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Abstract

Background and purpose: Deep learning techniques excel in MR-based CT synthesis, but missing uncertainty 
prediction limits its clinical use in proton therapy. We developed an uncertainty-aware framework and evaluated 
its efficiency in robust proton planning.

Materials and methods: A conditional generative-adversarial network was trained on 64 brain tumour patients 
with paired MR-CT images to generate synthetic CTs (sCT) from combined T1-T2 MRs of three orthogonal planes. 
A Bayesian neural network predicts Laplacian distributions for all voxels with parameters ( , ). A robust proton 𝜇  𝑏
plan was optimized using three sCTs of  and . The dosimetric differences between the plan from sCT (sPlan) 𝜇 𝜇 ± 𝑏
and the recalculated plan (rPlan) on planning CT (pCT) were quantified for each patient. The uncertainty-aware 
robust plan was compared to conventional robust (global ±3%) and non-robust plans.

Results: In 8-fold cross-validation, sCT-pCT image differences (Mean-Absolute-Error) were 80.84±9.84HU (body), 
35.78±6.07HU (soft tissues) and 221.88±31.69HU (bones), with Dice scores of 90.33±2.43%, 95.13±0.80%, and 
85.53±4.16%, respectively. The uncertainty distribution positively correlated with absolute prediction error 
(Correlation Coefficient: 0.62±0.01). The uncertainty-conditioned robust optimisation improved the rPlan-sPlan 
agreement, e.g., D95 absolute difference (CTV) was 1.10±1.24% compared to conventional (1.64±2.71%) and 
non-robust (2.08±2.96 %) optimisation. This trend was consistent across all target and organs-at-risk indexes.

Conclusion: The enhanced framework incorporates 3D uncertainty prediction and generates high-quality sCTs 
from MR images. The framework also facilitates conditioned robust optimisation, bolstering proton plan 
robustness against network prediction errors. The innovative feature of uncertainty visualisation and robust 
analyses contribute to evaluating sCT clinical utility for individual patients.

Highlights

 High-quality sCT generation from MR images with 3D uncertainty prediction

 Improved plan robustness against network prediction error by uncertainty-aware optimisation 

 Clinically acceptable accuracy (+/-3%) for proton therapy planning of 64 brain tumour patients

 Powerful tools for determining the clinical usefulness of synthetic CTs for individual patients

Introduction

Proton therapy, a state-of-the-art technology in radiotherapy, is garnering increasing attention. Its exceptional 
characteristic of high-dose conformity underscores the critical importance of accurately representing the 
patient's geometry in proton therapy planning. Consequently, obtaining the most up-to-date geometric model 
of the patient through frequent daily imaging is essential to harness the full potential of proton physics. 
Meanwhile, MR-based radiotherapy has emerged as an auspicious approach, marked by the commercialization 
of the MR-Linac technology and its active clinical implementation. This innovative method not only eliminates 



the need for MR to CT registration [3,4,5], but also significantly reduces the additional radiation exposure 
associated with more repeated CT scans [6]. These advantages are particularly important for vulnerable 
populations like children and in the context of daily adaptive proton therapy [2].

Enabling MR-based treatment planning requires accurate CT-like data generation from MRI geometry [7,8]. This 
can be traditionally achieved through atlas-based methods [9,10], which initially segmented MRI voxels into 
distinct tissue regions and subsequently assigned predefined HU values to each region [10]. The atlas-based 
method [9] involved registering atlas-MRIs to new MR images and warping the atlas CTs with displacement 
vector field (DVF), which depends highly on the accuracy of the deformable registration result [11]. In the new 
era of artificial intelligence, deep learning (DL) has become the predominant approach in computer vision and 
pattern recognition [12]. Synthetic CT generation based on deep learning has also emerged as a popular research 
topic [13,14]. By leveraging their exceptional ability to extract informative features from input images, deep 
neural networks have achieved remarkable results in MR-based CT synthesis tasks [7]. Various network 
architectures have been proposed to learn voxel mapping from MR intensity to CT Hounsfield Units [15–21], and 
several works have also explored the incorporation of synthesised CT into the workflow of proton therapy [19–
25] or carbon ion therapy [26]. Due to the large size of full-resolution CTs, it was often infeasible to feed the 
entire 3D image into a single neural network. Consequently, different strategies have been employed to split 
the volume by overlapping or non-overlapping 2D patches, 2D slices, 2.5D slices or 3D patches [27], which were 
then transformed by the networks individually and subsequently merged to achieve the final estimation.

For well-aligned MR-CT pairs, conditional generative adversarial networks (cGANs) [15] have achieved 
significantly lower image-level errors than conventional methods [9], but obtaining large-scale paired images 
remains to be challenging. Furthermore, registration methods exhibit limited performance, hindering the 
flawless registration of cross-modality images [28,29]. In such scenarios, CycleGAN-based CT synthesis was 
proposed [16], demonstrating superior image quality compared to Pix2pix methods when paired images are 
unavailable [17,18]. These approaches yielded satisfactory results at both the image-level and the dosimetric-
level, highlighting the immense potential of MR-only treatment planning [8,30]. Nevertheless, as data-driven 
methods, DL-based approaches can experience substantial performance declines when applied to new data with 
significant distribution changes compared to the training dataset [31]. Therefore, the ability to automatically 
detect these failures and estimate the associated uncertainty of both data and network was considered 
compulsory for the clinical use of these methods [32], particularly for proton therapy applications.



Figure 1. Overview of the proposed uncertainty-aware MR-based proton therapy framework.

In this paper, we present a novel uncertainty-aware MR-based proton therapy framework. As shown in Figure 
1, it consists of the MR-to-CT synthesis neural network with uncertainty estimation and the uncertainty-
conditioned robust plan optimisation. The framework can not only predict a high-quality synthetic CT (sCT) but 
also estimate the voxel-wise uncertainty for the predicted Hounsfield Unit (HU). Subsequently, the predicted 
uncertainty can be incorporated into the proton robust optimisation process [33]. Furthermore, this framework 
offers both image-level and dosimetric-level robustness analysis, assisting physicians in making decisions on the 
clinical usefulness of generated sCT. The structure of this paper follows the guidelines for AI in medical physics 
[34].

Materials and Methods

Image dataset

The dataset utilised in this paper comprises images from a population of patients with brain tumours previously 
treated at PSI from 2017 to 2020. Paired scans from 74 adult (n=29) and pediatric (<18 years; n=35) patients 
were collected, among which 64 cases were used for cross-validation, and 10 were reserved as hold-out data for 
testing. Before treatment planning, each patient underwent at least one MRI and CT scan. Of note, there were 
pronounced anatomic differences between the image acquisition processes, as patients were normally fixated 
using a bite block for CT imaging but not for MR imaging. CT acquisitions were carried out with a Siemens 
Sensation Open CT scanner (with tube voltage 120kV) with resolutions of  mm or  mm. MR 1 × 1 × 2 1 × 1 × 3
images were acquired using 1.5T Siemens Aera and Siemens Skyra MR scanners, with voxel size  mm. 1 × 1 × 1
T1-weighted MP-RAGE and T2-weighted FLAIR sequences were used for network training. As pre-processing, 
MR images were registered to the corresponding CT images using mutual information-based rigid registration 
provided by the open-source software ITK SNAP [35]. The MR images were subsequently resampled to match 
the resolution of the corresponding CT. This study adhered to ethical standards for research involving human 
data. Informed consent was obtained from all patients for the use of their anonymized data in scientific research. 
The anonymization process was conducted prior to the analysis to ensure confidentiality and compliance with 
ethical guidelines.



MR-based CT synthesis with uncertainty estimation

We employed Pix2pix as the image generation approach, as it can outperform CycleGAN on brain images when 
images are roughly aligned [36]. CT synthesis was achieved through a UNet-shape deep neural network [37], 
which took paired T1 and T2 images as inputs and generated synthetic CT (sCT) as output. Additionally, an 
uncertainty map with the same shape as sCT was predicted, measuring the voxel-wise uncertainty of the 
predicted sCT in the HU unit. Consequently, we predicted the distribution of the HU value of each voxel in the 
sCT instead of inferring a fixed value by the traditional methods [11,17,27,30,38,39]. In this case, the distribution 
was assumed to be a Laplacian distribution, as maximising its log-likelihood was consistent with minimising the 
mean absolute error (MAE) loss:

𝑓(𝑦│𝜇,𝑏) =
1

2𝑏exp ( ―
|𝑦 ― 𝜇|

𝑏 )
Given the sCT prediction  and the uncertainty prediction , we aimed to maximise the log-likelihood of the 𝜇 𝑏
Laplacian distribution given the observed CT data  with the paired MR data . The log-likelihood can be 𝑦 𝑥
formulated as follows:

𝐿𝐸 = log∏
𝑖

𝑓(𝑦𝑖│𝜇𝑖,𝑏𝑖)

,= ∑
𝑖log

1
2𝑏𝑖

exp ( ―
|𝑦𝑖 ― 𝜇𝑖|

𝑏𝑖 )
where  is the index of each voxel. Therefore, by maximising the log-likelihood, the loss can be calculated as:𝑖

𝐿𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 = ∑
𝑖

log(𝑏𝑖) +
|𝑦𝑖 ― 𝜇𝑖|

𝑏𝑖
 .

To increase the numerical stability during optimisation, we replaced  with  [40], then the final loss is :log(𝑏𝑖) 𝑐𝑖

𝐿𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 = ∑
𝑖

𝑐𝑖 + |𝑦𝑖 ― 𝜇𝑖| × exp ( ― 𝑐𝑖) .

The network illustrated in Figure 1 follows the design in nnUNet[41], which comprises two parts: an encoder 
and a decoder. The encoder comprised a series of downsampling blocks, each consisting of a sequence of 
convolutional layers, a normalisation layer, and a nonlinear activation layer. The decoder has an equal number 
of blocks as the encoder, with each block replacing the convolution layer in the downsampling with a de-
convolutional layer that functions as an upsampling operator. Following the decoder, two  convolutional 1 × 1
layers output the estimated sCT and uncertainty map.

As for the network inputs, the 2D slices were used, which conserved computational resources while preserving 
the 2D geometry for consistent predictions. However, our approach differs from others in that instead of strictly 
sampling along a fixed axis, we sampled slices with random angles using bilinear interpolation. This strategy 
enlarges the potential sampling space, thus implicitly expanding the training cases. For implementation, rather 
than rotating the entire volume and sampling a slice, we first sample the coordinates of the slice and then rotate 
the coordinates of each voxel, reducing the computational load by order of magnitude. To train the network, we 
divided the 64 cases into eight folds and adopted a full cross-validation technique. For each of the eight-time 
validations, seven folds were used for training and the remaining one for validation. The networks were trained 
with the Adam optimiser employing an initial learning rate of 1e-3. The training lasted for 20 epochs; during the 
first half, the learning rate remained unchanged, while for the latter half, it decayed exponentially. The batch 
size was set to 16, and the network was trained on two V100 GPUs. In total, eight different network weights 
were acquired individually to fully utilise the limited patient dataset for a more thorough dosimetric evaluation 
below.



Uncertainty-conditioned robust treatment planning

Robust optimisation is becoming increasingly common in proton therapy [42] for dealing with range and setup 
uncertainty during delivery. With MR-based planning, the proposed framework can avoid the registration 
uncertainty, but network prediction uncertainties remain. To mitigate this, prediction uncertainty can be 
considered during the plan optimisation process to achieve robust plans. Usually, range robust optimisation 
assumes a uniform range error distribution applied to each voxel in the CT, typically of 3%. However, such error 
assumptions do not apply to sCT imagery, as uncertainty is not expected to be homogenous across an image 
(see Figure 2 below). As such, our proposed approach enables the derivation of voxel-specific uncertainty 
estimates. As described in the previous section, the prediction per-voxel is a Laplacian distribution . 𝑓(𝑦𝑖│𝜇𝑖,𝑏𝑖)
From this joint distribution, a batch of possible sCTs can be generated as error scenarios for robust plan 
optimisation. Due to memory limitations, only three sCTs were considered for each case, sampled by { -𝜇𝑖, 𝜇𝑖 𝑏𝑖, 𝜇𝑖
+ }. This sampling strategy is consistent with the general robust optimisation using { } when 𝑏𝑖 𝜇𝑖, 0.97𝜇𝑖, 1.03𝜇𝑖
the error scenario follows a Gaussian distribution. For each case, the standard prescription was applied 
according to [43], and the fields were selected using the automatic algorithm developed at PSI [44]. Validation 
and comparison were performed for all 64 cases in the same manner of 8-fold cross-validation. To accommodate 
such large-scale dose planning, automatic data processing was adopted to reduce the manual burden. 

Evaluation and statistics

The effectiveness of the proposed uncertain-conditioned framework was evaluated using both image-level and 
dosimetric-level metrics. All results were reported with the average and standard deviation scores of all 64 
patients. For the image-level evaluation, we measured the conformality between synthetic CTs (sCTs) and real 
CTs (pCTs). The mean absolute error (MAE) for the body, bone, and soft tissue regions were evaluated, 
respectively. Additionally, the Dice score for bone (HU>200) and soft tissue regions (-200<HU<200) was 
calculated to evaluate the implicit classification ability of the network, which can be formulated as follows:

,𝐷𝑆𝐶 =
2|𝑋 ∩ 𝑌|
|𝑋| + |𝑌|

Where  is the predicted region and  is the ground-truth region,  means the intersection operator. Moreover, 𝑋 𝑌 ∩
the Pearson Correlation Coefficient (PCC) was calculated between the uncertainty and the absolute error 

, to quantify the estimated uncertainty map . Besides cross-validation, image-level evaluations were |𝑦𝑖 ― 𝜇𝑖| 𝑏
also adopted to the hold-out testing set to verify the performance of the trained networks.

For the dosimetric evaluation, for each of the 64 patients, the proton plan was generated and optimised on sCT 
(annotated as sPlan) using the proposed uncertainty-conditioned optimisation, the conventional 3%/3mm global 
robust optimisation, and non-robust optimisation approaches. All types of sPlans were then recalculated on the 
corresponding pCT (as rPlan), and typical dose indexes were extracted from dose-volume histograms (DVHs) of 
CTV and affected OARs (e.g., chiasm, brain stem et al). Moreover, plan differences for each case were derived 
by subtracting point-to-point doses of the rPlan from those of each sPlan.

Results 

For the image-level evaluation on the cross-validation set, image differences between sCT and pCT, in terms of 
the average Mean-Absolute-Error (MAE), were 80.84±9.84 HU for the whole-body area, 35.78±6.07 HU for soft 
tissues and 221.88±31.69 HU for bone, with Dice scores of 90.33±2.43%, 95.13±0.80%, and 85.53±4.16%, 
respectively. The differences align with the MAE spectra in [25] that soft tissue areas (-200<HU<200) have a 
much lower MAE than bones (>200). Moreover, the predicted uncertainty distribution positively correlates with 
the absolute prediction error, with a Correlation Coefficient of 0.62±0.01. Besides, on the testing set, the MAE 
is 78.23±15.44 HU for the whole-body area, 39.89±9.51 HU for soft tissues and 193.08±32.99 HU for bone, while 
the Dice score is 91.69±2.13. The full results of the testing set can be found in Supplement A. An example case 
is shown in Figure 2 (more cases can be found in Supplement B), where the positive correlation between error 



maps and uncertainty maps can be clearly observed. Most of the above results show no significant differences 
among different populations. For example, the MAE is 82.55±8.66 HU for adult patients, while it is 79.43±10.51 
HU for children. The only exception is the Dice scores of the bone region, which shows obvious differences 
between adults (88.01±2.45%) and children (83.47±4.16%). The best and worst cases for MAE are 59.00 and 
108.82 HU, and 94.05 and 84.34% for Dice. Pix2pix achieved a mean absolute error (MAE) of 80.29±4.49 HU, 
significantly outperforming CycleGAN, which had a MAE of 153.36±8.32 HU. The mean differences in stopping 
power relative to water were 5.25±0.94% for the cross-validation set and 5.54±0.62% for the hold-out set. Note 
that the above results are all from comparing the registered pCT with sCT. With the original pCT, the MAE of the 
whole body become 117.79±16.60 HU. 

In Figure 3 (and supplement C), we show calculated rPlans, sPlans and the corresponding plan differences for 
the different plan optimisation algorithms. Figure 4 presents and compares the uncertainty effect on DVHs of 
CTV and affected OARs. It is evident that the proposed uncertainty-conditioned approach can achieve much 
better agreement between sPlans and rPlans. For example, the absolute difference of CTV-D95 from the 
proposed optimisation algorithm is only 0.66±1.11%, in contrast to 1.32±1.93% and 1.65±2.22% from the 
3%/3mm global robust and non-robust optimisation, respectively. Curves of rPlans are generally inferior to 
sPlans because we optimize the dose planning on sCT to mimic the real clinical application of MR-based 
radiotherapy, where only MR and sCT can be acquired. Besides, for Spinal cord-D2, the numbers are 1.15±2.94%, 
1.45±3.58% and 1.85±4.10%, respectively. This trend was statistically consistent across most indexes of both 
target and OARs for all patients in this dataset, as shown in Figure 5. 

As summarized by [50], the Deep Learning-based method can be used for Quality assurance (QA). With the 
proposed framework, physicians should be able to visualise the over-shoot and under-shoot cases during the 
pre-treatment discussion, as illustrated in Figure 6 (a-d). Moreover, uncertainty analysis using DVH can serve as 
a valuable tool for assessing the generation quality of sCT, where superior generation with low uncertainty is 
associated with a tight band of curves in the last sub-figure of Figure 6. Possible usages of the uncertainty map: 
(upper) plan robust analysis by considering example extreme sCT estimation. (e.g., maximum and minimum 
cases, under-shoot and -over-shoot cases); (lower) uncertainty-aware DVH. (Figure 6e and supplement D). These 
metrics and visualisation are useful tools when implementing MR-based treatment planning, as clinicians can 
decide, based on analytic data evidence, if new CT acquisition needs to be conducted or if it suffices to utilise 
the MR-based sCT directly.

Figure 2. Visualisations of MRIs (T1s and T2s), pCTs, sCTs, uncertainty maps, and error maps.



Figure 3. Visualisations of optimized plan on pCT, the recalculated plan sCT and their difference across the three 
planning strategies of (upper) non-robust, (middle) conventional robust optimized and (bottom) uncertainty-
aware.



Figure 4. Comparisons of DVHs of one example case between sPlan and rPlan among the three planning 
strategies (rPlans: solid lines, sPlan: dashed lines).



Figure 5. Distributions of dose index differences, compared across three dose planning algorithms. (Boxplot 
derived from the evaluations of all 64 patient cases).

Figure 6. Possible usages of the uncertainty map: (upper) plan robust analysis by considering example extremed 
sCT estimation. (e.g., maximum and minimum cases, under-shoot and -over-shoot cases); (lower) uncertainty-

aware DVH.



Discussion

We developed a deep learning framework that produces high-quality synthetic CT from MR images while also 
generating a corresponding uncertainty map to assist in the creation of a robust treatment plan. This framework 
enables uncertainty-aware proton planning, bringing DL-based CT synthesis closer to the proton clinical practice. 
The derived uncertainty-conditioned optimisation algorithm outperforms the default robust optimisation in 
dosimetric-level conformity. The novelty arises from considering the voxel-wise uncertainty estimates for proton 
treatment planning, including its principle, estimation, and consistent application for proton plan optimisation. 

Along with presenting experimental results and visualisations, we elaborate on our findings in the subsequent 
paragraphs. The first issue to be addressed pertains to alignment. In previously published studies [17,38] on MR-
based CT synthesis, two primary frameworks, Pix2pix and CycleGAN, have been employed for image generation. 
However, different papers yielded contradictory conclusions regarding their comparative performance [14]. 
Typically, Pix2pix requires well-aligned image pairs, while CycleGAN does not depend on such a critical 
preprocessing. Within our experiments, Pix2pix outperforms CycleGAN by a large margin, showing rigid 
registration can generate satisfactory alignments for Pix2pix in brain regions (see results in Supplement E). It is 
worth noting that we deliberately computed sCT-pCT differences in the original image resolution of the pCT (the 
planning CT) without any down-sampling, as it would be used in clinical practice. When such evaluation is 
conducted in the down-sampled image, the error reduction of approximately 20HU would be additionally 
achieved. Indeed, the lack of homogeneity in the dataset and evaluation metrics makes it difficult to draw a 
quantitative conclusion about the superiority of any single method over the others. We expect that the current 
ongoing grand challenge (SynthRAD2023 [45]) will assist in fairly understanding the performance discrepancies 
among the different proposed methods for the task of MR-based synthetic CT generation. 

Nonetheless, this observation does not imply that the achieved registration was sufficiently aligned. Imperfect 
alignment can inheritably bias the evaluation since a portion of MAE stems from spatial misalignment rather 
than range errors. To address this issue, we employed the correlation-based deformable registration algorithm 
by ITK SNAP to register the pCT to sCT, annotated as regCT. All the above-reported values were results from the 
comparison of regCT and sCT. In contrast, the MAE between pCT and sCT without this extra deformable 
registration is significantly higher, indicating that the post-deformable registration can further reduce the 
misalignment error by a large percentage. These findings demonstrated that a substantial portion of errors 
originates from input image misalignment, highlighting the need for more advanced registration methods to 
achieve high-quality MR-based CT generation.

In addition to the alignment issues, deep neural networks often exhibit over-confidence in their prediction, even 
when encountering out-of-distribution data. In radiotherapy, corner cases (e.g., patient-specific outliers) are 
inevitable, posing a challenge due to the limited generalizability of the trained network. In this study, the output 
uncertainty map is a proxy measure of network confidence. The uncertainty quantification not only offers an 
overall metric but also provides a detailed spatial distribution to assist the treatment planning procedure, such 
as the selection of optimal field direction. Given its high Correlation Coefficient with the absolute error values, 
the estimated uncertainty map can also act as a surrogate for the patient-specific error map that is inaccessible 
in clinical practice. We see further research into considering the uncertainty map during radiation field selection 
as desirable.

In natural images, for example Pix2pix tasks, mean squared error (MSE) is usually adopted as the evaluation 
metric. Therefore, Gaussian distribution per-voxel is assumed for the uncertainty estimation because maximising 
the log-likelihood of Gaussian distributions corresponds to minimising the MSE loss. However, for medical 
images, MAE is preferable, as it directly correlated to the meaningful unit (such as HU), so that Laplacian 
distribution was chosen.

Typically, robust plan optimisation was used to address setup and range uncertainty [46,47], e.g., 3mm and 3% 
(or other uniform values), often used as experience values. However, with our proposed framework, since per-
voxel distribution can already be obtained by uncertainty estimation, it is feasible to have a finer model of the 
uncertainty in 3D with high spatial resolution. Sampling with per-voxel distribution rather than global 
distribution can more effectively cover the possible sCT. In this study, the pCT was treated as the ultimate 



reference against which the sCT was compared. However, we have not yet considered the additional uncertainty 
of pCT calibration for proton treatment. Nevertheless, the voxel-specific uncertainty approach can also be 
employed in the conventional range robust evaluation and optimisation to mitigate the CT calibration 
uncertainty [48,49]. For instance, although the uncertainty in CT due to calibration from HU to proton stopping 
power is as high as 3% in bone, it is much lower in soft tissue (more likely 1% or lower). Instead of using a 
systematically conservative value of 3% or 5% globally, a range uncertainty distribution specific to the region can 
also be considered. 

Although the discrepancy at the image-level remained substantial (more than 80 HU), we observed quite 
satisfactory results at the dosimetric-level. Despite the observed sCT-rCT differences, the dose recalculation 
error remains below 2%, with V95 and D95 discrepancies under 0.2%, as depicted in Figure 5. As advancements 
in network architecture and dataset size continue, the error is expected to drop, rendering MR-based proton 
therapy increasingly feasible.

Our work was limited by the number of sampled sCTs used for robust plan optimisation. As we employed a full-
batch optimisation algorithm in our treatment planning system, considering numerous possible sampling cases 
simultaneously was challenging. In this study, only 3 sampled sCTs were used. To enable better coverage of 
sampling spaces, mini-batch optimisation [51] may provide an effective solution, as it could reduce memory 
requirements. In this study, patients with both T1 and T2 images were evaluated. Utilizing two distinct sequences 
enhances the robustness of predictions due to the complementary information they provide. However, this 
approach limits the inclusion of additional cases in the dataset. Such a trade-off warrants consideration in 
subsequent research.

In summary, we have demonstrated the high-quality sCT generation from MR images using a modified Pix2pix-
based framework. Besides the improved accuracy for proton therapy planning, the associated 3D uncertainty 
distribution enables voxel-specific robust optimisation for improving plan robustness against prediction errors 
for proton treatment of brain tumours. We believe the direct visualisation of the network prediction uncertainty 
and the subsequential robust analyses are powerful tools for determining the clinical usefulness of synthetic CTs 
for individual patients.
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Figure 1. Overview of the proposed uncertainty-aware MR-based proton therapy framework.

Figure 2. Visualisations of MRIs (T1s and T2s), pCTs, sCTs, uncertainty maps, and error maps.

Figure 3. Visualisations of optimized plan on pCT, the recalculated plan sCT and their difference across the 
three planning strategies of (upper) non-robust, (middle) conventional robust optimized and (bottom) 
uncertainty-aware.

Figure 4. Comparisons of DVHs of one example case between sPlan and rPlan among the three planning 
strategies (rPlans: solid lines, sPlan: dashed lines).

Figure 5. Distributions of dose index differences, compared across three dose planning algorithms. (Boxplot 
derived from the evaluations of all 64 patient cases).

Figure 6. Possible usages of the uncertainty map: (upper) plan robust analysis by considering example 
extremed sCT estimation. (e.g., maximum and minimum cases, under-shoot and -over-shoot cases); (lower) 
uncertainty-aware DVH.
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