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0 Abstract 
Whole genome sequencing (WGS) at high-depth (30X) allows the accurate discovery of 
variants in the coding and non-coding DNA regions and helps elucidate the genetic 
underpinnings of human health and diseases. Yet, due to the prohibitive cost of high-depth 
WGS, most large-scale genetic association studies use genotyping arrays or high-depth whole 
exome sequencing (WES). Here we propose a novel, cost-effective method, which we call 
“Whole Exome Genome Sequencing” (WEGS), that combines low-depth WGS and high-depth 
WES with up to 8 samples pooled and sequenced simultaneously (multiplexed). We 
experimentally assess the performance of WEGS with four different depth of coverage and 
sample multiplexing configurations. We show that the optimal WEGS configurations are 1.7-
2.0 times cheaper than standard WES (no-plexing), 1.8-2.1 times cheaper than high-depth 
WGS, reach similar recall and precision rates in detecting coding variants as WES, and 
capture more population-specific variants in the rest of the genome that are difficult to recover 
when using genotype imputation methods. We apply WEGS to 862 patients with peripheral 
artery disease and show that it directly assesses more known disease-associated variants 
than a typical genotyping array and thousands of non-imputable variants per disease-
associated locus.  
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1 Introduction 
Accurate assessment of DNA sequence variation enables insights into the genetic basis of 
diseases and other traits. Whole genome sequencing (WGS) at high-depth of coverage (30X 
and above) using next generation sequencing technologies is the current gold standard 
method for the accurate discovery of single nucleotide variants (SNVs) and short 
insertions/deletions (InDels) genome-wide1,2. Sequencing offers several advantages over 
array-based genotyping, notably that variant positions are not fixed, which allows the discovery 
of novel population-specific variants. Yet, despite the decreasing costs of high-depth WGS, 
sequencing a large number of samples remains expensive. So far, the use of whole exome 
sequencing (WES) has dominated large-scale sequencing studies such as gnomAD3 and UK 
Biobank4, but WES is limited to coding regions. As a result, there is still a need for more cost-
effective solutions to capture both coding and non-coding variation. 
 
The array-based genotyping coupled with genotype imputation at untyped genomic positions 
from public haplotype reference panels2,5,6 is a popular, cost-effective strategy for increasing 
statistical power and genomic coverage in current genome-wide association studies (GWAS)7. 
The largest TOPMed haplotype reference panel allows for the imputation of variants down to 
minor allele frequencies (MAF) of ~0.002–0.003% (imputation quality r^2>0.3) in individuals 
of European and African ancestries6. However, rare variant imputation with TOPMed still has 
much lower accuracy than common variant imputation, especially in non-European or non-
African ancestry groups6. At the same time, the advantage of local sequencing-based 
imputation reference panels was demonstrated for multiple populations, such as the 
Estonian8, Finnish9 and Sardinian10.  
 
Several cost-effective sequencing-and-imputation strategies have been described to improve 
genomic coverage while allowing better assessment of population-specific variants. Those 
include (a) WGS in a subset of study participants (at a depth ranging from 5X to 30X) to create 
a customized reference panel7 for imputation of the remaining participants who were 
genotyped using genotyping arrays and (b) ultra-low depth WGS (depth of coverage (DP) 
down to 0.1X-0.5X) or (c) low-depth (1X-4X) WGS in all study participants followed by 
imputation using public reference panels11–14. While ultra-low depth WGS can be performed 
at the same cost as array-based genotyping11, it has also been suggested that ultra-low depth 
and low-depth sequencing plus imputation are good alternative technologies to imputed 
genotyping arrays by doubling the number of true association signals discovered14 and 
improving the accuracy of polygenic risk prediction models12,13. The latter models have also 
benefited from the inclusion of rare coding variants in their prediction algorithms15–17. However, 
recent work suggested that array-based imputation strategies may miss approximately half of 
the rare coding variants with MAF<0.05% detected by WES2. Although cheaper than WGS, 
WES is still a more expensive option than imputation-based strategies, and it ignores the 
majority of non-coding regions of the genome. Assessment of genetic variation in non-coding 
regions, which contains the vast majority of genetic variants2 and a majority (84%) of GWAS 
association signals18, is critical for many genetic analyses, notably understanding regulatory 
genetic variation. 
 
Here, we propose a novel sequencing method, which we call Whole Exome Genome 
Sequencing (WEGS), that combines low-depth WGS (2-5X) and high-depth WES (100X) with 
up to 8 samples pooled and sequenced simultaneously (multiplexed) to reduce reagents 
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costs19. We experimentally demonstrate that WEGS, while being 1.7-2.0 times cheaper than 
standard high-depth WES (100X) due to multiplexing and 1.8-2.1 times cheaper than 30X 
WGS, maintains similar precision and recall rates in the discovery of rare coding variants and 
allows assessment of population-specific variants in the rest of the genome. We demonstrate 
the scalability and utility of WEGS by applying it to 862 patients with peripheral artery disease 
(PAD). 
 

2 Methods 
2.1 DNA samples for benchmarking experiments 
To benchmark our new method, we used DNA samples derived from cell lines obtained from 
the US National Institute of Standards and Technology (NIST) RM 8392, a family trio of 
Ashkenazi Jewish origin including a son (HG002), father (HG003) and mother (HG004), 
consented by the Personal Genome Project (PGP)20. These DNA samples were developed 
for the Genome in a Bottle (GIAB) Consortium to generate reference datasets for 
benchmarking genomic analyses21, and have broad, open consent for all research uses under 
the terms of the PGP. 
 
2.2 Benchmarking experimental study design 
To assess the relative performance of different WEGS protocols, we used DNA samples from 
the Ashkenazi trio to perform a series of WES and low-depth WGS sequencing experiments. 
For WES, we performed experiments without and with multiplexing of 4 and 8 samples (no-
plexing, 4-plexing and 8-plexing, correspondingly). For each sample in the family trio, we 
performed library preparation and sequencing to a target DP of 100X in triplicate for the 1-plex 
and 4-plex WES experiments, and in duplicate for the 8-plex experiment, for a total of 37 
samples (Figure 1). For WGS, using pre-capture libraries prepared for WES, we sequenced 
the trio samples to a target DP of 5X on 2 separate lanes. This allowed us to use a single lane 
to obtain a target DP of 2.5X. This gave us the possibility to evaluate four WEGS combinations: 
WEGS4P,2X, WEGS4P,5X, WEGS8P,2X, and WEGS8P,5X, where 4P and 8P denote 4- and 8-
plexing, respectively, and 2X and 5X correspond to target DP of WGS. 
 
2.3 Sequence data production 
WES and WGS sequencing was performed at the McGill Genome Centre in October 2021. 
Processing included sample quality control (QC) using a QUBIT 1X DSDNA HS ASSAY KT 
from Life Technologies Inc .to measure DNA concentration quality. An aliquot of 200 ng input 
in 50 ul total was used to perform DNA fragmentation (shearing) with Covaris LE220 (Covaris 
Inc.) method to a target of 300 bp fragments. Sample library preparation was carried out using 
Agilent SureSelect XT HS2. Subsequent captures were performed using Agilent SureSelect 
XT HS2 V7 capture panel with different plexing strategies: 4-plex (12 samples) and 8-plex (16 
samples) (Figure 1). Unique dual sample indexing barcodes (2x8bp) were added to 
multiplexed samples during library preparation. Library QC was performed before and after 
capture in 2 steps: quantification using qPCR (Kapa Biosystems, part #KK4602) and QC using 
LabChip GX Touch HT Nucleic Acid Analyzer. Exome captures were performed in 2 batches 
using Agilent SureSelect Human All Exon V7 capture for a total 48.2-Mb target. Sequencing 
was performed on 2 lanes of the Illumina NovaSeq platform using S1 flowcells and 150-bp 
paired-end reads to a target coverage of 100X. Sample pre-capture libraries were used to 
perform WGS sequencing to a target coverage of 5X in 2 separate lanes on the Illumina 
NovaSeq platform using S1 flowcells to 150-bp paired-end reads.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2023. ; https://doi.org/10.1101/2023.04.27.538531doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.27.538531
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 4 

2.4 Data processing and variant calling 
As defined by Genome Analysis Tool Kit22 (GATK v4.2.0.0) best practice recommendations, 
preprocessed reads trimmed by the removal of adapters and low quality bases, were aligned 
to the decoy version of GRCh37 human genome build (hs37d5) using bwa-mem23 (v0.7.17) 
(Supplementary Figure 1). Mapped reads were further refined using GATK InDel realignment22 
(v3.8) to improve the mapping of reads near InDels, marking of duplicated reads using GATK 
mark duplicates, and improve base quality scores using Base Quality Score Recalibration 
(BQSR). For WEGS processing, WGS and WES were analyzed by applying the above 
methods but using different trimming and mark duplication procedures to take advantage of 
the UMIs present in the WES data. The trimmer and locatIT programs from Agilent’s AGeNT 
tool set (v2.0.5) were used to first identify and remove the adaptor sequences, extract the 
molecular barcodes (MBC), and then merge duplicated reads by leveraging the MBC 
information embedded in the aligned BAM file. WGS data were processed using the read 
trimmer skewer24 (v0.2.2), and duplicated reads were assessed using GATK mark duplicates. 
Variant calling for all the experiments was performed using the GATK’s HaplotypeCaller. 
 
2.5. Benchmark variant calls and regions 
Benchmark (or “high-confidence”) variant calls for SNVs and short InDels from GIAB 
Consortium for each sample in the Ashkenazi family trio were obtained for build GRCh37 
(v.4.2.1)25 at URL: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/. We 
used Illumina hap.py benchmarking tool (version v.0.3.10) to compare our study variant calls 
and imputed variants to GIAB “high-confidence” variant calls in previously described “high-
confidence regions”26,27. Variant calling recall rate was estimated as the total number of true 
positive variant calls divided by the total number of variant calls, and precision as the total 
number of true positive variant calls over the sum of true positive and false positive variant 
calls. We used imputed best-guess genotypes when estimating recall and precision rates for 
imputed variants against GIAB “high-confidence” variant calls. Before benchmarking, we did 
not apply filters on our variant calls (using variant calling annotations) or imputed genotypes 
(using imputation quality scores) to limit the contribution of other factors when interpreting 
differences between methods. 
 
2.6. High-depth WGS data 
To generate 30X WGS data for the Ashkenazi Jewish trio (HG002, HG003, and HG004), we 
downloaded 300X WGS data from GIAB produced using Illumina HiSeq 2500 in Rapid mode 
(v1) (PCR-free, pair-end, mean read length 2 x 148bp). The reads were aligned to the GRCh37 
genome build using Novoalign version 3.02.07. Then, we randomly subset 10% of the reads 
using the samtools28 tool to reach 30X coverage on average. For each individual, we 
generated five 30X WGS datasets using different random seeds. Then, we performed variant 
calling using GATK v4.2 in the same way as for other experiments. 
 
2.7. Tests for statistical significance 
We used Wilcoxon rank-sum test to test for statistical significance (1) of differences between 
two library preparation batches and (2) of variant recall and precision rates between no-plexing 
WES and WEGS. We used Wilcoxon signed-rank test when comparing the same WES 
experiments (1) before and after UMI-aware read deduplication and (2) before and after 
adding WGS reads. We used a one-sided version of the tests depending on the means of two 
samples, i.e. the alternative hypothesis was that the distribution underlying the sample with a 
larger mean is stochastically greater than the distribution underlying the sample with a smaller 
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mean. We used the implementation of both tests available in SciPy29. To assess the correlation 
strength between levels of multiplexing and different sequence data metrics, we used the 
Pearson correlation coefficient and the corresponding P-values for the two-sided alternative 
hypothesis that the correlation is non-zero implemented in SciPy29. We used P-value<0.05 for 
the statistical significance threshold. 
 
2.8. Genotype imputation using genotyping arrays 
To mimic genotyping array data for HG002, HG003, and HG004 samples, we subset 654,013 
GRCh37 positions on the Infinium Global Screening Array 24 v3 
(https://support.illumina.com/array/array_kits/infinium-global-screening-
array/downloads.html) from the corresponding GIAB's WGS data. Then, we imputed each 
sample individually using the multi-ethnic TOPMed reference panel (N=97,256) available at 
NHLBI TOPMed Imputation Server. In addition to genotype imputation, the server lifted 
positions from GRCh37 to GRCh38 genome build and performed reference-based statistical 
phasing. The imputed genotypes were on the GRCh38 genome build. To compare them to 
WEGS, we used the GATK LiftoverVcf tool30 to lift imputed positions back to GRCh37. We 
annotated the data after imputation with alternate allele frequencies (AF) in the Ashkenazi 
Jewish (ASJ) population from gnomAD v3.1.13 and overall AF in the BRAVO variant browser, 
which includes all individuals in the TOPMed reference panel. For both databases, we lifted 
the GRCh38 positions to GRCh37 using GATK LiftoverVcf. We used only those variants which 
passed all quality filters described by gnomAD and TOPMed, correspondingly. When 
comparing AF distributions in ASJ vs BRAVO, we restricted our analyses to non-monomorphic 
genetic variants where at least 1,000 ASJ individuals were sequenced. 
 
2.9. Genotype imputation using WEGS and local reference panel 
We used the GLIMPSE method31 to impute variants from the local reference panel using 
sequencing reads in WEGS. To build our local reference panel, we used genotypes from the 
1000 Genomes Project (1000G)6 and Human Genome Diversity Project (HGDP)32 (N=4,150) 
from gnomAD v33. We kept only variants which passed all quality filters defined by gnomAD 
v3, were missing in <1% of individuals, and for which alternate allele count was ≥2. We phased 
the genotypes using statistical phasing implemented in SHAPEIT433 and lifted positions of 
phased genotypes from GRCh38 to GRCh37 genome build using the GATK LiftoverVcf tool. 
We merged the GLIMPSE-imputed variants with variants directly genotyped from WEGS by 
GATK. We kept the genotyped version when a variant was imputed and genotyped at the 
same time (i.e. had the same position and alleles). 
 
3.0. WEGS application 
A total of 862 patients diagnosed with PAD were recruited and consented between April 2, 
2017, and September 21, 2021, in the Division of Angiology, at the Insel University Hospital 
of Bern, Switzerland. Recruited patients had whole blood samples collected and stored in the 
Liquid Biobank Bern (LBB). We applied the above WEGS method to each sample using WGS 
at an average depth close to 5X and WES at 100X. Exomes were captured in 8-plex using the 
Agilent SureSelect All Exons Human V7 capture. The exome and whole genome libraries were 
sequenced on MGI T7 sequencers. All sequence reads were mapped to build GRCh38. We 
followed GATK best practices pipelines for jointly calling SNVs and InDels. We used only those 
variants which passed all variant filters after GATK’s VQSR and had less than 1% missing 
genotypes. 
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3 Results  
3.1 Sample multiplexing lowers depth of coverage due to duplicate reads 
Sample multiplexing allows multiple samples to be pooled and sequenced simultaneously, 
resulting in lower per-sample sequencing costs19. However, multiplexing may also increase 
the number of false positive variant calls34. To assess sequencing quality, we first compared 
the DP and variant calling when using WES without and with multiplexing of 4 and 8 samples 
(no-plexing, 4-plexing and 8-plexing, correspondingly). For this, we generated 37 exome 
sequences at 100X WES and different levels of multiplexing using DNA from Ashkenazi trio 
samples (Figure 1, see Methods). 
 
We observed a strong negative correlation (Pearson's r = -0.69, P-value = 2.31⨉10-6) between 
the average DP in targeted exome regions and the number of multiplexed samples (Figure 2). 
The median values of average DP across individual exomes dropped from 121.8 in no-plexing 
experiments to 98.6 and 82.6 in 4-plexing and 8-plexing, respectively. The average DP ratio 
between no-plexing and 4- and 8-plexing experiments was similar in all targeted regions 
across the exome - showing no evidence that differences in average DP were non-uniform or 
affected only a subset of targeted regions (Supplementary Figure 2). When stratifying by 
library preparation batch, we observed statistically significant differences (P-value = 0.048) in 
average DP between two batches only in experiments without multiplexing (Supplementary 
Figure 3A). Nevertheless, these differences did not influence the overall trend - the strong 
negative correlations between the number of multiplexed samples and DP remained in both 
library preparation batches (Supplementary Figure 3B-C).  
 
To better understand the cause of lower average DP in multiplex sequencing, we assessed 
the total number of paired reads, the number of reads flagged as PCR or optical duplicates, 
the number of unmapped reads, and the average base qualities in reads. There was no 
correlation (Pearson's r = -0.08, P-value = 0.631) between the total number of paired reads 
and the number of samples pooled together for sequencing (Supplementary Figure 4A). 
However, there was a strong positive correlation (Pearson's r = 0.92, P-value = 2.13 ⨉ 10-15) 
between the percent of reads flagged as PCR or optical duplicates and degrees of multiplexing 
(Supplementary Figure 4B). Compared to the multiplexing-free sequencing experiments, the 
4-plexing and 8-plexing experiments showed a 1.7-fold (18.4% vs 31.2%) and 2.3-fold (18.4% 
vs 43.0%) increase in the median percent of duplicated reads, respectively. The data also 
suggested a weak, non-statistically significant correlation (Pearson's r = 0.32, P-value = 0.06) 
between the percent of unmapped reads and degrees of multiplexing (Supplementary Figure 
4C). Also, the percent of unmapped reads did not exceed 0.11 percent of the total number of 
paired reads and, thus, did not contribute much to the differences in average DP. There was 
a moderate correlation (Pearson's r = -0.52, P-value=1.09 ⨉ 10-3) between the average base 
qualities and the degree of multiplexing (Supplementary Figure 4C). However, when stratified 
by the library preparation batch and in contrast to the other metrics mentioned above, the first 
batch did not show the same correlation pattern (Supplementary Figure 5-8), suggesting that 
other factors may affect the base qualities. We conclude that the main contributor to the lower 
average DP in sample multiplexing experiments compared to the experiments without sample 
multiplexing is the percent of reads flagged as PCR or optical duplicates. 
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3.2 UMI does not recover losses in the depth of coverage 
UMI - a unique barcode appended to each DNA fragment before the PCR - helps to distinguish 
the truly duplicated fragments originating from the same molecule from the very similar 
fragments originating from a different molecule35,36. In addition, UMI-aware software tools for 
duplicate read removal help to identify and remove sequencing errors by grouping reads with 
the same UMI and creating a consensus read37. We applied the duplex UMI method in our 
sequencing experiments and evaluated the utility of LocatIt and 
UmiAwareMarkDuplicatesWithMateCigar (GATK+UMI) UMI-aware read deduplication tools 
with multiplexing. LocatIt reduced the average DP in experiments without and with 
multiplexing, compared to the UMI agnostic deduplication approach, while UMI+GATK 
increased the average DP (Supplementary Figure 9). We explain the different effects on 
average DP by the difference in strategies between these two tools. For example, in 8-plexing 
experiments, the GATK+UMI reduced the percent of duplicated reads on average by 0.4 (SE 
= 0.01), while LocatIt reduced it by 1.56 (SE = 0.03) (Supplementary Table 1). However, 
LocatIt, on average, marked an additional 4.38% of reads as QC failed, which included reads 
with low base qualities in their UMIs and single consensus read pairs without complementary 
pairs. This additional filtering in LocatIt resulted in lower average DP, fewer unmapped reads, 
and higher average base qualities. In summary, the UMI-aware read deduplication showed 
that the vast majority of the duplicated reads in multiplexing experiments are truly PCR/optical 
duplicates. UMI-aware deduplication didn't help recover the loss in average DP in multiplexing 
experiments back to the levels of no-plexing experiments. 
 
3.3 Sample multiplexing decreases variant recall rates 
We observed moderate-to-strong negative correlations between the number of samples 
sequenced together and the recall rates for SNVs (Pearson's r = -0.60, P-value =7.79⨉10-5) 
and InDels (Pearson's r = -0.48, P-value=2.85⨉10-3) (Supplementary Figures 10A and 10C). 
The average recall rates dropped from 0.983 (SE = 0.0004) and 0.939 (SE = 0.003) in no-
plexing experiments to 0.980 (SE = 0.0004) and 0.926 (SE = 0.003) in 8-plexing experiments 
for SNVs and InDels, respectively (Supplementary Table 2). In many instances, the recall rates 
were lower in the second library preparation batch, and some of these differences were 
statistically significant (Supplementary Figures 11A and 11D). Despite these differences, the 
statistically significant negative correlations between variant recall rates and the number of 
multiplexed samples were present in both library preparation batches (Supplementary Figures 
11B-C and 11E-F). 
 
We also observed a drop in precision for both variant types with the increased number of 
multiplexed samples, but unlike recall, the negative correlations were weaker and not 
statistically significant (Supplementary Figures 10B and 10D, Supplementary Table 2). The 
precision rates were similar between the library preparation batches (Supplementary Figures 
12A and 12D), and they also did not show statistically significant correlations with the number 
of multiplexed samples when stratified by batch (Supplementary Figures 12B-C and 12E-F). 
Only in the first batch we saw a weak positive correlation (Pearson’s r = 0.27, P-value = 0.26) 
between precision and the number of multiplexed samples (Supplementary Figure 12B). 
 
We looked into the number of true positive (TP), false positive (FP), and false negative (FN) 
variant calls to explain the statistically significant decrease in recall rates. We found the 
strongest correlation in the degree of multiplexing and the number of FN calls (Pearson's r = 
0.60, P-value=8.46⨉10-5 in SNVs and Pearson's r = 0.44, P-value=6.34⨉10-3 in InDels), 
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representing the true variants that are not detected (Supplementary Figure 13). For example, 
the average number of undetected true SNVs increased from 384 (SE = 8) in single-sample 
sequencing experiments to 446 (SE = 9) in 8-plexing experiments (Supplementary Table 2). 
On average, 65 (SE = 6) true SNVs missed in 8-plexing experiments were correctly identified 
across all no-plexing experiments for the corresponding sample, and 61 (SE = 6) of those had 
a higher depth of coverage in no-plexing experiments than in 8-plexing experiments 
(Supplementary Table 3). We conclude that the main driver for the decrease in recall rates is 
the drop in average DP in multiplexing experiments, which leads to the increased number of 
missed true variants. 
 
3.4 UMI improves variant calling insufficiently 
We investigated how the recall and precision rates changed in SNV calling after applying the 
UMI-aware duplicate read removal. We wanted to test if a more accurate read deduplication 
could partially compensate for the loss of variant recall rates in multiplexing experiments. As 
previously, we considered two UMI-aware deduplication tools: LocatIt and 
UmiAwareMarkDuplicatesWithMateCigar (GATK+UMI). 
 
We observed small but statistically significant drops in the recall rates when using LocatIt in 
all samples at all levels of plexing (Supplementary Figure 14A). For example, on average, the 
paired difference in the same sample in the 8-plexing experiment between two recall rates, 
one measured after LocatIt and another measured after the UMI agnostic approach, was only 
-0.0008 (SE=0.0001) (Supplementary Table 4). The paired differences between the recall 
rates were consistently negative in all samples in the 8-plexing experiment, and this 
relationship was statistically significant (P-value = 2⨉10-3) (Supplementary Figure 14A). 
However, there was no consistent and statistically significant change in the precision rates: 
precision slightly increased in some samples but dropped in others (Supplementary Figure 
14B). For instance, while, on average, a paired difference in the 8-plexing experiment between 
precision rates increased by 0.0002 (SE=0.0002) (Supplementary Table 4), the paired 
differences between precision rates were negative in 5 out of 16 samples and did not support 
this average increase (P-value = 0.85) (Supplementary Figure 14B). The statistically 
significant decreases and increases were also in the total number of called SNVs and the 
number of missed true SNVs (i.e. FN calls), respectively (Supplementary Table 4). In samples 
in the 8-plexing experiments, the average paired difference between the total numbers of 
called SNVs was -20 (SE=4) and between the numbers of missed true SNVs was 17 (SE=2). 
Although the average paired difference between the numbers of FP calls was -2 (SE=3) and 
suggested a decrease in the numbers of FP calls when using LocatIt, this relationship was not 
statistically significant (P-value ≥ 0.05). The reduced number of called SNVs is consistent with 
our previous observation of reduced average DP when using LocatIt due to additional read 
filtering. 
 
When using GATK+UMI, we observed slight but statistically significant improvements in the 
SNV recall rates for samples in multiplexing experiments (Supplementary Figure 14C). In 
samples in the 8-plexing experiments, the average paired difference between recall rates was 
0.0003 (SE<0.0001) (Supplementary Table 4), and the increase in recall rates was observed 
in the majority of samples and supported the statistical significance of the relationship (P-
value=3.1⨉10-5) (Supplementary Figure 14C). At the same time, there was also a slight 
statistically significant drop in the precision rates at all levels of plexing (Supplementary Figure 
14D). In the same samples in the 8-plexing experiments, the average paired difference 
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between precision rates was -0.0014 (SE=0.0001) (Supplementary Table 4), and the decrease 
was consistent across all samples leading to the statistically significant relationship (P-
value=1.5⨉10-5) (Supplementary Table 4). The observed increase in the number of called 
SNVs (e.g. M=39 [SE=2] in 8-plexing) and the number of FP calls (e.g. M=33 [SE=2] in 8-
plexing) with a much smaller decrease in the number of FN calls (e.g. M=-6 [SE=1] in 8-
plexing) (Supplementary Table 4) can explain the increase in recall and decrease in precision 
rates. The increase in the number of called SNVs is consistent with our previous observation 
of increased DP when using GATK+UMI. 
 
In summary, while UMI-aware read deduplication can improve SNV recall or precision rates 
depending on the approach, this improvement appears minimal in the present experiment. It 
does not allow to recover these rates back to levels similar to no-plexing experiments. 
 
3.5 WEGS significantly improves variant calling in multiplexed samples 
To compensate for the losses in variant recall rates when performing multiplexed WES, we 
introduced reads from low-depth WGS before variant calling. We called this approach WEGS. 
We evaluated four combinations in comparison to no-plexing WES: (1) 4-plexing WES and 
WGS at 2X average DP (WEGS4P,2X), (2) 4-plexing WES and WGS at 5X average DP 
(WEGS4P,5X), (3) 8-plexing WES and WGS at 2X average DP (WEGS8P,2X), and (4) 8-plexing 
WES and WGS at 5X average DP (WEGS8P,5X). In each combination, we looked at the paired 
difference in the same sample between two recall rates, one measured after adding reads 
from WGS and another before.  
 
Additional reads from 2X and 5X WGS improved variant recall rates in all multiplexing 
experiments, and the differences were statistically significant (P-value<0.05) (Supplementary 
Figures 15 and 16). For instance, the average paired difference in SNV recall rates in 
WEGS8P,2X was 0.0031 (SE=0.0002) (Supplementary Table 5). This paired difference in recall 
rates was positive across all samples and, thus, supported the statistical significance of the 
observed increase in recall rates (P-value=1.5⨉10-5) (Supplementary Figure 15A). The total 
number of discovered SNVs increased on average by 76 (SE=6), of which 70 (SE=5) were 
true positives, explaining the improved recall rates (Supplementary Table 5). Similarly, there 
were statistically significant improvements in InDel recall rates (Supplementary Figures 15C 
and 16C). As expected, adding reads from 5X WGS improved the recall rates the most. The 
average paired difference in SNV recall rates in WEGS8P,5X was 0.0044 (SE=0.0003) 
compared to 0.0031 (SE=0.0002) in WEGS8P,2X (Supplementary Table 5). 
 
The change in variant precision rates after adding reads from low-depth WGS differed for 
SNVs and InDels. We observed slight drops in SNV precision rates in all combinations of 
multiplexing levels in WES and read depths in WGS. However, the declines were not 
systematic, i.e. they were present only in part of the samples, in contrast to increases in SNV 
recall rates which were, on average, much higher and present in all samples (Supplementary 
Figures 15B and 16B). For example, the lowest average paired difference in SNV precision 
rates among all WES and WGS combinations was -0.0003 (SE=0.0001) in WEGS4P,2X 
(Supplementary Table 5). It was the only combination where this paired difference in SNV 
precision rates reached statistical significance (P-value=0.026) (Supplementary Figure 15B). 
Thus, adding reads from low-depth WGS increased the number of called SNVs by a few 
dozen, but at the same time, some of these additionally called SNVs were FP, which slightly 
changed the SNV precision rate in either direction.  
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Differently from SNVs, all combinations of multiplexing levels in WES and read depths in WGS 
showed statistically significant improvements in InDel precision rates (P-value < 0.05). In 
WEGS8P,2X, the average paired difference in InDel precision rates was 0.0055 (SE = 0.0009) 
(Supplementary Table 5), and only 1 out of 16 pairs had a negative paired difference between 
InDel precision rates after and before adding WGS reads (Supplementary Figure 15). In 
contrast to SNVs, additional reads from 2X WGS raised the average number of called InDels 
by 10 (SE=2) and, at the same time, decreased the average number of FPs by 6 (SE=1) in 8-
plexing WES. 
 
3.6. WEGS enhances WES with millions of variants genome-wide 
We compared the variant recall rates in standard no-plexing WES to those in multiplexing 
WES combined with low-depth WGS (Figures 3A and 3C). The average SNV and InDel recall 
rates exceeded the corresponding rates in no-plexing WES for most WEGS configurations, 
except for WEGS8P,2X. Both WEGS4P,2X and WEGS4P,5X resulted in higher average SNV recall 
rates than no-plexing WES: 0.9842 (SE=0.0002, P-value=6.4⨉10-3) and 0.9852 (SE=0.0001, 
P-value=7.1⨉10-5) against 0.9830 (SE=0.0004), respectively (Figure 3A). Among 8-plexing 
experiments, only WEGS8P,5X resulted in higher average SNV recall rates than no-plexing 
WES: 0.9847 (SE=0.0001, P-value=5.6⨉10-4). Similarly, only WEGS4P,2X, WEGS4P,5X, and 
WEGS8P,5X statistically significantly increased average InDel recall rates compared to no-plex 
WES (Figure 3C). The average InDel recall rate showed a statistically significant increase from 
0.9390 (SE=0.0029) in no-plex WES to 0.9493 (SE=0.0029, P-value = 0.01), 0.9552 
(SE=0.0019, P-value = 2.8⨉10-4), and 0.9490 (SE=0.0020, P-value = 4.2⨉10-3) in WEGS4P,2X, 
WEGS4P,5X, and WEGS8P,5X, respectively. When stratified by the library preparation batch, the 
average variant recall rates across WEGS remained higher than those in no-plexing WES, 
except for SNV recall rates in WEGS8P,2X (Supplementary Figures 17E-F, 18E-F). The batch 
effect in SNV recall rates in WES, described in Section 3.3, also affected WEGS 
(Supplementary Figure 18D). Despite this, the WEGS4P,5X and WEGS8P,5X had statistically 
significantly higher SNV recall rates compared to no-plexing WES in both batches, and the 
increase in WEGS4P,2X was close to statistical significance. (Supplementary Figures 17E-F). 
There were no statistically significant differences in InDel recall rates between the two batches 
within the no-plexing WES and each WEGS configuration (Supplementary Figure 18D). But 
only for WEGS4P,5X the increase in InDel recall rates compared to no-plexing WES was 
statistically significant in both batches. WEGS4P,2X showed a statistically significant increase 
only in the first batch. WEGS8P,2X showed a statistically significant increase only in the second 
batch, and the increase in the first batch was close to a statistical significance (P-value=0.092). 
 
The variant calling precision rates in no-plexing WES compared to WEGS differed depending 
on the variant type. The average SNV precision rates in every WEGS configuration were 
slightly lower than in WES, while average InDel precision rates were higher than in WES 
(Figures 3B and 3D, Supplementary Table 6). Only drops in average SNV precision rates in 
WEGS4P,2X and WEGS4P,5X, and an increase in the average InDel precision rate in WEGS4P,5X 
were statistically significant (Supplementary Table 6). Furthermore, when stratified by the 
library preparation batch, the decreases in average SNV precision rates in WEGS compared 
to no-plexing WES were statistically significant only in the second batch (Supplementary 
Figures 17A-C, Supplementary Table 7). In contrast, WEGS8P,2X and WEGS8P,5X demonstrated 
an increase in average SNV precision rates compared to no-plexing WES in the first batch. 
We explain this by the initially lower precision rates in multiplexing WES experiments in the 
second batch described in Section 3.3. When stratified the average InDel recall rates by the 
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library preparation batches, the average InDel precision rates in WEGS remained higher than 
in no-plexing WES for all configurations except WEGS8P,2X (Supplementary Figures 18A-C, 
Supplementary Table 7). However, none of the increases remained statistically significant. 
 
We also compared variant recall and precision rates in WES and WEGS to the 30X WGS, 
which we generated by downsampling reads from 300X WGS data (see Methods). Average 
variant recall and precision rates inside regions targeted by WES were higher in 30X WGS 
compared to WES and WEGS. For SNVs, these differences were below 0.7%, while for 
InDels, the maximal difference reached 6% (Supplementary Table 8). WEGS4P,2X, WEGS4P,5X, 
and WEGS8P,5X were closer to 30X WGS than WES in targeted regions. 30X WGS had no 
rivals when comparing genome-wide recall and precision rates. On average, it found 1.7-2.5 
times more SNVs and 2.5-3.8 times more InDels genome-wide than WEGS (Supplementary 
Table 9). The average genome-wide SNV and InDel precision rates in WGS were up to 18% 
and 70% higher than in WEGS, respectively. As expected, WEGS4P,5X and WEGS8P,5X were 
the closest to the 30X WEGS. 
 
In summary, these results confirm that our WEGS approach eliminates the negative impact of 
sample multiplexing in WES on variant recall rates in coding regions and brings variant recall 
rates to the levels of a standard no-plexing WES or higher. Furthermore, these results suggest 
that WEGS4P,2X, WEGS4P,5X and WEGS8P,5X are the closest alternatives to no-plexing WES, as 
these sequencing strategies demonstrated statistically significant increases in SNV and InDel 
recall rates and, at the same time, showed increases in InDel precision rates in targeted 
regions. WEGS has a clear advantage over WES by allowing the assessment of additional 
~2M SNVs and InDels per individual genome-wide. 
 
3.7. WEGS correctly assesses variants which genotype imputation misses  
Next, we wanted to understand what other benefits low-depth WGS data could bring to 
multiplexed WES besides removing the negative effects of sample multiplexing. We compared 
WEGS to array-based genotyping followed by genotype imputation. For each of our three 
samples, HG002, HG003, and HG004, we emulated the genotyping array data covering 
654,013 genetic positions and performed genotype imputation using the TOPMed reference 
panel consisting of 97,256 diverse genomes. We compared these imputation results to 
WEGS4P,2X and WEGS8P,5X, the closest alternatives to no-plexing WES in targeted regions. 
 
First, we investigated regions targeted by WEGS. SNVs imputed from emulated genotyping 
array data showed high precision rates (>99%) for all three samples, but imputation missed 
between 824 to 1,028 SNVs per sample (among them, between 482 to 576 were non-
synonymous) compared to WEGS (Supplementary Table 10). For example, in sample HG002, 
WEGS8P,5X correctly identified 22,390 SNVs on average, and the TOPMed reference panel 
imputed only 21,458 SNVs which is 938 SNVs less. The difference in the number of correctly 
identified InDels was even larger: imputation missed around 60% of true InDels (40% recall), 
while WEGS only missed around 5% (95% recall). 
 
Second, we investigated the number of imputed and sequenced variants genome-wide 
(Supplementary Table 11). In contrast to the WEGS targeted regions, the genotyping array-
based imputation approach outperformed WEGS by the number of correctly identified SNVs: 
imputation missed 4-5% (95-96% recall), WEGS4P,2X missed 54-65% (35-46% recall), and 
WEGS8P,5X missed 36-50% (50-64% recall) of true SNVs. The differences in correctly identified 
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InDels were much lower: imputation missed around 61% (39% recall), WEGS4P,2X missed 
69%-78% (22-31% recall), and WEGS8P,5X missed 53-67% (33-47% recall) of true InDels. 
 
Third, we looked at how many variants missed or wrongly imputed outside non-protein coding 
regions can be recovered by WEGS. We grouped TOPMed-imputed variants outside WEGS-
targeted non-protein-coding regions into three categories: (1) the number of imputed alleles 
matches the number of true alleles (i.e. imputation is correct); (2) the number of imputed alleles 
is less than the number of true alleles; (3) the number of imputed alleles is higher than the 
number of true alleles. For each of these groups, we looked at the median fold change in 
alternate AF between the ASJ population and TOPMed. The median fold-change in AF was 
higher (i.e. AF in ASJ was higher than in TOPMed) when imputation was systematically 
missing alleles (group 2) and lower when imputation was wrongly imputing extra allele(s) 
(group 3) (Supplementary Table 12). This result is in line with previous studies38,39, which 
showed that the imputation accuracy depends on the genetic similarity between the study 
individual and the reference panel. WEGS4P,2X correctly identified true alleles in 38-46% of 
variants in group 2 and 89-92% of variants in group 3, while WEGS8P,5X correctly identified 
true alleles in 55-67% of variants in group 2 and 91-94% in group 3. 
 
Finally, to improve the variant recall in non-coding regions in WEGS, we evaluated the 
applicability of the GLIMPSE method31, developed to impute missing variants from low-depth 
WGS data. After applying GLIMPSE to WEGS4P,2X and WEGS8P,5X with local reference 
haplotypes from the 1000 Genomes Project and Human Genome Diversity Project (see 
Methods), genome-wide SNV recall rates and precision increased drastically. In imputed 
WEGS4P,2X, the average genome-wide SNV recall rate and precision increased from ~35-46% 
to ~81-82% and from ~80-82% to 87-88%, respectively (Supplementary Tables 11 and 13). In 
imputed WEGS8P,5X, the average genome-wide SNV recall rate and precision increased from 
~50-65% to ~86-88% and from ~87-90% to 90-92%, respectively. The genome-wide recall 
rate and precision also increased for InDels. The SNV recall rate and precision in sequence-
based imputation were still smaller than in genotyping array-based imputation. One of the 
possible explanations is that the state-of-the-art TOPMed reference panel contains >20 times 
more haplotypes than our local reference panel. To confirm this, we run the genotyping array-
based imputation using our local reference panel and the Minimac4 tool40. The Minimac4-
imputed recall and precision rates for SNVs were similar to the GLIMPSE-imputed WEGS8P,5X 
(Supplementary Table 14) and slightly higher than the GLIMPSE-imputed WEGS8P,2X. The 
InDel recall rates were higher in the sequence-based imputation compared to genotyping 
array-based imputation using TOPMed, but lower compared to genotyping array-based 
imputation using the local reference panel. 
 
In summary, these results showed that WEGS outperforms genotyping array and imputation 
approach in terms of the number of identified variants, especially InDels, inside protein-coding 
regions. Outside protein-coding regions, WEGS allows one to discover genetic variants 
missed by genotyping array-based imputation due to their population specificity. Sequencing-
based imputation methods can be applied to WEGS to recover variants missed due to lower 
depth of coverage outside protein-coding regions. WEGS8P,5X has a clear advantage over 
WEGS4P,2X outside the protein-coding region due to the higher depth of coverage in the WGS 
experiment. 
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3.8. WEGS is substantially cheaper than high-depth WES and WGS 
We compared costs for WEGS scenarios relative to genotyping arrays, low-depth WGS, 30X 
WGS and no-plexing 100X WES. Per sample cost estimates for the genotyping array included 
DNA QC and genotyping using Affymetrix Axiom UKBB array. Sequencing costs per sample 
were based on current pricing and a scenario of 1,000 samples sequenced on the Illumina 
NovaSeq 6000, S4 platform. We note that sequencing costs can vary depending on multiple 
factors, including reagents pricing, flow cell volume and sequencing platform, while genotyping 
array prices are less affected by sample size.  
 
Our estimates show that the combinations of WEGS4P,2X and WEGS8P,5X are half the price 
compared to standard 100X WES (no-plexing) and ~47% of the price of 30X WGS (Table 1). 
The combination of 5X WGS with 4-plexing WES is slightly more expensive but still 56% of 
the cost of 30X WGS and 60% of the cost of no-plexing 100X WES. As such, the WEGS 
scenarios representing the most economical strategies relative to WGS and WES are again 
the combinations of 2X WGS with 4-plexing WES and 5X WGS with 8-plexing WES. Yet, as 
shown above, while WEGS4P,2X and WEGS8P,5X show comparable precision and recall in 
targeted coding regions relative to standard WES, the latter combination is more effective at 
capturing non-coding variation. As such, we conclude that the most cost-effective WEGS 
strategy to capture both coding and non-coding variants is 5X WGS with 8-plexing high-depth 
WES. 
 
3.9. WEGS applied to the study of peripheral artery disease 
We applied WEGS to 862 patients diagnosed with PAD and identified 44,747,114 genetic 
variants (33,505,105 SNVs and 11,242,009 InDels) (Table 2). A total of 12,893,703 of these 
variants were novel (not described in dbSNP v109.3), from which 63.8% were singletons 
(carried by one individual). Inside the coding regions, we observed 35.4% synonymous 
(11,053 per individual), 59.0% non-synonymous (11,636 per individual), 1.1% stop/essential 
splice (490 per individual), 2.1% frameshift (298 per individual), and 2.3% (371 per individual) 
inframe genetic variants.  
 
We evaluated the WEGS ability to capture known loci associated with PAD identified by large-
scale GWAS41. All lead variants mapping to these loci were present in the PAD WEGS data 
(Supplementary Table 15). The majority of the lead variants are intergenic, with an average 
read depth of 13.7. Only 6 out of the 19 lead variants are directly typed onto the Global 
Screening Array (GSA) 24.v3; demonstrating the WEGS potentials to assess disease-causing 
variants beyond the genotyping arrays. In addition, we observed that WEGS captured, on 
average, 4,056 (SE=295) genetic variants within the known PAD loci that are not present in 
the TOPMed imputation reference panel and, thus, could not be imputed. (Supplementary 
Table 16). Although the majority of these loci are intergenic, WEGS was able to identify 
additional missense variants within these regions. 
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4 Discussion 
In this work, we propose and evaluate a new sequencing method which we call WEGS, 
designed to be more economical than WES and WGS. We considered WEGS based on WES 
(100X) with sample multiplexing, i.e. pooling and sequencing up to 8 samples simultaneously, 
combined with the low-depth WGS (2-5X). First, we evaluated the effect of sample multiplexing 
in WES. We demonstrated that an increased number of PCR/optical read duplicates in 
multiplexing WES experiments leads to the loss of depth of coverage and, consecutively, to a 
higher number of missed true variants. Second, we showed that although the UMI-aware read 
deduplication helps improve variant calling recall or precision rates, the improvements are 
minimal and don't compensate for the losses due to multiplexing. Third, we demonstrated that 
combining reads from low-depth WGS and reads from multiplexing WES brings variant calling 
recall and precision rates in protein-coding regions to the levels of no-plexing WES or above. 
Specifically, based on our experiments, we recommend using combinations of 2X WGS with 
4-plexing WES and 5X WGS with 8-plexing WES as an alternative to standard WES. 
  
When choosing between different WEGS configurations, it is essential to also consider 
performance outside the protein-coding regions. Specifically, we demonstrated that WEGS 
allows for the identification of population-specific non-coding genetic variants, which large 
genotype imputation panels impute less accurately due to differences in allele frequencies 
between the study population and reference. If there is no available imputation reference panel 
closely matching the study population, then the 8-plex WES with 5X WGS would be the best 
option compared to the 4-plex WES with 2X WGS. Also, our cost estimates suggest that 
WEGS relying on 8-plexing WES and 5X WGS is the most cost-effective configuration and is 
2X cheaper than standard no-plex WES and 2.1X cheaper than high-depth WGS. We used 
this WEGS configuration on 862 samples with PAD to demonstrate the scalability and 
applicability of the method in a practical setting, assessing almost 3M variations (24,000 in 
coding regions) per individual genome on average. 
 
The WEGS data processing pipelines build on existing open-source software tools and, thus, 
does not require time and financial investments in tool development. This work demonstrated 
how the industry-standard GATK toolset42 could be utilized for SNVs and InDels calling and 
filtering from WEGS data (see Data and Code Availability). Novel genotype imputation 
methods, such as GLIMPSE31, are available for sequencing data and can be applied to WEGS 
to increase the number of identified non-coding variants further. 
 
Our study has several limitations. First, benchmarking analyses relied on high-confidence 
variant calls from a GIAB trio. As benchmarking call sets will become available for regions 
difficult for variant detection (i.e. outside high-confidence regions), it will be interesting to 
investigate WEGS performance in these regions. Second, our analysis focused on SNVs and 
InDels only, as WES and low-depth WGS are known to have limited utility for structural variant 
calling. Third, while our precision and recall estimates were broadly consistent across 
replicates, we acknowledge that they are based on only 3 individual genomes from a single 
ancestry. Extension of this work could include an investigation of WEGS performance in 
individuals from other ancestries. Yet, based on our results and recent work assessing the 
advantages of low-depth WGS11, we expect WEGS to be of particular interest for populations 
currently underrepresented in public reference panels, enabling the discovery of novel 
population-specific variants. 
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We anticipate that WEGS will become a method of choice for studies of the molecular genetic 
basis of diseases and disease-related traits. Such genetic association studies require many 
sequenced individuals to reach sufficient statistical power and capacity to detect rare variants. 
Today, it remains costly to use high-depth WGS; for example, high-depth WGS for 1,000 
samples currently costs close to 1 million US dollars, and standard WES can be up to 90% of 
this figure. As such, a 50% cost reduction when using WEGS will enable high-depth 
sequencing of up to twice the number of exomes while providing additional information 
genome-wide. Our cost estimates are based on current pricing, but these relative costs should 
hold as long as WES reagents costs remain low compared to WGS costs. As such, WEGS 
should remain competitive until WGS costs become substantially lower than currently. The 
real impact on association studies will be shown in future studies using WEGS or similar 
technologies.  
 

5 Data and code availability 
The generated WES, WGS, and WEGS sequencing data for GIAB samples are available for 
download at https://datahub-778-pbbb.p.genap.ca/. The variant calling and analysis pipelines 
and source code are publicly available through version control repositories listed in the table 
below. 
Name URL Description 
WEGS_paper https://github.com/CERC-Genomic-

Medicine/WEGS_paper 
Source code for the tables and figures. 

WEGS_pipelines https://github.com/CERC-Genomic-
Medicine/WEGS_pipelines 

Scalable Nextflow pipelines for variant calling in 
WGS, WES and WEGS using GATK. 

glimpse_pipeline https://github.com/CERC-Genomic-
Medicine/glimpse_pipeline 

A scalable Nextflow pipeline for genotype 
imputation from low-depth sequencing data using 
GATK and GLIMPSE. 

shapeit4_pipeline https://github.com/CERC-Genomic-
Medicine/shapeit_pipeline 

A scalable Nextflow pipeline for statistical 
genotype phasing using SHAPEIT4. 
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MAIN FIGURES AND TABLES 

 

Figure 1. WES experimental design overview. DNA samples from a GIAB family trio 
(HG002, HG003, HG004) were used to perform WES experiments without and with 
multiplexing of 4 and 8 samples (no-plexing, 4-plexing and 8-plexing, correspondingly). For 
each sample in the family trio, we performed library preparation and sequencing to a target 
coverage of 100X in triplicate for the no-plexing and 4-plexing WES experiments, and in 
duplicate for the 8-plexing experiment, for a total of 37 samples. Sequencing library QC was 
performed before and after exome capture. Sequencing was performed using the Illumina 
NovaSeq S1 platform. 
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Figure 2. Average depths of coverage across all targeted regions in autosomal 
chromosomes in WES experiments without and with multiplexing. The average depth 
of coverage (DP) was computed across target regions in Agilent V7 capture using paired 
mapped reads and counting only base-pairs with minimal Phred-scaled mapping and base 
qualities of 20. The solid black line corresponds to the linear regression line, and the dashed 
black lines correspond to a 95% confidence interval. The box bounds the IQR, and Tukey-
style whiskers extend to a maximum of 1.5 ⨉ IQR beyond the box. The horizontal line within 
the box indicates the median value. Open circles are data points corresponding to the 
average DP across individual exome. 
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Figure 3. Variant recall and precision rates in no-plexing WES and WEGS. The figure 
represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-
confidence regions. The box bounds the IQR, and Tukey-style whiskers extend to 1.5 × IQR 
beyond the box. The horizontal line within the box indicates the median value. Open circles 
are data points corresponding to the individual WES and WEGS. The p-values above each 
sequencing method pair correspond to the one-tailed Wilcoxon rank-sum test. A) Recall 
rates of the called SNVs. B) Precision rates of the called SNVs. C) Recall rates of the called 
InDels D) Precision rates of the called InDels. Supplementary Table 6 shows average values 
and standard errors. 
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Table 1. Relative genotyping and sequencing costs per sample given current pricing.  
Per sample cost estimates for the genotyping array include DNA QC and genotyping using 
Affymetrix Axiom UKBB array. Sequencing scenarios are based on 1,000 samples 
sequenced on Illumina NovaSeq 6000, S4 platform. These cost estimates include sample 
preparation steps from DNA QC (QC, gDNA, high throughput) to Illumina library preparation 
and capture for Agilent SureSelect XT HS2 V7, sequencing library QC, and Illumina 
sequencing. 
  Cost relative to 

array 
Cost relative to 

2X WGS 
Cost relative to 

5X WGS 
Cost relative to 

30X WGS 
Cost relative to 

100X WES  
Axiom array 1.00 0.52 0.33 0.08 0.09 
2X WGS 1.91 1.00 0.63 0.15 0.17 
5X WGS 3.04 1.59 1.00 0.24 0.26 
30X WGS 12.48 6.52 4.10 1.00 1.08 
100X WES 11.50 6.01 3.78 0.92 1.00 
100X WES 4plex 5.05 2.64 1.66 0.40 0.44 
100X WES 8plex 3.95 2.07 1.30 0.32 0.34 
100X WES 4plex + 2X WGS 5.80 3.03 1.91 0.47 0.50 
100X WES 4plex + 5X WGS 6.93 3.63 2.28 0.56 0.60 
100X WES 8plex + 2X WGS 4.71 2.46 1.55 0.38 0.41 
100X WES 8plex + 5X WGS 5.84 3.05 1.92 0.47 0.51 

Table 2. The number of variants discovered in WEGS sequencing data from 862 patients 
with peripheral artery disease. This table reports the total number of sequenced variants in 
the overall patient group and the average number of sequenced variants per individual across 
different functional classifications. Novel variants were defined as variants not present in 
dbSNP (version 109.3). 

 All Individuals (N=862) Per Individual 

  Total Singletons Rare (MAF<1%) Average 
Depth at non-targeted regions (X) -- -- -- 4.5 (±0.88) 
Depth at targeted regions (X) -- -- -- 114.8 (±4.47) 
Total variants 44,747,114 14,542,812 32,497,956 2,964,080 
   SNVs 33,505,105 11,291,220 24,576,783 2,587,752 
   InDels 11,242,009 3,226,457 7,921,173 449,829 
Novel variants 12,893,703 8,226,183 12,712,777 26,984 
   SNVs 9,363,157 5,739,615 9,233,592 18,922 
   InDels 3,530,546 2,481,974 3,529,310 8,062 
Coding variants 348,410 181,870 284,434 23,854 
   Synonymous 123,337 57,968 94,275 11,053 
   Non-synonymous 205,570 113,475 173,546 11,636 
   Stop/essential splice 3,967 2,325 3,426 490 
   Frameshift 7,375 4,484 6,520 298 
   Inframe 8,069 3,566 6,589 371 
Novel coding variants 31,821 28,448 31,713 66 
   Synonymous 7,680 6,920 7,675 11 
   Non-synonymous 19,761 17,884 19,731 31 
   Stop/essential splice 1,071 865 1,045 12 
   Frameshift 2,166 1,897 2,159 8 
   Inframe 1,106 872 1,067   7 
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SUPPLEMENTARY FIGURES AND TABLES 

 

Supplementary Figure 1. Data processing diagram. WGS and WES alignment, 
deduplication and base recalibration steps were performed using GATK best practices. 
WGS and WES BAM files were then merged using samtools. Merged WEGS data was used 
for variant calling and imputation with GLIMPSE and local haplotype reference panel. The 
resulting imputed WEGS VCF was then used to merge imputed positions with WEGS data, 
hence obtaining the final WEGS VCF. 
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Supplementary Figure 2. Comparison of average depths of coverage (DP) in 
individual target regions in experiments without and with multiplexing. We computed 
the average depth of coverage (DP) for each target region in Agilent V7 capture in each 
sequenced individual. DP includes only paired mapped reads and base pairs with minimal 
Phred-scaled mapping and base qualities of 20. Each point corresponds to a single target 
region. In total, there were 208,817 non-overlapping autosomal regions. The X-axis shows 
the median of average DPs in the target region across all individuals sequenced in 4-plex 
(panel A) and 8-plex (panel B) experiments. The Y-axis shows the median of average DPs 
in the target region across all individuals sequenced without multiplexing. The darker color 
represents the higher density of the points. The vertical bar on the right of each panel shows 
the number of points corresponding to each color. The dotted black line corresponds to the 
1:1 ratio between DP in the experiments. 
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Supplementary Figure 3. Average depths of coverage across all targeted regions in 
autosomal chromosomes stratified by library preparation batch. The average depth of 
coverage (DP) was computed across target regions in Agilent V7 capture using paired 
mapped reads and counting only base pairs with minimal Phred-scaled mapping and base 
qualities of 20. The solid black line corresponds to the linear regression line, and the dashed 
black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-
style whiskers extend to 1.5 ⨉ IQR beyond the box. The horizontal line within the box 
indicates the median value. Open rectangles and diamonds are data points corresponding 
to the average DP across individual exome in batches 1 and 2, respectively. A) The DP is 
stratified by the library preparation batch in experiments without multiplexing, with 4-plexing 
and 8-plexing experiments. The p-values above each experiment pair correspond to the 
one-tailed Wilcoxon rank-sum test. B) The DP in the first library preparation batch. C) The 
DP in the second library preparation batch. 
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Supplementary Figure 4. Number of reads in autosomal chromosomes in sequencing 
experiments with and without multiplexing. The figure shows only paired reads in 
autosomal chromosomes, excluding reads that are non-primary or supplementary 
alignments or failed platform/vendor quality checks. The solid black line corresponds to the 
linear regression line, and the dashed black lines correspond to the 95% confidence interval. 
The box bounds the IQR, and Tukey-style whiskers extend to 1.5 ⨉ IQR beyond the box. 
The horizontal line within the box indicates the median value. Open circles are data points 
corresponding to the sequenced individual exomes. A) Number of paired reads in millions 
in sequencing experiments without sample multiplexing and when simultaneously 
sequencing four (4-plex) and eight (8-plex) samples. B) Percent of reads flagged as PCR or 
optical duplicates. C) Percent of unmapped reads. D) Average Phred-scaled base quality 
score across all reads in a sequenced sample. 
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Supplementary Figure 5. The number of paired reads in autosomal chromosomes 
stratified by library preparation batch. The figure shows only paired reads in autosomal 
chromosomes, excluding reads that are non-primary or supplementary alignments or failed 
platform/vendor quality checks.  The solid black line corresponds to the linear regression 
line, and the dashed black lines correspond to the 95% confidence interval. The box bounds 
the IQR, and Tukey-style whiskers extend to 1.5 ⨉ IQR beyond the box. The horizontal line 
within the box indicates the median value. Open rectangles and diamonds are data points 
corresponding to the number of paired reads across individual exome in batches 1 and 2, 
respectively. A) The number of paired reads is stratified by the library preparation batch in 
experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values 
above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The 
number of paired reads in the first library preparation batch. C) The number of paired reads 
in the second library preparation batch.  
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Supplementary Figure 6. Percent of reads flagged as PCR or optical duplicates in 
autosomal chromosomes stratified by library preparation batch. The figure shows only 
paired reads in autosomal chromosomes, excluding reads that are non-primary or 
supplementary alignments or failed platform/vendor quality checks. The solid black line 
corresponds to the linear regression line, and the dashed black lines correspond to the 95% 
confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to 1.5 ⨉ IQR 
beyond the box. The horizontal line within the box indicates the median value. Open 
rectangles and diamonds are data points corresponding to the percent of duplicated reads 
across individual exomes in batches 1 and 2, respectively. A) The percent of duplicated 
reads is stratified by the library preparation batch in experiments without multiplexing, with 
4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond 
to the one-tailed Wilcoxon rank-sum test. B) The percent of duplicate reads in the first library 
preparation batch. C) The percent of duplicate reads in the second library preparation batch. 
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Supplementary Figure 7. Percent of unmapped reads in autosomal chromosomes 
stratified by library preparation batch. The figure shows only paired reads in autosomal 
chromosomes, excluding reads that are non-primary or supplementary alignments or failed 
platform/vendor quality checks. The solid black line corresponds to the linear regression 
line, and the dashed black lines correspond to the 95% confidence interval. The box bounds 
the IQR, and Tukey-style whiskers extend to 1.5 ⨉ IQR beyond the box. The horizontal line 
within the box indicates the median value. Open rectangles and diamonds are data points 
corresponding to the percent of unmapped reads across individual exome in batches 1 and 
2, respectively. A) The percent of unmapped reads is stratified by the library preparation 
batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-
values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) 
The percent of unmapped reads in the first library preparation batch. C) The percent of 
unmapped reads in the second library preparation batch.  
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Supplementary Figure 8. The average quality of reads in autosomal chromosomes 
stratified by library preparation batch. The figure shows only paired reads in autosomal 
chromosomes, excluding reads that are non-primary or supplementary alignments or failed 
platform/vendor quality checks. The average read quality was computed as the average of 
Phred-scaled base qualities. The solid black line corresponds to the linear regression line, 
and the dashed black lines correspond to the 95% confidence interval. The box bounds the 
IQR, and Tukey-style whiskers extend to 1.5 ⨉ IQR beyond the box. The horizontal line 
within the box indicates the median value. Open rectangles and diamonds are data points 
corresponding to the average read quality across individual exome in batches 1 and 2, 
respectively. A) The average read quality is stratified by the library preparation batch in 
experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values 
above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The 
average read quality in the first library preparation batch. C) The average read quality in the 
second library preparation batch. 
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Supplementary Figure 9. Average depths of coverage across all targeted regions in 
autosomal chromosomes processed with and without UMI-aware deduplication. The 
average depth of coverage (DP) was computed across target regions in Agilent V7 capture 
using paired mapped reads and counting only base-pairs with minimal Phred-scaled 
mapping and base qualities of 20. The box bounds the IQR and Tukey-style whiskers extend 
to a maximum of 1.5 × IQR beyond the box. The horizontal line within the box indicates 
median value. Open circles, up-pointing and down-pointing triangles are data points 
corresponding to the average DP across individual exome processed without, with LocatIt 
and GATK's UmiAwareMarkDuplicatesWithMateCigar UMI-aware deduplication, 
respectively. 
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Supplementary Figure 10. Recall and precision of the SNVs and InDels called in 
sequencing experiments without and with multiplexing. The figure represents variant 
calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. 
The solid black line corresponds to the linear regression line, and the dashed black lines 
correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style 
whiskers extend to 1.5 × IQR beyond the box. The horizontal line within the box indicates 
the median value. Open circles are data points corresponding to the sequenced individual 
exomes. A) Recall rates of the called SNVs. B) Precision of the called SNVs. C) Recall rates 
of the called InDels. D) Precision of the called InDels. 
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Supplementary Figure 11. The recall of the SNVs and InDels called in sequencing 
experiments without and with multiplexing stratified by library preparation batch. The 
figure represents variant calls inside the target regions in Agilent V7 capture and the GIAB 
high-confidence regions. The solid black line corresponds to the linear regression line, and 
the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, 
and Tukey-style whiskers extend to 1.5 × IQR beyond the box. The horizontal line within the 
box indicates the median value. Open rectangles and diamonds are data points 
corresponding to the recall across individual exome in batches 1 and 2, respectively. A) The 
recall of SNVs is stratified by the library preparation batch in experiments without 
multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each 
experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The recall of SNVs 
in the first library preparation batch. C) The recall of SNVs in the second library preparation 
batch. D) The recall of InDels is stratified by the library preparation batch in experiments 
without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each 
experiment pair correspond to the one-tailed Wilcoxon rank-sum test. E) The recall of InDels 
in the first library preparation batch. F) The recall of InDels in the second library preparation 
batch. 
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Supplementary Figure 12. The precision of the SNVs and InDels called in sequencing 
experiments without and with multiplexing stratified by library preparation batch. The 
figure represents variant calls inside the target regions in Agilent V7 capture and the GIAB 
high-confidence regions. The solid black line corresponds to the linear regression line, and 
the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, 
and Tukey-style whiskers extend to 1.5 × IQR beyond the box. The horizontal line within the 
box indicates the median value. Open rectangles and diamonds are data points 
corresponding to the precision across individual exome in batches 1 and 2, respectively. A) 
The precision of SNVs is stratified by the library preparation batch in experiments without 
multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each 
experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The precision of 
SNVs in the first library preparation batch. C) The precision of SNVs in the second library 
preparation batch. D) The precision of InDels is stratified by the library preparation batch in 
experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values 
above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. E) The 
precision of InDels in the first library preparation batch. F) The precision of InDels in the 
second library preparation batch. 
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Supplementary Figure 13. The number of SNV and InDel calls in sequencing 
experiments without and with multiplexing. The figure represents variant calls inside the 
target regions in Agilent V7 capture and the GIAB high-confidence regions. The solid black 
line corresponds to the linear regression line, and the dashed black lines correspond to 95% 
confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to 1.5 × IQR 
beyond the box. The horizontal line within the box indicates the median value. A) Number 
of true positive (TP) SNV calls in sequencing experiments without sample multiplexing and 
when simultaneously sequencing four (4-plex) and eight (8-plex) samples. B) Number of 
false positive (FP) SNV calls. C) Number of false negative (FN) SNV calls. D) Number of TP 
InDel calls. E) Number FP InDel calls. F) Number of FN InDel calls. 
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Supplementary Figure 14. Recall and precision of the single nucleotide variations 
(SNVs) in sequencing experiments without and with UMI-aware read deduplication. 
The figure represents SNV calls inside the target regions in Agilent V7 capture and the GIAB 
high-confidence regions. Open circles, up-pointing and down-pointing triangles are data 
points corresponding to the recall and precision in individual exomes processed without, 
with LocatIt and GATK's UmiAwareMarkDuplicatesWithMateCigar UMI-aware 
deduplication, respectively. The solid black lines connect pairs of individual exomes with the 
same underlying sequencing data (i.e. same sequenced sample) but different deduplication 
approaches. The p-values above experiments with varying levels of multiplexing correspond 
to the one-tailed Wilcoxon signed-rank test between UMI agnostic and UMI-aware 
deduplication. A) Recall rates of the called SNVs without UMI-aware compared to UMI-
aware deduplication using LocatIt. B) Precision of the called SNVs without UMI-aware 
compared to UMI-aware deduplication using LocatIt. C) Recall rates of the called SNVs 
without UMI-aware compared to UMI-aware deduplication using GATK's 
UmiAwareMarkDuplicatesWithMateCigar. D) Precision of the called SNVs without UMI-
aware compared to UMI-aware deduplication using GATK's 
UmiAwareMarkDuplicatesWithMateCigar. 
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Supplementary Figure 15. Variant recall and precision rates in WES experiments with 
multiplexing before and after adding 2X WGS data. The figure represents variant calls 
inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. Open 
circles and up-pointing triangles are data points corresponding to the recall and precision in 
individual multiplexed WES before and after adding 2X WGS data, respectively. The solid 
black lines connect pairs of individual exomes with the same underlying WES data (i.e. same 
sequenced sample). The p-values above experiments with varying levels of multiplexing 
correspond to the one-tailed Wilcoxon signed-rank test between UMI agnostic and UMI-
aware deduplication. A) Recall rates of the called SNVs with and without 2X WGS. B) 
Precision rates of the called SNVs with and without 2X WGS. C) Recall rates of the called 
InDels with and without 2X WGS. D) Precision rates of the called InDels with and without 
2X WGS.  
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Supplementary Figure 16. Variant recall and precision rates in WES experiments with 
multiplexing before and after adding 5X WGS data. The figure represents variant calls 
inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. Open 
circles and up-pointing triangles are data points corresponding to the recall and precision in 
individual multiplexed WES before and after adding 5X WGS data, respectively. The solid 
black lines connect pairs of individual exomes with the same underlying WES data (i.e. same 
sequenced sample). The p-values above experiments with varying levels of multiplexing 
correspond to the one-tailed Wilcoxon signed-rank test between UMI agnostic and UMI-
aware deduplication. A) Recall rates of the called SNVs with and without 5X WGS. B) 
Precision rates of the called SNVs with and without 5X WGS. C) Recall rates of the called 
InDels with and without 5X WGS. D) Precision rates of the called InDels with and without 
5X WGS.  
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Supplementary Figure 17. SNVs calling precision and recall rates in no-plexing WES 
compared to WEGS stratified by library preparation batch. The figure represents SNV 
calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. 
The box bounds the IQR, and Tukey-style whiskers extend to 1.5 × IQR beyond the box. 
The horizontal line within the box indicates the median value. Open rectangles and 
diamonds are data points corresponding to the individual WES and WEGS in batches 1 and 
2, respectively. The p-values above each pair of batches or sequencing methods 
correspond to the one-tailed Wilcoxon rank-sum test. A) Precision rates of the called SNVs 
in batches 1 and 2. B) Precision rates of the called SNVs in batch 1. C) Precision rates of 
the called SNVs in batch 2. D) Recall rates of the called SNVs in batches 1 and 2. E) Recall 
rates of the called SNVs in batch 1. F) Recall rates of the called SNVs in batch 2. 
Supplementary Table 7 shows average values and standard errors.  
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Supplementary Figure 18. InDel calling precision and recall rates in no-plexing WES 
compared to WEGS stratified by library preparation batch. The figure represents InDel 
calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. 
The box bounds the IQR, and Tukey-style whiskers extend to 1.5 × IQR beyond the box. 
The horizontal line within the box indicates the median value. Open rectangles and 
diamonds are data points corresponding to the individual WES and WEGS in batches 1 and 
2, respectively. The p-values above each pair of batches or sequencing methods 
correspond to the one-tailed Wilcoxon rank-sum test. A) Precision rates of the called InDels 
in batches 1 and 2. B) Precision rates of the called InDels in batch 1. C) Precision rates of 
the called InDels in batch 2. D) Recall rates of the called InDels in batches 1 and 2. E) Recall 
rates of the called InDels in batch 1. F) Recall rates of the called InDels in batch 2. 
Supplementary Table 7 shows average values and standard errors. 
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Supplementary Table 1. The average changes in read properties after UMI-aware read 
deduplication steps relative to the UMI agnostic approach. 
Number of samples 

sequenced 
together 

(multiplexed) 

UMI-aware 
deduplication tool 

Average difference compared to UMI agnostic approach 
% of QC fail reads 

(SE) 
% of PCR/optical 
duplicates (SE) 

% of unmapped 
reads (SE) 

Avg. Phred-scaled 
read quality (SE) 

1 LocatIt 6.45 (0.16) -1.20 (0.04) -0.068 (0.00223) 2.60 (0.12) 
1 GATK 0.00 (0.00) -0.36 (0.01) 0.003 (0.00003) 0.35 (0.06) 
4 LocatIt 5.19 (0.16) -1.42 (0.04) -0.069 (0.00159) 2.87 (0.05) 
4 GATK 0.00 (0.00) -0.39 (0.01) 0.003 (0.00005) 0.49 (0.05) 
8 LocatIt 4.38 (0.10) -1.56 (0.03) -0.069 (0.00175) 2.70 (0.14) 
8 GATK 0.00 (0.00) -0.40 (0.01) 0.003 (0.00004) 0.57 (0.03) 

 

Supplementary Table 2. Variant calling in whole exome sequencing experiments with 
and without multiplexing. The table represents variant calls inside the target regions in 
Agilent V7 capture and the GIAB high-confidence regions. TP - true positives, FP - false 
positives, FN - false negatives. 
 SNVs InDels 

Number of samples 
sequenced together 

(multiplexed) 

N  
(SE) 

TP  
(SE) 

FP 
(SE) 

FN  
(SE) 

Recall  
(SE) 

Precision 
(SE) 

N  
(SE) 

TP 
(SE) 

FP 
(SE) 

FN 
(SE) 

Recall 
(SE) 

Precision 
(SE) 

1 22,648 
(33) 

22,241 
(30) 

406 
(7) 

384  
(8) 

0.9830 
(0.0004) 

0.9821 
(0.0003) 

683  
(7) 

631  
(6) 

53 
(2) 

41  
(2) 

0.9390 
(0.0029) 

0.9232 
(0.0028) 

4 22,632 
(28) 

22,214 
(24) 

418 
(6) 

411  
(11) 

0.9818 
(0.0005) 

0.9815 
(0.0002) 

682  
(7) 

629 
(5) 

54  
(2) 

43  
(2) 

0.9360 
(0.0031) 

0.9220 
(0.0021) 

8 22,592 
(28) 

22,177 
(23) 

415 
(6) 

446  
(9) 

0.9803 
(0.0004) 

0.9816 
(0.0003) 

679  
(6) 

623 
(4) 

56  
(2) 

50  
(2) 

0.9261 
(0.0028) 

0.9186 
(0.0027) 

 

Supplementary Table 3. The average number of SNVs missed in multiplexing 
experiments but correctly identified across all no-plexing experiments. For each 
multiplexing experiment, we computed the number of false negative (FN) SNV calls that were 
true positive (TP) in all three no-plexing experiments for the corresponding individual. 
 TP across all no-plexing WES 
 All N (SE) Higher DP N (SE) 
FN in 4-plexing WES 45 (6) 40 (6) 
FN in 8-plexing WES 65 (6) 61 (6) 

 

Supplementary Table 4. The average changes in SNV calling in whole exome 
sequencing experiments with UMI-aware read deduplication relative to the UMI agnostic 
approach. The table represents SNV calls inside the target regions in Agilent V7 capture and 
the GIAB high-confidence regions. The star symbols represent statistically significant 
differences when using a one-tailed Wilcoxon signed-rank test: * - P-value < 0.05, ** - P-value 
< 0.01, *** - P-value < 0.001. 
Number of samples 
sequenced together 

(multiplexed) 

UMI-aware 
deduplication 

tool 

N (SE) TP (SE) FP (SE) FN (SE) Recall (SE) Precision (SE) 

1 LocatIt -17 (3) ** -14 (1) ** -4 (4) 14 (1) ** -0.0006 (0.0001) ** 0.0002 (0.0002) 
1 GATK 9 (3) ** 0 (0) 8 (2) ** -0 (0) 0.0000 (0.0000) -0.0004 (0.0001)** 
4 LocatIt -16 (3) *** -13 (2) *** -3 (3) 13 (2) *** -0.0006 (0.0001)*** 0.0001 (0.0001) 
4 GATK 24 (3) *** 4 (1)  ** 20 (3) *** -4 (1) ** 0.0002 (<0.0001) ** -0.0009 (0.0001)*** 
8 LocatIt -20 (4) *** -17 (2) *** -2 (3) 17 (2) *** -0.0008 (0.0001)*** 0.0001 (0.0001) 
8 GATK 39 (2) *** 6 (1) *** 33 (2) *** -6 (1) *** 0.0003 (<0.0001)*** -0.0014 (0.0001)*** 
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Supplementary Table 5. The average changes in SNVs and InDels calling in whole 
exome sequencing experiments when adding additional whole genome 
sequencing reads relative to pure whole exome sequencing experiments. The table 
represents SNV and InDel calls inside the target regions in Agilent V7 capture and the 
GIAB high-confidence regions. The star symbols represent statistically significant 
differences when using a one-tailed Wilcoxon signed-rank test: * - P-value < 0.05, ** - P-
value < 0.01, *** - P-value < 0.001. 

 
Number of 
samples 

sequenced 
together 

(multiplexed) 

 
WGS 
DP 

SNVs InDels 

N 
(SE) 

TP 
(SE) 

FP 
(SE) 

FN 
(SE) 

Recall 
(SE) 

Precision 
(SE) 

N 
(SE) 

TP 
(SE) 

FP 
(SE) 

FN 
(SE) 

Recall 
(SE) 

Precision 
(SE) 

4 2X 62 
(8) 
*** 

54 
(7) 
*** 

8 
(3) 

* 

-54 
(7) 
*** 

0.0024 
(0.0003) 

*** 

-0.0003 
(0.0001) 

* 

6 
(1) 
** 

9 
(1) 
*** 

-3 
(1) 
** 

-9 
(1) 
*** 

0.0133 
(0.0015)

*** 

0.0049 
(0.0010) 

*** 

8 2X 76 
(6) 
*** 

70 
(5) 
*** 

6 
(4) 

-70 
(5) 
*** 

0.0031 
(0.0002) 

*** 

-0.0002 
(0.0002) 

6 
(2) 
 *** 

10 
(1) 
*** 

-3 
(1) 
*** 

-10 
(1) 
*** 

0.0146 
(0.0017)

*** 

0.0055 
(0.0009) 

*** 

4 5X 85 
(9) 
*** 

77 
(9) 
*** 

8 
(4) 

* 

-77 
(9) 
*** 

0.0034 
(0.0004) 

*** 

-0.0003 
(0.0002) 

8 
(1) 
*** 

13 
(1) 
*** 

-5 
(1) 
*** 

-13 
(1) 
*** 

0.0192 
(0.0020)

*** 

0.0080 
(0.0013) 

*** 

8 5X 104 
(8) 
*** 

100 
(7) 
*** 

3 
(5) 

-100 
(7) 
*** 

0.0044 
(0.0003) 

*** 

-0.0001 
(0.0002) 

10 
(2) 
*** 

15 
(1) 
*** 

-6 
(1) 
*** 

-15 
(1) 
*** 

0.0229 
(0.0018)

*** 

0.0092 
(0.0011) 

*** 

 

Supplementary Table 6. Average variant recall and precision rates in no-plexing WES 
and WEGS. The table represents variant calls inside the target regions in Agilent V7 capture 
and the GIAB high-confidence regions. The star symbols represent statistically significant 
differences between WES and WEGS when using a one-tailed Wilcoxon rank-sum test: * - P-
value < 0.05, ** - P-value < 0.01, *** - P-value < 0.001. WEGS values in bold font are higher 
than the corresponding values in WES. 

 
Sequencing 

method 

 
Number of 
samples 

sequenced 
together 

(multiplexed) 

 
WGS DP SNVs InDels 

Recall (SE) Precision (SE) Recall (SE) Precision (SE) 

WES 1 – 0.9830 (0.0004) 0.9821 (0.0003) 0.9390 (0.0029) 0.9232 (0.0028) 

WEGS4P,2X 4 2 0.9842 (0.0002)** 0.9812 (0.0002)* 0.9493 (0.0028)* 0.9269 (0.0024) 

WEGS4P,5X 4 5 0.9852 (0.0001)*** 0.9812 (0.0002)* 0.9552 (0.0019)*** 0.9300 (0.0024)* 

WEGS8P,2X 8 2 0.9834 (0.0002) 0.9814 (0.0003) 0.9407 (0.0026) 0.9240 (0.0024) 

WEGS8P,5X 8 5 0.9847 (0.0001)*** 0.9816 (0.0002) 0.9490 (0.0020)** 0.9277 (0.0027) 
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Supplementary Table 7. Average variant recall and precision rates in no-plexing WES 
and WEGS stratified by library preparation batch. The star symbols represent statistically 
significant differences between WES and WEGS in the same batch when using a one-tailed 
Wilcoxon rank-sum test: * - P-value < 0.05, ** - P-value < 0.01, *** - P-value < 0.001. WEGS 
values in bold font are higher than the corresponding values in WES in the same batch. 

 
Batch 

 
Label 

 
Number of 
samples 

sequenced 
together 

(multiplexed) 

 
WGS DP 

SNVs InDels 

Recall (SE) Precision (SE) Recall (SE) Precision (SE) 

1 WES 1 0 0.9840 (0.0004) 0.9813 (0.0006) 0.9426 (0.0041) 0.9241 (0.0054) 

1 WEGS4P,2X 4 2 0.9846 (0.0002) 0.9812 (0.0003) 0.9515 (0.0028)* 0.9289 (0.0031) 

1 WEGS4P,5X 4 5 0.9854 (0.0002)** 0.9811 (0.0003) 0.9569 (0.0020)** 0.9315 (0.0032) 

1 WEGS8P,2X 8 2 0.9838 (0.0003) 0.9818 (0.0004) 0.9434 (0.0036) 0.9257 (0.0030) 

1 WEGS8P,5X 8 5 0.9849 (0.0002)* 0.9819 (0.0004) 0.9506 (0.0029) 0.9293 (0.0040) 

2 WES 1 0 0.9826 (0.0004) 0.9824 (0.0003) 0.9371 (0.0038) 0.9228 (0.0036) 

2 WEGS4P,2X 4 2 0.9835 (0.0002) 0.9813 (0.0003)** 0.9450 (0.0062) 0.9229 (0.0029) 

2 WEGS4P,5X 4 5 0.9849 (0.0002)** 0.9814 (0.0003)* 0.9519 (0.0040)* 0.9271 (0.0035) 

2 WEGS8P,2X 8 2 0.9830 (0.0002) 0.9811 (0.0004)** 0.9380 (0.0036) 0.9223 (0.0038) 

2 WEGS8P,5X 8 5 0.9845 (0.0002)** 0.9812 (0.0003)** 0.9474 (0.0028)* 0.9262 (0.0039) 

 

Supplementary Table 8. Average variant recall and precision rates in 30X WGS, WES, 
and WEGS. The table represents variant calls inside the target regions in Agilent V7 capture 
and the GIAB high-confidence regions. 

Sequencing 
method 

SNVs InDels 
TP 

(SE) 
FP 

(SE) 
FN 

(SE) 
Precision 

(SE) 
Recall 

(SE) 
TP 

(SE) 
FP 

(SE) 
FN 

(SE) 
Precision 

(SE) 
Recall 

(SE) 
30X WGS 22,338 

(19) 
260 
(5) 

287 
(5) 

0.9885 
(0.0002) 

0.9873 
(0.0002) 

661 
(5) 

12 
(1) 

11 
(1) 

0.9823 
(0.0017) 

0.9841 
(0.0011) 

WES 22,241 
(30) 

406 
(7) 

384 
(8) 

0.9821 
(0.0003) 

0.9830 
(0.0004) 

631 
(6) 

53 
(2) 

41 
(2) 

0.9232 
(0.0028) 

0.9390 
(0.0029) 

WEGS4P,2X 22,268 
(24) 

426 
(6) 

357 
(5) 

0.9812 
(0.0002) 

0.9842 
(0.0002) 

638 
(5) 

51 
(2) 

34 
(2) 

0.9269 
(0.0024) 

0.9493 
(0.0028) 

WEGS4P,5X 22,291 
(25) 

427 
(6) 

334 
(3) 

0.9812 
(0.0002) 

0.9852 
(0.0001) 

642 
(5) 

49 
(2) 

30 
(1) 

0.9300 
(0.0024) 

0.9552 
(0.0019) 

WEGS8P,2X 22,247 
(21) 

421 
(6) 

376 
(4) 

0.9814 
(0.0003) 

0.9834 
(0.0002) 

633 
(4) 

52 
(2) 

40 
(2) 

0.9240 
(0.0024) 

0.9407 
(0.0026) 

WEGS8P,5X 22,277 
(21) 

418 
(6) 

346 
(3) 

0.9816 
(0.0002) 

0.9847 
(0.0001) 

638 
(4) 

50 
(2) 

34 
(2) 

0.9277 
(0.0027) 

0.9490 
(0.0020) 
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Supplementary Table 9. Average genome-wide variant recall and precision rates in 30X 
WGS and WEGS. The table represents variant calls in genetic regions overlapping with the 
GIAB high-confidence regions genome-wide. 
 

Sequencing 
method 

SNV InDel 
TP 

(SE) 
FP 

(SE) 
FN 

(SE) 
Precision 

(SE) 
Recall 

(SE) 
TP 

(SE) 
FP 

(SE) 
FN 

(SE) 
Precision 

(SE) 
Recall 

(SE) 
30X WGS 3,309,667 

(4,295) 
15,268 

(174) 
26,097 

(82) 
0.9954 

(0.0001) 
0.9922 

(0.0000) 
500,728 
(2,382) 

5,605 
(35) 

9,757 
(111) 

0.9889 
(0.0001) 

0.9809 
(0.0002) 

WEGS4P,2X 1,333,840 
(44,603) 

303,452 
(4,673) 

2,001,925 
(48,123) 

0.8137 
(0.0033) 

0.4000 
(0.0138) 

132,918 
(5,359) 

56,441 
(1,663) 

377,567 
(6,801) 

0.7010 
(0.0025) 

0.2607 
(0.0112) 

WEGS4P,5X 1,909,331 
(58,921) 

240,392 
(3,054) 

1,426,434 
(62,566) 

0.8869 
(0.0043) 

0.5726 
(0.0183) 

201,593 
(7,908) 

68,206 
(1,221) 

308,892 
(9,249) 

0.7457 
(0.0041) 

0.3954 
(0.0166) 

WEGS8P,2X 1,326,086 
(39,124) 

307,039 
(4,029) 

2,008,327 
(42,308) 

0.8109 
(0.0029) 

0.3979 
(0.0121) 

131,783 
(4,687) 

56,193 
(1,460) 

378,097 
(6,013) 

0.7001 
(0.0022) 

0.2588 
(0.0098) 

WEGS8P,5X 1,914,743 
(51,710) 

240,678 
(2,681) 

1,419,670 
(54,999) 

0.8870 
(0.0038) 

0.5745 
(0.0161) 

201,995 
(6,927) 

68,102 
(1,067) 

307,885 
(8,174) 

0.7463 
(0.0036) 

0.3967 
(0.0146) 

 

Supplementary Table 10. Precision and recall rates of variants imputed using the 
TOPMed reference panel inside WES target regions. P - precision. R - recall. For WEGS, 
this table reports average numbers for each sample. Each sample was sequenced 4 times 
using WEGS4P,2X. HG002 and HG004 were sequenced 5 times using WEGS8P,5X. HG003 was 
sequenced 6 times using WEGS8P,5X. The percent of missed true variants is equal to (1 - recall) 
* 100. 

 
Sample 

TOPMed imputed WEGS 4P, 2X WEGS 8P, 5X 

TP FN FP P R TP 
(SE) 

FN 
(SE) 

FP 
(SE) 

P 
(SE) 

R 
(SE) 

TP 
(SE) 

FN 
(SE) 

FP 
(SE) 

P 
(SE) 

R 
(SE) 

SNVs 
HG002 21,458 1,285 165 0.9924 0.9435 22,379 

(7) 
364 
(7) 

446 
(6) 

0.9805 
(0.0002) 

0.9840 
(0.0003) 

22,390 
(5) 

353 
(5) 

449 
(7) 

0.9803 
(0.0003) 

0.9845 
(0.0002) 

HG003 21,477 1,112 111 0.9949 0.9508 22,231 
(9) 

358 
(9) 

425 
(4) 

0.9813 
(0.0001) 

0.9841 
(0.0004) 

22,249 
(6) 

340 
(6) 

406 
(5) 

0.9821 
(0.0002) 

0.9850 
(0.0003) 

HG004 21,228 1,315 181 0.9915 0.9417 22,195 
(9) 

348 
(9) 

406 
(7) 

0.9820 
(0.0003) 

0.9846 
(0.0004) 

22,197 
(5) 

346 
(5) 

402 
(3) 

0.9822 
(0.0001) 

0.9847 
(0.0002) 

InDels 
HG002 271 411 8 0.9713 0.3974 648 

(3) 
34 
(3) 

57 
(1) 

0.9197 
(0.0017) 

0.9498 
(0.0050) 

647 
(2) 

35 
(2) 

58 
(3) 

0.9177 
(0.0038) 

0.9481 
(0.0028) 

HG003 257 433 8 0.9698 0.3725 649 
(2) 

41 
(2) 

52 
(2) 

0.9254 
(0.0019) 

0.9409 
(0.0027) 

651 
(1) 

39 
(1) 

52 
(1) 

0.9265 
(0.0018) 

0.9432 
(0.0019) 

HG004 259 384 7 0.9738 0.4028 616 
(2) 

28 
(2) 

43 
(2) 

0.9357 
(0.0035) 

0.9572 
(0.0026) 

615 
(2) 

28 
(2) 

40 
(2) 

0.9393 
(0.0033) 

0.9568 
(0.0031) 
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Supplementary Table 11. Precision and recall rates of variants imputed using the 
TOPMed reference panel genome-wide. P - precision. R - recall. For WEGS, this table 
reports average numbers for each sample. Each sample was sequenced 4 times using 
WEGS4P,2X. HG002 and HG004 were sequenced 5 times using WEGS8P,5X. HG003 was 
sequenced 6 times using WEGS8P,5X. The percent of missed true variants is equal to (1 - recall) 
* 100. 

 
Sample 

TOPMed imputed WEGS 4P,2X WEGS 8P,5X 

TP P R TP 
(SE) 

P 
(SE) 

R 
(SE) 

TP 
(SE) 

P 
(SE) 

R 
(SE) 

SNVs 
HG002 3,212,631 0.9934 0.9582 1,323,307 

(13,949) 
0.8183 

(0.0023) 
0.3947 

(0.0042) 
1,873,500 

(1,770) 
0.8853 

(0.0002) 
0.5588 

(0.0005) 
HG003 3,181,715 0.9947 0.96 1,518,733 

(9,194) 
0.8236 

(0.0013) 
0.4583 

(0.0028) 
2,151,757 

(2,243) 
0.9040 

(0.0002) 
0.6493 

(0.0007) 
HG004 3,202,593 0.9936 0.9587 1,159,478 

(6,227) 
0.7991 

(0.0011) 
0.3471 

(0.0019) 
1,671,569 

(3,941) 
0.8684 

(0.0005) 
0.5004 

(0.0012) 
InDels 

HG002 199,347 0.9896 0.3816 132,493 
(1,957) 

0.7043 
(0.0008) 

0.2536 
(0.0037) 

198,767 
(351) 

0.7447 
(0.0003) 

0.3805 
(0.0007) 

HG003 195,885 0.9909 0.3911 154,695 
(1,172) 

0.7091 
(0.0003) 

0.3089 
(0.0023) 

232,882 
(368) 

0.7624 
(0.0002) 

0.4650 
(0.0007) 

HG004 197,298 0.9899 0.3882 111,566 
(788) 

0.6897 
(0.0004) 

0.2195 
(0.0015) 

168,158 
(651) 

0.7287 
(0.0002) 

0.3308 
(0.0013) 

 

Supplementary Table 12. Imputed variants, their allele frequencies, and overlap with 
true positive (TP) variants in WEGS outside WES target regions. The arrows ⇧ and ⇩ 
denote the increase and decrease in AF fold-change (AF ASJ / AF TOPMed) compared to 
variants where the number of imputed alleles matched the number of true alleles.  

 
Sample 

# of imputed 
alleles vs # of 

true alleles 

 
N imputed 
variants 

Median AF 
(Q1-Q3) 

Mean % of variants which 
were TP in WEGS (SE) 

ASJ TOPMed Fold-change WEGS 4P,2X WEGS 8P,5X 

HG002 Same 3,258,732 0.460  
(0.239-0.703) 

0.442  
(0.231-0.680) 

1.042  
(0.925-1.197) 

38.44 
(0.42) 

55.16 
(0.05) 

HG002 Smaller 15,233 0.234  
(0.059-0.483) 

0.215  
(0.043-0.453) 

⇧ 1.136  
(0.926-1.509) 

41.85 
(0.48) 

59.31 
(0.11) 

HG002 Greater 17,161 0.329  
(0.147-0.536) 

0.340  
(0.157-0.539) 

⇩ 1.007  
(0.840-1.209) 

90.55 
(0.05) 

92.75 
(0.02) 

HG003 Same 3,225,810 0.461  
(0.239-0.704) 

0.443  
(0.231-0.681) 

1.043  
(0.927-1.198) 

44.84 
(0.28) 

64.45 
(0.07) 

HG003 Smaller 12,665 0.222  
(0.051-0.496) 

0.215  
(0.033-0.458) 

⇧1.129  
(0.930-1.537) 

46.75 
(0.34) 

67.09 
(0.08) 

HG003 Greater 13,855 0.302  
(0.134-0.477) 

0.318  
(0.145-0.501) 

⇩1.006  
(0.822-1.210) 

92.38 
(0.04) 

94.60 
(0.03) 

HG004 Same 3,247,624 0.457  
(0.237-0.702) 

0.440  
(0.230-0.679) 

1.041  
(0.923-1.196) 

33.65 
(0.19) 

49.22 
(0.12) 

HG004 Smaller 15,357 0.219  
(0.056-0.465) 

0.205  
(0.042-0.440) 

⇧1.114  
(0.915-1.565) 

38.89 
(0.30) 

55.00 
(0.12) 

HG004 Greater 16,457 0.325  
(0.142-0.534) 

0.330  
(0.153-0.539) 

⇩1.022  
(0.841-1.239) 

89.38 
(0.05) 

91.94 
(0.02) 
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Supplementary Table 13. Precision and recall rates of variants imputed using the 
GLIMPSE method genome-wide. P - precision. R - recall. This table reports the average 
number for each sample. Each sample was sequenced 4 times using WEGS4P,2X. HG002 and 
HG004 were sequenced 5 times using WEGS8P,5X. HG003 was sequenced 6 times using 
WEGS8P,5X. The percent of missed true variants equals (1 - recall) * 100. The local imputation 
reference panel combines haplotypes from the 1000 Genomes Project and Human Genome 
Diversity Project (see Methods). 
 
Sample 

GLIMPSE-imputed WEGS 4P,2X GLIMPSE-imputed WEGS 8P,5X 
TP 

(SE) 
FN 

(SE) 
FP 

(SE) 
P 

(SE) 
R 

(SE) 
TP 

(SE) 
FN 

(SE) 
FP 

(SE) 
P 

(SE) 
R 

(SE) 
SNVs 

HG002 2,736,662 
(2,636) 

616,017 
(2,636) 

372,221 
(1,713) 

0.8803 
(0.0006) 

0.8163 
(0.0008) 

2,922,557 
(375) 

430,122 
(375) 

301,471 
(328) 

0.9065 
(0.0001) 

0.8717 
(0.0001) 

HG003 2,709,032 
(1,998) 

605,111 
(1,998) 

388,043 
(965) 

0.8747 
(0.0004) 

0.8174 
(0.0006) 

2,919,299 
(567) 

394,844 
(567) 

267,597 
(277) 

0.9160 
(0.0001) 

0.8809 
(0.0002) 

HG004 2,706,645 
(1,212) 

633,826 
(1,212) 

381,866 
(504) 

0.8764 
(0.0002) 

0.8103 
(0.0004) 

2,879,156 
(815) 

461,315 
(815) 

323,954 
(586) 

0.8989 
(0.0002) 

0.8619 
(0.0002) 

InDels 
HG002 251,862 

(1,203) 
270,527 
(1,203) 

65,080 
(614) 

0.7947 
(0.0008) 

0.4821 
(0.0023) 

294,850 
(254) 

227,539 
(254) 

76,268 
(112) 

0.7945 
(0.0002) 

0.5644 
(0.0005) 

HG003 256,262 
(716) 

244,530 
(716) 

70,962 
(416) 

0.7832 
(0.0005) 

0.5117 
(0.0014) 

305,742 
(233) 

195,052 
(233) 

78,524 
(145) 

0.7957 
(0.0002) 

0.6105 
(0.0005) 

HG004 237,951 
(490) 

270,323 
(490) 

60,461 
(365) 

0.7974 
(0.0007) 

0.4682 
(0.0010) 

273,779 
(416) 

234,495 
(416) 

71,535 
(257) 

0.7929 
(0.0004) 

0.5386 
(0.0008) 

 

Supplementary Table 14. Precision and recall rates of variants imputed using the 
Minimac4 method genome-wide. The percent of missed true variants equals (1 - recall) * 
100. The local imputation reference panel combines haplotypes from the 1000 Genomes 
Project and Human Genome Diversity Project (see Methods). 

 
Sample 

Minimac4-imputed SNVs Minimac4-imputed InDels 
TP FN FP Precision Recall TP FN FP Precision Recall 

HG002 2,942,195 410,484 316,718 0.9028 0.8776 326,360 196,029 47,144 0.8738 0.6247 
HG003 2,908,634 405,509 317,430 0.9016 0.8776 317,001 183,792 46,494 0.8721 0.633 
HG004 2,934,901 405,570 313,069 0.9036 0.8786 320,526 187,748 45,098 0.8767 0.6306 
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Supplementary Table 15. Overview of genome-wide significant loci associated with 
peripheral artery disease (PAD) in the 862 WEGS sequenced patients. Abbreviations: chr-
chromosome; alt-alternative; ref-reference; freq-frequency. GSA-global screening array 
(24v3). This table reports the allele frequency and average depth of known genome-wide 
significant peripheral artery disease loci in the WEGS.  
 rsid chr position Alt  

Allele 
Ref 

Allele 
Alt  

Freq 
Gnomad 

Freq 
Average 

depth  
Annotation Gene/Locus Present on 

the GSA 
array 

rs7528419 1 109274570 G A 0.16 0.22 7 3’ UTR variant CELSR2/SORT1 + 
rs6025 1 169549811 T C 0.05 0.03 44 Missense variant  F5 + 
rs118039278 6 160564494 A G 0.08 0.07 7 Intron variant LPA - 
rs3130968 6 31097294 T C 0.11 0.14 9 Regulatory region variant HLA-B - 
rs2107595 7 19009765 A G 0.14 0.17 5 Regulatory region variant HDAC9 - 
rs4722172 7 22746913 A G 0.74 0.79 7 Intergenic variant IL6 - 
rs322 8 19961706 C A 0.22 0.27 4 Intron variant LPL - 
rs505922 9 133273813 T C 0.56 0.45 7 Intron variant ABO + 
rs1537372 9 22103184 T G 0.35 0.41 6 Intron variant CDKN2B-AS1/9p21  
rs7903146 10 112998590 T C 0.17 0.27 3 Intron variant TCF7L2 + 
rs566125 11 46321284 C A 0.22 0.14 4 Intron variant MMP3 - 
rs7476 11 102839740 T C 0.13 0.30 5 3’ UTR variant CREB3L1 - 
rs11066301 12 79557786 A G 0.50 0.44 4 Intron variant PTPN11 + 
rs4842266 12 112433568 G A 0.34 0.34 111 Upstream gene variant RP11-359M6.3 - 
rs1975514 13 110176544 C T 0.37 0.37 8 Intron variant COL4A1 - 
rs55784307 14 70034647 A C 0.15 0.19 5 Downstream gene variant SMOC1 + 
rs10851907 15 78623522 A G 0.34 0.41 5 Upstream gene variant CHRNA3 - 
rs138294113 19 11081053 T C 0.09 0.11 6 Intergenic variant LDLR - 

 

Supplementary Table 16. Genome-wide significant loci associated with peripheral 
artery disease (PAD) and the number of variants within the loci present in WEGS and 
TOPMed. For each locus, we counted the number of variants surrounding the lead variant 
(rsid) within ±500 kilobase (kb) distance. 

      
# of WEGS SNVs absent from TOPMed 

rsid chr position # of SNVs  
in WEGS 

# of SNVs  
in TOPMed Total Synon 

Non-
synon Stop/Splice Frameshift Inframe 

rs7528419 1 109274570 17,631 258,859 4,481 17 35 2 2 0 
rs6025 1 169549811 14,663 254,419 3,310 9 8 3 0 0 
rs118039278 6 160564494 15,028 272,156 3,141 1 17 0 0 0 
rs3130968 6 31097294 32,930 255,957 6,085 24 64 5 10 10 
rs2107595 7 19009765 14,424 322,455 2,379 4 2 0 0 0 
rs4722172 7 22746913 15,796 276,263 3,505 3 7 1 3 0 
rs322 8 19961706 17333 333,151 3,251 4 10 1 0 0 
rs505922 9 133273813 14,233 290,358 4,274 9 29 1 1 3 
rs1537372 9 22103184 20,034 324,269 2,731 3 2 0 0 0 
rs7903146 10 112998590 14,599 268,399 3,304 1 3 0 0 0 
rs566125 11 46321284 16,485 262,361 4,932 8 34 1 0 0 
rs7476 11 102839740 15,023 274,797 3,198 4 23 0 1 0 
rs11066301 12 79557786 55,094 262,291 3,143 1 3 0 0 0 
rs4842266 12 112433568 16,233 250,632 5,016 3 9 2 0 0 
rs1975514 13 110176544 17,779 288,888 3,274 7 25 1 0 2 
rs55784307 14 70034647 15,766 264,425 3,387 4 12 0 0 0 
rs10851907 15 78623522 18,510 275,484 4,514 7 25 1 0 2 
rs62084752 17 68093252 21,373 285,583 5,903 7 11 0 2 0 
rs138294113 19 11081053 25,994 306,166 7,227 21 34 3 4 2 
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