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Characterizing vegetation and return periods in avalanche paths using lidar and 
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ABSTRACT
Snow avalanches are a hazard and ecological disturbance across mountain landscapes worldwide. 
Understanding how avalanche frequency affects forests and vegetation improves infrastructure 
planning, risk management, and avalanche forecasting. We implemented a novel approach using 
lidar, aerial imagery, and a random forest model to classify imagery-observed vegetation within 
avalanche paths in southern Glacier National Park, Montana, USA. We calculated spatially explicit 
avalanche return periods using a physically based spatial interpolation method and characterized 
the vegetation within those return period zones. The automated vegetation classification model 
differed slightly between avalanche paths, but the combination of lidar and spectral signature 
metrics provided the best accuracy (88–92 percent) for predicting vegetation classes within com
plex avalanche terrain rather than lidar or spectral signature metrics alone. The highest frequency 
avalanche return periods were broadly characterized by grassland and shrubland, but the influence 
of topography greatly influences the vegetation classes as well as the return periods. Furthermore, 
statistically significant differences in lidar-derived vegetation canopy height exist between catego
rical return periods. The ability to characterize vegetation within various avalanche return periods 
using remote sensing data provides land use planners and avalanche forecasters a tool for assessing 
the spatial extent of large-magnitude avalanches in individual avalanche paths.
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Introduction

Snow avalanche (hereafter avalanche) disturbance 
across the landscape is a hazard and an important eco
logical process in mountain locations throughout the 
world. Avalanches have the potential to affect alpine 
ecosystems, forests, and riparian zones, particularly in 
the case of large-magnitude avalanches. Avalanches con
tribute to animal habitat (Waller and Mace 1997), 
change the species of flora along an elevational gradient, 
and modify forest structure (Rixen et al. 2007). 
Avalanches also pose a substantial hazard, and under
standing the interaction of avalanche frequency and 
runout in forested terrain is important for human safety, 
transportation corridors, and infrastructure. The runout 
zone of an avalanche path is the bottom of the path 
where avalanche debris slows and stops.

A mutual relationship exists between avalanches and 
forest structure and function. Avalanches shape vegeta
tion patterns and forest structure, but forests can also 

influence the release and runout extent of avalanches 
(Teich et al. 2012). Frequent avalanches sustain floristic 
communities, whereas large, infrequent avalanches 
modify existing community structures (Patten and 
Knight 1994). More frequent avalanching can be 
a dominant control on vegetation size and structure 
within that path. When avalanches become less fre
quent, the vegetation changes from shrub-like commu
nities to more mature forests (Butler 1979; Johnson  
1987; Patten and Knight 1994; Walsh et al. 1994). 
Ecosystems impacted more frequently by avalanches 
tend to be composed of smaller density, shade- 
intolerant shrubs (Butler 1979). Post-avalanche regen
eration is typically due to reorganization of existing 
vegetation within the path as opposed to new recruit
ment (Bebi, Kulakowski, and Rixen 2009). Because most 
avalanches do not run to the ground, thereby creating 
new areas for colonization, new seedling recruitment is 
not often a method of regrowth (Kajimoto et al. 2004). 
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Both new and established shade-intolerant species flour
ish due to new light availability when canopies are 
thinned or removed by large-magnitude avalanches 
(Burrows and Burrows 1976; Kajimoto et al. 2004).

Avalanche disturbance also influences the structural 
and compositional vegetation diversity within ecosystems 
(Malanson and Butler 1984; Veblen et al. 1994). Patten 
and Knight (1994) reported moderate vegetation pattern 
change in Granite Canyon, Wyoming, USA, but observed 
consistent vegetation fragmentation due to avalanche dis
turbance. The influence of avalanches at the scale of 
individual trees is important because it ultimately affects 
canopy size and distribution across the landscape 
(Johnson 1987). Malanson and Butler (1984, 1986) exam
ined the transverse vegetation patterns of avalanche paths 
in Glacier National Park, Montana, USA, and found that 
the size and shape of these zones respond to external 
geomorphic controls, such as snow deposition by ava
lanches, which results in variable vegetation patterns 
across the slope. Erschbamer (1989) confirmed this with 
a similar study in the Austrian Alps. This vegetation 
mosaic across the landscape created by avalanche distur
bance creates open areas used by a variety of animal 
species. Black and grizzly bears, elk, and wolverines use 
avalanche paths as “elevators” to travel from riparian 
zones to the alpine and in between (Mace and Waller  
1997; Waller and Mace 1997; Krajick 1998).

The structure and composition of vegetation within 
avalanche paths also depends largely on avalanche fre
quency. In Switzerland, the use of avalanche barriers and 
snow retention structures affects vegetation characteris
tics below the barrier with higher biodiversity reported in 
paths not impacted by avalanche berms (Kulakowski, 
Rixen, and Bebi 2006). This impact has been associated 
with cascading effects of vascular vegetation structural 
diversity in active avalanche paths (Rixen et al. 2007). 
Additionally, Kajimoto et al. (2004) reported that ava
lanche disturbance enhanced growth in younger surviv
ing trees but played a limited role in immediate seedling 
recruitment or growth release of advanced seedlings. 
Their results suggest that post-avalanche forest regenera
tion depends on smaller trees that were able to avoid 
mechanical damage and mortality. This implies that the 
rate of vegetation regeneration is site and event specific 
and dependent on the vegetation that survives infrequent, 
large-magnitude avalanches. Therefore, extrapolating 
vegetation characteristics from one avalanche path to 
another, or a region, may not be appropriate depending 
on the timing and frequency of avalanche activity.

Forests and vegetation influence avalanche frequency 
through interception of snowfall (Hesdstrom and 
Pomeroy 1998; Veatch et al. 2009), controls on the 

energy balance (Molotch et al. 2007; Stähli, Jonas, and 
Gustafsson 2009), protection from wind, and potential 
anchoring of the snowpack (McClung and Schaerer  
2006). These processes affect snow stability in forested 
terrain by influencing the formation of potential weak 
layers such as surface hoar or near-surface facets, inhi
biting wind loading, and anchoring areas within forested 
openings. Trees also tend to increase the heterogeneity 
of the snowpack structure (Musselmann, Molotch, and 
Brooks 2008), which influences avalanche release 
(Gaume et al. 2014). Forest structure has a substantial 
effect on runout distance of small to medium avalanches 
in forest openings (Teich et al. 2012), and the effect of 
forest structure on the runout extent of larger avalanches 
that initiate above tree line is trivial with the caveat that 
some forests are still able to limit runout zone extent 
(Bartelt and Stockli 2001; Feistl et al. 2014). Ground 
cover and surface roughness also influence avalanche 
release and runout distance (Brožová et al. 2020). 
Areas of smooth and low vegetation (e.g., grasses) are 
more conducive to certain types of avalanches like glide 
snow avalanches and snow gliding, in general (Newesely 
et al. 2000; Feistl, Bebi, and Bartelt 2013; Peitzsch, 
Hendrikx, and Fagre 2015). The roughness also influ
ences avalanche release if the snow depth does not 
exceed the height of the vegetation (Leitinger et al.  
2008). Understanding forest and vegetation characteris
tics in avalanche paths helps quantify runout distance 
and improve avalanche hazard management (Teich et al.  
2014).

Early remote sensing methods used to investigate 
avalanche–vegetation characteristics were limited by 
sensors that classified land cover into broad categories 
rather than the fine spatial resolution necessary for 
studying many ecological processes. For example, 
Walsh et al. (2004) estimated past avalanche–vegetation 
structure and composition using Ikonos satellite data 
and interpreting Normalized Difference Vegetation 
Index (NDVI) greenness values. Since then, laser alti
metry, or light detection and ranging (lidar), emerged as 
a valuable and widely used tool to help classify forest 
structure and vegetation composition (Dubayah and 
Drake 2000; Wulder et al. 2012). Forest cover parameter 
data derived from lidar have been used to improve 
avalanche runout simulations (Brožová et al. 2020), cre
ate digital surface models (DSMs) for use in probable 
avalanche release area mapping (Bühler et al. 2018; 
Sykes, Haegeli, and Bühler 2022), examine how forests 
decelerate avalanches (Teich et al. 2012), and identify 
avalanche path trimlines (McCollister and Comey 2009).

In this study, we manually classified a limited sample 
of vegetation types within three avalanche paths using 
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high-resolution imagery. We tested the efficacy of an 
automated classification procedure using lidar and high- 
resolution aerial imagery trained on that sample to char
acterize and quantify the various types of vegetation 
throughout the entire extent of two of these three ava
lanche paths. Then, we utilized avalanche dendrochro
nology records and historical observations to accurately 
map avalanche return periods in two of those three 
avalanche paths and subsequently characterized the 
vegetation composition within those reconstructed 
return periods. Finally, we compared lidar-derived 
canopy height in each avalanche path for three catego
rical return periods (one to three years, four to ten years, 
and eleven to twenty years). We hypothesize that vege
tation characteristics will differ in various transverse 
zones of the avalanche path and that varying return 
period categories will harbor substantially different 
vegetation structure and canopy height. This work uses 
a novel approach by using remote sensing products in 
combination with dendrochronological techniques and 
historical observations to characterize vegetation within 
various return period categories across several avalanche 
paths.

Methods

Study site

The three avalanche paths in this study are located along 
John F. Stevens (JFS) Canyon, a major transportation 
corridor traversing a portion of the southern boundary 
of Glacier National Park, Montana, USA, and containing 
U.S. Highway 2 and the Burlington Northern Santa Fe 
(BNSF) Railway (Figures 1 and S1). This canyon has also 
been the site of previous dendrochronological avalanche 
research (Butler and Malanson 1985; Reardon et al.  

2008; Peitzsch et al. 2021), and this study leverages the 
samples from Peitzsch et al. (2019, 2021).

The U.S. northern Rocky Mountains of northwest 
Montana are classified as both coastal transition and 
intermountain avalanche climate (Mock and Birkeland  
2000) and therefore can exhibit characteristics of both 
continental or coastal climates. The contrasting precipi
tation and temperature regimes within the region are 
due to the study area’s proximity to the Continental 
Divide, which allows both Pacific and continental air 
masses to influence the area’s weather. Average annual 
precipitation is 2,083 mm at Flattop SNOTEL (elevation 
1,810 m) and peak snow water equivalent typically 
occurs in mid- to late April with a median value of 
approximately 1,100 mm (1981–2010; U.S. Department 
of Agriculture, Natural Resources Conservation Service  
2020b). The elevation of avalanche paths within the 
study site ranges from approximately 1,200 to 2,200 m 
and covers predominantly southeast to south aspects 
(Table 1). Snowsheds exist at nine avalanche paths 
throughout JFS Canyon and at two of the three ava
lanche paths in this study.

The subalpine and montane forests are dominated by 
species of fir (Abies lasiocarpa, Pseudotsuga menziesii, 
Abies grandis), pine (Pinus ponderosa, Pinus monticola), 
and a mix of hemlock (Tsuga heterophylla), larch (Larix 
occidentalis), spruce (Picea engelmannii), cedar (Thuja 
plicata), birch (Betula papyrifera), and slide alder 
(Alnus spp.).

Lidar and spectral imagery data acquisition

We used a high point density aerial lidar data set 
acquired for approximately 192 km2 of JFS Canyon 
between 20 July 2016 and 5 August 2016 (U.S. 

Figure 1. Study site. The red rectangle in the state of Montana (green polygon) within the United States designates the general area of 
the study site. From west to east (left to right on the map), the avalanche paths are Shed 10–7, Path 1163, and Shed 7.
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Geological Survey 2017). The longer data collection per
iod allowed for suitable flying and data collection during 
leaf-on conditions. Data collection and processing 
adhered to a maximum nominal post spacing of 
0.35 m, with a mean point density of 16 points/m2.

Using the approach outlined by Laes et al. (2011), we 
validated the lidar data by measuring tree height and 
diameter in July 2019 in Shed 7 using five circular field 
plots (plot area = 400 m2) and stratified random sam
pling along an elevation gradient. We did not sample 
vegetation types but simply used this step to field- 
validate canopy height values of the lidar data. 
However, we selected plots representative of homoge
nous vegetation cover in and adjacent to the avalanche 
path. We measured the height of the four tallest trees 
within each plot (n = 20 tallest trees in total) using 
a standard metric measuring tape and inclinometer. 
We included all trees whose entire or partial canopy 
fell within the field plot in selection of the four tallest 
trees. We then mapped each plot and identified the four 
tallest trees within each plot in the lidar data set and 
examined the relationship between field measurements 
and lidar data using the Pearson correlation coefficient.

We used aerial imagery collected by the National 
Agricultural Imagery Program (NAIP) for JFS Canyon 
in the fall of 2017 to examine spectral signatures of 
vegetation in avalanche paths. The four-band (red, 
green, blue, and near-infrared) NAIP imagery for the 
study site is 0.6-m horizontal spatial resolution (U.S. 
Department of Agriculture, Natural Resources 
Conservation Service 2020a).

Imagery and lidar data processing

Our vegetation mapping workflow includes multiple 
steps from data processing to the final vegetation classi
fication (Figure 2). First, we clipped the lidar point data 
to the study area and generated a DSM for the height of 
vegetation using a pit-free algorithm developed by 
Khosravipour et al. (2014). We also created a digital 
terrain model (DTM) for the bare earth surface using 
a spatial interpolation algorithm based on nearest neigh
bor approach with an inverse distance weighting 
method. We subtracted the DTM from the DSM to 
produce a canopy height model (CHM) data layer.

We then clipped NAIP aerial imagery to the study 
area and georeferenced it to align with the CHM derived 
from the lidar point cloud. We segmented individual 
tree crowns from the CHM based on the marker- 
controlled watershed function developed by Meyer and 
Beucher (1990), a common segmentation methodology 
for data derived from an airborne laser scanner (Hyyppä 
et al. 2001; Persson, Holmgren, and Soderman 2002; 
Solberg, Naesset, and Bollandsas 2006; Holmgren, 
Persson, and Soderman 2008). We clipped the resulting 
raster representing individual tree crowns by the extent 
of the three avalanche paths for this study: Shed 10–7, 
Path 1163, and Shed 7. We used a minimum canopy 
height of 0.5 m to include low-level vegetation that could 
provide useful information in avalanche path return 
period analysis. All analyses were performed using 
R statistical software (R Core Team 2018) using the 
lidR (Roussel and Auty 2019) and rLiDAR (Silva et al.  
2017) packages.

Figure 2. General workflow of classification procedure from data processing to final vegetation classification.
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Manual vegetation classification

To create an automated vegetation classification pro
cedure using remote sensing products, we first 
manually classified the vegetation of a sample of 
objects in the imagery to create a training data set. 
To accomplish this, we selected 300 random indivi
dual points from the segmented lidar (CHM) data set 
for each avalanche path and manually classified each 
point to the level 1 vegetation type based on the 
NAIP imagery (Table 2). We only labeled objects 
that were clearly identifiable by vegetation type and 
had no confusion with other vegetation types. We 
included additional crown objects in object classes 
with low sample size (n < 30). The resultant total 
sample size for the crown objects increased from 300 
to approximately 400 for each path. Originally, we 
manually identified between fifteen and nineteen 
vegetation classes in each avalanche path. We then 
progressively aggregated the classes from level 1 (all 
classes) to more coarse level 2 and level 3 (coarse 
vegetation classes) to reflect broad classes applicable 
to the analysis of avalanche path vegetation composi
tion (Table 2).

We calculated metrics commonly used to distinguish 
differences between tree species for each delineated tree 
crown object (Brandtberg et al. 2003; Holmgren and 
Persson 2004). These metrics can be grouped into 
three categories (see Table S1 for variable descriptions):

(1) Structural features. We extracted the lidar- 
measured maximum height and crown diameter 
for each tree object.

(2) Contextual features. Z represents the lidar- 
derived DTM + CHM. We calculated maximum, 
mean, and standard deviation of Z for each tree 
object as well as quantile metrics including 10th 

percentile, 30th percentile, 50th percentile, 70th 
percentile, and 90th percentile.

(3) Intensity features. We calculated maximum, 
mean, and standard deviation of intensity for 
each tree object as well as intensity quantile 
metrics including 30th percentile, 50th percentile, 
70th percentile, and 90th percentile.

We also extracted values from the spectral imagery for 
each lidar-derived tree crown object and grouped the 
metrics into the following three categories:

(1) Spectral features. We extracted the mean value of 
all pixels within each tree crown object for bands 
1, 2, 3, and 4 and used these as features.

(2) Vegetation indices. We calculated the mean 
NDVI for each tree crown object based on the 
equation

NDVI ¼
NIR � REDð Þ

NIRþ REDð Þ
(1) 

where NIR is the near-infrared band and RED is the red 
band. We calculated mean Green-Red Vegetation Index 
(GRVI) for each tree crown object using the equation 

GRVI ¼
GREEN � REDð Þ

GREEN þ REDð Þ
(2) 

(3) Texture. We calculated NDVI variance and 
entropy for each tree crown object (Lillesand 
and Kiefer 2000).

Model selection and image classification

We grouped lidar-extracted metrics (e.g., descriptive 
statistics for intensity grouped together, quantile statis
tics for intensity grouped together) for inclusion in 

Table 2. Class aggregation for avalanche path return period analysis and detailed class descriptions.

Detailed class descriptions

Level 1 
All classes used in  
original classification

Level 2 
Aggregated classes to 
reflect vegetation type

Level 3 
Further aggregated classes relevant to 
avalanche path return period analysis

Subalpine fir, Douglas fir, lodgepole 
pine, white spruce, black spruce

Conifer no shadow, conifer with some shadow, 
conifer in shadow, subalpine fir, dead conifer

Coniferous forest Mature forest

Cottonwood, birch, aspen, larch Deciduous forest, deciduous with some shadow Deciduous forest
Alder, false huckleberry Green shrub, green shrub in shadow Green shrub Shrubland
Willow, service berry, young aspen, 

young cottonwood, young birch
Yellow shrub Yellow shrub

Mountain maple, mountain ash, 
dogwood

Red shrub Red shrub

Huckleberry Huckleberry Huckleberry
Beargrass, thimbleberry, solomon 

seal, grasses
Brown grassland/shrubland, off-white grassland/ 

shrubland, green grassland/shrubland
Grassland Grassland

Exposed rock Grey rock outcrop, white rock outcrop Exposed rock Exposed rock
Seasonal snow Snow, snow in shadow Snow Snow

Level 3 classes were used in our vegetation and return period analysis.
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a model selection procedure. We used a random forest 
model (Breiman 2001), an ensemble learning method 
that can be used for image classification that operates by 
developing several decision trees where each node is 
split based on the best of a subset of predictors, for our 
classification procedure. We calculated the kappa value 
for each random forest model of all possible combina
tions of lidar-derived metrics as well as all possible 
combinations of spectral signature–derived variables. 
We then used the variables from the highest ranked 
model from both spectral signature–derived (models 
1–5, see Table 3) and lidar-derived (models 6–21, see 
Table 3) metrics and combined them to identify the 
highest-ranked model for each path via model selection. 
Additionally, we produced models using all variables 
(spectral and lidar-derived variables) grouped together 
to compare the previous model selection against.

We trained each model on a randomly chosen subset 
of regions of interest (ROIs) within each avalanche 
path, representing approximately 50 percent of all 
ROIs (n ≈ 200). The remaining 50 percent of the 
ROIs acted as a validation subset. We selected the 
best performing model to predict vegetation across 
each avalanche path. We used the highest overall accu
racy and kappa value to select the best performing 
model. We trained the model separately for each path 
due to different class prevalence between paths. We 
used the caret package (Kuhn et al. 2019) in R with 
default parameterization and 100 resampling iterations 
for all random forest modeling. Finally, we classified 
the segmented tree crown vector layer by vegetation 
type using the combined lidar and spectral signature 
best-performing model.

Dendrochronological analysis and return period 
reconstruction

This analysis utilizes the dendrochronology generated 
spatial–temporal avalanche data set by Peitzsch et al. 
(2019) and as presented in detail in Peitzsch et al. 
(2021). Briefly, our sampling strategy targeted an even 
number of samples collected across the path where 
material was available and along the avalanche path 
trimlines at varying elevations. Location data were not 
available for all samples in the Shed 10–7 path; therefore, 
we excluded it from this return period analysis. In Path 
1163 and Shed 7 we collected a total of 96 cross sections. 
We sanded the samples to a fine polish to expose the 
anatomy of each growth ring and cross-dated cores and 
cross sections with each other using the skeleton plot 
method to account for missing and false rings (Stokes 
and Smiley 1996; Figure S2). We developed a site com
posite chronology and cross-dated with preexisting 

regional chronologies to confirm the exact calendar dat
ing of each tree ring (International Tree Ring Data Bank  
2020) using the dating quality control software 
COFECHA (Holmes 1983; Grissino-Mayer 2001). For 
further details on cross-dating methods and accuracy 
calculation for this data set, see Peitzsch et al. (2019).

We compiled a data set of the full spatial extent of 
individual avalanche events from a combination of tree 
ring samples (period of record: 1936–2017) and recent 
historical observations (period of record: 2000–2021). 
Since 2000, observational records of avalanches in 
these paths were substantially more detailed than those 
prior to 2000 and included a thorough description, 
images, and occasionally fracture line and debris deposit 
measurements. The dendrochronology samples have 
a much longer record but can underestimate avalanche 
activity in a single path (Corona et al. 2012). Therefore, 
we combined observational and dendrochronological 
data for a more robust data set for our return period 
analysis.

We determined the extent of each avalanche using the 
spatial patterns of tree ring samples exhibiting avalanche 
disturbance signals for any given year and field notes 
and images from the BNSF Avalanche Program (BNSF  
2021). For every year an avalanche occurred in each 
path, we manually digitized the extent using ArcGIS 
10.6.1 (ESRI 2021) to also include all avalanche events 
present in the dendrochronology samples for the 
corresponding year. We then converted the manually 
digitized vector polygon to a raster and assigned 
a value of 1 to all area included in the avalanche extent 
raster for each year. This resulted in a binary value 
(1 = avalanche, 0 = no avalanche) for any pixel within 
the avalanche event extents for every year in the period 
of record. We then used these values to estimate spatially 
explicit return periods for Path 1163 and Shed 7 using 
methods developed by Meseșan, Gavrilă, and Pop 
(2018). For each pixel within each avalanche path, we 
calculated the return period (RP) using: 

RP ¼
Yr

Wn
(3) 

where Yr is the number of years in the period of record, 
or full chronology, based on the age of each tree or the 
observational record at each pixel and Wn is the number 
of winters an avalanche was recorded in the tree ring or 
observed record.

We used the Intersection tool in ArcGIS to intersect 
the vegetation classification vector layers with the return 
period layers to calculate the proportion of each vegeta
tion classification for each return period. We then exam
ined lidar-derived tree height differences in three 
commonly used return period intervals (one to three 
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years, four to ten years, and eleven to thirty years; 
Canadian Avalanche Association [CAA] 2016). We 
used analysis of variance and Tukey’s honestly signifi
cant difference test test to compare tree height between 
the three return interval categories (Devore and Peck  
2005).

Finally, to gain insight into spatial extents of return 
periods beyond the areas we covered using observational 
and dendrochronological data, we used tree stand age as 
a proxy for return periods. To do this, we used lidar 
height data and calculated tree stand age based on the 
linear relationship developed by Racine et al. (2014) and 
applied it to individual conifers in our vegetation classi
fication maps of each path. The linear model used is 

age ¼ β0þ β1 � H (4) 

where age is mean plot age, H is the canopy height, 
and β0 and β1 are the parameters estimated by mean 
square error minimization and are 4.40 and 3.16, 
respectively. We applied the linear relationship to 
our study area using a 11.28-m moving window to 
match the plot size of Racine et al. (2014). We then 
binned estimated tree stand age values into four 
return interval categories (0–22 years, 23–50 years, 
51–75 years, 76–100 years).

Results

Lidar field validation

Comparing the mean in situ canopy height field-based 
measurements against the mean lidar canopy height 
measurements for each of the five plots yielded rea
sonably matched distributions and plot means that 
were strongly related (R2 = 0.729; Figure 3 and 
Table S2).

Manually classified objects (ROI)

Each avalanche path contains a unique combination of 
specific avalanche vegetation classes. We attempted to 
manually identify similar amounts of each vegetation 
class within each path. Given the lack of some classes 
in each path, the number of manually identified classes 
varies (Table 4).

Random forest model classification

We calculated accuracy statistics following aggregation to 
level 2 vegetation classes (Table 2). Accuracy results reflect 
the ability of the random forest model to automate vegeta
tion classification against our manually identified vegeta
tion classification. The importance of each variable is 

different for each path (Figure 4). For Shed 10–7, models 
4 and 18 had the highest-ranking kappa value based on the 
spectral and lidar data sets, respectively (Table 3). 
Vegetation predicted across Shed 10–7 based on these 
two combined models resulted in an overall accuracy of 
88 percent (kappa = 0.86). For Path 1163, models 5 and 21 
had the highest-ranking kappa values and, when com
bined, resulted in an overall accuracy of 91 percent 
(kappa = 0.89). For Shed 7, models 4 and 21 had the 
highest-ranking kappa value and when combined resulted 
in an overall accuracy of 92 percent (kappa = 0.91).

When applying the random forest model for each 
path using all variables, the overall accuracies and 
kappa values remained the same for Path 1163 and 
Shed 7. However, the overall accuracy of Shed 10–7 
increased from 88 percent (kappa = 0.86) to 90 per
cent (kappa = 0.88). Therefore, we used models with 
all variables (models 25, 26, and 27) for the final 
vegetation classifications. These three models 
yielded the highest overall accuracy across each of 
the three paths. The most important variables for 
the final models used to classify vegetation in each 
path were B3 (spectral band green) for Shed 10–7 
and Path 1163 and B2 (spectral band blue) for Shed 
7 (Figure 4).

In all three avalanche paths, classifications exhib
ited minor confusion between deciduous forest and 
coniferous forest classes (Table 5 and Figure 5). In 
Shed 10–7 and Shed 7, there was confusion among 
grassland, green shrub, yellow shrub, and red shrub, 
as well as confusion between deciduous forest and 
yellow shrub. In Shed 10–7 there was minor confu
sion between coniferous forest and green shrub and 
coniferous forest and snow. In Path 1163, rock out
crop was confused with snow.

Combining lidar and spectral imagery to automate 
species-level vegetation classification yielded high over
all accuracy for all three avalanche paths when com
pared to the manual classification of vegetation within 
avalanche paths using aerial imagery. In Path 1163 and 
Shed 7, combining all spectral and lidar-derived vari
ables represents a substantial improvement in overall 
accuracy from using spectral imagery alone (+4 percent 
and +9 percent, respectively) and from lidar data alone 
(+16 percent and +5 percent, respectively) in the ability 
to map vegetation within avalanche paths (Table 6). In 
Shed 10–7, combining all spectral and lidar-derived 
variables resulted in an increase in overall accuracy of 
+1 percent (within 95 percent confidence intervals) 
when compared to overall accuracy obtained from spec
tral imagery alone and an increase of +20 percent com
pared to overall accuracy obtained from lidar-derived 
variables.

ARCTIC, ANTARCTIC, AND ALPINE RESEARCH 9



Return period vegetation

The return period results from the delineated avalanche 
paths for Path 1163 and Shed 7 suggest minimum return 
periods of 1.2 years and 2.4 years, respectively (Figure 6). 
The mapped return periods generally follow the slope mor
phology with higher frequency return periods centered 
around the incised channel and higher in elevation, with 
frequency decreasing along the vertical extent of the slope 
for both avalanche paths. For Shed 7, return periods for 
a corner of the southwest portion of the path are of rela
tively high frequency although no longer associated with 
the incised channel. As noted from photographic evidence, 

large avalanches flow over the top of the snow shed and end 
in a slight curve to this corner.

The proportion of vegetation classes within the return 
period intervals for Path 1163 follows a pattern where 
proportion of shrubland and grassland is greater in areas 
of higher frequency avalanche activity and the proportion 
of forest is greater in areas of lower frequency (Figure 7). 
However, in Path 1163, the high frequency interval loca
tions are comprised of greater proportions of forest when 
compared to similar return intervals in Shed 7. Shed 7 also 
contains substantially more shrubland and grassland than 
Path 1163 throughout the larger return intervals, specifi
cally the eleven- to thirty-year interval.

Figure 3. Example canopy height measurements from Shed 7. (a) In situ height measurements (m) of the four tallest trees in each field 
plot (open black circles). Contour lines represent 10-m elevation intervals. (b) Field plots with lidar measurements (m) for each plot. 
Note that samples outside the plots were considered in the validation procedure because their canopy extended over the plot area. (c) 
Field plots with the spectral imagery. (d) Relationship of measured mean height within each field plot (x-axis) against the lidar canopy 
height (y-axis). Colors represent the five field plots, and the larger dots symbolize the mean height for each plot. The dashed line is the 
linear regression line of all points (not including the mean values for each plot).

10 E. H. PEITZSCH ET AL.



Return period and vegetation height

Next, we examined the relationship between lidar 
derived vegetation height and categorical return periods. 
Using analysis of variance, we found a statistically sig
nificant difference in mean tree height by return period 
interval for both Shed 7, F(2) = 171.3, p < .001, and Path 
1163, F(2) = 1518, p < .001 (Figure 8). Tukey’s post hoc 
test revealed that tree height is, on average, greatest in 
the eleven- to thirty-year return interval category 
(4.06 m) in Shed 7 but slightly and significantly lower 
in the four- to ten-year interval category (3.10 m) when 
compared to the one- to three-year return interval 
(3.27 m; p = .01; Figure 8b). In Path 1163, tree height 
is, on average, greater in each successively larger return 
period interval category (one- to three-year = 2.40 m; 
four- to ten-year = 7.30 m; eleven- to thirty-year 
= 10.10 m; Figure 8d).

Finally, to gain insight into tree stand age as a proxy for 
return periods beyond our available observational and 
dendrochronological data, we used the lidar canopy height 
to estimate stand age. We found tree stands in the furthest 
reaches and beyond the outlined paths to reach 80 to 
100 years of age (Figure 9). There are areas with no data 
classified as forest in parts of the runout zone in each path 
due to infrastructure such as roads and railways.

Discussion

Vegetation classification

Using lidar and spectral imagery products to estimate 
avalanche path vegetation classes appears promising. 

The strong correlation between lidar canopy height 
and field-measured canopy height suggests that lidar 
estimates are suitable for vegetation class modeling. 
Slight differences between the measured and lidar height 
data sets can be attributed to using plot mean height 
values instead of comparing individual tree heights from 
one data set to another. Comparing individual tree 
heights between data sets would require centimeter- 
level resolution for each data set, and the lidar data 
have a minimum horizontal resolution of 0.5 m. Field 
measurement error could also be a source of error given 
the steep terrain associated with the plots.

For all paths, we used the best-performing random 
forest model with all spectral and lidar-derived variables. 
However, in the interest of experimenting with a less 
complex model, for Shed 7 we manually omitted eleva
tion and intensity quantile statistics and maximum 
values, resulting in a decrease of approximately −2 per
cent overall accuracy for Shed 7 when compared to the 
full best-fit random forest model. This suggests that the 
full suite of metrics used for the best-performing model 
is necessary to obtain higher accuracy for vegetation 
modeling in avalanche paths. Accordingly, we did not 
run a random forest model for all permutations of vari
ables because of the increase in accuracy as variables 
were added to each model.

Avalanche activity within the study area capable of 
destroying trees and changing vegetation patterns 
between the summer of lidar data collection and 
field sampling could impact the labeling of training 
and validation tree crowns, because we delineated 
crowns from the lidar data but manually classified 

Table 4. The number of objects (points) manually identified in each vegetation class within each avalanche path.
ROIs in each vegetation class                                                                                        

Level 1 vegetation class Path 10.7 Path 1163 Shed 10-7 Level 3 vegetation class % of total objects

Conifer no shadow 27 31 15 Mature forest 41
Conifer with some shadow 55 50 20
Conifer in shadow 16 29 7
Subalpine fir n/a n/a 26
Dead conifer 8 8 17
Deciduous forest 34 31 49
Deciduous with some shadow 27 12 n/a
Green shrub 30 n/a 18 Shrubland 22
Green shrub in shadow n/a n/a 19
Yellow shrub 35 33 20
Red shrub 33 20 23
Huckleberry n/a n/a 18
Brown grassland/shrubland 29 28 11 Grassland 17
Off-white grassland/shrubland 40 37 23
Green grassland/shrubland n/a 21 n/a
Grey rock outcrop n/a 19 n/a Exposed rock 10
White rock outcrop 40 34 19
Snow 26 27 6 Snow 10
Snow in shadow 10 10 29
Total 410 390 320 100

n/a indicates classes not present in corresponding classification.

ARCTIC, ANTARCTIC, AND ALPINE RESEARCH 11



Figure 4. The variable importance plots rank the relative importance for each variable in the best-performing random forest models 
(see Table 3) for (a) model 25 (Shed 10–7), (b) model 26 (Path 1163), and (c) model 27 (Shed 7). See Table S2 for variable descriptions.
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vegetation based on NAIP imagery. For example, it is 
possible that a tree crown that existed in 2016 no 
longer existed in 2017, resulting in a polygon manu
ally classified with spectral attributes but with physi
cal variables related to the previous landcover (i.e., an 
ROI labeled grassland in 2017 imagery was 
a coniferous tree in 2016 with associated canopy 
variables). This could be one source of confusion 
between classes and could have negatively impacted 
overall accuracy values.

The starting zones of each avalanche path are 
characterized by predominantly grassland and rock 
outcrop except for Shed 10–7, which is characterized 
by grassland and coniferous forest. The coniferous 
forest in Shed 10–7 generally comprises small trees 
characteristic of treeline forests. One possible expla
nation for this is that Shed 10–7 is dominated by 
vegetation classes easily distinguishable by spectral 

variables (e.g., coniferous forest and senesced grass
land) and as a result does not rely as heavily on 
variables such as canopy height or that in some 
classes (e.g., coniferous forest) the age of vegetation 
varies greatly and was not completely captured 
when we developed our regions of interest. Using 
Ikonos satellite imagery in the same study area as 
ours, Walsh et al. (2004) found higher greenness 
levels at higher elevations, suggesting the presence 
of mixed shrubs and herbaceous material, and lower 
greenness levels at lower elevations where the accu
mulation of debris piles and other downed and 
scoured materials may exist. Our results suggest 
that vegetation patterns along an elevational gradi
ent within an avalanche path are more complex than 
a simple pattern with smaller, herbaceous vegetation 
near the starting zones and larger trees near the 
runout zones.

Figure 5. Modeled labeled vegetation (level 2 classes; see Table 2) mapping results for Shed 10–7, Path 1163, and Shed 7 using 
a combination of spectral and lidar data. The avalanche paths are outlined with a 50-m buffer (black polygons) for context of 
surrounding vegetation. Note that these three paths are not all adjacent to each other (Figure 1).

Table 6. Classification accuracies for each avalanche path using different variables or combinations of variables.
1. Spectral 2. Lidar 3. Combined (1 + 2) 4. All variables

Path Kappa value Overall accuracy (%) Kappa value Overall accuracy (%) Kappa value Overall accuracy (%) Kappa value Overall accuracy (%)

Shed 10–7 0.87 89 0.65 70 0.86 88 0.88 90
Path 1163 0.84 87 0.69 75 0.89 91 0.89 91
Shed 7 0.80 83 0.84 87 0.91 92 0.91 92

See Table 4 for variables included in each model. See Tables S3 and S4 for confusion matrices on best-performing spectral and lidar models.
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Figure 7. Proportions of each vegetation class for Shed 7 (left) and Path 1163 (right). Return interval years are represented on the 
x-axis. Vegetation classes are represented by color (legend on right). Note that columns do not necessarily sum to 1.0 because of 
classification of perennial snow in the data set.

Figure 6. (a,c) Mapped return periods and (b,d) random forest model–generated vegetation classes for return interval zones for (a,b) 
Shed 7 and (c,d) Path 1163. The orange lines represent contour lines spaced at 10-m intervals to illustrate topography changes.
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Vegetation patterns across a lateral transect indi
cate shrub or grasslands associated with incised 
stream channels in all three avalanche paths. 
Similarly, Walsh et al. (2004) found a decrease in 
greenness away from the center of the avalanche 
track, indicating more herbaceous shrubs in the cen
ter of the paths and larger trees toward the trimlines 
of the avalanche paths. However, the lateral composi
tion of vegetation also varies along an elevational 
gradient despite the strong signal of grassland in 
the incised channel. In other words, the vegetation 
along the flanks adjacent to the incised channel zone 
is not consistent up and down the avalanche paths. 
This coincides with earlier work by Malanson and 
Butler (1986) and Erschbamer (1989).

Return period intervals and vegetation 
characteristics

The return periods depicted here are likely underestima
tions given the limitation of dendrochronological techni
ques in developing an avalanche chronology (Corona 
et al. 2012), particularly in locations where few samples 

exist (e.g., the incised channel on the avalanche paths), as 
well as an incomplete observational record further back in 
time. Therefore, the absolute values of the return periods 
should be used with caution, and the patterns of return 
periods are the more critical component to this analysis.

The location in Shed 7 where the highest frequency 
band continues into the southwest sector of the path is 
likely due to a substantial decrease in slope angle and 
more uniform planar slope. The stream channel is not 
as deep at this location, potentially allowing avalanche 
debris to disperse laterally. This is also the point of 
deceleration and eventual stopping point as it nears 
the theoretical alpha angle (Lied and Bakkehøi 1980; 
Mears 1989).

For Shed 7, locations with higher frequency ava
lanche activity within the mapped area are characterized 
predominantly by grassland and shrubland, which are 
mostly shade-intolerant species, and this is consistent 
with previous work (Butler 1979). For Path 1163, the 
zone with the highest frequency return period consists 
of predominantly grassland, and greater return periods 
consist of a mix of shrubland, grassland, and forest. This 
avalanche path is steep and narrow, with a constriction 

Figure 8. (a,c) Lidar-derived heights of vegetation and (b,d) raincloud plots (b,d) of tree height (m) for return intervals for (a,b) Shed 7 
and (c, d) Path 1163. Raincloud plots show the individual return intervals (years) and associated tree height for each tree (points on 
left), box plots (center) showing the median (black horizontal line) and interquartile ranges for heights for each return interval bin, and 
the distribution of tree heights for each bin (shaded distribution on right). All pairwise comparisons of return intervals are significantly 
different in both Shed 7 and Path 1163.
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approximately two-thirds down the avalanche path 
from the top. Thus, very frequent avalanches are 
likely to follow the incised channel but avalanches 
greater than the three-year frequency zone appear to 
spread more laterally across the lower track and 
runout zone. In Path 1163, the proportion of forest 
in the most frequent return periods zones is likely 
attributable to the influence of the incised channel 
constraining avalanche flow to a certain level within 
the path or the ability of small to moderate-sized 
trees to withstand avalanche impact. These trees 
may be young but large enough to be characterized 
as coniferous forest in the vegetation classification 
(Kajimoto et al. 2004).

Differences in vegetation within the specific return 
periods for Path 1163 and Shed 7 are due to the geo
morphology of each slope. Path 1163 has a smaller and 
narrower starting zone and is further constrained by the 
narrow, incised channel of the track. This causes all of 
the return periods within the path to be laterally nar
rower when compared to Shed 7, with potentially more 
overlap. Shed 7, on the other hand, has a wide starting 
zone and track and is, overall, less steep than Path 1163. 
This allows avalanches to disperse more easily, thereby 
causing a greater proportion of each return period to 
harbor grassland and shrubland vegetation classes and 
a greater proportion of forest in the eleven- to thirty- 
year return interval in Path 1163.

It could be useful to train a vegetation model on one 
or several avalanche paths to be able to predict across 
other avalanche paths where return period data are 
nonexistent. However, our results suggest that doing so 
would be potentially inaccurate because of the variable 
vegetation classes and patterns across any given path. 
The increasingly greater proportion of forest in larger 
return interval categories across paths suggests that 
using evidence of more forested terrain to categorize 
less frequent categorical return intervals is feasible. 
Therefore, to extrapolate specific return period intervals 
based on all vegetation classes across a large area using 
a lidar- and spectrally derived vegetation model would 
require a larger training data set from a wide variety of 
heterogenous avalanche paths and a very large tree ring 
reconstructed return period interval data set or a long 
observational record. This was not possible in this study 
because lidar data are not available for all of the ava
lanche paths in the tree ring data set (Peitzsch et al.  
2019) we used in this study.

Return period intervals and lidar-derived tree height

We examined classifying the return period zones based 
solely on lidar-derived canopy height to identify whether 
any nuances in adjacent return period zones exist. We 
found, on average, statistically significant differences in 
mean tree height between return period categories. The 

Figure 9. Tree stand age for (a) Shed 7 and (b) Path 1163. The red outline depicts the general outline of the avalanche path. The areas 
without color associated with a tree stand age represent areas without vegetation classified as forested areas in this study (see Figure 6 
for classification).
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lowest frequency return period zones in both avalanche 
paths are characterized by the greatest vegetation height, 
as expected, but are still prone to impact from larger 
avalanches (Teich et al. 2012). Therefore, investigating 
patterns in canopy height alone was useful in examining 
return interval categories. However, our results suggest 
that vegetation height does not necessarily increase lin
early with return intervals. For example, in Shed 7, 
vegetation height located in the most frequent return 
interval category (one- to three-year) is, on average, 
slightly greater than the four- to ten-year return interval. 
This difference could potentially be attributed to differ
ent frequencies in the two main starting zones of Shed 7. 
In other words, the eastern starting zone in Shed 7 
avalanches more frequently and the runout of the one- 
to three-year return period zone (below the confluence 
of the two starting zones) consists of taller vegetation 
than the starting zones. Therefore, this may lead to the 
inclusion of taller vegetation in the one- to three-year 
return period for this particular avalanche path. 
However, the low frequency return interval category 
(eleven- to thirty-year) in each path was characterized 
by the highest canopy height.

Additionally, by examining stand age as a proxy for 
return intervals beyond our dendrochronological or 
observational record, we found distinct canopy height 
values associated with the oldest stand age located in 
the furthest reaches of the runout zone and well out
side the lateral extent of the identified avalanche path. 
This suggests that lidar-derived canopy height can 
potentially be used to identify return period cate
gories commonly used in planning and to examine 
stand age as a proxy for categorical return intervals in 
areas with distinct vegetation height differences. 
However, caution should be used when evaluating 
this metric for detailed infrastructure planning pur
poses, and the metric should be used in combination 
with other tools.

Implications

In many applications of avalanche risk management, 
an assessment needs to be made regarding how to 
implement measures to mitigate the avalanche risk. 
Thresholds of avalanche size and/or impact pressure, 
in combination with categorical return periods, are 
often used to guide this process. For example, for 
terrain assessment (e.g., Avalanche Terrain Exposure 
Scale; Statham, McMahon, and Tomm 2006; Larsen 
et al. 2020), the one- to thirty-year return period for 
events size D2 or greater is used as one of the thresh
olds for “simple” avalanche terrain. Likewise, for 
assessments of specific elements at risk (e.g., for 

roads with low traffic exposure and/or low opportu
nity costs), the CAA (2016) suggests that events size 
D3 or greater should have a typical return period of 
thirty years or less and events size D2 or greater 
should have a typical return period of ten years or 
less. Furthermore, for hazard zoning applications in 
Canada for occupied structures, a thirty-year return 
period combined with estimated impact pressures is 
used to differentiate between red, white, and blue 
zones (McClung 2005; CAA 2016).

In the absence of a robust observational record, 
return period assessments can be made, in part, based 
on vegetation evidence. In these cases, and depending on 
the scale and type of assessment, it is not uncommon to 
have limited dendrochronological observations from 
some paths and extrapolate these data to adjacent 
paths. Our analysis highlights the potential pitfalls in 
taking this approach, especially when applied to high 
frequency events less than ten years. This suggests that 
these extrapolations will likely have a high degree of 
uncertainty and should only be attempted for return 
periods of eleven to thirty years or greater and that 
even then there is likely to be some degree of variability 
between avalanche paths.

Limitations

We recognize that the vegetation composition of the 
avalanche paths is only representative of the time 
when data were collected. Timing of data acquisition, 
often a factor of data availability, can impact classi
fication accuracy in the event of disturbances such as 
avalanches around the time of data collection. In this 
study, lidar data were collected in July to 
August 2016. In the absence of NAIP imagery col
lected in 2016, we chose to work with 2017 NAIP 
imagery due to its unusually late collection date 
(September/October) and therefore unique ability to 
aid in differentiating between species groups that at 
other times of the year would have similar spectral 
signatures. The coarse resolution (30 m) of Landsat 
data (though available semi-monthly) would negate 
the utility of the high-resolution (crown-level) lidar 
data set. Another limitation is the underestimation 
that using dendrochronological techniques can yield 
in terms of avalanche frequency. The proportions of 
vegetation classes within return period zones would 
potentially change if avalanche return periods were 
more frequent. Additionally, we show that vegetation 
composition exerts a substantial effect on being able 
to classify return intervals across multiple avalanche 
paths even in our study area with similar aspect and 
elevation. Therefore, extrapolating return intervals 
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based on vegetation characteristics may only be 
appropriate in other regions if vegetation patterns 
are similar across avalanche paths.

Conclusions

In this study, we implemented a novel approach 
using lidar, aerial imagery, and a random forest 
model to classify vegetation within avalanche 
paths. We then used dendrochronological techni
ques and a twenty-year historical avalanche occur
rence data set combined with spatial interpolation to 
calculate and map avalanche return periods and 
characterize the vegetation within those return per
iod zones. Our results suggest that the combination 
of lidar and spectral signature metrics provides the 
best accuracy for predicting vegetation classes 
within complex avalanche terrain rather than lidar 
or spectral signatures alone. The zones with highest 
frequency return periods were broadly characterized 
by grassland and shrubland, but topography greatly 
influences the vegetation classes as well as the return 
periods. Lidar-derived canopy height also shows 
promise in distinguishing categorical return periods, 
but nuances within each path exist. Overall, the 
ability to characterize vegetation within various ava
lanche return period zones using remote sensing 
data provides land use planners and avalanche fore
casters a tool for assessing return periods and the 
ecological effects of large-magnitude avalanche 
events.
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