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Isospin 0 and 2 two-pion scattering at physical pion mass using all-to-all
propagators with periodic boundary conditions in lattice QCD
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A study of two-pion scattering for the isospin channels, I ¼ 0 and I ¼ 2, using lattice QCD is presented.
Möbius domain-wall fermions, on top of the Iwasaki-DSDR gauge action for gluons with periodic
boundary conditions, are used for the lattice computations, which are carried out on two ensembles of
gauge field configurations generated by the RBC and UKQCD Collaborations with physical masses,
inverse lattice spacings of 1.023 and 1.378 GeV, and spatial extents of L ¼ 4.63 and 4.58 fm, respectively.
The all-to-all propagator method is employed to compute a matrix of correlation functions of two-pion
operators. The generalized eigenvalue problem (GEVP) is solved for a matrix of correlation functions to
extract phase shifts with multiple states—two pions with a nonzero relative momentum, as well as two
pions at rest. Our results for phase shifts for both the I ¼ 0 and I ¼ 2 channels are consistent with the Roy
equation and chiral perturbation theory, though at this preliminary stage our errors for I ¼ 0 are large. An
important outcome of this work is that we are successful in extracting two-pion excited states, which are
useful for studying K → ππ decay, on physical-mass ensembles using the GEVP.

DOI: 10.1103/PhysRevD.107.094512

I. INTRODUCTION

Understanding the interactions of two pions is an
interesting endeavor for practitioners of nonperturbative
QCD. Not only do we learn how the fundamental inter-
actions of quarks and gluons give rise to the observable
properties of hadrons, but these two particle systems also
play an important role in Standard Model processes under
intense investigation, such as K → ππ decays [1–3] and the
muon’s anomalous magnetic moment g − 2 [4,5]. Our
focus in this study is primarily on isospins I ¼ 0 and 2

for the former, while I ¼ 1 is important for the latter.
Isospin symmetry and Bose-Einstein statistics constrain the
states that appear in these processes.
With Lüscher’s technique [6] that relates two-pion

energy in a finite box with the corresponding scattering
phase shift, there have been many studies of two-pion
scattering in lattice QCD at unphysical pion masses [7–20].
For these studies, a chiral extrapolation was needed to
obtain physical results. The analytic evaluation of two-pion
scattering in chiral perturbation theory [21,22] (ChPT) was
employed in these works to perform the extrapolation of
important parameters of two-pion scattering, such as the
scattering length. While we can expect the extrapolation to
be reasonable for the scattering length, which can be
extracted near the two-pion threshold, the extrapolation
of the scattering amplitudes or phase shifts might not be
accurate at high energies.
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Now, it is possible to perform a lattice calculation at the
physical pion mass so that we can directly compute the
two-pion phase shifts at relatively large energies without a
chiral extrapolation. There was a study where the I ¼ 2
scattering length was computed including the physical pion
mass for the first time [23]. The I ¼ 0 channel is chal-
lenging already at unphysical pion masses [7,15,17–19]
because of the presence of disconnected diagrams and
two-pion operators coupling with the vacuum state. This
paper is part of a series of studies of two-pion scattering
undertaken by the RBC and UKQCD Collaborations
[24,25], where the challenging I ¼ 0 channel is examined
at physical pion mass. Here, we present results for phase
shifts at various energy levels for I ¼ 2 and I ¼ 0 at phy-
sical pion mass using 2þ 1 flavors of Möbius domain-wall
fermions (MDWFs) with periodic boundary conditions.
The RBC and UKQCD Collaborations have reported

results for CP violation in kaon decays and pion phase
shifts at the physical point for the corresponding I ¼ 0 and
2 final states [2,3,24]. Because the physical kinematics for
such decays requires pions with back-to-back relative
momenta, which is not the ground state achieved in
ordinary lattice calculations where the pions are at rest
[26], G-parity spatial boundary conditions (GPBCs) were
employed in the simulations [27]. GPBCs forbid pions with
zero momentum, and if the box size is adjusted appropri-
ately, then the two-pion ground state computed on the
lattice will have physical momenta satisfying Eππ ≈MK. In
the GPBC two-pion scattering work [24], we obtained the
phase shifts of the I ¼ 0 channel as well as the I ¼ 2
channel at various two-pion energies with nonzero pion
momenta that are consistent with the prediction from the
dispersion theory [28–32] based on the Roy equation [33]
with inputs obtained by a combination of chiral perturba-
tion theory for the scattering lengths and experimental data
for the high-energy regime. GPBCs are not implemented
without extra cost, however. They are at least twice as
expensive for measurements compared with periodic boun-
dary conditions, because the G-parity Dirac operator is
explicitly two-flavor, with mixing between the flavors
occurring at the boundary, and they also require gauge
ensembles with the same boundary conditions to be
generated. In addition, an important future step is to include
isospin-breaking effects in the calculation of ε0, which is
expected to be significant, but GPBCs may not be suitable
due to the intrinsic role of the isospin symmetry.
The long-term aim of this study is to explore the use of

periodic boundary conditions (PBCs) to answer the ques-
tion of whether the decay amplitudes with physical
kinematics can be extracted reliably from an excited state
computed on the lattice. As a first step, we investigate pion
scattering in this setup.
Two-pion states with a definite total momentum can vary

their total energy not only by a standard excitation of a
single pion, but also by changing the momenta of

individual pions, or equivalently, the relative momentum.
A finite box forces the momenta to be quantized in units of
2π=L for PBCs, implying that the typical interval among
two-pion energies is in general of Oð2π=LÞ. At the same
time, simulations are carried out with typical values ofmπL
of approximately 3.3–4 to keep exponential finite-volume
effects under control. Therefore, as we lower the pion mass
toward the physical value, the box size grows, and it may
become increasingly challenging to extract the signals
of an excited state with the statistical and systematic errors
under control. This is the case especially for I ¼ 0, where
there are disconnected diagrams, and corresponding oper-
ators couple with the vacuum state. In fact, we learned
from our earlier works [2,3,24] with GPBCs that there is
significant higher-state contamination in two-pion correla-
tion functions.
The generalized eigenvalue problem (GEVP) method

[34,35] provides us with a systematic procedure to decom-
pose correlation functions into contributions from the
several lightest states with the same quantum numbers,
which have been widely used for hadron spectrum studies.
In our particular case, it turned out from earlier works
[2,3,17,24] that introducing a σ operator for I ¼ 0 in the
measurements plays a crucial role in removing the con-
tamination from excited states, and that the introduction of
the σ operator significantly reduces the statistical error. In
this work, we introduce a σ operator as well as four two-
pion operators with various pion momenta for our mea-
surements and use GEVP analysis to extract the ground and
excited states.
In addition, we propose a variant of the GEVP approach

which we call the rebased GEVP (RGEVP). The eigen-
vectors of the GEVP obtained at a certain time slice give
us a new basis of operators. In principle, each operator in
the new basis couples well with one of the lowest-energy
states considered in the GEVP. With limited statistics,
since we could lose the signal from one or more of those
states at large time separations, it may be reasonable to
exclude such noisy states by removing the corresponding
operators from the basis so that all the states included in
the GEVP analysis have good statistical precision. The
purpose of the RGEVP is to reduce the size of the GEVP
by using fewer operators that couple well with states. We
find that this approach gives us an improvement on
statistical precision for the ground and first excited states
of the I ¼ 0 channel.
We perform a lattice calculation for two-pion scattering

with 258 configurations on the 243 × 64 lattice with the
lattice cutoff a−1 ¼ 1.023 GeV and 107 configurations on
the 323 × 64 lattice with a−1 ¼ 1.378 GeV [36,37]. Both
ensembles are generated with 2þ 1-flavor Möbius domain-
wall fermions and Iwasaki plus dislocation suppressed
determinant ratio (DSDR) gauge action. See Table I for
more detail. We employ several cutting-edge lattice meth-
ods—all-mode-averaging (AMA) [38,39] and all-to-all
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(A2A) propagators [40], as well as the GEVP method
[34,35]—to compute correlation functions and extract
energy eigenvalues. While better statistical precision is
desired, and we will update our results in the near future,
we take the continuum limit of the scattering phase shifts
and scattering lengths at this point. Our determination of
the scattering length does not need a chiral extrapolation,
which assumes the leading order as an input from ChPTand
hence gives a precise value. Our results are meaningful as a
pure lattice determination, though they have larger uncer-
tainty. A companion paper [25] using distillation [41] will
also be available soon.
Although the core of this study is the application to K →

ππ and the direct CP violation parameter, ε0, the experience
gained here will provide impetus to other applications of
π-K scattering phases. Examples that we have in mind so
far are direct CP violation in charm decays [42,43],
possible CP violation in τ → νKπ [44], and three-body
proton decays.
This paper is organized as follows: Section II describes

the theoretical framework underlying the calculation. In
Sec. III, we give the lattice details. Section IV gives results
for the computed two-pion energies and the corresponding
phase shifts. Here we also compare our results to recent
data-driven studies [28]. In Sec. V, we compare the PBC
calculation to the GPBC one [24]. Section VI summarizes
the present work and future prospects.

II. THEORETICAL FRAMEWORK

A. Operator construction

In this subsection, we describe the operators and states
used in this work.
We start with pion operators with definite spatial

momentum

πaðt; p⃗Þ ¼
X
x⃗;y⃗

e−iðp⃗1·x⃗þp⃗2·y⃗Þfrðkx⃗ − y⃗kÞ

× ψ̄ðt; x⃗Þiγ5Faψðt; y⃗Þ; ð1Þ

which is defined with the Coulomb gauge fixing and the
momentum p⃗ ¼ p⃗1 þ p⃗2 of the pion operator. In this work,
we consider pion operators whose momentum for a
direction is zero or one unit. Thus, a natural way of
assigning the inner momenta when p⃗ is nonzero is to
say that p⃗1 or p⃗2 carries one unit of momentum and the

other zero. We assign p⃗1 ¼ 0⃗ and p⃗2 ¼ p⃗ in this work and
add only p⃗ as the momentum argument of the single-pion
operators. While there is no dependence on the relative
momentum p⃗1 − p⃗2 without smearing, we introduce the
exponential smearing function

frðkx⃗ − y⃗kÞ ¼ expð−kx⃗ − y⃗k=rÞ; ð2Þ

with smearing radius r and the periodic modulus kx⃗ − y⃗k,
the length of the shortest straight path from y⃗ to x⃗ in the
periodic box. This hydrogen-like wave function has been
used in our earlier works [3,24]. While the single-pion
operator of course depends on the smearing radius, we drop
r from the pion operator on the left-hand side of Eq. (1) for
simplicity. The quark and antiquark isospin doublets are
defined as

ψ ¼
�
u

d

�
; ψ̄ ¼ ð ū d̄ Þ; ð3Þ

and

Fþ ¼ 1

2
ðσ1 þ iσ2Þ; ð4Þ

F− ¼ 1

2
ð−σ1 þ iσ2Þ; ð5Þ

F0 ¼ 1ffiffiffi
2

p σ3; ð6Þ

with the Pauli matrices σ1;2;3.
The two-pion operators are constructed by multiplying

two single-pion ones:

ÕI;Iz
ππ ðt1; t2; P⃗; p⃗=2Þ ¼

X
a;b

cI;Izab π
aðt1; ðP⃗þ p⃗Þ=2Þ

× πbðt2; ðP⃗ − p⃗Þ=2Þ; ð7Þ

where P⃗ and p⃗ are the center of mass and relative
momentum, respectively, of the two pseudoscalar opera-
tors, and a; b ∈ fþ;−; 0g. The coefficients cI;Izab project the
two-pion operator to an isospin-definite channel labeled by
ðI; IzÞ. Appendix A gives the explicit forms of the ðI; IzÞ ¼
ð2; 0Þ and (0, 0) two-pion operators.

TABLE I. Ensemble parameters. 2þ 1 flavors of Möbius domain-wall fermions, generated by the RBC/UKQCD
Collaborations [36,37]. Trajectories used for measurements are separated by 10 or 20 Monte Carlo time units. The
last column refers to the number of configurations in each ensemble used for measurements.

mπ ðMeVÞ Lattice size Ls a−1 ðGeVÞ L ðfmÞ Trajectories (MD time units) Configurations

142.6(3) 243 × 64 24 1.023(2) 4.67 250–3860 258
143.6(9) 323 × 64 12 1.378(5) 4.58 200–1320 107
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The discrete, finite lattice breaks the continuum rota-
tional symmetry of angular momentum SO(3) down to a
discrete subgroup, which depends on the center-of-mass
momentum. The irreducible representations of such a
discrete subgroup do not give rise to angular momentum
eigenstates that appear as irreducible representations of
SO(3). Instead, they are mixtures which can be classified in
terms of the continuum irreducible representations.
It is fairly straightforward to make this classification

based on fundamental group theory for one- and two-
particle systems, both moving and at rest [14,45]. Our main
targets are the s-wave two-pion states and their phase shifts.
The corresponding interpolating operators are defined as

OI;Iz
ππ ðt1; t2; P⃗; p⃗=2Þ ¼

X
T̂∈G

χA1
ðT̂ÞÕI;Iz

ππ ðt1; t2; P⃗; T̂½p⃗=2�Þ;

ð8Þ
where we sum over all elements T̂ in the finite-volume
symmetry group G, and the normalization factor χA1

ðT̂Þ is
the character of the group element T̂ in the representation
A1 [14,45].
We can consider two-pion operators composed of two

bilinear operators located at different time slices t1 and t2.
As long as there is no other operator placed in between, the
time-nonlocal two-pion operators still play a role in
creating and annihilating two-pion states with correspond-
ing quantum numbers, and we can discuss the spectrum at
time slices outside the operator. It has been shown that
placing the two bilinear operators on slightly different time
slices is advantageous for reducing statistical noise, espe-
cially for I ¼ 0 [2,3,24], where the overlap of the two-
particle operator with the vacuum state can be suppressed
exponentially by the separation Δ≡ jt2 − t1j.
In addition to these two-pion operators, we introduce a σ

operator, or isosinglet scalar bilinear operator, for I ¼ 0:

σðt; p⃗Þ ¼
X
x⃗;y⃗

e−iðp⃗1·x⃗þp⃗2·y⃗Þfrðkx⃗ − y⃗kÞψ̄ðt; x⃗Þψðt; y⃗Þ; ð9Þ

with p⃗ ¼ p⃗1 þ p⃗2. Again, we set p⃗1 ¼ 0⃗ and p⃗2 ¼ p⃗ in
this work. This operator has been found to play an
important role in controlling the contamination from
excited states [3,24].
In this work, we concentrate on the rest frame P⃗ ¼ 0⃗ and

s-wave operators and states. For I ¼ 2, Iz ¼ 0, we consider
four values of relative pion momenta and use the following
operator basis:

O2;0ðtÞ ¼

0
BBBBB@

O2;0
ππ ðt; tþ Δ; 0⃗; ð0; 0; 0Þ × 2π=LÞ

O2;0
ππ ðt; tþ Δ; 0⃗; ð0; 0; 1Þ × 2π=LÞ

O2;0
ππ ðt; tþ Δ; 0⃗; ð0; 1; 1Þ × 2π=LÞ

O2;0
ππ ðt; tþ Δ; 0⃗; ð1; 1; 1Þ × 2π=LÞ

1
CCCCCA: ð10Þ

Similarly, for I ¼ 0, Iz ¼ 0, we define

O0;0ðtÞ ¼

0
BBBBBBBB@

O0;0
ππ ðt; tþ Δ; 0⃗; ð0; 0; 0Þ × 2π=LÞ

σðt; 0⃗Þ
O0;0

ππ ðt; tþ Δ; 0⃗; ð0; 0; 1Þ × 2π=LÞ
O0;0

ππ ðt; tþ Δ; 0⃗; ð0; 1; 1Þ × 2π=LÞ
O0;0

ππ ðt; tþ Δ; 0⃗; ð1; 1; 1Þ × 2π=LÞ

1
CCCCCCCCA
: ð11Þ

The order of the operators in these bases matters when it
comes to the N × N GEVP as described in Sec. II D. When
we do not need to specify the isospin, we simply call
the four two-pion operators ππð000Þ, ππð001Þ, ππð011Þ,
and ππð111Þ.

B. Correlation functions

For the GEVP, a matrix correlation function is defined in
the basis of operators given in the previous subsection:

CI;Iz
ij ðtÞ ¼ hOI;Iz

i ðtÞOI;Iz
j ð−ΔjÞ†i; ð12Þ

where

Δj ¼
�Δ ðI ¼ 2Þ
ð1 − δ2;jÞΔ ðI ¼ 0Þ ð13Þ

translates the source two-pion operators by Δ but does
nothing for the σ operator, so that the time variable t always
indicates the minimum time separation between a bilinear
of the source operator and that of the sink operator. While
the measured correlator matrix is not exactly symmetric
with finite statistics, we symmetrize it by averaging with
the transposed partner.
The Wick contractions of the two-point functions are

shown diagrammatically in Figs. 1 and 2. They are denoted

FIG. 1. Elemental Wick contractions. Clockwise from top-left:
D (direct), C (cross), V (vacuum), and R (rectangle). Linear
combinations of the four diagrams are used to construct pion-
scattering correlation functions for I ¼ 0, 1, and 2 states with
definite lattice hypercubic symmetry.
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“direct” (D), “cross” (C), “rectangle” (R), and “vacuum”
(V). By taking an appropriate linear combination of these
elemental contractions, we construct a correlation function
of operators carrying definite isospin. All diagrams in
Figs. 1 and 2 contribute to the I ¼ 0 channel, while only
diagrams D and C contribute to the I ¼ 2 channel. We
compute the disconnected diagrams for every time trans-
lation and take the translation average, while the connected
diagrams are computed after every several source time
slices, which are specified in Sec. III. The complete
formulas for the I ¼ 2 and I ¼ 0 channels are given in
Appendix A.
For I ¼ 0, there is an additional complication: in the rest

frame, the ground state in this channel is the vacuum. This
contribution dominates the correlation function and must
be subtracted:

C0;0
ij ðtÞ ¼ hO0;0

i ðtÞO0;0
j ð−ΔjÞ†i

−
1

Lt

XLt−1

tsrc¼0

hO0;0
i ðtþ tsrcÞihO0;0

j ðtsrc − ΔjÞ†i;

ð14Þ

where Lt stands for the time extent of the lattice ensemble
in lattice units. While the second term on the right-hand
side is independent of t in the limit of infinite statistics, we
perform this subtraction time-slice by time-slice, as we
have found it provides a minor statistical advantage [3,24].

C. Thermal effects

Due to the finite-time size of the lattice (Lt) and the pions
satisfying periodic boundary conditions in time, unwanted
contributions contaminate the correlation function. These
so-called around-the-world (ATW), or thermal, effects arise
when one of the source pions propagates forward in time
while the other goes backwards through the boundary to
reach the sink time slice. They can be seen by inserting a

complete set of states into the two-point (“thermal”)
correlation function and translating the source and sink
operators to equal times:

hOππðtÞOππð0Þ†i
¼

X
m

X
n

hmjOππðtÞjnihnjO†
ππð0Þjmi

¼
X
n

ðe−Eππ
n t þ e−E

ππ
n ðLt−tÞÞh0jOππjnihnjO†

ππj0i

þ e−Eπðp⃗Þte−Eπðp⃗ÞðLt−tÞ

× hπðp⃗ÞjOππjπðp⃗Þihπðp⃗ÞjO†
ππjπðp⃗Þi þ � � � ; ð15Þ

where we omit the isospin superscripts and momentum
arguments for simplicity, and the sum over m gives the
thermal expectation value. The first term on the right-hand
side contains the zero-temperature expectation value, while
the last term is the thermal contribution, which vanishes as
Lt → ∞. Notice that when the rest frame is employed, the
leading ATW contribution is time independent, while the
ATWeffects of an excited-state pion and those in a moving
frame are time dependent. All thermal effects are sup-
pressed exponentially with Lt.
Since we employ the rest frame, the leading ATW term,

which is constant, can be removed simply by a “matrix”
subtraction

CI;Iz
ij;subtðtÞ≡ CI;Iz

ij ðtÞ − CI;Iz
ij ðtþ δtÞ; ð16Þ

where δt is an arbitrary time shift. This subtraction removes
all constant contributions to the correlation functions, and
therefore the vacuum subtraction [Eq. (14)] is in principle
unnecessary if this subtraction is applied. In this work, we
still apply the vacuum subtraction so that we can investigate
the significance of the ATW effects with the absence of
vacuum effects by analyzing both matrix-subtracted and
unsubtracted correlators. As seen in Sec. IVA, the ATW
effects are significant for two-pion states at rest, but they
can be subtracted well by the matrix subtraction.

D. Generalized eigenvalue problem method

For the rest of the section, we omit the superscripts I and
Iz and simplify our notation of the correlator matrix
CI;Iz
ij;subtðtÞ → CijðtÞ, or CðtÞ when the operator indices i

and j can be dropped without confusion.
As is well known, Euclidean space correlation functions

are a sum of exponential terms, each term corresponding to
one state in a tower of states with fixed quantum numbers
and increasing energies:

CijðtÞ ¼
X
n

An;iA�
n;je

−Ent; ð17Þ

where we have neglected the backward-propagating
contributions proportional to e−EnðLt−tÞ, since t ≪ Lt in

FIG. 2. Elemental Wick contractions with one (upper) or two
(lower) scalar bilinear operators. These are analoguous to the R
(left) and V (right) diagrams in Fig. 1 and relevant for only the
I ¼ 0 channel.
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our setup.1 An;i ¼ h0jOijnið1 − e−EnδtÞ1=2 is the overlap of
the ith operator acting on the nth state and the vacuum
multiplied with a normalization factor due to the matrix
subtraction.
To extract the desired excited states in the correlator, we

employ the variational method by solving a generalized
eigenvalue problem (GEVP) [34,35]. For an N × N matrix
CðtÞ, we solve the following GEVP:

CðtÞVnðt; t0Þ ¼ λnðt; t0ÞCðt0ÞVnðt; t0Þ; ð18Þ

with eigenvalues λnðt; t0Þ and eigenvectors Vnðt; t0Þ, where
in principle we can choose t0 in the range 0 < t0 < t. At
asymptotically large time separations, the eigenvalue
behaves as λnðt; t0Þ ¼ e−Enðt−t0Þ, where En is the nth energy
state in the GEVP. In Ref. [35], it was shown that the
leading correction behaves like e−ðENþ1−EnÞt for t0 ≥ t=2. In
this work, we use the first N operators of the bases in
Eqs. (10) and (11) for the I ¼ 2 and I ¼ 0 channels,
respectively, and solve GEVP with a t-independent value of
t − t0 ≡ Δt. While the preferable inequality t0 ≥ t=2 is
violated in the region t < 2Δt, we do not use data at such
short times relative to Δt for our final results.
Effective two-pion energies are defined as [34,35]

Eeff
n ðt; t0Þ ¼ ln λnðt; t0Þ − ln λnðtþ 1; t0Þ: ð19Þ

The corresponding eigenvector Vnðt; t0Þ at asymptotic time
separation provides a new operator that couples to the nth
state, but not with the other states in the GEVP2 [35]:

Õn ¼
X
i

Vn:iOi: ð20Þ

These eigenvectors play a key role in isolating the weak
operator matrix elements between an excited two-pion state
and the kaon in K → ππ decays, for example.
In practice, the large statistical error of correlation

functions at large time separations may cause the misorder-
ing of eigenvalues and eigenvectors for specific jackknife
samples, resulting in incorrectly large errors in two-pion
energies and GEVP eigenvectors. A brief description of our
procedure to ensure the correct order of eigenvectors is
given below:
(1) At small time separations, where correlators and

hence eigenvectors are well resolved, ensure the
descending order of eigenvalues. Then, the corre-
sponding effective energies will be obtained in
ascending order.

(2) At large time separations, where excited-state
contamination is small, solve the GEVP with the
correlators that are mostly diagonalized by Eq. (20)
with the eigenvectors obtained one time slice earlier.
The eigenvectors from such a GEVP are close to a
unit vector for a certain direction, and the ordering is
fairly trivial. Then, change the basis of these
eigenvectors back into the original basis.

See Sec. B 1 of Appendix B for more detail.
In this work, we employ procedure 1 at t0 ¼ 1, 2 and

procedure 2 at larger time separations t0 ≥ 3. The reason
we switch the procedure at a certain value of t0 rather than t
is that the GEVP eigenvectors Vnðt; t0Þ receive contami-
nation from the higher states by Oðe−ðENþ1−EnÞt0Þ [35].
It is mathematically guaranteed that the GEVP eigen-

values and eigenvectors in Eq. (18) are real when Cðt0Þ is a
positive-definite real symmetric matrix, and some software
functions to solve the GEVP have this assumption. While
the correlator matrix at large time separations with limited
statistics has zero-consistent eigenvalues, and it is inevi-
table that the correlator matrix will have negative eigen-
values at some time slices, that may not necessarily mean
we cannot solve the GEVP or obtain any information from
two-pion signals at those time separations. The positivity
and real symmetry are sufficient but not necessary to
give us real eigenvalues and eigenvectors of the GEVP.
As shown in Sec. IVA, we find that the GEVP with Cðt0Þ
including a negative eigenvalue can still give us good sig-
nals of a few of the lowest-energy states with the ordering
strategy explained above and in Sec. B 1 of Appendix B, as
long as the GEVP eigenvalues and eigenvectors are real.

E. Rebased GEVP

The GEVP method provides a decomposition based on
the N lightest states. It assumes sufficiently large time
separations that the contamination of higher excited
states (n ≥ N þ 1) can be ignored. On the other hand,
the GEVP becomes increasingly difficult with increasing
time separation due to the exponentially deteriorating
signal-to-noise ratio of the correlator matrix. For small N,
we expect the plateau to start at larger time separations,
where the signal-to-noise ratio is already poor. For large
N, plateaus for the various energies move to earlier times,
but the larger statistical errors on the higher-energy states
in the GEVP might spoil the signal of the lower states.
Thus, for any choice of N (or operator set), there is a
chance that the signal loss will occur before a clear
plateau is observed.
To address this problem, we propose a modified version

of the GEVP, which we call the rebased GEVP (RGEVP),
whereby we choose a new reduced basis of fewer operators
that couple well with a few resolved low-energy states. The
idea originates from the fact that the number of resolvable
states which dictates the appropriate size of the GEVP
decreases with increasing time separation, and that the

1This contribution is exponentially suppressed compared to the
ATW effect considered earlier.

2The coupling is not perfect: in Ref. [35], it is shown that
corrections are Oðe−ðENþ1−EnÞt0Þ.
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GEVP at short time separations, even before reaching a
plateau, provides a set of nearly diagonalized operators.
The simplest rebasing can be performed by Eq. (20) with

a chosen numberN0ð< NÞ of eigenvectors Vnð<N0Þ obtained
at a chosen time slice t0 ¼ t00. The new basis provides an
N0 × N0 correlator matrix with which we can perform
GEVP without contamination from the states labeled by
N0 þ 1 to N.
The rebasing does not have to be a single step. When one

is interested in the ground (first excited) state, the reduced
GEVP size could minimally be one (two). Performing
such a reduction of basis with a single step may not
minimize both statistical and systematic errors. A multistep
rebasing can be done by choosing multiple pairs of
rebasing time t0;αð>t0;α−1Þ and reduced size Nαð<Nα−1Þ
with the label α referring to rebasing steps and repeating the
rebasing Nα−1 → Nα at t0 ¼ t0;α for each α. See Sec. B 2 of
Appendix B for more detail.
In this work, we implement the rebasing with the central-

values eigenvectors for all jackknife samples to maintain
the configuration independence of the new operator basis.

F. Phase shifts

The Lüscher method [6] allows us to extract the scat-
tering phase shifts from finite-volume energies on the
lattice. The interaction region is supposed to be confined
to a volume well contained inside a box of larger volume.
Outside this region, the solution of the wave equation
corresponds to free (noninteracting) particles, and the
boundary conditions of the box impose a quantization
condition on the complete solution, which necessarily
relates the phase shifts to finite-volume energies.
While the extension to moving frames is straightforward

[46], we limit our discussion to the case of the rest frame,
where one obtains the two-pion s-wave scattering phase
shift δðEππÞ corresponding to a given two-pion energy as
follows:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ππ

4
−m2

π

r
; ð21Þ

q ¼ kL
2π

; ð22Þ

tanϕðqÞ ¼ π3=2q
Z00ð1; q2Þ

; ð23Þ

δðEππÞ ¼ −ϕðqÞ þ πn; n ∈ Z; ð24Þ

where Eππ is the energy of the two-pion state in a finite box
of size L3, mπ is the pion mass, and Z00ð1; q2Þ is the
Lüscher zeta function, which we compute via an efficient
numerical implementation given in Ref. [47]. Equation (24)
is used to compute all I ¼ 0 and 2 phase shifts.

The method outlined here for obtaining the phase shifts
is strictly valid in the limited region 2mπ ≤ Eππ ≤ 4mπ and
up to neglected higher partial waves. In the present work,
we apply this method also to energies above the 4π inelastic
threshold, and we neglect these sources of systematic
errors. Numerical results presented in Sec. IV B suggest
that these systematic errors may not be large within the
energy range considered here.

G. The dispersion relation method

Up to small finite lattice spacing effects, Lüscher’s
method, explained above, gives an accurate prescription
for obtaining the phase shift. With finite lattice spacing,
Eq. (21) needs modification, since the appropriate dispersion
relation for finite lattice spacing depends on the type of lattice
fermion. While simulations at multiple lattice spacings
enable the removal of these effects, we remove some of
them for each lattice spacing separately [24].
The method is based on the cancellation of artifacts

between interacting and noninteracting two-pion energies.
The noninteracting two-pion energies, E0

n, are determined
from a product of two expectation values of single-pion
correlators, C0ðtÞ, which is analogous to the D diagram in
the interacting case. Since the correlation functions involv-
ing the σ operator do not contain the D diagram, they
should be treated separately. We first explain the method for
I ¼ 2, where the σ operator is absent, and then explain its
generalization to the case including the σ operator.
The noninteracting correlator matrix C0ðtÞ is diagonal

with analogous two-pion effective energies, E0;eff
1 ðt; t0Þ <

E0;eff
2 ðt; t0Þ < � � � < E0;eff

N ðt; t0Þ. The energy shift of two-
pion states due to interactions is

ΔEeff
n ðt; t0Þ ¼ Eeff

n ðt; t0Þ − E0;eff
n ðt; t0Þ; ð25Þ

where single-pion discretization errors largely cancel.
Thus, we obtain an improved two-pion energy

Eeff0
n ðt; t0Þ ¼ E0;disp

n þ ΔEeff
n ðt; t0Þ; ð26Þ

where we define

E0;disp
n ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jp⃗nj2
q

; ð27Þ

with a noninteracting pion momentum in the finite
box p⃗n ¼ ð0; 0; 0Þ; ð0; 0; 2π=LÞ; ð0; 2π=L; 2π=LÞ;….
In addition to reducing the scaling violation in the

dispersion relation, this method determines two-pion ener-
gies and phase shifts with other improvements as well. The
first term on the right-hand side of Eq. (26), which is
defined in Eq. (27), is as statistically precise as mπ . On the
other hand, the second term on the right-hand side of
Eq. (26), which is given in Eq. (25), is also expected to be
more precise than Eeff

n ðt; t0Þ because of the correlation
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between the first and second terms on the right-hand side of
Eq. (25). Furthermore, the energy difference in Eq. (25)
may also remove excited-state effects related to single
pions and allow effective energies Eeff0

n to plateau sooner.
We find these to be the case, especially for the I ¼ 2
channel, as discussed in Sec. IV.
For the I ¼ 0 channel, the statistical errors are dominated

by the disconnected diagram, which cannot be improved by
this method, though we still find some improvement for the
combination of diagrams by applying the following pro-
cedure with the σ operator. The I ¼ 0 channel is more
complicated, not only because of the inclusion of the σ
operator, but also because the interaction between the two
pions makes the finite-volume two-pion energies quite
unlike the energies of two noninteracting pions—i.e.,
jΔEeff

n ðt; t0Þj for I ¼ 0 is much larger than that for
I ¼ 2. Therefore, it is less meaningful to identify the
one-to-one correspondence between the interacting and
noninteracting two-pion energies as in Eq. (25). In this
work, instead of matching the state label n of the interacting
and noninteracting two-pion energies, the first and second
terms in Eq. (25), we choose the noninteracting two-pion
energy as the one closest to the interacting nth-state energy
Eeff
n ðt; t0Þ for the procedure explained above.

III. ENSEMBLE DETAILS AND
COMPUTATIONAL SETUP

Our computations are carried out on two ensembles of
2þ 1 flavors of Möbius domain-wall fermions (MDWFs)
with physical masses generated by the RBC/UKQCD
Collaborations [36,37]. Both use the Iwasaki-DSDR gauge
action [48] and correspond to inverse lattice spacings of
about 1.0 and 1.4 GeV, respectively, with similar physical
volumes (L ∼ 5 fm). The parameters of each ensemble are
listed in Table I.
Correlation functions are computed in an all-to-all pro-

pagator (A2A) [40] framework using 2000 low modes of
the preconditioned, squared Dirac operator and spin-color-
time diluted random source propagators for the high modes.
We employ all-mode averaging (AMA) [38,39] to save

the computational cost for the conjugate gradient (CG).
While the traditional AMA is to perform fewer exact
measurements (e.g., with fewer source locations) for all
the configurations with which sloppy measurements are
performed, we instead reduce the number of configurations
for the exact measurements, keeping the A2A procedure as
it is. We first perform both exact and sloppy measurements
with Nexact configurations and create corresponding jack-
knife samples of the difference between exact and sloppy
correlators, which would correct the bias due to the sloppy
CG. In the case of bin size 1,

ΔCðlÞðtÞ ¼ 1

Nexact − 1

X
k≠l

ðCEk
exactðtÞ − CEk

sloppyðtÞÞ; ð28Þ

where E is the list of configurations with which both exact
and sloppy measurements are performed and CEk

exact=sloppyðtÞ
stands for an exact/sloppy sample of the correlator matrix
calculated with a configuration Ek. The average of the
difference is defined as

ΔCðtÞ ¼ 1

Nexact

XNexact

l¼1

ΔCðlÞðtÞ: ð29Þ

We also perform sloppy measurements with Nsloppy addi-
tional configurations in the list S and create corresponding
jackknife samples. If we set the bin size to 1, they are
written as

CðlÞ
sloppyðtÞ ¼

1

Nsloppy − 1

X
k≠l

CSk
sloppyðtÞ; ð30Þ

and the average is given as

CsloppyðtÞ ¼
1

Nsloppy

XNsloppy

l¼1

CðlÞ
sloppyðtÞ: ð31Þ

With these jackknife samples and averages, we define
super-jackknife samples as

CðlÞ
AMAðtÞ ¼

(
CsloppyðtÞ þ ΔCðlÞðtÞ ð1 ≤ l ≤ NexactÞ
Cðl−NexactÞ
sloppy ðtÞ þ ΔCðtÞ ðl > NexactÞ

:

ð32Þ

In this work, the sloppy (high-mode) propagators are
computed with 400 and 330 iterations of CG, and the exact
propagators are computed to the CG residual of 10−8 with
14 and 17 configurations for the 243 and 323 lattices,
respectively. For the sloppy part of the measurements on
the 243, 1.023 GeV ensemble, we employ the zMöbius
approximation [49] of the Möbius Dirac operator, reducing
the size of the fifth dimension by a factor of 2.
As described in Sec. II A, the two-pion operators are

defined as a product of two single-pion operators
separated by a parameter Δ. We choose Δ ¼ 3 and 4
for the 243 and 323 lattices, respectively, so the separa-
tion in physical units is about the same. The smearing
radius r of the single-pion and the sigma operators is set
to 1.5 and 2.0 in lattice units for the 243 and 323 lattices,
respectively. We average the correlation functions over
the time location of the source operator tsrc. The dis-
connected diagrams are computed at tsrc ¼ 0; 1;…; 63,
while the connected diagrams are computed at tsrc ¼
0; 8;…; 56 for the 243 lattice and at tsrc ¼ 0; 10;…; 50
for the 323 lattice.
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IV. RESULTS

A. Energies

Single-pion energies with the four lowest momenta are
summarized in Table II. The results from single-pion
correlation functions with respective momenta and from
the continuum dispersion relation are listed. The non-
interacting two-pion energies can be estimated as the
double of these values. The difference between the values
from the two approaches corresponds to the discretization
effect on the two-pion energies that can be removed by the
dispersion relation (DR) method explained in Sec. II G.
By definition, the results for zero-momentum energy from
the two approaches are identical. One can recognize the
discretization effect in the results for the nonzero momenta
on the 243 lattice, while the results on the 323 are not
sufficiently resolved to see the difference.
Interacting two-pion energies are tabulated and plotted for

several values of Euclidean times t0, t − t0, δt, and various
types (N × N or RGEVP) of GEVP, with and without the
dispersion relation method, in Tables XXXIV–LI and
Figs. 33–50 in Appendix C. The parameters for rebasing
are found in the captions of their respective figures and tables
throughout this subsection, and tables in Appendix C. Some
general patterns are apparent. For short times, the statistical
errors are subpercent, even down to the per mille level in
some cases. The effect of increasing t − t0 is small, and
likewise for δt. The DR method greatly enhances statistical
precision, especially for the I ¼ 2 ground state, but gains are
seen generally. It also lessens (single-pion) excited-state
contamination. In the next two subsections, we discuss the
results in detail, including comparisons in a range of t and for
both lattice spacings to assess residual excited-state con-
tamination and lattice artifacts, respectively.
Our guiding principle throughout this analysis is to stick

to as short times as possible, where statistics are better and

ATWeffects are smaller, taking advantage of the GEVP and
the DR method that reduce excited-state contamination. In
this section, the state label n begins with 0, so the ground
state is labeled with n ¼ 0, the first excited state with
n ¼ 1, and so on.

1. I = 2

We begin with the ground state for the 243 ensemble.
Figure 33 shows the ground-state energy for several GEVP
types and representative values of δt ¼ 2, 5, 8, t − t0 ¼ 1,
2, 3, 4, and t ¼ 4, 6, 8. Similar patterns of behavior emerge
for the various GEVP types. Without the DR method,
increasing either δt or t − t0 tends to decrease the energy,
suggesting smaller excited-state effects (the statistical
errors are relatively large, so we do not draw a strong
conclusion). For larger times, the effect is smaller. For fixed
t, we often observe smaller statistical errors as δt increases,
though after δt ¼ 5 the improvement is slight. Increasing
t − t0 has little effect. The DR method, on the other hand,
shows a dramatic reduction in statistical error but little
change after that for the other variables. In either case, there
is little dependence on the GEVP type. This is because, in
Eq. (26), E0;disp

0 ¼ 2mπ dominates the statistical error, and
ΔEeff

0 ðt; t0Þ, which is dependent on GEVP type, is much
more precise for the ground state in our measurements.
Figure 3 shows the effective ground-state energy for the

4 × 4 GEVP (our largest basis for I ¼ 2) with t − t0 ¼ 1
and matrix subtractions in the range 4 ≤ δt ≤ 11, both with
(lower panel) and without (upper panel) the DR method.
There are several interesting features. First, a clear and
stable plateau sets in between t ¼ 4 and 5 for all nonzero δt.
Both statistical uncertainties and excited-state contamina-
tion are significantly reduced by the DR method. In the

TABLE II. Summary of single-pion energies with the four
lowest momenta on the 243 and 323 lattices. The three-digit
number in the first column specifies the spatial momentum of the
single pion. Results from correlated χ2 fits to single-pion
correlators with the cosh function [lattice] and dispersion relation
[DR, half of Eq. (27)] are shown in lattice units. The values of
χ2=d:o:f: are displayed in the square brackets.

Momentum Lattice DR

243 lattice
(000) 0.13944(17)[1.2] 0.13944(17)
(001) 0.29572(30)[0.9] 0.296621(80)
(011) 0.39431(66)[1.2] 0.395630(60)
(111) 0.4685(18)[1.0] 0.474407(50)

323 lattice
(000) 0.10422(20)[1.1] 0.10422(20)
(001) 0.22190(44)[1.1] 0.222293(94)
(011) 0.2954(10)[1.5] 0.296593(71)
(111) 0.3559(28)[1.2] 0.355697(59)

0.27

0.28

0.29

4x4 GEVP

I = 2, n = 0, 243

0.2805

0.2810

0.2815

0.2820

0.2825

2 4 6 8 10 12 14

4x4 GEVP + DR

t
no t subt

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

t = 11

FIG. 3. The I ¼ 2 effective ground-state energy with the
dispersion relation method (lower) and without (upper). 243,
4 × 4 GEVP, t − t0 ¼ 1. Without matrix subtraction, there is an
evident downward shift in the energy, an indication of the ATW
effect, for the non-DR result.
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upper panel (no matrix subtraction), there is a systematic
downward shift for each time slice, which grows with
increasing t. This is a clear indication of the ATW effect,
which is eliminated by the matrix subtraction. Perhaps
somewhat surprisingly, the shift is also eliminated by the
DR method. This can be understood as follows: A very
similar ATW effect occurs in the single-pion case, so the
observed cancellation implies that in the interacting case,
the two pions do not interact very much. We also observe a
small reduction in statistical error as δt increases in the
absence of the dispersion method, while there is no
difference when it is used, as the dominant error on the
ground-state energy after DR is from the error onmπ . Since
contractions were only computed for t ≤ 16 to reduce
computational cost, the maximum value of t for the
effective energy in each case is tmax;δt ¼ 15 − δt, as seen
in the figure (15 and not 16 appears because the effective
energy depends on GEVP eigenvalues at t and tþ 1).
In Table III, we tabulate the fit results for the ground-

state energy using the dispersion relation method for
different fit ranges and GEVP types and display them in

Fig. 19. In this work, all fits are correlated fit to a constant
(t-independent) parameter, performed separately for each
individual effective energy. The stability of the fits is quite
robust for all values of t and GEVP types considered in the
figure.
The behavior of the first excited state is similar to that of

the ground state. In Fig. 4, we again observe a stable
plateau beginning with t ¼ 5; however, an ATW effect
cannot be seen. But we do see excited-state effects,
especially without the DR method, and statistical errors
are reduced significantly by the DR method. There is little
dependence on δt. The small deviation visible at tmin ¼ 4 in
the fit results in Table IV and Fig. 20 may be associated
with the slight blip observed in the effective energy at t ¼ 4
in Fig. 4. The 2 × 2 GEVP may be systematically high,
especially for t ¼ 4.
The second and third excited-state energies are shown in

Fig. 5 and listed for various fit ranges and GEVP types in
Tables V and VI (see also Figs. 21 and 22). In the upper
panel, the energy fluctuates down at t ¼ 4, which leads to

TABLE III. Fit results for two-pion energy of the I ¼ 2 ground
state on the 243 lattice with various fit ranges and GEVP methods.
We choose parameters δt ¼ 5 and t − t0 ¼ 1. The values of
χ2=d:o:f: are shown in the square brackets. The rebasing matrix is
calculated as 4 × 4 → 3 × 3 at t0 ¼ 4.

Fit range

GEVP type 4–10 5–10 6–10

2 × 2 0.28132(34)[0.7] 0.28129(34)[0.8] 0.28129(34)[1.0]
3 × 3 0.28131(34)[0.7] 0.28129(34)[0.7] 0.28129(34)[0.9]
4 × 4 0.28128(34)[0.6] 0.28126(34)[0.7] 0.28126(34)[0.9]
RGEVP 0.28130(34)[0.6] 0.28128(34)[0.7] 0.28128(34)[0.9]
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0.620

4x4 GEVP

I = 2, n = 1, 243
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2 4 6 8 10 12
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t
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t = 5

t = 6

t = 7

t = 8

t = 9
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t = 11

FIG. 4. The I ¼ 2 effective first excited-state energy with
(lower) and without (upper) the dispersion relation method.
243, 4 × 4 GEVP, t − t0 ¼ 1. The ATW effect is not observed;
cf. Fig. 3.
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I = 2, 4x4 GEVP + DR, 243
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FIG. 5. The I ¼ 2 effective second (upper) and third (lower)
excited-state energies with the dispersion relation method. 243,
4 × 4 GEVP, t − t0 ¼ 1. The ATW effect is not observed;
cf. Fig. 3.

TABLE IV. Fit results for two-pion energy of the I ¼ 2 first
excited state on the 243 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 5 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets. The rebasing
matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 4.

Fit range

GEVP type 4–9 5–9 6–9

2 × 2 0.60859(27)[1.3] 0.60824(31)[0.3] 0.60824(43)[0.4]
3 × 3 0.60821(27)[0.9] 0.60793(31)[0.3] 0.60799(43)[0.4]
4 × 4 0.60817(27)[0.8] 0.60789(31)[0.3] 0.60797(43)[0.3]
RGEVP 0.60816(27)[0.9] 0.60789(31)[0.3] 0.60797(43)[0.3]
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an elevated χ2 in the fit. The same happens at t ¼ 6 for the
third excited state. Again, there is little dependence on δt or
GEVP type, except that the 3 × 3 GEVP is a bit high for
small tmin in the fit (Figs. 21 and 22). With four interpolat-
ing operators for I ¼ 2, the third excited state is as far as we
can go.
The effective ground-state energy computed on the 323

lattice is shown in Fig. 6. The ATW effect is even more
pronounced, as expected, since the physical time extent is
smaller compared to the 243 lattice, and it is significantly

reduced again, but not completely eliminated, by the DR
method. The lower panel indicates that the effective energy
even with the matrix subtraction might decrease with
increasing time from t ¼ 10, and it could mean that there
are also higher-order ATW effects that cannot be removed
by the matrix subtraction in Eq. (16). Since this tendency is
not statistically significant and it is still possible that this is

TABLE V. Fit results for two-pion energy of the I ¼ 2 second
excited state on the 243 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 5 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets. The rebasing
matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 4.

Fit range

GEVP type 3–9 4–9 5–9

3 × 3 0.81855(58)[1.5] 0.81743(92)[1.3] 0.8183(15)[1.5]
4 × 4 0.81743(56)[1.5] 0.81637(89)[1.3] 0.8178(15)[1.3]
RGEVP 0.81753(56)[1.4] 0.81665(87)[1.3] 0.8185(15)[1.0]

TABLE VI. Fit results for two-pion energy of the I ¼ 2 third
excited state on the 243 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 5 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets.

Fit range

GEVP type 3–5 4–5
4 × 4 0.9658(17)[0.1] 0.9674(36)[0.0]

0.16
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0.20

0.22

4x4 GEVP

I = 2, n = 0, 323
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0.212

2 4 6 8 10 12 14 16
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t
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FIG. 6. The I ¼ 2 effective ground-state energy with (lower)
and without (upper) the dispersion relation method. 323, 4 × 4
GEVP, t − t0 ¼ 1. There is a pronounced ATW effect without
matrix subtraction (upper panel). The dispersion relation method
reduces, but does not entirely eliminate the effect (lower panel).

TABLE VII. Fit results for two-pion energy of the I ¼ 2 ground
state on the 323 lattice with various fit ranges and GEVP methods.
We choose parameters δt ¼ 8 and t − t0 ¼ 1. The values of
χ2=d:o:f: is shown in the square brackets. The rebasing matrix is
calculated as 4 × 4 → 3 × 3 at t0 ¼ 5.

Fit range

GEVP type 4–9 5–9 6–9

2 × 2 0.21041(38)[0.8] 0.21041(38)[0.9] 0.21039(38)[0.7]
3 × 3 0.21041(37)[0.8] 0.21042(37)[1.0] 0.21039(37)[0.7]
4 × 4 0.21039(37)[0.8] 0.21039(37)[1.0] 0.21036(37)[0.7]
RGEVP 0.21041(37)[0.8] 0.21041(37)[1.0] 0.21038(37)[0.7]

TABLE VIII. Fit results for two-pion energy of the I ¼ 2 first
excited state on the 323 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 8 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets. The rebasing
matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 5.

Fit range

GEVP type 4–10 5–10 6–10

2 × 2 0.45698(37)[0.7] 0.45669(41)[0.4] 0.45665(47)[0.5]
3 × 3 0.45654(36)[0.3] 0.45639(41)[0.3] 0.45638(47)[0.3]
4 × 4 0.45648(36)[0.3] 0.45636(41)[0.2] 0.45638(47)[0.3]
RGEVP 0.45648(36)[0.3] 0.45637(41)[0.3] 0.45639(46)[0.3]
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FIG. 7. The I ¼ 2 effective first excited-state energy with
(lower) and without (upper) the dispersion relation method.
323, 4 × 4 GEVP, t − t0 ¼ 1.
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due to statistical fluctuation, we will conclude this point
after increasing statistics, but we do not use data points at
t ≥ 10 for our fits. Again, a large reduction in the statistical
error and excited-state contamination occurs with the
dispersion relation method where a plateau emerges begin-
ning at t ¼ 4. Figure 23 shows fits for several ranges and
GEVP types. Results are tabulated in Table VII. There is
little dependence on tmin or GEVP type.
The situation is similar for the first excited-state

energy (see Fig. 7), except that the ATW effect is not
detectable, the same as we saw for the 243 lattice. The
plateau begins at t ¼ 4 or 5 with the DR method. The DR

method removes a bit of jitter as well, which is probably
due to poor statistics. Fit results are summarized in
Table VIIIand Fig. 24.
The energies for higher excited states are shown in

Fig. 8. Fits are summarized in Tables IX and X and shown
in Figs. 25 and 26.

2. I = 0

This case is statistically noisier than I ¼ 2 due to the
disconnected diagrams of the correlation function, as well
as the coupling with the vacuum state. In Fig. 37, the
effective energies for the ground state are shown for several
GEVP types computed on the 243 ensemble. Values of
t − t0 range from 1 to 4 with 3 ≤ t ≤ 7 and δt ¼ 2, 5, 8.
Like I ¼ 2, there is little dependence on GEVP type.

TABLE IX. Fit results for two-pion energy of the I ¼ 2 second
excited state on the 323 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 8 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets. The rebasing
matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 5.

Fit range

GEVP type 3–7 4–7 5–7

3 × 3 0.61671(59)[0.5] 0.61605(83)[0.3] 0.6158(12)[0.4]
4 × 4 0.61548(59)[0.3] 0.61523(80)[0.3] 0.6151(12)[0.4]
RGEVP 0.61552(58)[0.3] 0.61522(81)[0.3] 0.6151(12)[0.4]

TABLE X. Fit results for two-pion energy of the I ¼ 2 third
excited state on the 323 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 8 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets.

Fit range

GEVP type 4–7 5–7 6–7
4 × 4 0.7230(17)[0.1] 0.7241(25)[0.0] 0.7245(43)[0.0]
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FIG. 8. The I ¼ 2 effective second (upper) and third (lower)
excited-state energies with the dispersion relation method. 323,
4 × 4 GEVP, t − t0 ¼ 1.
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FIG. 9. The I ¼ 0 effective ground-state energy. 243, 5 × 5
GEVP, t − t0 ¼ 1 with (middle, lower) and without (upper) the
dispersion relation method. The RGEVP result is shown in the
lower panel. The rebasing from 5 × 5 → 3 × 3 uses GEVP
eigenvectors at t0 ¼ 4.

TABLE XI. Fit results for two-pion energy of the I ¼ 0 ground
state on the 243 lattice with various fit ranges and GEVP methods.
We choose parameters δt ¼ 7 and t − t0 ¼ 1. The values of
χ2=d:o:f: are shown in the square brackets. The rebasing matrix is
calculated as 5 × 5 → 3 × 3 at t0 ¼ 4.

Fit range

GEVP type 3–8 4–8 5–8

3 × 3 0.27116(38)[1.8] 0.27082(41)[0.9] 0.27058(47)[0.8]
4 × 4 0.27115(38)[1.5] 0.27087(41)[0.9] 0.27067(46)[0.9]
5 × 5 0.27104(38)[1.6] 0.27074(41)[1.0] 0.27054(46)[1.1]
RGEVP 0.27122(38)[3.6] 0.27069(41)[1.1] 0.27053(46)[1.3]
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The dispersion relation method reduces excited-state con-
tamination and statistical errors, as does increasing δt. The
effect of t − t0 is less clear, though it appears it may also
reduce excited-state effects.
Figure 9 shows the effective ground-state energy for the

5 × 5 GEVP with t − t0 ¼ 1 and matrix subtractions in
the range 7 ≤ δt ≤ 11, both with and without the disper-
sion relation method and for the RGEVP. A small ATW
effect may be visible in the upper panel when no matrix
subtraction is performed, and it is largely absent in the
middle and lower panels, showing again that the dispersion
relation method largely eliminates it. We also observe that
the RGEVP makes a moderate improvement on the
statistical errors for larger times (lower panel).
Fit results are summarized in Table XI and Fig. 27. There

appears to be a small systematic shift with the minimum

time separation in the fit, tmin, but it is within the statistical
uncertainty.
The first excited-state energies are summarized in

Table XXXIX and Fig. 38 for a wide range of parameters.
In Fig. 10, we show the first excited-state energy for the
5 × 5 GEVP and t − t0 ¼ 1. A plateau begins at t ¼ 3 or 4,
and an interesting systematic begins to emerge as well,
which is even more pronounced for the second excited
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FIG. 10. The I ¼ 0 effective first excited-state energy with
(middle, lower) and without (upper) the dispersion relation
method. 243, 5 × 5 (middle, upper) and 3 × 3 (lower) GEVP,
t − t0 ¼ 1. Note the significant jump from t ¼ 6 to 7 for δt ¼ 8 in
the upper two panels.

TABLE XII. Fit results for two-pion energy of the I ¼ 0 first
excited state on the 243 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 9 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets. The rebasing
matrix is calculated as 5 × 5 → 3 × 3 at t0 ¼ 3.

Fit range

GEVP type 3–6 4–6 5–6
3 × 3 0.5319(45)[0.1] 0.5306(59)[0.1] 0.5298(72)[0.1]
4 × 4 0.5302(45)[0.4] 0.5296(64)[0.6] 0.5255(94)[0.8]
5 × 5 0.5304(45)[0.3] 0.5296(61)[0.5] 0.5262(83)[0.6]
RGEVP 0.5308(44)[0.1] 0.5302(65)[0.1] 0.528(11)[0.1]
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FIG. 11. The I ¼ 0 effective second excited-state energy with
(second, third, fourth panels) and without (first panel) the
dispersion relation method. 243, 5 × 5 GEVP (first, second),
3 × 3 RGEVP (third) and 3 × 3 pure GEVP (fourth), t − t0 ¼ 1.
Note the significant jump from t ¼ 6 to 7 for δt ¼ 8 in the upper
two panels. Statistical error on 3 × 3 GEVP is significantly large
compared to the others.

TABLE XIII. Fit results for two-pion energy of the I ¼ 0

second excited state on the 243 lattice with various fit ranges and
GEVP methods. We choose parameters δt ¼ 9 and t − t0 ¼ 1.
The values of χ2=d:o:f: are shown in the square brackets. The
rebasing matrix is calculated as 5 × 5 → 3 × 3 at t0 ¼ 1.

Fit range

GEVP type 3–5 4–5
3 × 3 0.713(40)[1.4] 0.841(89)[0.1]
4 × 4 0.709(14)[0.4] 0.714(15)[0.0]
5 × 5 0.710(13)[0.3] 0.714(14)[0.0]
RGEVP 0.695(12)[0.7] 0.699(23)[1.3]
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state, as we see shortly. A careful inspection of Fig. 10
shows a systematic downward drift of the energy for each
tmax;δt . It is most visible between t ¼ 6 and 7 for δt ¼ 8, but
a smaller shift appears at smaller times for large values of
δt. The effect is absent for the RGEVP (lower panel), and
this leads us to believe it is due to a breakdown of the
GEVP at large t due to large statistical errors in the
correlation matrix.
Fit results are given in Table XII and displayed in

Fig. 28. There is no detectable difference as tmin or the
GEVP type varies.
The second excited state is less well resolved sta-

tistically, so we restrict our focus to relatively small times
(see Fig. 11). There is little difference without or with the
DR method (upper and middle panels); however, the
downward trend observed for the first excited state is even
more visible here and is also removed by the RGEVP,
although the statistical errors increase significantly. Fit
results are listed in Table XIII and plotted in Fig. 29.

Another dramatic difference happens when we reduce
the GEVP to 3 × 3 (4 × 4 is essentially the same as
5 × 5) without rebasing (see the lower panel of Fig. 11).
The noise increases dramatically because of the signifi-
cant coupling between the second excited state and the
ππð011Þ operator, which is excluded in the 3 × 3 analy-
sis. This is similar to the effect observed in Refs. [3,24],
where adding a noisy scalar bilinear operator reduced the
statistical error of (and excited state contamination in) the
ground state, although it is the ππð011Þ operator that is
not included in the 3 × 3 but in the 4 × 4 and 5 × 5
analyses in this case.
The GEVP eigenvalues are too noisy even for short

times to extract meaningful energies for the higher-energy
states. They will have to wait for better statistics in the
future.
On the 323 ensemble, the pattern repeats, except that

the effective energies are even noisier, as seen in Fig. 12.
It is interesting to note that the statistical error in the
latter case is smaller at large time when no matrix sub-
traction is performed. Fits are summarized in Table XIV
and Fig. 30.
After t ¼ 3 or 4, the statistical errors get very large for

the first excited state even with the DR method (see
Fig. 13). However, we observe a large reduction in the
statistical error using the RGEVP compared to the standard
GEVP in this case. Rebasings to go from 5 × 5 down to
2 × 2 are implemented at t0 ¼ 1, t0 ¼ 2, and t0 ¼ 4.
Presumably, the improvement occurs because the overlap
of the higher states with the lower states is more and
more unresolved with increasing t, adding only noise to
the GEVP. Fit results are summarized in Table XV
and Fig. 31.
The second excited state is shown in Fig. 14, where again

there is a large reduction in statistical error with the
RGEVP. A drift downwards with increasing time is

0.196

0.200

0.204

0.208

5x5 GEVP + DR

I = 0, n = 0, 323

0.196

0.200

0.204

0.208

2 4 6 8 10 12

RGEVP + DR

t
no t subt

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

FIG. 12. The I ¼ 0 effective ground-state energy with the
dispersion relation method. 323, 5 × 5 GEVP (upper) and
2 × 2 RGEVP (lower), t − t0 ¼ 1. A multistep RGEVP is
performed at t0 ¼ 1, 2, and 4 to go from 5 × 5 → 2 × 2.

TABLE XIV. Fit results for two-pion energy of the I ¼ 0

ground state on the 323 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 5 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets. The rebasing
matrix is calculated as 5 × 5 → 4 × 4 at t0 ¼ 1, 4 × 4 → 3 × 3 at
t0 ¼ 2, and 3 × 3 → 2 × 2 at t0 ¼ 4.

Fit range

GEVP type 4–9 5–9 6–9

3 × 3 0.20268(44)[0.4] 0.20252(48)[0.3] 0.20225(57)[0.2]
4 × 4 0.20279(48)[0.4] 0.20259(52)[0.3] 0.20234(62)[0.2]
5 × 5 0.20288(50)[0.4] 0.20265(55)[0.2] 0.20237(67)[0.1]
RGEVP 0.20272(51)[0.5] 0.20248(56)[0.4] 0.20235(66)[0.5]
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FIG. 13. The I ¼ 0 effective first excited-state energy for the
5 × 5 GEVP (upper) and 2 × 2 RGEVP (lower) with the
dispersion relation method. 323, t − t0 ¼ 1.
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observed for larger values of δt for the 3 × 3 RGEVP,
though it is not easy to investigate the systematic error at
this point because of the accompanied large statistical
errors. Fit results are summarized in Table XVI and Fig. 32.
In preparation for the next subsection, we now summa-

rize in Table XVII the energies and corresponding time-
slice fit ranges and GEVP types that we will use to compute
the phase shifts. In all cases except the third excited state for
I ¼ 2, which is only accessible with the 4 × 4 GEVP, we
choose the RGEVP, since the noise is usually reduced
or unchanged from the ordinary GEVP. In addition, we
believe it is more robust at large times, since poorly
resolved elements of the correlation function are avoided.
As mentioned already, we stick to small time slices where
the signal is better resolved, and we use the results of the
DR method throughout. With the DR method, we see
negligible dependence on t − t0, so we take it to be 1 in
all cases.
For the I ¼ 2 ground state, we choose 4–10 (243) and

4–9 (323) for the fit range. From Figs. 19 and 23, one can

see that the results are very stable with both the range and
GEVP type.
Similarly, for the first excited state we choose 5–9 and

4–10 (in the case of 243, a small excited-state effect may
be visible at t ¼ 4). In both cases, the 2 × 2 GEVP appears
to be a little high. For the second excited state we take
3–9 and 3–7. Finally, for the third excited state our ranges
are 3–5 and 4–7.
For I ¼ 0, it is not as straightforward to choose central

values due to larger statistical errors, especially for the 323

ensemble, and as we have seen already, small times
comprise the set of usable time slices.
From Figs. 27 (243 lattice) and 30 (323 lattice), one sees

small variations with tmin for the ground states. We choose
fit ranges 4–8 and 5–9, respectively. On the 243 lattice, we
see no significant variation for the first excited state, so
we take 3–6. For 323, the errors are large for all but the
RGEVP, and we take 4–8. Finally, for the second excited
state, the fit ranges are chosen to be 3–6 and 4–6. In the
latter case, we use δt ¼ 3, since we observed a flatter
plateau and smaller statistical errors for this choice. Higher
excited states cannot be extracted from our data; improved
statistics are needed.
In Fig. 15, two-pion energies and energy shifts due to

pion-pion interactions in a finite box are plotted. The error
is statistical only. The results for the I ¼ 2 third excited
state (n ¼ 3) show smaller energy shifts than that for the
second excited state (n ¼ 2). This may indicate that there
are significant systematic effects.

B. Phase shifts

The phase shifts are computed using the fitted energies
described in the previous subsections. Specifically, we take
fit values corresponding to Eq. (26) and insert them into
Eq. (24). For the I ¼ 2 ground state with pions at rest, the
interacting two-pion energy is above the 2mπ threshold,
since the interaction is repulsive, and a phase shift is readily
calculated using Eq. (24). For I ¼ 0, the ground state is
below the threshold, so the phase shift is purely imaginary.
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FIG. 14. The I ¼ 0 effective second excited-state energy for
the 5 × 5 GEVP (upper) and 3 × 3 RGEVP (lower) with the
dispersion relation method. 323, t − t0 ¼ 1.

TABLE XVI. Fit results for two-pion energy of the I ¼ 0

second excited state on the 323 lattice with various fit ranges and
GEVP methods. We choose parameters δt ¼ 5 and t − t0 ¼ 1.
The values of χ2=d:o:f: are shown in the square brackets. The
rebasing matrix is calculated as 5 × 5 → 4 × 4 at t0 ¼ 1 and 4 ×
4 → 3 × 3 at t0 ¼ 2.

Fit range

GEVP type 3–6 4–6 5–6
3 × 3 0.428(19)[0.2] 0.426(26)[0.3] 0.417(32)[0.4]
4 × 4 0.442(44)[0.0] 0.450(66)[0.0] 0.445(80)[0.1]
5 × 5 0.417(26)[0.1] 0.414(32)[0.1] 0.414(35)[0.3]
RGEVP 0.5296(65)[0.5] 0.524(11)[0.4] 0.523(19)[0.9]

TABLE XV. Fit results for two-pion energy of the I ¼ 0 first
excited state on the 323 lattice with various fit ranges and GEVP
methods. We choose parameters δt ¼ 5 and t − t0 ¼ 1. The
values of χ2=d:o:f: are shown in the square brackets. The rebasing
matrix is calculated as 5 × 5 → 4 × 4 at t0 ¼ 1, 4 × 4 → 3 × 3 at
t0 ¼ 2, and 3 × 3 → 2 × 2 at t0 ¼ 4.

Fit range

GEVP type 3–8 4–8 5–8
3 × 3 0.3989(60)[0.2] 0.399(12)[0.3] 0.394(24)[0.4]
4 × 4 0.3998(57)[0.1] 0.399(14)[0.2] 0.390(41)[0.2]
5 × 5 0.3997(59)[0.2] 0.398(17)[0.2] 0.392(28)[0.2]
RGEVP 0.4054(28)[0.5] 0.4052(41)[0.6] 0.3989(66)[0.3]
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The phase shifts for each state and various fit ranges for the
energies are summarized in Tables XVIII–XXIX.
Results corresponding to the energies (fit ranges) chosen

at the end of the last section are shown in Fig. 16 and given
in Table XVII for both ensembles. Agreement with the Roy
equation result3 [28,30] is observed up to the third (second)
excited state for I ¼ 2ð0Þ. Even though, strictly speaking,
Lüscher’s method [6] is not valid above the inelastic
scattering threshold (4mπ), which is shown for each
ensemble by the vertical gray lines in Fig. 16, we see no
evidence of a dramatic breakdown above this threshold (or
higher pion multiplicities, KK̄, and so on). It will be
interesting to see in future works with more precision if a
signal of such a breakdown emerges.
In addition to statistical errors, we also estimate a

systematic error due to choice of fit range for the energy
and δt in the matrix subtraction to remove the ATW
effect. The error is estimated by comparing phase shifts
for various fit ranges and δt values, and taking half the
difference between minimum and maximum central
values for a given state. For the comparison of the
systematic error, we use the fit ranges shown in
Tables XVIII–XXIX and a range of δt values shown
in the square brackets in Table XVII. We remove the fit
results that have more than twice as large a statistical
error as the fit result shown in Table XVII from the
estimation of the systematic error. In all cases, we do not
vary the GEVP type and choose the RGEVP except for

TABLE XVII. Summary of two-pion energies and phase shifts (δ). The energies are determined by correlated χ2

fits to the effective energies with the DR method. The last column gives the scattering length in units of the pion
mass. The first error is statistical, and the second (δ,mπa0) a systematic error, which is estimated by varying fit range
as well as δt in the range shown in the square brackets. See text for more detail.

I n GEVP type Fit range δt χ2=d:o:f: Energy δ0 ðdegÞ mπaI0

243 lattice
2 0 RGEVP 4–10 5[4–8] 0.6 0.28130(34) −0.374ð13Þð4Þ −0.0496ð11Þð5Þ
2 1 RGEVP 5–9 5[4–8] 0.3 0.60789(31) −12.33ð22Þð20Þ
2 2 RGEVP 3–9 5[4–8] 1.4 0.81753(56) −20.18ð43Þð54Þ
2 3 4 × 4 3–5 5[4–8] 0.1 0.9658(17) −26.5ð2.4Þð4Þ
0 0 RGEVP 4–8 7[5–9] 1.1 0.27069(41) 0.2038(70)(160)
0 1 RGEVP 3–6 9[6–9] 0.1 0.5308(44) 45.1(2.9)(2.1)
0 2 RGEVP 3–5 9[7–9] 0.7 0.695(12) 83(11)(15)

323 lattice
2 0 RGEVP 4–9 8[4–8] 0.8 0.21041(37) −0.424ð51Þð23Þ −0.0537ð42Þð22Þ
2 1 RGEVP 4–10 8[4–8] 0.3 0.45648(36) −13.37ð32Þð11Þ
2 2 RGEVP 3–7 8[4–8] 0.3 0.61552(58) −22.90ð59Þð34Þ
2 3 4 × 4 4–7 8[4–8] 0.1 0.7230(17) −24.2ð3.2Þð2.1Þ
0 0 RGEVP 5–9 5[5–8] 0.4 0.20248(56) 0.1947(150)(126)
0 1 RGEVP 4–8 5[5–8] 0.6 0.4052(41) 38.6(3.6)(10.1)
0 2 RGEVP 4–6 5[4–6] 0.4 0.5304(91) 71(12)(16)
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FIG. 15. Summary of two-pion energies obtained by correlated
fits to DR effective energies (top) and their difference from the
corresponding noninteracting energies given by Eq. (27) (bot-
tom). In the top panel, the noninteracting energy is also drawn
using the continuum dispersion relation [Eq. (27)] with jp⃗nj2 ¼
nð2π=LÞ2 for both 243 and 323 lattices.

3In the figures displaying Roy equation results, we always use
the formulas in Ref. [28], for technical reasons. In later papers, we
will switch to the update in Ref. [30].
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the I ¼ 2 third excited state, where we need to use the full-
size 4 × 4GEVP. This is because only theRGEVPappears to
give reasonable results for the I ¼ 0 excited states on the 323

lattice, while the other results are less dependent on GEVP
type than fit range. The systematic errors are small for the
ground state (less than the statistical error) and become
comparable to, and even larger than, the statistical error with
increasing energy. Since the I ¼ 0 energies are noisier than
their I ¼ 2 counterparts, so too are their phase shifts.
The physical energies corresponding to the various states

differ slightly on the two ensembles, so to compare the phase
shifts at fixed energy, we do a piecewise linear interpolation
of the phase shifts in discrete energy at fixed lattice spacing
and then extrapolate the interpolated phase shifts to the
continuum, a → 0, at fixed energy. The extrapolation is
performed linearly in a2. The results are shown in Fig. 17. In
each panel, the a → 0 extrapolation is shown with a green
band.Thevalues are compatiblewith theRoy equation, albeit
within relatively large uncertainties, especially for I ¼ 0. For
this study, we calculate error bands for the dispersive results
using Ref. [28], andwe defer a more comprehensive study—
including, for example, themore accurate results of Ref. [30]
—to a future publication.
Lastly, we discuss the two-pion scattering length. Since

the relation between the two-pion phase shift δ0 and
scattering length a0 is given as4

k cot δ0ðkÞ ¼
1

a0
þ 1

2
r0k2 þOðk4Þ; ð33Þ

with the effective range parameter r0, we can calculate the
scattering length by

a0 ¼
tan δ0ðkÞ

k
þOðk2Þ; ð34Þ

with a sufficiently small value of k, which can be obtained
with the ground state straightforwardly for the I ¼ 2
channel. For the I ¼ 0 channel, k is a pure imaginary
number for the ground state, and we cannot directly use
Eq. (33) and the formulas given in Sec. II F for this case. It
is known [19] that these formulas can be analytically
continued with pure imaginary values of k. With that,
we obtain the scattering length as a real number. The values
for the scattering lengths for various ranges of fits to the
ground-state energies are given in Tables XXX–XXXIII. In
Table XVII, central values are displayed; systematic errors
are computed as before for the phase shifts. A simple linear
extrapolation in a2, after combining statistical and system-
atic errors in quadrature, yields

mπa20 ¼ −0.058ð11Þ; ð35Þ
mπa00 ¼ 0.184ð47Þ ð36Þ

for I ¼ 2 and I ¼ 0, respectively.

FIG. 16. Pion-scattering phase shifts for ground and higher
excited states; I ¼ 0 (upper) and I ¼ 2 (lower). Bars denote
statistical and systematic errors added in quadrature (see
Table XVII). The Roy equation results [28] are shown by solid
lines and corresponding error bands. Vertical gray lines denote
4mπ thresholds for 243 and 323 ensembles, above which the
method of determining phase shifts [6] in this work is no longer
strictly valid.

FIG. 17. Continuum limit of the pion-scattering phase shifts for
ground and higher excited states (light green bands) for I ¼ 2
(upper panel) and I ¼ 0 (lower). The continuum extrapolation is
performed linearly in a2 after linear interpolation in the energy at
fixed lattice spacing. The Roy equation results [28] are shown by
the light-red error bands.

4The subscript refers to the s-wave channel.
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Figure 18 shows a comparison of these numbers with
results from earlier works, including phenomenology and
lattice QCD. The figure indicates our results are con-
sistent with ChPT prediction and earlier lattice calculations
[29,50] within 1.3σ for I ¼ 2 and 1σ for I ¼ 0. The errors
on our results are somewhat larger, because the earlier
works at unphysical pion masses performed a chiral
extrapolation with the assumption

mπa20 ¼ −
m2

π

8πf2π

�
1þ m2

π

16π2f2π

�
3 ln

m2
π

f2π
− 1 − l2ππ

��
; ð37Þ

mπa00 ¼
7m2

π

16πf2π

�
1 −

m2
π

16π2f2π

�
9 ln

m2
π

f2π
− 5 − l0ππ

��
; ð38Þ

where the leading order with the pion decay constant fπ was
inputted independently of lattice calculation. They only used
lattice results for determination of the energy constants lIππ ,
which is associated with the subleading contribution to the
scattering length. Our results, on the other hand, are pure
lattice results obtained without assuming the leading con-
tribution. Another work [23] carried out at physical pion
mass gavemπa20 ¼ −0.0481ð86Þ, which is omitted from the
plot because of the absence of the systematic error but
certainly has a larger error than others, even without the
continuum extrapolation.

V. COST COMPARISON WITH G-PARITY
BOUNDARY CONDITIONS

Oneof themain goals of this study is to extract the signal of
an excited state that has an energy near the kaon mass and is
useful for calculation ofK → ππ decay matrix elements and
ε0, the measure of direct CP violation. We find from the
previous section that the energy of the first excited state is
close to the kaonmass andwell resolved.We have carried out
the same kind of studies with G-parity boundary conditions
(GPBCs) [2,3,24], in which pions are antiperiodic in space
and therefore must have nonzero spatial momentum, and
realized the on-shell K → ππ kinematics with the corre-
sponding I ¼ 0 ground two-pion state. It is valuable to
compare the effectiveness of GPBCs against the conven-
tional periodic boundary conditions (PBCs). In this section,
we carry out an efficiency comparison between the GPBC
ground state and PBC first excited state.
In Ref. [24], measurements were carried out on an

ensemble of 741 gauge field configurations with identical
parameters to those used in the 323 ensemble, except that
GPBCs were used. Nine hundred low modes and twenty-
four (spin-color-flavor diluted) random source fields on
each time slice comprised the A2A [40] measurement
setup. The high-mode part is double for GPBCs—1536 vs
768 modes in this work because of no need of flavor
dilution with PBC. The low-mode part also differs—900
exact eigenvectors (GPBCs) vs 2000 approximate coarse-
grained eigenvectors based on local coherence (PBCs) [51].
It is not easy to estimate a quantitative difference between
this and the GPBC calculation, since different setups (low
modes, AMA, solvers, etc.) have been used in the two
cases. However, assuming similar solver performances, we
expect the cost of GPBCs being roughly twice as much, for
the same quark mass and lattice volume, because of the
doubled size of the Dirac operator. Taking the two-pion
energy at the kaon mass as the goal of our calculation, this
cost has to be contrasted with a possibly easier extraction of
energy levels in GPBCs compared to PBCs. Another
difference is the time-translation interval of connected
diagrams. Most of the connected diagrams are calculated
with six source locations in this work and eight source
locations in the earlier work. One exception is the con-
nected diagram of the σ-σ two-point function, which is

FIG. 18. Summary plot of two-pion scattering length mπaI0 for
I ¼ 2 (upper) and I ¼ 0, comparing with results from earlier
phenomenology and lattice studies summarized by FLAG [50].
Earlier lattice results quoted with statistical error only are not
plotted. The plotted earlier results are all obtained by a chiral
extrapolation [Eqs. (37) and (38)] to the physical pion mass using
an inputted value of fπ and lattice results at unphysical pion
masses, while the result from this work is a purely lattice result at
the physical pion mass.
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computed, again, with six source locations in this work, but
with 64 source locations in the earlier work. This difference
in σ-σ measurement detail would not affect computational
cost, as it is very cheap, though it might make an impact on
the precision.
We will focus on the zero-total-momentum rest frame.

For I ¼ 2, Table X in Ref. [24] lists the energy (in lattice
units) as 0.41528(46) with t0 ¼ 11, t − t0 ¼ 1. In this
study, the corresponding value is 0.45549(160). Recall
that the momentum, in units of 2π=L, of the pions is

slightly smaller in the GPBC case,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 × ð1

2
Þ2

q
instead of 1,

and therefore we do not expect the central values to agree.
In fact, both the number in our present study and that of
Ref. [24] agree with the dispersive results at their corre-
sponding momenta. Accounting for the increased error
growth due to this slight mismatch in the energy [52] and
the difference in the number of measurements expects the
GPBC result to be more precise than the PBC by a factor of
≈1.6 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
741=107

p ¼ 4.2, which implies that the efficiency
is about the same for the two methods in this case.
The more salient comparison is for the I ¼ 0 case, since

that is the main reason for using GPBCs. In Table X in
Ref. [24], the energy of the two-pion state is given as
0.3479(11)[10], where the first error is statistical and the
second is excited-state systematic. It is determined from a
three-operator, two-state fit with fit range 6–15. A GEVP
analysis with t0 ¼ 5, t − t0 ¼ 1, without matrix subtrac-
tion, gives 0.3489(11), where the error is statistical. The
matrix subtraction was not performed for this analysis, as
the ATW effects with GPBCs are due to a long-time
propagation of moving pions, and the estimates of the size
of the dominant ATW contribution gave values 10 times
smaller than the statistical errors on the data, and separate
multioperator fits with the ATW term included gave results
consistent with zero. The corresponding result for PBC is
0.406(16), where a matrix subtraction was performed to
remove ATW contamination. While accounting again for
the mismatch in energies and number of measurements
expects that the GPBC result should be more precise by a
factor of about 3.5, we do not see a significant shift by the
matrix subtraction for I ¼ 0, and it would be interesting to
study and understand how significant the ATW effect on
I ¼ 0 is. In any case, the factor 3.5 is not big enough to
explain the difference in the statistical error, which is about
4 times bigger in the PBC case for equivalent statistics and
energies. Of course, the argument about exponential growth
of errors is not perfect, since the prefactors may differ
between the two cases.
In the GPBC case, the boundary conditions lead to cubic

symmetry breaking at the quark level, which is suppressed
by averaging pairs of single-pion interpolating operators
with different quark and antiquark momentum assignments,
but with the same total pion momentum [24,27]. For the
ground state, eight pairs (averages) of pion interpolating

operators are used to construct 64 correlation functions,
which most strongly overlap with the s-wave G-parity
ground state. Here, we use six single-pion operators with
momentum ð�1; 0; 0Þ (plus permutations), or 36 correla-
tors, for the corresponding s-wave excited state. While it is
difficult to quantify the improvement gained from averag-
ing over more combinations due to correlations, we do
expect some benefit and will study this question in future
calculations in both setups.
While not as direct, it is interesting and useful to compare

the 243 ensemble to the GPBC case. Here, the PBC setup is
the same as before, but the statistics are based on 258
configurations. The relevant two-pion energy (t ¼ 4) is
0.5298(64) in lattice units. Converting the errors to GeV
and accounting for the different number of measurements
yields a factor≈2.5, bywhich the GPBC result is expected to
be more precise than the PBC result. Accounting for the
different number of pionmomentumcombinations as before,
this factor is further reduced to somewhere between 1 and 2.
(These factors are based on an assumption of statistical
independence between the momentum orientations that may
not be borne out in practice.) The exponential factor is
roughly 1 in this case, which we ignore. A more thorough
comparison between the GPBC and PBC approaches will be
performed when we have measurements performed on an
equivalent statistical sample.

VI. CONCLUSION

In this work, we have carried out a study of pion scattering
at the physical point using 2þ 1 flavorMöbius domain-wall
fermion ensembles with inverse lattice spacings of 1.023 and
1.378 GeVusing periodic boundary conditions (PBCs). The
main focuswas to extract the first excited-state energies in the
rest frame, in both I ¼ 0 and 2 channels, and their corre-
sponding phase shifts, using the finite-volume Lüscher
formalism [6]. The first excited-state energy (roughly)
corresponds to the important case of on-shellK → ππ decay,
which is our longer-term goal [53].
The energies were computed using the GEVP method

[34,35]. In order to extract the desired first excited state
and control excited-state contamination, several two-pion
interpolating operators were used, including a simple
scalar bilinear. The other operators were constructed from
pions with equal and opposite momenta. The single-pion
momentum took values (0, 0, 0), (�1; 0; 0), (�1;�1; 0),
(�1;�1;�1) (and permutations) in units of 2π=L. As
found in Refs. [3,24], the inclusion of the scalar bilinear
with the quantum numbers of the vacuum is crucial to
disentangle the first and second excited-state energies.
The GEVP, or matrix correlation function, size ranged

from 2 × 2 to 5 × 5. We found in most cases that the size
did not have a large effect after 2 × 2 for I ¼ 2 and 3 × 3
for I ¼ 0. However, in some cases, the noise of the higher
states in the correlation matrix at large times adversely
impacted the lower energies. In these cases, the overlap of
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higher states with lower states was small, and the extra
states only contributed noise to the lower states. This
problem led to a modification of the method: as time
increases, the operator basis of the GEVP is changed
(“rebased”) using the eigenvectors of the GEVP from
earlier times. While this method gives similar results in
most cases studied here, it had a dramatic improvement for
the I ¼ 0 first excited state on the 323 ensemble, where the
statistics were relatively poor (see Figs. 30–32). This
RGEVP then allowed a relatively precise phase-shift
determination (see Fig. 16).
We started this series of K → ππ studies with G-parity

boundary conditions (GPBCs) [2,3,24] because we
anticipated it would be challenging to extract the signal
of an excited two-pion state, which is necessary for the
K → ππ study using PBCs. After seeing the successful
calculation of two-pion scattering and K → ππ decay
amplitudes with GPBCs [3,24], we launched this PBC
project to find a practical alternative, as a further check,
and to enable calculations with isospin corrections. We
note once again that we have been successful in
extracting signals of multiple states: the four lowest-
energy states for I ¼ 2, and the three lowest ones (at
least on the 243 lattice with better statistics) for I ¼ 0,
despite the anticipated difficulty of extracting the
excited-state signals.
In this first study, we have focused on two important

systematic effects. First, by computing energies and
phase shifts on ensembles with different lattice spacings,
we find no statistically significant discretization errors
for I ¼ 0 and small, but statistically significant, effects
for I ¼ 2. Second, we studied the time dependence of
the effective energies and observed noticeable excited-
state contamination for short times. We also saw that
many of the effects arising from single-pion excited
states could be removed with the dispersion relation
method, which also removes leading discretization
errors. Moreover, we expect the systematic uncertainties
for PBCs to be similar to GPBCs. In that case, statistical
and systematic errors on the energies were estimated to
be roughly equal [24].
Another important motivation of employing PBCs is that

it appears difficult to use GPBCs to compute QED and
strong-interaction isospin-breaking effects, since they
explicitly enforce isospin symmetry, though isospin sym-
metry breaking is expected to significantly impact the value
of the direct CP violation parameter ε0 (20%–30%) [54].
Controlling such effects precisely is important for the next
generation of ε0 calculations.
We are currently improving the statistics on both ensem-

bles for our companionK → ππ calculation, andwhen that is
complete, we will have an even better comparison with
G-parity and estimates of systematic errors. These results and
the ones so far from the kaon decay project leave us
optimistic for the PBC method.
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APPENDIX A: WICK CONTRACTIONS

We write down the explicit forms of two-pion operators
and the Wick contractions of two-point functions of these
operators to clarify the convention used in this paper.

Õ2;0
ππ ðX1; X2Þ ¼

1ffiffiffi
6

p ðπþðX1Þπ−ðX2Þ þ 2π0ðX1Þπ0ðX2Þ

þ π−ðX1ÞπþðX2ÞÞ; ðA1Þ

Õ0;0
ππ ðX1; X2Þ ¼

1ffiffiffi
3

p ðπþðX1Þπ−ðX2Þ − π0ðX1Þπ0ðX2Þ

þ π−ðX1ÞπþðX2ÞÞ; ðA2Þ

where Xi denotes the 4D position xi, or the set of the time
coordinate and spatial momentum, ðti; p⃗iÞ, of the operator
labeled by i. Wick contractions for two-point functions of
these operators yield

hÕ2;0
ππ ðX1; X2ÞÕ2;0

ππ ðX3; X4Þ†i
¼ 2DðX1; X2; X3; X4Þ − 2CðX1; X2; X3; X4Þ; ðA3Þ

hÕ0;0
ππ ðX1; X2ÞÕ0;0

ππ ðX3; X4Þ†i
¼ 2DðX1; X2; X3; X4Þ þ CðX1; X2; X3; X4Þ
− 6RðX1; X2; X3; X4Þ þ 3VðX1; X2; X3; X4Þ; ðA4Þ

where we define the contributions of the diagrams D, C, R,
and V by
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Dðx1; x2; x3; x4Þ ¼
1

2
hTr½γ5Slðx1; x3Þγ5Slðx3; x1Þ� · Tr½γ5Slðx2; x4Þγ5Slðx4; x2Þ�

þ Tr½γ5Slðx1; x4Þγ5Slðx4; x1Þ� · Tr½γ5Slðx2; x3Þγ5Slðx3; x2Þ�i; ðA5Þ

Cðx1; x2; x3; x4Þ ¼
1

2
hTr½γ5Slðx1; x3Þγ5Slðx3; x2Þ · γ5Slðx2; x4Þγ5Slðx4; x1Þ�

þ Tr½γ5Slðx1; x4Þγ5Slðx4; x2Þ · γ5Slðx2; x3Þγ5Slðx3; x1Þ�i
¼ hTr½γ5Slðx1; x3Þγ5Slðx3; x2Þ · γ5Slðx2; x4Þγ5Slðx4; x1Þ�i; ðA6Þ

Rðx1; x2; x3; x4Þ ¼
1

4
hTr½γ5Slðx1; x2Þγ5Slðx2; x3Þ · γ5Slðx3; x4Þγ5Slðx4; x1Þ�

þ Tr½γ5Slðx1; x4Þγ5Slðx4; x3Þ · γ5Slðx3; x2Þγ5Slðx2; x1Þ�
þ Tr½γ5Slðx1; x2Þγ5Slðx2; x4Þ · γ5Slðx4; x3Þγ5Slðx3; x1Þ�
þ Tr½γ5Slðx1; x3Þγ5Slðx3; x4Þ · γ5Slðx4; x2Þγ5Slðx2; x1Þ�i

¼ 1

2
hTr½γ5Slðx1; x2Þγ5Slðx2; x3Þ · γ5Slðx3; x4Þγ5Slðx4; x1Þ�

þ Tr½γ5Slðx1; x3Þγ5Slðx3; x4Þ · γ5Slðx4; x2Þγ5Slðx2; x1Þ�i; ðA7Þ

Vðx1; x2; x3; x4Þ ¼ hTr½γ5Slðx1; x2Þγ5Slðx2; x1Þ� · Tr½γ5Slðx3; x4Þγ5Slðx4; x3Þ�i ðA8Þ

for Xi ¼ xi. For our actual calculation with the A2A quark propagators proposed in Ref. [40], we define the pion meson
field Ππ

ijðt; p⃗Þ, which is projected to a certain spatial momentum and spin-color singlet but has mode indices that label the
low and high modes. In our calculation, there are 2000 low modes and 4 × 3 × 64 ¼ 768 high modes from the spin-color-
time dilution, and therefore each mode index runs for 1, 2,…, 2768. The expressions of the contractions in Eqs. (A5)–(A8)
in time-momentum space with the pion meson fields are then given as follows:

DðX1; X2; X3; X4Þ ¼
1

2

	X
i;j

Ππ
ijðX1ÞΠπ

jiðX3Þ ·
X
k;l

Ππ
klðX2ÞΠπ

lkðX4Þ þ
X
i;j

Ππ
ijðX1ÞΠπ

jiðX4Þ ·
X
k;l

Ππ
klðX2ÞΠπ

lkðX3Þ


; ðA9Þ

CðX1; X2; X3; X4Þ ¼
	X

i;j;k;l

Ππ
ijðX1ÞΠπ

jkðX3ÞΠπ
klðX2ÞΠπ

liðX4Þ


; ðA10Þ

RðX1; X2; X3; X4Þ ¼
1

2

	X
i;j;k;l

Ππ
ijðX1ÞΠπ

jkðX2ÞΠπ
klðX3ÞΠπ

liðX4Þ þ
X
i;j;k;l

Ππ
ijðX1ÞΠπ

jkðX3ÞΠπ
klðX4ÞΠπ

liðX2Þ


; ðA11Þ

VðX1; X2; X3; X4Þ ¼
	X

i;j

Ππ
ijðX1ÞΠπ

jiðX2Þ ·
X
k;l

Ππ
klðX3ÞΠπ

lkðX4Þ


; ðA12Þ

with Xi ¼ ðti; p⃗iÞ.
Wick contractions for two-point functions including one or two sigma operators read

hÕ2;0
ππ ðX1; X2ÞσðX3Þ†i ¼ −

ffiffiffi
6

p
RσðX1; X2; X3Þ þ

ffiffiffi
6

p
VσðX1; X2; X3Þ; ðA13Þ

hσðX1ÞσðX3Þ†i ¼ −RσσðX1; X3Þ þ 2VσσðX1; X3Þ: ðA14Þ

Here, we define

Rσðx1; x2; x3Þ ¼
1

2
hTr½γ5Slðx1; x2Þγ5Slðx2; x3ÞSlðx3; x1Þ� þ Tr½γ5Slðx2; x1Þγ5Slðx1; x3ÞSlðx3; x2Þ�i

¼ hTr½γ5Slðx1; x2Þγ5Slðx2; x3ÞSlðx3; x1Þ�i; ðA15Þ
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Vσðx1; x2; x3Þ ¼ hTr½γ5Slðx1; x2Þγ5Slðx2; x3Þ�
· Tr½Slðx3; x1Þ�i; ðA16Þ

Rσσðx1; x3Þ ¼ hTr½Slðx1; x3ÞSlðx3; x1Þ�i; ðA17Þ
Vσσðx1; x3Þ ¼ hTr½Slðx1; x1ÞSlðx3; x3Þ�i; ðA18Þ

which can be expressed in terms of the pion Ππ
ij and sigma

Πσ
ij meson fields as

RσðX1; X2; X3Þ ¼
	X

i;j;k

Ππ
ijðX1ÞΠπ

jkðX2ÞΠσ
kiðX3Þ



; ðA19Þ

VσðX1; X2; X3Þ ¼
	X

i;j

Ππ
ijðX1ÞΠπ

jiðX2Þ ·
X
k

Πσ
kkðX3Þ



;

ðA20Þ

RσσðX1; X3Þ ¼
	X

i;j

Πσ
ijðX1ÞΠσ

jiðX3Þ


; ðA21Þ

VσσðX1; X3Þ ¼
	X

i

Πσ
iiðX1Þ ·

X
j

Πσ
jjðX3Þ



ðA22Þ

for Xi ¼ ðti; p⃗iÞ.

APPENDIX B: DETAILS OF GEVP PROCEDURE

1. Ordering of GEVP eigenvectors

While a simple description of how we order GEVP
eigenvectors was made in Sec. II D, it is valuable to address
the exact procedure using equations.
Since we fix t − t0 to a constant Δt, we can drop t or t0

from the arguments of eigenvalues and eigenvectors, and it
is valuable for the following discussion. We drop t rather
than t0, since the contamination from excited states in
eigenvalues and eigenvectors is measured by t0. The GEVP
equation is then rewritten as

CðtÞVnðt0Þ ¼ λnðt0ÞCðt0ÞVnðt0Þ: ðB1Þ
At short time separations where the statistical errors are

small enough, we simply sort eigenvalues into descending
order. This will give us the ascending order of effective
energies and ensure. Since this approach for short times is
trivial and has no ambiguity, we spend the rest of the
subsection for the ordering at larger time separations where
the statistical error is large, but the excited-state contami-
nation is expected to be small.
At long distances, we employ a recursive approach using

the eigenvectors obtained one time slice earlier. As
explained in Sec. II D, the idea is to use eigenvectors at
one time slice earlier to construct a near diagonal correlator
matrix, with which it is very easy to obtain the correct order
of eigenvectors at the current time slice. The exact
procedure is given as follows.

We now suppose the ordering of the eigenvectors
Vnðt0 − 1Þ at t0 − 1 is successful and give a recipe to
obtain the correct order of the eigenvectors Vnðt0Þ at t0
using Vnðt0 − 1Þ. We define an N × N matrix

Tðt0 − 1Þ ¼ ðV1ðt0 − 1ÞV2ðt0 − 1Þ…VNðt0 − 1ÞÞ; ðB2Þ
using the set of the GEVP eigenvectors Vnðt0 − 1Þ obtained
at one time slice earlier. Then we can calculate approx-
imately diagonal matrices

C0ðt; t0 − 1Þ ¼ Tðt0 − 1Þ†CðtÞTðt0 − 1Þ; ðB3Þ
C0ðt0; t0 − 1Þ ¼ Tðt0 − 1Þ†Cðt0ÞTðt0 − 1Þ: ðB4Þ

Here, the second argument of C0 on the left-hand sides
corresponds to the argument of T on the right-hand sides.
The off-diagonal elements of these matrices are associated
only with the statistical fluctuation and systematic effect
from excited states. With these near-diagonal matrices, we
can express the GEVP [Eq. (B1)] as

C0ðt; t0 − 1ÞV 0
nðt0Þ ¼ λnðt0ÞC0ðt0; t0 − 1ÞV 0

nðt0Þ; ðB5Þ

where V 0
nðt0Þ satisfies

Vnðt0Þ ¼ Tðt0 − 1ÞV 0
nðt0Þ: ðB6Þ

If we can obtain the correct order of V 0
nðt0Þ when solving

the modified GEVP [Eq. (B5)], we can also obtain the
corresponding GEVP eigenvectors Vnðt0Þ with the original
basis through Eq. (B6). In fact, eigenvectors V 0

nðt0Þ are
mostly a unit vector for a certain direction, and it is easy to
recognize their correct order at sufficiently large t0 where
the contamination from the ðN þ 1Þth and higher states is
small, and therefore the correlator matrices in the GEVP
[Eq. (B5)] are mostly diagonal.

2. RGEVP

In this work, we consider the RGEVP with fixed
t − t0 ≡ Δt, and we continue to omit t from the arguments
of Vn in this subsection. In this subsection, we give the
recipe for finding a new basis of fewer operators.
(1) Choose the GEVP size Nt0 at each time slice

N1 ≥ N2 ≥ …: ðB7Þ

Note that Nt0 here has a different meaning than Nα

used in Sec. II E.
(2) Solve the N1 × N1 GEVP at the beginning time slice

t0 ¼ 1 and order the eigenvectors Vnð1Þ, ensuring
the descending order of the corresponding eigen-
values.

(3) For t0 ≥ 2, suppose we have obtained the eigenvec-
tors Vnðt0 − 1Þ at t0 − 1 for n ¼ 1; 2;…; Nt0−1 and
calculate the Nt0 × Nt0 rebased correlator matrices
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by Eqs. (B3) and (B4) with the modified N1 × Nt0
rebasing matrix

Tðt0 − 1Þ ¼ ðV1ðt0 − 1ÞV2ðt0 − 1Þ…VNt0
ðt0 − 1ÞÞ:

ðB8Þ
(4) Solve the GEVP [Eq. (B5)] with the rebased

correlators in Eqs. (B3) and (B4) and obtain the
eigenvectors VnðtÞ by Eq. (B6) for n ¼ 1; 2;…; Nt
using the ordering procedure described in the pre-
vious subsection.

Note that, in step 3, the numberNt0 of columns of Tðt0 − 1Þ
despite Nt0−1ð≥ Nt0Þ eigenvectors Vnðt0 − 1Þ obtained at
time slice t0 − 1 plays a role in reducing the size of the
GEVP at time slice t0 when Nt0−1 ≠ Nt0 .
While repeating steps 3 and 4 and applying the results to

Eq. (19) gives us a new series of effective two-pion
energies, they are identical to the normal GEVP results
at small t0 that satisfy Nt0 ¼ N1. On the other hand, it is
interesting to investigate how the GEVP with the reduced
new basis behaves at smaller time slices. Therefore, we
perform the following additional steps:
(5) Repeat steps 3 and 4 to obtain Tðt̃0Þ with a chosen

time t̃0 where the final rebasing is performed—
i.e., Nt̃0−1 > Nt̃0 ¼ Nt̃0þ1 ¼ ….

(6) Perform the GEVP analysis with the rebased corre-
lator matrices Tðt̃0Þ†CðtÞTðt̃0Þ for all available time
slices.

The N1 × Nt̃0 matrix Tðt̃0Þ is the matrix to define the new
operator basis. These steps can be parametrized by the pairs
of t0 and Nt0 that satisfy Nt0−1 > Nt0. A single pair gives us
a single-step RGEVP, while multiple pairs correspond to a
multistep RGEVP. We present the RGEVP results with
these parameters in Sec. IV.

APPENDIX C: SUPPLEMENTAL FIGURES
AND TABLES

FIG. 20. Same as Fig. 19, but results for the I ¼ 2 first excited
state on the 243 ensemble.

FIG. 19. I ¼ 2 ππ ground-state energy on the 243 ensemble
obtained from fits to a constant for various fit ranges and GEVP
types plotted in lattice units.

FIG. 21. Same as Fig. 19, but results for the I ¼ 2 second
excited state on the 243 ensemble.

FIG. 22. Same as Fig. 19, but results for the I ¼ 2 third excited
state on the 243 ensemble.
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FIG. 23. Same as Fig. 19, but results for the I ¼ 2 ground state
on the 323 ensemble.

FIG. 24. Same as Fig. 19, but results for the I ¼ 2 first excited
state on the 323 ensemble.

FIG. 25. Same as Fig. 19, but results for the I ¼ 2 second
excited state on the 323 ensemble.

FIG. 26. Same as Fig. 19, but results for the I ¼ 2 third excited
state on the 323 ensemble.

FIG. 27. Same as Fig. 19, but results for the I ¼ 0 ground state
on the 243 ensemble.

FIG. 28. Same as Fig. 19, but results for the I ¼ 0 first excited
state on the 243 ensemble.
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FIG. 29. Same as Fig. 19, but results for the I ¼ 0 second
excited state on the 243 ensemble.

FIG. 30. Same as Fig. 19, but results for the I ¼ 0 ground state
on the 323 ensemble.

FIG. 31. Same as Fig. 19, but results for the I ¼ 0 first excited
state on the 323 ensemble.

FIG. 32. Same as Fig. 19, but results for the I ¼ 0 second
excited state on the 323 ensemble.

FIG. 33. I ¼ 2 effective ground-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP type, δt
(matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 4 (circle), 6 (square), and 8
(diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.
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FIG. 34. I ¼ 2 effective first excited-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP type,
δt (matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 4 (circle), 6 (square), and 8
(diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.

FIG. 35. I ¼ 2 effective second excited-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 4 (circle), 6 (square),
and 8 (diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.
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FIG. 36. I ¼ 2 effective third excited-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 4 (circle), 6 (square),
and 8 (diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.

FIG. 37. I ¼ 0 effective ground-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP type, δt
(matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 4 (circle), 6 (square), and 8
(diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.
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FIG. 38. I ¼ 0 effective first excited-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP type,
δt (matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 3 (circle), 5 (square), and 7
(diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.

FIG. 39. I ¼ 0 effective second excited-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 3 (circle), 5 (square),
and 7 (diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.
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FIG. 40. I ¼ 0 effective third excited-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 3 (circle), 5 (square),
and 7 (diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.

FIG. 41. I ¼ 0 effective fourth excited-state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are up to six values, corresponding to two sets of t ¼ 3 (circle), 5 (square),
and 7 (diamond), one set each for the nondispersion relation method and dispersion relation method, respectively.
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FIG. 42. I ¼ 2 effective ground-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP type, δt
(matrix subtraction), and t − t0. For each label, there are results for five values of t ¼ 5 (circle), 7 (square), 9 (diamond), 11 (pentagon),
and 13 (cross).

FIG. 43. I ¼ 2 effective first excited-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP type,
δt (matrix subtraction), and t − t0. For each label, there are results for five values of t ¼ 5 (circle), 7 (square), 9 (diamond), 11
(pentagon), and 13 (cross).
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FIG. 44. I ¼ 2 effective second excited-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are results for five values of t ¼ 5 (circle), 7 (square), 9 (diamond), 11
(pentagon), and 13 (cross).

FIG. 45. I ¼ 2 effective third excited-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are results for five values of t ¼ 5 (circle), 7 (square), 9 (diamond), 11
(pentagon), and 13 (cross).
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FIG. 46. I ¼ 0 effective ground-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP type, δt
(matrix subtraction), and t − t0. For each label, there are results for four values of t ¼ 4 (circle), 7 (square), 9 (diamond), and 11 (cross).

FIG. 47. I ¼ 0 effective first excited-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP type,
δt (matrix subtraction), and t − t0. For each label, there are results for four values of t ¼ 4 (circle), 7 (square), 9 (diamond),
and 11 (cross).
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FIG. 48. I ¼ 0 effective second excited-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are results for four values of of t ¼ 4 (circle), 7 (square), 9 (diamond), and
11 (cross).

FIG. 49. I ¼ 0 effective third excited-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are results for four values of t ¼ 4 (circle), 7 (square), 9 (diamond),
and 11 (cross).
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FIG. 50. I ¼ 0 effective fourth excited-state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label, there are results for two values of t ¼ 4 (circle) and 7 (square).

TABLE XVIII. Results for the I ¼ 2 phase shift on the 243

lattice for two-pion energy of the ground state shown in Table III.

Fit range

GEVP type 4–10 5–10 6–10
2 × 2 −0.378ð13Þ° −0.372ð14Þ° −0.372ð13Þ°
3 × 3 −0.377ð13Þ° −0.371ð14Þ° −0.371ð14Þ°
4 × 4 −0.369ð13Þ° −0.364ð14Þ° −0.364ð14Þ°
RGEVP −0.374ð13Þ° −0.369ð14Þ° −0.369ð13Þ°

TABLE XIX. Results for the I ¼ 2 phase shift on the 243 lattice
for two-pion energy of the first excited state shown in Table IV.

Fit range

GEVP type 4–9 5–9 6–9
2 × 2 −12.94ð19Þ° −12.64ð23Þ° −12.63ð34Þ°
3 × 3 −12.61ð18Þ° −12.37ð23Þ° −12.41ð34Þ°
4 × 4 −12.58ð18Þ° −12.33ð23Þ° −12.40ð34Þ°
RGEVP −12.57ð18Þ° −12.33ð23Þ° −12.40ð34Þ°

TABLE XX. Results for the I ¼ 2 phase shift on the 243 lattice
for two-pion energy of the second excited state shown in Table V.

Fit range

GEVP type 3–9 4–9 5–9
3 × 3 −20.97ð44Þ° −20.10ð71Þ° −20.8ð1.2Þ°
4 × 4 −20.11ð42Þ° −19.29ð68Þ° −20.4ð1.2Þ°
RGEVP −20.18ð43Þ° −19.50ð67Þ° −20.9ð1.1Þ°

TABLE XXI. Results for the I ¼ 2 phase shift on the 243 lattice
for two-pion energy of the third excited state shown in Table VI.

Fit range

GEVP type 3–5 4–5
4 × 4 −26.5ð2.4Þ° −28.7ð5.0Þ°

TABLE XXII. Results for the I ¼ 2 phase shift on the 323

lattice for two-pion energy of the ground state shown in
Table VII.

Fit range

GEVP type 4–9 5–9 6–9
2 × 2 −0.427ð50Þ° −0.427ð51Þ° −0.419ð52Þ°
3 × 3 −0.426ð51Þ° −0.427ð51Þ° −0.420ð52Þ°
4 × 4 −0.418ð53Þ° −0.418ð53Þ° −0.411ð54Þ°
RGEVP −0.424ð51Þ° −0.424ð52Þ° −0.417ð53Þ°

TABLE XXIII. Results for the I ¼ 2 phase shift on the 323

lattice for two-pion energy of the first excited state shown in
Table VIII.

Fit range

GEVP type 4–10 5–10 6–10
2 × 2 −13.96ð32Þ° −13.61ð40Þ° −13.57ð47Þ°
3 × 3 −13.45ð32Þ° −13.26ð39Þ° −13.26ð47Þ°
4 × 4 −13.37ð32Þ° −13.23ð39Þ° −13.25ð47Þ°
RGEVP −13.37ð32Þ° −13.24ð39Þ° −13.26ð46Þ°
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TABLE XXVI. Results for the I ¼ 0 phase shift on the 243

lattice for two-pion energy of the first excited state shown in
Table XII.

Fit range

GEVP type 3–6 4–6 5–6
3 × 3 44.4ð3.0Þ° 45.3ð3.8Þ° 45.8ð4.7Þ°
4 × 4 45.5ð3.0Þ° 45.9ð4.1Þ° 48.5ð6.0Þ°
5 × 5 45.4ð2.9Þ° 45.9ð3.9Þ° 48.1ð5.3Þ°
RGEVP 45.1ð2.9Þ° 45.5ð4.2Þ° 46.9ð6.8Þ°

TABLE XXVII. Results for the I ¼ 0 phase shift on the 243

lattice for two-pion energy of the second excited state shown in
Table XIII.

Fit range

GEVP type 3–5 4–5
3 × 3 65ð38Þ° 141ð72Þ°
4 × 4 69ð13Þ° 64ð14Þ°
5 × 5 68ð13Þ° 65ð13Þ°
RGEVP 83ð11Þ° 79ð22Þ°

TABLE XXIV. Results for the I ¼ 2 phase shift on the 323

lattice for two-pion energy of the second excited state shown in
Table IX.

Fit range

GEVP type 3–7 4–7 5–7
3 × 3 −24.13ð59Þ° −23.44ð83Þ° −23.1ð1.2Þ°
4 × 4 −22.85ð59Þ° −22.59ð81Þ° −22.5ð1.2Þ°
RGEVP −22.90ð59Þ° −22.59ð81Þ° −22.4ð1.2Þ°

TABLE XXV. Results for the I ¼ 2 phase shift on the 323

lattice for two-pion energy of the third excited state shown in
Table X.

Fit range

GEVP type 4–7 5–7 6–7
4 × 4 −24.2ð3.2Þ° −26.4ð4.7Þ° −27.1ð8.1Þ°

TABLE XXVIII. Results for the I ¼ 0 phase shift on the 323

lattice for two-pion energy of the first excited state shown in
Table XV.

Fit range

GEVP type 3–8 4–8 5–8
3 × 3 44.1ð5.2Þ° 44ð11Þ° 49ð20Þ°
4 × 4 43.4ð5.0Þ° 44ð12Þ° 52ð34Þ°
5 × 5 43.4ð5.2Þ° 45ð15Þ° 50ð24Þ°
RGEVP 38.4ð2.5Þ° 38.6ð3.6Þ° 44.1ð5.7Þ°

TABLE XXIX. Results for the I ¼ 0 phase shift on the 323

lattice for two-pion energy of the second excited state shown in
Table XVI.

Fit range

GEVP type 3–6 4–6 5–6
3 × 3 17ð19Þ° 20ð25Þ° 28ð30Þ°
4 × 4 40ð680Þ° 140ð690Þ° 80ð860Þ°
5 × 5 28ð24Þ° 30ð30Þ° 31ð33Þ°
RGEVP 71.6ð8.4Þ° 79ð14Þ° 80ð24Þ°

TABLE XXXII. Results for the I ¼ 0 scattering length times
pion mass mπa0 calculated on the 243 lattice using Eq. (34).

Fit range

GEVP type 3–8 4–8 5–8
3 × 3 0.1902(52) 0.2001(72) 0.2069(98)
4 × 4 0.1904(53) 0.1986(72) 0.2044(95)
5 × 5 0.1937(53) 0.2023(73) 0.2080(95)
RGEVP 0.1885(48) 0.2038(70) 0.2083(91)

TABLE XXX. Results for the I ¼ 2 scattering length times
pion massmπa0 calculated on the 243 lattice using the phase shift
of the ground state shown in Table XVIII and Eq. (34).

Fit range

GEVP type 4–10 5–10 6–10
2 × 2 −0.0499ð11Þ −0.0494ð12Þ −0.0494ð12Þ
3 × 3 −0.0499ð12Þ −0.0493ð12Þ −0.0493ð12Þ
4 × 4 −0.0492ð11Þ −0.0487ð13Þ −0.0487ð12Þ
RGEVP −0.0496ð11Þ −0.0492ð12Þ −0.0492ð12Þ

TABLE XXXI. Results for the I ¼ 2 scattering length times
pion massmπa0 calculated on the 323 lattice using the phase shift
of the ground state shown in Table XXII and Eq. (34).

Fit range

GEVP type 4–9 5–9 6–9
2 × 2 −0.0538ð41Þ −0.0539ð42Þ −0.0532ð43Þ
3 × 3 −0.0538ð42Þ −0.0539ð42Þ −0.0533ð43Þ
4 × 4 −0.0531ð44Þ −0.0532ð44Þ −0.0525ð45Þ
RGEVP −0.0537ð42Þ −0.0537ð42Þ −0.0531ð44Þ

TABLE XXXIII. Results for the I ¼ 0 scattering length times
pion mass mπa0 calculated on the 323 lattice using Eq. (34).

Fit range

GEVP type 4–9 5–9 6–9
3 × 3 0.1871(91) 0.193(11) 0.203(17)
4 × 4 0.183(12) 0.190(14) 0.200(21)
5 × 5 0.180(13) 0.188(15) 0.199(22)
RGEVP 0.185(13) 0.195(15) 0.200(21)
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TABLE XXXIV. Effective energy of the I ¼ 2 two-pion ground state on the 243 lattice for various GEVP methods
and input time parameters: δt, t − t0, and t. The values are shown in lattice units. The rebasing matrix is calculated as
4 × 4 → 3 × 3 at t0 ¼ 4. The dashes (—) mean that the effective energy could not be evaluated because of one of the
following possible reasons: 1. Correlators at tþ δt þ 1 that are needed for calculating effective energy are not
computed. 2. The ratio of corresponding GEVP eigenvalues λ0ðt; t0Þ=λ0ðtþ 1; t0Þ is negative for at least one
jackknife sample.

GEVP type δt t − t0 t ¼ 4 t ¼ 6 t ¼ 8 t ¼ 4wDR t ¼ 6wDR t ¼ 8wDR

2 × 2 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28139(41) 0.28121(43) 0.28121(45)
2 × 2 5 1 0.2833(12) 0.2810(12) 0.2810(13) 0.28135(35) 0.28123(36) 0.28126(37)
2 × 2 8 1 0.28268(98) 0.28121(94) � � � 0.28130(35) 0.28120(35) � � �
2 × 2 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28139(41) 0.28121(43) 0.28121(45)
2 × 2 5 2 0.2833(12) 0.2810(12) 0.2810(13) 0.28135(35) 0.28123(36) 0.28126(37)
2 × 2 8 2 0.28268(98) 0.28121(94) � � � 0.28130(35) 0.28120(35) � � �
2 × 2 2 3 0.2846(28) 0.2817(27) 0.2812(29) 0.28139(41) 0.28121(43) 0.28121(45)
2 × 2 5 3 0.2833(12) 0.2810(12) 0.2810(13) 0.28135(35) 0.28123(36) 0.28126(37)
2 × 2 8 3 0.28268(98) 0.28121(94) � � � 0.28131(35) 0.28120(35) � � �
2 × 2 2 4 � � � 0.2817(27) 0.2812(29) � � � 0.28121(43) 0.28121(45)
2 × 2 5 4 � � � 0.2810(12) 0.2810(13) � � � 0.28123(36) 0.28126(37)
2 × 2 8 4 � � � 0.28121(94) � � � � � � 0.28120(35) � � �
3 × 3 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28137(41) 0.28121(43) 0.28122(45)
3 × 3 5 1 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28126(37)
3 × 3 8 1 0.28268(98) 0.28121(94) � � � 0.28130(35) 0.28120(35) � � �
3 × 3 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28137(41) 0.28121(43) 0.28121(45)
3 × 3 5 2 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28126(37)
3 × 3 8 2 0.28268(98) 0.28121(94) � � � 0.28130(35) 0.28120(35) � � �
3 × 3 2 3 0.2845(28) 0.2817(27) 0.2812(29) 0.28137(41) 0.28121(43) 0.28121(45)
3 × 3 5 3 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28126(37)
3 × 3 8 3 0.28268(98) 0.28121(94) � � � 0.28130(35) 0.28120(35) � � �
3 × 3 2 4 � � � 0.2817(27) 0.2812(29) � � � 0.28121(43) 0.28121(45)
3 × 3 5 4 � � � 0.2810(12) 0.2810(13) � � � 0.28123(36) 0.28126(37)
3 × 3 8 4 � � � 0.28121(94) � � � � � � 0.28120(35) � � �
4 × 4 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28135(41) 0.28119(43) 0.28122(45)
4 × 4 5 1 0.2833(12) 0.2810(12) 0.2810(13) 0.28133(35) 0.28122(36) 0.28125(37)
4 × 4 8 1 0.28267(98) 0.28121(94) � � � 0.28129(35) 0.28120(35) � � �
4 × 4 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28135(41) 0.28123(43) 0.28122(45)
4 × 4 5 2 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28123(36) 0.28126(37)
4 × 4 8 2 0.28267(98) 0.28121(94) � � � 0.28129(35) 0.28120(35) � � �
4 × 4 2 3 0.2845(28) 0.2817(27) 0.2812(29) 0.28135(41) 0.28123(43) 0.28121(45)
4 × 4 5 3 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28123(36) 0.28126(37)
4 × 4 8 3 0.28267(98) 0.28121(94) � � � 0.28129(35) 0.28120(35) � � �
4 × 4 2 4 � � � 0.2817(27) 0.2812(29) � � � 0.28123(43) 0.28121(45)
4 × 4 5 4 � � � 0.2811(12) 0.2810(13) � � � 0.28124(36) 0.28125(37)
4 × 4 8 4 � � � 0.28122(94) � � � � � � 0.28121(35) � � �
RGEVP 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28134(41) 0.28126(43) 0.28123(45)
RGEVP 5 1 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28125(36) 0.28125(37)
RGEVP 8 1 0.28267(98) 0.28122(94) � � � 0.28129(35) 0.28121(35) � � �
RGEVP 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28134(41) 0.28124(43) 0.28122(45)
RGEVP 5 2 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28124(36) 0.28125(37)
RGEVP 8 2 0.28267(98) 0.28122(94) � � � 0.28129(35) 0.28121(35) � � �
RGEVP 2 3 0.2845(28) 0.2817(27) 0.2812(29) 0.28136(41) 0.28122(43) 0.28121(45)
RGEVP 5 3 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28125(37)
RGEVP 8 3 0.28267(98) 0.28121(94) � � � 0.28129(35) 0.28120(35) � � �
RGEVP 2 4 � � � 0.2817(27) 0.2812(29) � � � 0.28123(43) 0.28121(45)
RGEVP 5 4 � � � 0.2810(12) 0.2810(13) � � � 0.28123(36) 0.28125(37)
RGEVP 8 4 � � � 0.28121(94) � � � � � � 0.28120(35) � � �
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TABLE XXXV. Same as Table XXXIV, but for the I ¼ 2 two-pion first excited state on the 243 lattice. The
rebasing matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 4.

GEVP type δt t − t0 t ¼ 4 t ¼ 6 t ¼ 8 t ¼ 4wDR t ¼ 6wDR t ¼ 8wDR

2 × 2 2 1 0.6117(20) 0.6059(21) 0.6048(33) 0.60974(53) 0.60821(78) 0.6068(17)
2 × 2 5 1 0.6102(13) 0.6059(14) 0.6065(22) 0.60941(43) 0.60833(58) 0.6085(11)
2 × 2 8 1 0.6101(13) 0.6059(13) � � � 0.60935(40) 0.60810(51) � � �
2 × 2 2 2 0.6117(20) 0.6059(21) 0.6048(33) 0.60974(53) 0.60821(78) 0.6068(17)
2 × 2 5 2 0.6102(13) 0.6059(14) 0.6065(22) 0.60940(43) 0.60833(58) 0.6085(11)
2 × 2 8 2 0.6101(13) 0.6059(13) � � � 0.60935(40) 0.60810(51) � � �
2 × 2 2 3 0.6117(20) 0.6059(21) 0.6048(33) 0.60974(53) 0.60821(78) 0.6068(17)
2 × 2 5 3 0.6102(13) 0.6059(14) 0.6065(22) 0.60940(43) 0.60833(58) 0.6085(11)
2 × 2 8 3 0.6101(13) 0.6059(13) � � � 0.60935(40) 0.60810(51) � � �
2 × 2 2 4 � � � 0.6059(21) 0.6048(33) � � � 0.60821(78) 0.6068(17)
2 × 2 5 4 � � � 0.6059(14) 0.6065(22) � � � 0.60833(58) 0.6085(11)
2 × 2 8 4 � � � 0.6059(13) � � � � � � 0.60810(51) � � �
3 × 3 2 1 0.6111(20) 0.6054(21) 0.6049(33) 0.60913(53) 0.60775(79) 0.6069(16)
3 × 3 5 1 0.6097(13) 0.6056(14) 0.6066(22) 0.60887(43) 0.60803(58) 0.6086(11)
3 × 3 8 1 0.6095(13) 0.6056(13) � � � 0.60882(40) 0.60779(52) � � �
3 × 3 2 2 0.6111(20) 0.6054(21) 0.6050(33) 0.60913(53) 0.60775(79) 0.6070(16)
3 × 3 5 2 0.6097(13) 0.6056(14) 0.6066(22) 0.60887(43) 0.60803(58) 0.6086(11)
3 × 3 8 2 0.6095(13) 0.6056(13) � � � 0.60882(40) 0.60779(52) � � �
3 × 3 2 3 0.6111(20) 0.6054(21) 0.6049(33) 0.60913(53) 0.60775(79) 0.6069(16)
3 × 3 5 3 0.6097(13) 0.6056(14) 0.6066(22) 0.60887(43) 0.60803(58) 0.6086(11)
3 × 3 8 3 0.6095(13) 0.6056(13) � � � 0.60882(40) 0.60779(52) � � �
3 × 3 2 4 � � � 0.6054(21) 0.6050(33) � � � 0.60774(79) 0.6070(16)
3 × 3 5 4 � � � 0.6056(14) 0.6066(22) � � � 0.60803(58) 0.6086(11)
3 × 3 8 4 � � � 0.6056(13) � � � � � � 0.60779(52) � � �
4 × 4 2 1 0.6111(20) 0.6054(21) 0.6047(33) 0.60908(53) 0.60771(79) 0.6067(17)
4 × 4 5 1 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)
4 × 4 8 1 0.6095(13) 0.6055(13) � � � 0.60877(39) 0.60773(52) � � �
4 × 4 2 2 0.6111(20) 0.6053(21) 0.6048(33) 0.60908(53) 0.60770(79) 0.6068(17)
4 × 4 5 2 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)
4 × 4 8 2 0.6095(13) 0.6055(13) � � � 0.60877(39) 0.60773(52) � � �
4 × 4 2 3 0.6111(20) 0.6053(21) 0.6048(33) 0.60908(53) 0.60770(79) 0.6068(17)
4 × 4 5 3 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)
4 × 4 8 3 0.6095(13) 0.6055(13) � � � 0.60877(39) 0.60773(52) � � �
4 × 4 2 4 � � � 0.6053(21) 0.6048(33) � � � 0.60770(79) 0.6068(17)
4 × 4 5 4 � � � 0.6056(14) 0.6065(22) � � � 0.60797(58) 0.6085(11)
4 × 4 8 4 � � � 0.6055(13) � � � � � � 0.60773(52) � � �
RGEVP 2 1 0.6111(20) 0.6054(21) 0.6048(33) 0.60908(53) 0.60771(79) 0.6068(17)
RGEVP 5 1 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)
RGEVP 8 1 0.6095(13) 0.6055(13) � � � 0.60877(39) 0.60774(52) � � �
RGEVP 2 2 0.6111(20) 0.6053(21) 0.6048(33) 0.60908(53) 0.60770(79) 0.6068(17)
RGEVP 5 2 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)
RGEVP 8 2 0.6095(13) 0.6055(13) � � � 0.60877(39) 0.60773(52) � � �
RGEVP 2 3 0.6111(20) 0.6053(21) 0.6048(33) 0.60909(53) 0.60770(79) 0.6068(17)
RGEVP 5 3 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)
RGEVP 8 3 0.6095(13) 0.6055(13) � � � 0.60877(39) 0.60773(52) � � �
RGEVP 2 4 � � � 0.6053(21) 0.6048(33) � � � 0.60769(79) 0.6068(17)
RGEVP 5 4 � � � 0.6056(14) 0.6065(22) � � � 0.60797(58) 0.6085(11)
RGEVP 8 4 � � � 0.6055(13) � � � � � � 0.60773(52) � � �
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TABLE XXXVI. Same as Table XXXIV, but for the I ¼ 2 two-pion second excited state on the 243 lattice. The
rebasing matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 4.

GEVP type δt t − t0 t ¼ 4 t ¼ 6 t ¼ 8 t ¼ 4wDR t ¼ 6wDR t ¼ 8wDR

3 × 3 2 1 0.8153(29) 0.8136(66) 0.798(14) 0.8168(18) 0.8159(51) 0.805(12)
3 × 3 5 1 0.8142(23) 0.8095(52) 0.7997(94) 0.8162(13) 0.8129(41) 0.8077(74)
3 × 3 8 1 0.8146(22) 0.8116(52) � � � 0.8165(14) 0.8150(39) � � �
3 × 3 2 2 0.8153(29) 0.8136(66) 0.798(14) 0.8168(18) 0.8159(51) 0.805(12)
3 × 3 5 2 0.8142(23) 0.8095(52) 0.7997(94) 0.8162(13) 0.8129(41) 0.8077(74)
3 × 3 8 2 0.8146(22) 0.8116(52) � � � 0.8165(14) 0.8150(39) � � �
3 × 3 2 3 0.8153(29) 0.8136(66) 0.798(14) 0.8168(18) 0.8159(51) 0.805(12)
3 × 3 5 3 0.8142(22) 0.8095(52) 0.7997(94) 0.8162(13) 0.8129(41) 0.8077(74)
3 × 3 8 3 0.8146(22) 0.8116(52) � � � 0.8165(14) 0.8150(39) � � �
3 × 3 2 4 � � � 0.8136(66) 0.798(14) � � � 0.8159(51) 0.805(12)
3 × 3 5 4 � � � 0.8095(52) 0.7997(94) � � � 0.8129(41) 0.8077(74)
3 × 3 8 4 � � � 0.8116(52) � � � � � � 0.8150(39) � � �
4 × 4 2 1 0.8136(29) 0.8140(66) 0.798(15) 0.8150(17) 0.8163(51) 0.805(12)
4 × 4 5 1 0.8130(22) 0.8098(52) 0.8000(94) 0.8150(12) 0.8133(41) 0.8080(74)
4 × 4 8 1 0.8134(22) 0.8119(51) � � � 0.8153(13) 0.8154(39) � � �
4 × 4 2 2 0.8135(29) 0.8143(66) 0.798(14) 0.8150(18) 0.8166(51) 0.805(12)
4 × 4 5 2 0.8130(22) 0.8101(52) 0.7998(95) 0.8150(12) 0.8136(41) 0.8078(74)
4 × 4 8 2 0.8134(22) 0.8122(51) � � � 0.8153(13) 0.8157(39) � � �
4 × 4 2 3 0.8135(29) 0.8143(66) 0.799(14) 0.8150(18) 0.8166(51) 0.806(12)
4 × 4 5 3 0.8130(22) 0.8102(52) 0.8002(94) 0.8150(12) 0.8136(40) 0.8082(74)
4 × 4 8 3 0.8134(22) 0.8122(51) � � � 0.8153(13) 0.8157(39) � � �
4 × 4 2 4 � � � 0.8143(66) 0.800(14) � � � 0.8167(51) 0.807(11)
4 × 4 5 4 � � � 0.8103(52) 0.8006(95) � � � 0.8137(41) 0.8085(75)
4 × 4 8 4 � � � 0.8123(51) � � � � � � 0.8158(39) � � �
RGEVP 2 1 0.8135(29) 0.8147(66) 0.801(14) 0.8150(18) 0.8171(51) 0.808(12)
RGEVP 5 1 0.8130(22) 0.8105(52) 0.8016(96) 0.8150(12) 0.8139(40) 0.8096(78)
RGEVP 8 1 0.8134(22) 0.8126(51) � � � 0.8153(13) 0.8160(39) � � �
RGEVP 2 2 0.8135(29) 0.8145(66) 0.801(14) 0.8150(18) 0.8168(51) 0.808(12)
RGEVP 5 2 0.8130(22) 0.8103(52) 0.8014(96) 0.8150(12) 0.8138(40) 0.8094(77)
RGEVP 8 2 0.8134(22) 0.8124(51) � � � 0.8153(13) 0.8159(39) � � �
RGEVP 2 3 0.8137(29) 0.8141(66) 0.800(14) 0.8152(18) 0.8164(51) 0.807(11)
RGEVP 5 3 0.8131(22) 0.8099(52) 0.8008(95) 0.8151(13) 0.8134(40) 0.8088(76)
RGEVP 8 3 0.8135(22) 0.8120(51) � � � 0.8154(13) 0.8155(39) � � �
RGEVP 2 4 � � � 0.8141(66) 0.800(14) � � � 0.8164(51) 0.807(11)
RGEVP 5 4 � � � 0.8099(52) 0.8008(95) � � � 0.8134(40) 0.8088(76)
RGEVP 8 4 � � � 0.8120(51) � � � � � � 0.8154(39) � � �

TABLE XXXVII. Same as Table XXXIV, but for the I ¼ 2 two-pion third excited state on the 243 lattice.

GEVP type δt t − t0 t ¼ 4 t ¼ 6 t ¼ 8 t ¼ 4wDR t ¼ 6wDR t ¼ 8wDR

4 × 4 2 1 0.9653(70) 0.940(21) 0.841(60) 0.9700(57) 0.948(17) 0.845(60)
4 × 4 5 1 0.9620(58) 0.940(17) 0.905(53) 0.9670(43) 0.946(13) 0.909(54)
4 × 4 8 1 0.9603(57) 0.936(17) � � � 0.9654(41) 0.943(13) � � �
4 × 4 2 2 0.9653(70) 0.940(21) 0.841(60) 0.9700(57) 0.948(17) 0.845(61)
4 × 4 5 2 0.9620(58) 0.939(17) 0.905(53) 0.9670(43) 0.946(13) 0.910(54)
4 × 4 8 2 0.9603(57) 0.935(17) � � � 0.9655(41) 0.942(13) � � �
4 × 4 2 3 0.9653(70) 0.940(21) 0.840(61) 0.9700(57) 0.948(17) 0.844(61)
4 × 4 5 3 0.9620(58) 0.939(17) 0.905(53) 0.9670(43) 0.946(13) 0.909(54)
4 × 4 8 3 0.9603(57) 0.935(17) � � � 0.9655(42) 0.942(13) � � �
4 × 4 2 4 � � � 0.940(21) 0.839(61) � � � 0.948(17) 0.843(61)
4 × 4 5 4 � � � 0.939(17) 0.904(53) � � � 0.946(13) 0.909(54)
4 × 4 8 4 � � � 0.935(17) � � � � � � 0.942(13) � � �
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TABLE XXXVIII. Same as Table XXXIV, but for the I ¼ 0 two-pion ground state on the 243 lattice. The rebasing
matrix is calculated as 5 × 5 → 3 × 3 at t0 ¼ 4.

GEVP type δt t − t0 t ¼ 3 t ¼ 5 t ¼ 7 t ¼ 3wDR t ¼ 5wDR t ¼ 7wDR

3 × 3 2 1 0.2790(28) 0.2694(29) 0.2711(32) 0.27281(51) 0.27011(74) 0.2700(15)
3 × 3 5 1 0.2752(12) 0.2700(13) 0.2708(14) 0.27166(44) 0.26999(60) 0.27079(73)
3 × 3 8 1 0.27437(96) 0.2705(10) 0.2705(11) 0.27156(39) 0.27060(47) 0.27012(66)
3 × 3 2 2 0.2793(28) 0.2696(29) 0.2711(31) 0.27311(49) 0.27022(68) 0.2700(15)
3 × 3 5 2 0.2755(12) 0.2701(13) 0.2708(14) 0.27193(43) 0.27004(58) 0.27080(74)
3 × 3 8 2 0.27457(96) 0.2705(10) 0.2705(11) 0.27176(39) 0.27060(47) 0.27013(65)
3 × 3 2 3 � � � 0.2697(29) 0.2712(31) � � � 0.27038(63) 0.2700(13)
3 × 3 5 3 � � � 0.2702(13) 0.2708(14) � � � 0.27018(55) 0.27079(74)
3 × 3 8 3 � � � 0.2705(10) 0.2705(11) � � � 0.27063(46) 0.27015(64)
3 × 3 2 4 � � � 0.2701(29) 0.2714(31) � � � 0.27073(59) 0.2702(11)
3 × 3 5 4 � � � 0.2705(13) 0.2708(14) � � � 0.27050(51) 0.27078(74)
3 × 3 8 4 � � � 0.2707(10) 0.2705(11) � � � 0.27078(46) 0.27015(63)
4 × 4 2 1 0.2789(28) 0.2695(29) 0.2698(40) 0.27275(52) 0.27012(74) 0.2686(27)
4 × 4 5 1 0.2752(12) 0.2700(13) 0.2708(14) 0.27163(44) 0.26995(61) 0.27081(76)
4 × 4 8 1 0.27434(96) 0.2705(10) 0.2700(14) 0.27153(39) 0.27061(47) 0.2696(10)
4 × 4 2 2 0.2792(28) 0.2696(29) 0.2707(33) 0.27307(50) 0.27022(68) 0.2695(16)
4 × 4 5 2 0.2754(12) 0.2700(13) 0.2708(15) 0.27189(44) 0.27000(59) 0.27084(80)
4 × 4 8 2 0.27455(96) 0.2705(10) 0.2702(12) 0.27173(40) 0.27060(47) 0.26984(82)
4 × 4 2 3 � � � 0.2697(29) 0.2711(31) � � � 0.27038(64) 0.2699(13)
4 × 4 5 3 � � � 0.2702(13) 0.2708(15) � � � 0.27015(55) 0.27081(78)
4 × 4 8 3 � � � 0.2705(10) 0.2703(12) � � � 0.27063(47) 0.27001(71)
4 × 4 2 4 � � � 0.2701(29) 0.2713(31) � � � 0.27072(60) 0.2701(11)
4 × 4 5 4 � � � 0.2705(13) 0.2708(15) � � � 0.27048(51) 0.27079(78)
4 × 4 8 4 � � � 0.2707(10) 0.2704(12) � � � 0.27078(47) 0.27002(68)
5 × 5 2 1 0.2789(28) 0.2694(29) 0.2694(49) 0.27275(52) 0.27008(77) 0.2682(38)
5 × 5 5 1 0.2752(12) 0.2700(13) 0.2706(14) 0.27163(44) 0.26996(60) 0.27064(72)
5 × 5 8 1 0.27435(96) 0.2706(10) 0.2698(16) 0.27153(39) 0.27065(47) 0.2695(12)
5 × 5 2 2 0.2792(28) 0.2695(29) 0.2705(34) 0.27306(50) 0.27019(68) 0.2693(18)
5 × 5 5 2 0.2754(12) 0.2700(13) 0.2707(14) 0.27189(44) 0.27000(58) 0.27075(77)
5 × 5 8 2 0.27455(96) 0.2705(10) 0.2701(13) 0.27173(40) 0.27061(46) 0.26977(90)
5 × 5 2 3 � � � 0.2697(29) 0.2711(31) � � � 0.27038(64) 0.2700(12)
5 × 5 5 3 � � � 0.2702(13) 0.2707(14) � � � 0.27015(55) 0.27074(76)
5 × 5 8 3 � � � 0.2705(10) 0.2703(12) � � � 0.27063(47) 0.27001(73)
5 × 5 2 4 � � � 0.2701(29) 0.2713(31) � � � 0.27073(60) 0.2701(11)
5 × 5 5 4 � � � 0.2705(13) 0.2707(14) � � � 0.27048(51) 0.27076(77)
5 × 5 8 4 � � � 0.2707(10) 0.2704(12) � � � 0.27077(47) 0.27003(69)
RGEVP 2 1 0.2792(28) 0.2694(29) 0.2719(29) 0.27301(49) 0.27010(78) 0.27073(97)
RGEVP 5 1 0.2753(12) 0.2700(13) 0.2707(14) 0.27173(43) 0.27001(60) 0.27073(71)
RGEVP 8 1 0.27454(96) 0.2706(10) 0.2709(11) 0.27172(39) 0.27070(47) 0.27055(62)
RGEVP 2 2 0.2792(28) 0.2696(29) 0.2717(30) 0.27306(49) 0.27022(67) 0.2706(10)
RGEVP 5 2 0.2755(12) 0.2700(13) 0.2708(14) 0.27196(42) 0.27001(59) 0.27079(75)
RGEVP 8 2 0.27459(96) 0.2705(10) 0.2706(11) 0.27178(38) 0.27062(46) 0.27028(68)
RGEVP 2 3 � � � 0.2697(29) 0.2713(30) � � � 0.27035(65) 0.2702(12)
RGEVP 5 3 � � � 0.2702(13) 0.2708(14) � � � 0.27013(53) 0.27077(76)
RGEVP 8 3 � � � 0.2705(10) 0.2704(12) � � � 0.27061(46) 0.27008(70)
RGEVP 2 4 � � � 0.2700(29) 0.2713(31) � � � 0.27067(59) 0.2701(12)
RGEVP 5 4 � � � 0.2704(13) 0.2707(14) � � � 0.27035(49) 0.27071(74)
RGEVP 8 4 � � � 0.2706(10) 0.2703(12) � � � 0.27070(45) 0.26999(70)
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TABLE XXXIX. Same as Table XXXIV, but for the I ¼ 0 two-pion first excited state on the 243 lattice. The
rebasing matrix is calculated as 5 × 5 → 3 × 3 at t0 ¼ 3.

GEVP type δt t − t0 t ¼ 3 t ¼ 5 t ¼ 7 t ¼ 3wDR t ¼ 5wDR t ¼ 7wDR

3 × 3 2 1 0.5415(65) 0.497(44) 0.498(49) 0.5356(63) 0.499(44) 0.498(49)
3 × 3 5 1 0.5279(84) 0.512(18) 0.543(21) 0.5240(83) 0.513(18) 0.544(21)
3 × 3 8 1 0.5331(53) 0.5315(72) 0.528(18) 0.5294(53) 0.5331(72) 0.529(18)
3 × 3 2 2 0.5457(46) 0.499(33) 0.502(54) 0.5398(43) 0.501(34) 0.502(54)
3 × 3 5 2 0.5336(56) 0.511(20) 0.546(20) 0.5296(54) 0.512(20) 0.546(20)
3 × 3 8 2 0.5345(44) 0.5325(74) 0.529(18) 0.5309(43) 0.5341(75) 0.530(18)
3 × 3 2 3 � � � 0.503(25) 0.505(62) � � � 0.505(25) 0.506(62)
3 × 3 5 3 � � � 0.509(20) 0.551(19) � � � 0.511(20) 0.552(19)
3 × 3 8 3 � � � 0.5329(79) 0.531(17) � � � 0.5345(80) 0.532(17)
3 × 3 2 4 � � � 0.511(15) 0.499(62) � � � 0.513(15) 0.499(62)
3 × 3 5 4 � � � 0.508(16) 0.555(19) � � � 0.510(16) 0.556(19)
3 × 3 8 4 � � � 0.5304(81) 0.533(17) � � � 0.5320(81) 0.534(17)
4 × 4 2 1 0.5411(63) 0.497(52) 0.393(75) 0.5352(61) 0.499(52) 0.393(74)
4 × 4 5 1 0.5270(76) 0.498(16) 0.523(46) 0.5231(75) 0.500(16) 0.524(46)
4 × 4 8 1 0.5303(50) 0.5268(89) 0.463(61) 0.5267(49) 0.5284(89) 0.463(61)
4 × 4 2 2 0.5444(48) 0.499(36) 0.433(62) 0.5385(45) 0.501(36) 0.433(62)
4 × 4 5 2 0.5320(54) 0.500(16) 0.526(40) 0.5281(52) 0.501(16) 0.527(40)
4 × 4 8 2 0.5319(44) 0.5270(87) 0.483(43) 0.5282(43) 0.5286(87) 0.484(43)
4 × 4 2 3 � � � 0.503(24) 0.460(59) � � � 0.505(24) 0.460(59)
4 × 4 5 3 � � � 0.500(16) 0.532(34) � � � 0.502(16) 0.533(34)
4 × 4 8 3 � � � 0.5272(87) 0.495(35) � � � 0.5288(87) 0.495(34)
4 × 4 2 4 � � � 0.511(15) 0.464(53) � � � 0.513(15) 0.464(53)
4 × 4 5 4 � � � 0.501(14) 0.536(31) � � � 0.502(14) 0.537(31)
4 × 4 8 4 � � � 0.5257(86) 0.499(31) � � � 0.5273(86) 0.500(30)
5 × 5 2 1 0.5411(62) 0.474(94) 0.4(1.6) 0.5352(60) 0.476(94) 0.4(1.6)
5 × 5 5 1 0.5268(80) 0.499(16) 0.508(42) 0.5229(79) 0.501(16) 0.509(42)
5 × 5 8 1 0.5304(50) 0.5274(87) 0.450(82) 0.5267(49) 0.5290(87) 0.451(82)
5 × 5 2 2 0.5441(48) 0.485(60) 0.44(11) 0.5382(45) 0.487(60) 0.44(11)
5 × 5 5 2 0.5320(53) 0.501(14) 0.519(35) 0.5281(52) 0.503(14) 0.520(35)
5 × 5 8 2 0.5319(44) 0.5275(84) 0.476(54) 0.5283(43) 0.5290(85) 0.477(54)
5 × 5 2 3 � � � 0.498(32) 0.48(11) � � � 0.500(32) 0.48(11)
5 × 5 5 3 � � � 0.501(15) 0.530(31) � � � 0.502(15) 0.530(31)
5 × 5 8 3 � � � 0.5274(85) 0.491(41) � � � 0.5290(85) 0.491(41)
5 × 5 2 4 � � � 0.510(15) 0.474(65) � � � 0.512(15) 0.474(65)
5 × 5 5 4 � � � 0.501(14) 0.536(29) � � � 0.502(14) 0.536(29)
5 × 5 8 4 � � � 0.5257(86) 0.494(36) � � � 0.5273(86) 0.495(36)
RGEVP 2 1 0.5409(62) 0.490(57) 0.487(43) 0.5350(60) 0.492(57) 0.487(43)
RGEVP 5 1 0.5268(79) 0.506(16) 0.541(27) 0.5229(79) 0.508(16) 0.542(27)
RGEVP 8 1 0.5303(50) 0.5275(98) 0.529(21) 0.5267(49) 0.5291(98) 0.530(21)
RGEVP 2 2 0.5459(43) 0.487(56) 0.523(65) 0.5400(40) 0.489(56) 0.524(65)
RGEVP 5 2 0.5325(57) 0.508(23) 0.548(21) 0.5286(56) 0.510(23) 0.549(21)
RGEVP 8 2 0.5320(48) 0.531(12) 0.556(21) 0.5284(47) 0.532(12) 0.556(21)
RGEVP 2 3 � � � 0.497(32) 0.548(85) � � � 0.499(32) 0.548(85)
RGEVP 5 3 � � � 0.498(20) 0.558(24) � � � 0.500(20) 0.559(24)
RGEVP 8 3 � � � 0.526(10) 0.532(32) � � � 0.527(10) 0.532(32)
RGEVP 2 4 � � � 0.510(17) 0.509(55) � � � 0.512(17) 0.509(55)
RGEVP 5 4 � � � 0.501(14) 0.544(38) � � � 0.502(13) 0.545(38)
RGEVP 8 4 � � � 0.5244(88) 0.507(32) � � � 0.5260(88) 0.507(32)
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TABLE XL. Same as Table XXXIV, but for the I ¼ 0 two-pion second excited state on the 243 lattice. The
rebasing matrix is calculated as 5 × 5 → 3 × 3 at t0 ¼ 1.

GEVP type δt t − t0 t ¼ 3 t ¼ 5 t ¼ 7 t ¼ 3wDR t ¼ 5wDR t ¼ 7wDR

3 × 3 2 1 0.672(44) 0.599(96) 1.13(94) 0.666(44) 0.601(96) 1.14(94)
3 × 3 5 1 0.656(51) 0.78(25) � � � 0.652(51) 0.78(25) � � �
3 × 3 8 1 0.743(81) 1.5(1.3) � � � 0.739(81) 1.5(1.3) � � �
3 × 3 2 2 0.668(46) 0.60(11) 1.13(94) 0.662(47) 0.60(11) 1.14(94)
3 × 3 5 2 0.650(54) 0.78(25) � � � 0.646(54) 0.78(25) � � �
3 × 3 8 2 0.741(83) 1.5(1.3) � � � 0.737(83) 1.5(1.3) � � �
3 × 3 2 3 � � � 0.59(12) 1.13(93) � � � 0.59(12) 1.14(93)
3 × 3 5 3 � � � 0.78(25) � � � � � � 0.78(25) � � �
3 × 3 8 3 � � � 1.5(1.3) � � � � � � 1.5(1.3) � � �
3 × 3 2 4 � � � 0.58(13) 1.13(92) � � � 0.59(13) 1.14(92)
3 × 3 5 4 � � � 0.78(26) � � � � � � 0.78(26) � � �
3 × 3 8 4 � � � 1.5(1.3) � � � � � � 1.5(1.3) � � �
4 × 4 2 1 0.672(36) 0.60(12) 0.618(61) 0.666(36) 0.60(12) 0.626(61)
4 × 4 5 1 0.655(42) 0.655(27) 0.650(58) 0.650(42) 0.658(27) 0.656(58)
4 × 4 8 1 0.698(19) 0.715(23) 0.515(50) 0.694(19) 0.718(23) 0.521(50)
4 × 4 2 2 0.682(26) 0.59(13) 0.66(13) 0.676(26) 0.60(13) 0.66(13)
4 × 4 5 2 0.656(37) 0.668(32) 0.665(58) 0.651(37) 0.670(32) 0.671(58)
4 × 4 8 2 0.694(19) 0.720(22) 0.500(58) 0.690(20) 0.723(22) 0.506(58)
4 × 4 2 3 � � � 0.59(13) 0.69(16) � � � 0.59(13) 0.70(16)
4 × 4 5 3 � � � 0.677(43) 0.677(63) � � � 0.679(43) 0.683(63)
4 × 4 8 3 � � � 0.730(22) 0.496(61) � � � 0.732(22) 0.501(62)
4 × 4 2 4 � � � 0.60(12) 0.71(17) � � � 0.60(12) 0.71(17)
4 × 4 5 4 � � � 0.663(51) 0.693(69) � � � 0.665(51) 0.698(69)
4 × 4 8 4 � � � 0.733(23) 0.498(63) � � � 0.735(23) 0.503(63)
5 × 5 2 1 0.668(44) 0.58(12) 0.69(22) 0.662(44) 0.58(12) 0.70(22)
5 × 5 5 1 0.643(59) 0.656(26) 0.599(65) 0.638(59) 0.658(26) 0.605(65)
5 × 5 8 1 0.698(21) 0.709(22) 0.514(50) 0.694(22) 0.711(22) 0.520(50)
5 × 5 2 2 0.684(26) 0.57(15) 0.75(25) 0.678(26) 0.57(15) 0.75(25)
5 × 5 5 2 0.653(44) 0.676(35) 0.619(63) 0.649(44) 0.679(35) 0.625(63)
5 × 5 8 2 0.695(20) 0.717(21) 0.503(56) 0.691(20) 0.720(20) 0.508(56)
5 × 5 2 3 � � � 0.57(17) 0.77(23) � � � 0.57(17) 0.77(23)
5 × 5 5 3 � � � 0.685(45) 0.649(59) � � � 0.688(45) 0.654(59)
5 × 5 8 3 � � � 0.729(21) 0.499(59) � � � 0.732(21) 0.504(60)
5 × 5 2 4 � � � 0.58(15) 0.78(25) � � � 0.58(15) 0.79(25)
5 × 5 5 4 � � � 0.666(51) 0.672(62) � � � 0.668(51) 0.677(63)
5 × 5 8 4 � � � 0.733(23) 0.500(62) � � � 0.735(23) 0.505(62)
RGEVP 2 1 0.7045(98) 0.696(31) 0.616(49) 0.6985(100) 0.698(31) 0.624(50)
RGEVP 5 1 0.684(12) 0.650(34) 0.96(26) 0.679(12) 0.652(34) 0.97(26)
RGEVP 8 1 0.697(13) 0.751(60) 1.01(46) 0.693(13) 0.753(60) 1.02(46)
RGEVP 2 2 0.690(15) 0.662(41) 0.654(99) 0.684(15) 0.663(41) 0.663(99)
RGEVP 5 2 0.660(24) 0.667(80) 2.2(3.6) 0.656(24) 0.669(80) 2.2(3.6)
RGEVP 8 2 0.696(22) 0.80(11) � � � 0.691(22) 0.81(11) � � �
RGEVP 2 3 � � � 0.634(59) 0.72(18) � � � 0.636(59) 0.73(18)
RGEVP 5 3 � � � 0.69(13) � � � � � � 0.70(13) � � �
RGEVP 8 3 � � � 0.79(11) � � � � � � 0.79(11) � � �
RGEVP 2 4 � � � 0.595(97) 0.88(44) � � � 0.596(97) 0.89(44)
RGEVP 5 4 � � � 0.69(14) � � � � � � 0.69(14) � � �
RGEVP 8 4 � � � 0.755(70) 1.19(76) � � � 0.757(70) 1.20(76)
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TABLE XLI. Same as Table XXXIV, but for the I ¼ 0 two-pion third excited state on the 243 lattice. The rebasing
matrix is calculated as 5 × 5 → 3 × 3 at t0 ¼ 1.

GEVP type δt t − t0 t ¼ 3 t ¼ 5 t ¼ 7 t ¼ 3wDR t ¼ 5wDR t ¼ 7wDR

4 × 4 2 1 0.788(49) 0.84(14) � � � 0.782(49) 0.84(14) � � �
4 × 4 5 1 0.812(69) 1.7(1.9) � � � 0.808(69) 1.7(1.9) � � �
4 × 4 8 1 0.93(19) � � � −0.37ð30Þ 0.93(19) � � � −0.37ð30Þ
4 × 4 2 2 0.775(62) 0.84(15) � � � 0.769(62) 0.84(15) � � �
4 × 4 5 2 0.806(79) 1.7(1.9) � � � 0.802(79) 1.7(1.9) � � �
4 × 4 8 2 0.94(19) � � � � � � 0.93(19) � � � � � �
4 × 4 2 3 � � � 0.84(16) � � � � � � 0.84(16) � � �
4 × 4 5 3 � � � 1.7(1.9) � � � � � � 1.7(1.9) � � �
4 × 4 8 3 � � � � � � � � � � � � � � � � � �
4 × 4 2 4 � � � 0.82(19) � � � � � � 0.82(19) � � �
4 × 4 5 4 � � � 1.7(1.9) � � � � � � 1.7(1.9) � � �
4 × 4 8 4 � � � � � � � � � � � � � � � � � �
5 × 5 2 1 0.767(60) 0.79(27) � � � 0.761(60) 0.79(27) � � �
5 × 5 5 1 0.785(77) 1.8(2.4) � � � 0.780(77) 1.8(2.4) � � �
5 × 5 8 1 0.92(24) � � � 1.1(6.6) 0.92(24) � � � 1.1(6.6)
5 × 5 2 2 0.764(77) 0.81(18) � � � 0.758(77) 0.81(18) � � �
5 × 5 5 2 0.784(99) 0.97(24) � � � 0.779(99) 0.98(24) � � �
5 × 5 8 2 0.93(22) 1.01(14) 1.2(2.0) 0.93(22) 1.01(14) 1.2(2.0)
5 × 5 2 3 � � � 0.81(19) � � � � � � 0.81(19) � � �
5 × 5 5 3 � � � 1.10(27) 1.5(1.6) � � � 1.10(27) 1.5(1.6)
5 × 5 8 3 � � � 1.00(14) 1.2(2.0) � � � 1.01(14) 1.2(2.0)
5 × 5 2 4 � � � 0.80(23) � � � � � � 0.80(23) � � �
5 × 5 5 4 � � � 1.19(34) 1.5(1.6) � � � 1.20(34) 1.5(1.6)
5 × 5 8 4 � � � 1.00(13) 1.2(2.0) � � � 1.00(13) 1.2(2.0)

TABLE XLII. Same as Table XXXIV, but for the I ¼ 0 two-pion fourth excited state on the 243 lattice.

GEVP type δt t − t0 t ¼ 3 t ¼ 5 t ¼ 7 t ¼ 3wDR t ¼ 5wDR t ¼ 7wDR

5 × 5 2 1 0.906(30) 0.81(21) � � � 0.903(31) 0.82(21) � � �
5 × 5 5 1 0.879(22) 0.79(17) 1.5(1.6) 0.878(22) 0.80(17) 1.5(1.6)
5 × 5 8 1 0.893(28) � � � −0.2ð6.3Þ 0.892(28) � � � −0.2ð6.3Þ
5 × 5 2 2 0.891(38) 0.79(12) � � � 0.887(39) 0.80(12) � � �
5 × 5 5 2 0.864(26) 1.6(2.6) 1.5(1.6) 0.863(26) 1.6(2.6) 1.5(1.6)
5 × 5 8 2 0.881(36) � � � � � � 0.879(37) � � � � � �
5 × 5 2 3 � � � 0.77(13) � � � � � � 0.78(13) � � �
5 × 5 5 3 � � � 1.5(2.6) � � � � � � 1.5(2.6) � � �
5 × 5 8 3 � � � � � � � � � � � � � � � � � �
5 × 5 2 4 � � � 0.75(15) � � � � � � 0.76(15) � � �
5 × 5 5 4 � � � 1.4(2.6) � � � � � � 1.4(2.6) � � �
5 × 5 8 4 � � � � � � � � � � � � � � � � � �
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TABLE XLIII. Same as Table XXXIV, but for the I ¼ 2 two-pion ground state on the 323 lattice. Only results with
DR are shown. The rebasing matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 5.

GEVP type δt t − t0 t ¼ 5 t ¼ 7 t ¼ 9 t ¼ 11 t ¼ 13

2 × 2 2 1 0.21049(69) 0.21075(52) 0.21076(65) 0.21030(64) 0.20982(62)
2 × 2 5 1 0.21070(49) 0.21068(45) 0.21046(51) 0.21001(49) 0.20982(51)
2 × 2 8 1 0.21060(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20993(45)
2 × 2 11 1 0.21050(45) 0.21047(42) 0.21038(46) � � � � � �
2 × 2 2 3 0.21049(69) 0.21074(52) 0.21077(65) 0.21031(64) 0.20985(63)
2 × 2 5 3 0.21070(49) 0.21068(45) 0.21046(51) 0.21000(49) 0.20982(51)
2 × 2 8 3 0.21060(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20994(45)
2 × 2 11 3 0.21050(45) 0.21047(42) 0.21038(46) � � � � � �
3 × 3 2 1 0.21051(69) 0.21075(52) 0.21073(65) 0.21030(65) 0.20990(66)
3 × 3 5 1 0.21070(49) 0.21068(45) 0.21045(51) 0.21001(49) 0.20983(51)
3 × 3 8 1 0.21060(46) 0.21055(41) 0.21031(47) 0.21011(45) 0.20992(45)
3 × 3 11 1 0.21050(45) 0.21047(42) 0.21037(46) � � � � � �
3 × 3 2 3 0.21051(69) 0.21075(52) 0.21075(65) 0.21031(65) 0.20986(64)
3 × 3 5 3 0.21070(49) 0.21067(45) 0.21045(51) 0.21000(49) 0.20982(51)
3 × 3 8 3 0.21060(46) 0.21055(41) 0.21031(47) 0.21011(45) 0.20993(45)
3 × 3 11 3 0.21050(45) 0.21047(42) 0.21037(46) � � � � � �
4 × 4 2 1 0.21056(69) 0.21075(52) 0.21081(67) 0.21010(82) 0.2089(21)
4 × 4 5 1 0.21071(49) 0.21068(45) 0.21048(51) 0.21001(49) 0.2089(11)
4 × 4 8 1 0.21061(46) 0.21055(41) 0.21033(47) 0.21011(45) 0.20952(72)
4 × 4 11 1 0.21052(45) 0.21047(42) 0.21038(47) � � � � � �
4 × 4 2 3 0.21052(69) 0.21076(53) 0.21077(65) 0.21020(67) 0.20995(84)
4 × 4 5 3 0.21071(49) 0.21068(45) 0.21046(51) 0.20999(50) 0.20958(60)
4 × 4 8 3 0.21061(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20977(48)
4 × 4 11 3 0.21051(45) 0.21047(42) 0.21038(46) � � � � � �
RGEVP 2 1 0.21051(69) 0.21075(52) 0.21073(65) 0.21029(65) 0.20991(66)
RGEVP 5 1 0.21069(49) 0.21068(45) 0.21045(51) 0.21000(49) 0.20984(51)
RGEVP 8 1 0.21059(46) 0.21055(41) 0.21031(47) 0.21011(45) 0.20993(46)
RGEVP 11 1 0.21050(45) 0.21047(42) 0.21037(46) � � � � � �
RGEVP 2 3 0.21050(69) 0.21075(52) 0.21076(65) 0.21029(65) 0.20987(63)
RGEVP 5 3 0.21070(49) 0.21067(45) 0.21045(51) 0.21000(49) 0.20984(51)
RGEVP 8 3 0.21060(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20994(45)
RGEVP 11 3 0.21050(45) 0.21047(42) 0.21037(46) � � � � � �

TABLE XLIV. Same as Table XXXIV, but for the I ¼ 2 two-pion first excited state on the 323 lattice. Only results
with DR are shown. The rebasing matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 5.

GEVP type δt t − t0 t ¼ 5 t ¼ 7 t ¼ 9 t ¼ 11 t ¼ 13

2 × 2 2 1 0.45634(84) 0.4580(12) 0.4550(15) 0.4589(21) 0.4499(33)
2 × 2 5 1 0.45660(55) 0.45714(76) 0.45536(100) 0.4559(14) 0.4524(21)
2 × 2 8 1 0.45675(52) 0.45697(70) 0.45584(90) 0.4570(12) 0.4543(19)
2 × 2 11 1 0.45663(51) 0.45697(68) 0.45585(85) � � � � � �
2 × 2 2 3 0.45634(84) 0.4580(12) 0.4550(15) 0.4589(21) 0.4498(33)
2 × 2 5 3 0.45660(55) 0.45715(76) 0.45535(100) 0.4559(14) 0.4524(21)
2 × 2 8 3 0.45675(52) 0.45697(70) 0.45584(90) 0.4570(12) 0.4543(19)
2 × 2 11 3 0.45662(51) 0.45697(68) 0.45584(85) � � � � � �
3 × 3 2 1 0.45589(82) 0.4576(11) 0.4549(15) 0.4588(21) 0.4499(33)
3 × 3 5 1 0.45624(54) 0.45690(75) 0.45523(97) 0.4558(14) 0.4522(21)
3 × 3 8 1 0.45638(51) 0.45672(69) 0.45572(87) 0.4569(12) 0.4543(19)
3 × 3 11 1 0.45626(50) 0.45671(67) 0.45572(82) � � � � � �
3 × 3 2 3 0.45590(82) 0.4577(11) 0.4548(15) 0.4587(21) 0.4499(33)
3 × 3 5 3 0.45625(54) 0.45691(75) 0.45522(96) 0.4558(14) 0.4522(21)
3 × 3 8 3 0.45638(51) 0.45672(69) 0.45572(86) 0.4569(12) 0.4543(19)
3 × 3 11 3 0.45626(50) 0.45672(67) 0.45572(82) � � � � � �

(Table continued)
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TABLE XLIV. (Continued)

GEVP type δt t − t0 t ¼ 5 t ¼ 7 t ¼ 9 t ¼ 11 t ¼ 13

4 × 4 2 1 0.45582(80) 0.4576(11) 0.4550(15) 0.4587(21) 0.4507(48)
4 × 4 5 1 0.45619(54) 0.45689(74) 0.45529(95) 0.4555(14) 0.4501(29)
4 × 4 8 1 0.45633(50) 0.45670(69) 0.45576(86) 0.4565(12) 0.4529(23)
4 × 4 11 1 0.45621(49) 0.45669(67) 0.45574(81) � � � � � �
4 × 4 2 3 0.45583(80) 0.4577(11) 0.4548(15) 0.4588(21) 0.4497(34)
4 × 4 5 3 0.45620(53) 0.45690(74) 0.45521(96) 0.4557(14) 0.4509(23)
4 × 4 8 3 0.45633(50) 0.45670(68) 0.45569(86) 0.4567(12) 0.4533(21)
4 × 4 11 3 0.45621(49) 0.45669(66) 0.45568(81) � � � � � �
RGEVP 2 1 0.45582(81) 0.4577(11) 0.4548(15) 0.4587(21) 0.4498(33)
RGEVP 5 1 0.45619(54) 0.45689(74) 0.45516(96) 0.4557(14) 0.4520(21)
RGEVP 8 1 0.45633(51) 0.45670(68) 0.45566(86) 0.4568(12) 0.4541(19)
RGEVP 11 1 0.45620(50) 0.45669(66) 0.45564(82) � � � � � �
RGEVP 2 3 0.45583(81) 0.4577(11) 0.4548(15) 0.4586(21) 0.4498(33)
RGEVP 5 3 0.45620(54) 0.45689(74) 0.45517(96) 0.4557(14) 0.4521(21)
RGEVP 8 3 0.45633(51) 0.45670(69) 0.45567(86) 0.4568(12) 0.4542(19)
RGEVP 11 3 0.45621(50) 0.45669(66) 0.45565(82) � � � � � �

TABLE XLV. Same as Table XXXIV, but for the I ¼ 2 two-pion second excited state on the 323 lattice. Only
results with DR are shown. The rebasing matrix is calculated as 4 × 4 → 3 × 3 at t0 ¼ 5.

GEVP type δt t − t0 t ¼ 5 t ¼ 7 t ¼ 9 t ¼ 11 t ¼ 13

3 × 3 2 1 0.6146(19) 0.6142(36) 0.6294(72) 0.601(18) 0.614(37)
3 × 3 5 1 0.6154(14) 0.6185(27) 0.6249(52) 0.611(12) 0.635(28)
3 × 3 8 1 0.6152(14) 0.6166(25) 0.6240(47) 0.608(11) 0.645(27)
3 × 3 11 1 0.6154(13) 0.6171(25) 0.6253(47) � � � � � �
3 × 3 2 3 0.6145(19) 0.6142(36) 0.6294(72) 0.601(18) 0.615(37)
3 × 3 5 3 0.6154(14) 0.6185(27) 0.6249(52) 0.611(12) 0.635(28)
3 × 3 8 3 0.6152(14) 0.6166(25) 0.6240(47) 0.608(11) 0.645(27)
3 × 3 11 3 0.6154(13) 0.6171(25) 0.6253(47) � � � � � �
4 × 4 2 1 0.6141(19) 0.6125(35) 0.6290(71) 0.601(18) 0.60(37)
4 × 4 5 1 0.6147(14) 0.6173(26) 0.6248(53) 0.611(12) 0.638(28)
4 × 4 8 1 0.6146(13) 0.6156(25) 0.6238(48) 0.608(11) 0.645(27)
4 × 4 11 1 0.6147(13) 0.6159(24) 0.6250(48) � � � � � �
4 × 4 2 3 0.6142(19) 0.6126(35) 0.6290(72) 0.601(18) 0.602(50)
4 × 4 5 3 0.6147(14) 0.6173(26) 0.6249(53) 0.611(12) 0.635(28)
4 × 4 8 3 0.6146(13) 0.6155(25) 0.6238(48) 0.608(11) 0.644(26)
4 × 4 11 3 0.6148(13) 0.6159(24) 0.6250(48) � � � � � �
RGEVP 2 1 0.6141(19) 0.6129(35) 0.6290(71) 0.601(18) 0.620(37)
RGEVP 5 1 0.6147(14) 0.6174(26) 0.6249(53) 0.612(12) 0.636(27)
RGEVP 8 1 0.6145(13) 0.6156(25) 0.6238(48) 0.608(11) 0.644(26)
RGEVP 11 1 0.6147(13) 0.6160(24) 0.6250(48) � � � � � �
RGEVP 2 3 0.6141(19) 0.6125(35) 0.6290(72) 0.602(18) 0.622(37)
RGEVP 5 3 0.6147(14) 0.6173(26) 0.6250(54) 0.612(12) 0.636(27)
RGEVP 8 3 0.6145(13) 0.6155(25) 0.6239(48) 0.608(11) 0.644(26)
RGEVP 11 3 0.6147(13) 0.6159(24) 0.6251(48) � � � � � �
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TABLE XLVI. Same as Table XXXIV, but for the I ¼ 2 two-pion third excited state on the 323 lattice. Only
results with DR are shown.

GEVP type δt t − t0 t ¼ 5 t ¼ 7 t ¼ 9 t ¼ 11 t ¼ 13

4 × 4 2 1 0.7231(40) 0.7203(94) 0.759(23) 0.697(74) 0.64(45)
4 × 4 5 1 0.7247(29) 0.7267(72) 0.736(17) 0.667(52) 0.635(96)
4 × 4 8 1 0.7240(28) 0.7248(70) 0.738(17) 0.694(51) 0.70(11)
4 × 4 11 1 0.7235(28) 0.7248(67) 0.745(17) � � � � � �
4 × 4 2 3 0.7231(40) 0.7202(95) 0.759(23) 0.697(74) 0.64(13)
4 × 4 5 3 0.7246(29) 0.7267(72) 0.736(17) 0.666(52) 0.636(98)
4 × 4 8 3 0.7239(28) 0.7248(70) 0.738(17) 0.694(51) 0.70(11)
4 × 4 11 3 0.7234(28) 0.7248(67) 0.745(17) � � � � � �

TABLE XLVII. Same as Table XXXIV, but for the I ¼ 0 two-pion ground state on the 323 lattice. Only results
with DR are shown. The rebasing matrix is calculated as: 5 × 5 → 4 × 4 at t0 ¼ 1, 4 × 4 → 3 × 3 at t0 ¼ 2, and
3 × 3 → 2 × 2 at t0 ¼ 4.

GEVP type δt t − t0 t ¼ 4 t ¼ 7 t ¼ 9 t ¼ 11

3 × 3 2 1 0.20359(73) 0.20313(96) 0.2020(14) 0.20(11)
3 × 3 5 1 0.20304(55) 0.20252(93) 0.2017(15) 0.2022(35)
3 × 3 8 1 0.20287(49) 0.20269(60) 0.2020(98) 0.2013(16)
3 × 3 11 1 0.20280(47) 0.20226(64) 0.2011(68) � � �
3 × 3 2 3 0.20397(75) 0.20319(94) 0.2023(10) 0.201(50)
3 × 3 5 3 0.20325(56) 0.20261(75) 0.2017(14) 0.202(18)
3 × 3 8 3 0.20308(51) 0.20265(60) 0.2018(12) 0.2013(31)
3 × 3 11 3 0.20291(48) 0.20228(61) 0.202(33) � � �
4 × 4 2 1 0.20356(74) 0.20314(97) 0.201(19) 0.207(27)
4 × 4 5 1 0.20302(56) 0.20255(100) 0.2015(24) 0.2025(16)
4 × 4 8 1 0.20285(51) 0.20262(77) 0.203(12) 0.20(37)
4 × 4 11 1 0.20274(49) 0.2022(27) 0.2012(19) � � �
4 × 4 2 3 0.20395(75) 0.2033(10) 0.2022(12) 0.201(42)
4 × 4 5 3 0.20322(57) 0.20264(78) 0.2016(12) 0.202(42)
4 × 4 8 3 0.20305(52) 0.20260(63) 0.202(27) 0.2012(16)
4 × 4 11 3 0.20287(49) 0.20234(67) 0.201(19) � � �
5 × 5 2 1 0.20356(74) 0.20318(97) 0.205(77) � � �
5 × 5 5 1 0.20303(57) 0.2025(10) 0.20(16) � � �
5 × 5 8 1 0.20285(51) 0.2025(29) 0.2017(48) 0.2014(15)
5 × 5 11 1 0.20273(50) 0.2022(58) 0.2011(12) � � �
5 × 5 2 3 0.20395(75) 0.2033(10) 0.2022(13) 0.194(57)
5 × 5 5 3 0.20322(57) 0.20263(79) 0.2013(17) 0.202(40)
5 × 5 8 3 0.20305(52) 0.20253(71) 0.203(20) 0.2013(15)
5 × 5 11 3 0.20286(49) 0.20236(72) 0.201(11) � � �
RGEVP 2 1 0.20361(78) 0.20355(99) 0.2017(16) 0.2022(36)
RGEVP 5 1 0.20307(59) 0.20277(81) 0.2015(14) 0.2021(18)
RGEVP 8 1 0.20286(53) 0.20253(67) 0.2018(11) 0.2013(15)
RGEVP 11 1 0.20273(49) 0.20235(66) 0.20118(100) � � �
RGEVP 2 3 0.20374(78) 0.20328(97) 0.2021(11) 0.2015(60)
RGEVP 5 3 0.20317(59) 0.20263(75) 0.2017(13) 0.2020(27)
RGEVP 8 3 0.20297(55) 0.20261(60) 0.20184(99) 0.201(13)
RGEVP 11 3 0.20273(51) 0.20232(66) 0.202(12) � � �
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TABLE XLVIII. Same as Table XXXIV, but for the I ¼ 0 two-pion first excited state on the 323 lattice. Only
results with DR are shown. The rebasing matrix is calculated as 5 × 5 → 4 × 4 at t0 ¼ 1, 4 × 4 → 3 × 3 at t0 ¼ 2,
and 3 × 3 → 2 × 2 at t0 ¼ 4.

GEVP type δt t − t0 t ¼ 4 t ¼ 7 t ¼ 9 t ¼ 11

3 × 3 2 1 0.4057(70) 0.43(11) 0.27(77) 0.38(60)
3 × 3 5 1 0.397(17) 0.31(12) 0.25(30) 0.15(56)
3 × 3 8 1 0.379(29) 0.31(16) 0.09(21) 0.01(22)
3 × 3 11 1 0.382(36) 0.28(14) 0.08(16) � � �
3 × 3 2 3 0.4083(38) 0.413(71) 0.26(36) 0.31(84)
3 × 3 5 3 0.4065(53) 0.32(12) 0.24(26) 0.15(36)
3 × 3 8 3 0.3994(66) 0.32(16) 0.10(23) 0.01(22)
3 × 3 11 3 0.4006(67) 0.28(15) 0.08(17) � � �
4 × 4 2 1 0.4049(64) 0.46(11) 0.38(34) 0.0(2.1)
4 × 4 5 1 0.396(19) 0.31(15) 0.24(40) 0.3(2.2)
4 × 4 8 1 0.376(40) 0.27(25) −0.08ð38Þ −0.04ð46Þ
4 × 4 11 1 0.38(18) 0.25(19) −0.02ð26Þ � � �
4 × 4 2 3 0.4060(43) 0.43(19) 0.22(56) 0.4(1.1)
4 × 4 5 3 0.4062(53) 0.31(15) 0.22(35) 0.2(2.8)
4 × 4 8 3 0.3993(63) 0.29(24) −0.03ð36Þ −0.05ð30Þ
4 × 4 11 3 0.4005(61) 0.25(19) 0.00(24) � � �
5 × 5 2 1 0.4054(70) 0.457(81) 0.39(52) � � �
5 × 5 5 1 0.396(22) 0.31(14) 0.29(47) � � �
5 × 5 8 1 0.38(12) 0.27(27) −0.2ð3.9Þ −0.1ð1.7Þ
5 × 5 11 1 0.40(36) 0.25(44) −0.0ð1.1Þ � � �
5 × 5 2 3 0.4056(45) 0.43(19) 0.22(59) 0.4(1.6)
5 × 5 5 3 0.4062(53) 0.31(14) 0.22(43) 0.3(2.6)
5 × 5 8 3 0.3994(63) 0.29(26) −0.10ð52Þ −0.08ð55Þ
5 × 5 11 3 0.4004(60) 0.24(21) −0.01ð29Þ � � �
RGEVP 2 1 0.4036(60) 0.436(19) 0.361(44) 0.357(87)
RGEVP 5 1 0.4071(51) 0.401(17) 0.351(36) 0.397(92)
RGEVP 8 1 0.3970(65) 0.397(21) 0.391(42) 0.418(88)
RGEVP 11 1 0.3976(79) 0.404(22) 0.346(44) � � �
RGEVP 2 3 0.441(35) 0.417(95) 0.26(17) 0.29(28)
RGEVP 5 3 0.404(46) 0.32(11) 0.25(20) 0.22(27)
RGEVP 8 3 0.374(57) 0.31(13) 0.13(18) 0.03(20)
RGEVP 11 3 0.367(89) 0.25(17) 0.05(16) � � �

TABLE XLIX. Same as Table XXXIV, but for the I ¼ 0 two-pion second excited state on the 323 lattice. Only
results with DR are shown. The rebasing matrix is calculated as 5 × 5 → 4 × 4 at t0 ¼ 1 and 4 × 4 → 3 × 3 at
t0 ¼ 2.

GEVP type δt t − t0 t ¼ 4 t ¼ 7 t ¼ 9 t ¼ 11

3 × 3 2 1 0.489(54) 0.458(74) 0.29(75) 0.35(60)
3 × 3 5 1 0.457(52) 0.432(49) 0.38(11) 0.39(49)
3 × 3 8 1 0.436(44) 0.402(25) 0.400(31) 0.432(54)
3 × 3 11 1 0.420(41) 0.419(18) 0.399(23) � � �
3 × 3 2 3 0.486(57) 0.48(11) 0.30(25) 0.43(72)
3 × 3 5 3 0.447(64) 0.426(64) 0.384(98) 0.389(88)
3 × 3 8 3 0.415(68) 0.389(48) 0.391(55) 0.433(53)
3 × 3 11 3 0.401(72) 0.416(24) 0.397(27) � � �
4 × 4 2 1 0.50(48) 0.459(86) 0.47(77) 0.3(1.6)
4 × 4 5 1 0.453(68) 0.433(54) 0.37(18) 0.3(3.1)
4 × 4 8 1 0.428(59) 0.396(35) 0.398(40) 0.425(24)
4 × 4 11 1 0.40(23) 0.420(18) 0.396(38) � � �
4 × 4 2 3 0.519(22) 0.51(19) 0.30(26) 0.5(1.1)
4 × 4 5 3 0.465(70) 0.432(71) 0.38(15) 0.4(4.4)

(Table continued)
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TABLE XLIX. (Continued)

GEVP type δt t − t0 t ¼ 4 t ¼ 7 t ¼ 9 t ¼ 11

4 × 4 8 3 0.431(93) 0.380(69) 0.389(73) 0.435(32)
4 × 4 11 3 0.41(12) 0.421(25) 0.395(36) � � �
5 × 5 2 1 0.57(58) 0.58(100) � � � � � �
5 × 5 5 1 0.448(78) 0.430(43) 0.5(1.1) � � �
5 × 5 8 1 0.42(16) 0.396(38) 0.40(30) 0.4(1.1)
5 × 5 11 1 0.37(44) 0.41(45) 0.4(1.0) � � �
5 × 5 2 3 0.519(21) 0.51(19) 0.30(26) � � �
5 × 5 5 3 0.463(77) 0.430(62) 0.37(21) 0.4(6.4)
5 × 5 8 3 0.43(10) 0.379(73) 0.391(80) 0.436(29)
5 × 5 11 3 0.41(13) 0.422(23) 0.396(37) � � �
RGEVP 2 1 0.533(10) 0.576(52) 0.41(12) 0.48(61)
RGEVP 5 1 0.523(11) 0.475(36) 0.454(54) 0.42(17)
RGEVP 8 1 0.487(19) 0.437(50) 0.35(36) 0.29(85)
RGEVP 11 1 0.467(32) 0.418(19) 0.400(25) � � �
RGEVP 2 3 0.485(61) 0.49(13) 0.27(29) 0.45(86)
RGEVP 5 3 0.440(83) 0.436(93) 0.36(15) 0.4(1.1)
RGEVP 8 3 0.403(89) 0.381(66) 0.391(65) 0.444(70)
RGEVP 11 3 0.375(96) 0.421(30) 0.391(36) � � �

TABLE L. Same as Table XXXIV, but for the I ¼ 0 two-pion third excited state on the 323 lattice. Only results
with DR are shown. The rebasing matrix is calculated as 5 × 5 → 4 × 4 at t0 ¼ 1.

GEVP type δt t − t0 t ¼ 4 t ¼ 7 t ¼ 9 t ¼ 11

4 × 4 2 1 0.53(51) 0.78(35) −0.4ð1.5Þ � � �
4 × 4 5 1 0.574(38) 0.68(29) 0.54(87) 0.6(3.7)
4 × 4 8 1 0.570(36) 0.58(13) 0.55(17) � � �
4 × 4 11 1 0.554(22) 0.67(16) 0.53(18) � � �
4 × 4 2 3 0.505(80) 0.76(33) −0.0ð1.2Þ � � �
4 × 4 5 3 0.552(63) 0.68(28) 0.55(89) 0.6(5.5)
4 × 4 8 3 0.544(52) 0.57(15) 0.51(27) � � �
4 × 4 11 3 0.519(41) 0.66(16) 0.50(23) � � �
5 × 5 2 1 0.41(55) 0.5(1.0) 0.1(5.5) � � �
5 × 5 5 1 0.571(44) 0.630(94) � � � � � �
5 × 5 8 1 0.567(42) 0.58(10) 0.5(1.4) � � �
5 × 5 11 1 0.549(27) 0.641(70) 0.56(16) � � �
5 × 5 2 3 0.48(10) 0.71(14) 0.43(31) � � �
5 × 5 5 3 0.547(73) 0.64(11) 0.73(33) � � �
5 × 5 8 3 0.540(60) 0.57(10) 0.52(22) 1.16(84)
5 × 5 11 3 0.514(47) 0.648(86) 0.54(17) � � �
RGEVP 2 1 0.666(16) 0.686(88) 0.66(60) 0.3(8.2)
RGEVP 5 1 0.605(29) 0.630(99) 0.67(35) 1.0(3.3)
RGEVP 8 1 0.584(33) 0.577(80) 0.54(15) 1.4(2.4)
RGEVP 11 1 0.563(25) 0.65(11) 0.53(15) � � �
RGEVP 2 3 0.500(83) 0.78(36) −0.1ð1.4Þ � � �
RGEVP 5 3 0.548(68) 0.71(36) 0.5(1.1) 0.5(5.1)
RGEVP 8 3 0.541(54) 0.58(17) 0.51(30) � � �
RGEVP 11 3 0.516(44) 0.67(18) 0.50(24) � � �
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