 15
Performance comparison on dist3 task. For each variant and holdout percentage the accuracy (%) is
reported together with the standard deviation in parentheses. In each case 10 runs are completed. LSTM
refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding consistent
with the best results in Table 1. The number of parameters for each architecture is also reported.

Model Parameters m = 0 m = 50 m = 85 m = 95

LSTM 300k 100.00 (0.00) 100.00 (0.01) 100.00 (0.00) 96.35 (7.40)

MLP
300k 100.00 (0.00) 99.97 (0.02) 99.72 (0.17) 99.19 (0.62)

1.9M 99.99 (0.01) 99.97 (0.04) 99.70 (0.29) 98.89 (1.36)
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Table 16
Performance comparison on identity_rules task. For each variant and holdout percentage the accuracy
(%) is reported together with the standard deviation in parentheses. In each case 10 runs are completed.
LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding
consistent with the best results in Table 1. The number of parameters for each architecture is also
reported.

Model Parameters m = 0 m = 50 m = 85 m = 95

LSTM 300k 100.00 (0.00) 100.00 (0.00) 99.98 (0.06) 95.27 (2.49)

MLP
300k 99.99 (0.01) 99.82 (0.22) 99.64 (0.32) 98.94 (0.96)

1.9M 100.00 (0.00) 99.96 (0.03) 99.70 (0.20) 99.06 (0.37)

B.2. Temporal context norm

We report here the full results for the temporal context norm ablation.
There is a clear trade-off between expressiveness and over-fitting, whereby TCN severely

and efficiently constricts parametrisation to improve performance across the board. On the
same_diff task, Table 17 shows that model expressiveness greatly benefits performance, with
our MLP model surpassing the LSTM-based ESBN across all holdouts except the last, only
significantly underperforming when the amount of data is very limited.

On the other hand, for the identity_rules task (cfr. Table 20) we observe that overparametri-
sation of the MLP model is punished by a reduction in accuracy. This is especially striking
for the 1.9M parameters MLP. Here performance is not strongly correlated with holdout, even
increasing with increasing holdout, indicating that a smaller model generalises better. This
distinctive effect is confirmed by the fact that indeed the smallest MLP performs the best out of
our models.

On the dist3 and identity_rules tasks the smallest model performs the best, while it is the
other way around for same_diff and rmts. This is once more an indicator that there is a strong
need to strike a balance between expressiveness and the natural tendency to over-fit, role which
TCN serves remarkably well.

Taken together, LSTM and TCN provide strong regularisation performance which balances
even an highly overparametrised model like the original ESBN. This fact is highly beneficial, as
seen in the near-perfect performance seen in [13], but is not necessary and reveals itself to be a
hindrance in the more constrained cases shown in the ablations.

In fact our MLP model retains all of the expressive power and removes these limitations. It is
then reasonable that any powerful enough regularisation could take TCN’s place in our model,
but further investigation in this direction is needed.
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Table 17
Performance comparison on same_diff task. For each variant and holdout percentage the accuracy (%)
is reported together with the standard deviation in parentheses. In each case 10 runs are completed.
LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding
consistent with the best results in Table 1. The number of parameters for each architecture is also
reported. Temporal context normalisation is not used.

Model Parameters m = 0 m = 50 m = 85 m = 95 m = 98

LSTM 1.9M 49.94 (0.07) 51.11 (2.31) 52.07 (6.48) 50.61 (1.46) 50.15 (0.21)

MLP

300k 81.19 (23.27) 86.52 (14.34) 78.14 (22.96) 63.08 (19.04) 41.34 (20.19)

800k 100.00 (0.00) 92.95 (5.93) 90.15 (14.49) 76.46 (18.14) 52.89 (4.95)

1.9M 100.00 (0.00) 89.80 (8.38) 97.56 (1.65) 76.25 (17.87) 51.07 (0.96)

Table 18
Performance comparison on rmts task. For each variant and holdout percentage the accuracy (%) is
reported together with the standard deviation in parentheses. In each case 10 runs are completed.
LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding
consistent with the best results in Table 1. The number of parameters for each architecture is also
reported. Temporal context normalisation is not used.

Model Parameters m = 0 m = 50 m = 85 m = 95

LSTM 1.9M 96.36 (1.16) 90.00 (8.11) 49.92 (0.24) 50.65 (0.49)

MLP

300k 99.89 (0.03) 92.84 (4.44) 93.80 (2.70) 64.49 (18.97)

800k 99.97 (0.02) 94.72 (2.35) 95.84 (1.22) 90.00 (3.03)

1.9M 99.98 (0.03) 85.85 (18.55) 96.73 (2.10) 88.05 (5.77)

Table 19
Performance comparison on dist3 task. For each variant and holdout percentage the accuracy (%) is
reported together with the standard deviation in parentheses. In each case 10 runs are completed.
LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding
consistent with the best results in Table 1. The number of parameters for each architecture is also
reported. Temporal context normalisation is not used.

Model Parameters m = 0 m = 50 m = 85 m = 95

LSTM 1.9M 99.99 (0.01) 99.17 (0.31) 77.58 (2.80) 68.48 (16.78)

MLP

300k 99.99 (0.01) 96.19 (1.93) 95.92 (2.03) 91.26 (5.58)

800k 99.97 (0.05) 87.09 (23.58) 91.33 (12.84) 84.37 (10.58)

1.9M 99.83 (0.36) 89.30 (24.12) 82.96 (23.81) 72.14 (13.29)
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Table 20
Performance comparison on identity_rules task. For each variant and holdout percentage the accuracy
(%) is reported together with the standard deviation in parentheses. In each case 10 runs are completed.
LSTM refers to the original ESBN, while MLP uses SIREN activation and fractional power encoding
consistent with the best results in Table 1. The number of parameters for each architecture is also
reported. Temporal context normalisation is not used.

Model Parameters m = 0 m = 50 m = 85 m = 95

LSTM 1.9M 100.00 (0.00) 99.37 (0.24) 97.44 (0.01) 96.05 (0.92)

MLP

300k 99.35 (1.55) 85.43 (25.10) 96.50 (1.20) 88.00 (7.75)

800k 99.99 (0.02) 83.49 (27.27) 97.35 (2.00) 79.80 (4.32)

1.9M 74.98 (35.37) 73.44 (33.93) 89.95 (13.60) 77.41 (16.27)
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