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Background Subtraction (BgS) is a widely researched technique to develop online Change De-

tection algorithms for static video cameras.ManyBgSmethods have employed the unsupervised,

adaptive approach of GaussianMixtureModel (GMM) to produce decent backgrounds, but they
lack proper consideration of scene semantics to produce better foregrounds. On the other hand,

with considerable computational expenses, BgS with Deep Neural Networks (DNN) is able to

produce accurate background and foreground segments. In our research, we blend both
approaches for the best. First, we formulated a network called Convolutional Density Approx-

imation (CDA) for direct density estimation of background models. Then, we propose a self-

supervised training strategy for CDA to adaptively capture high-frequency color distributions

for the corresponding backgrounds. Finally, we show that background models can indeed assist
foreground extraction by an e±cient Neural Motion Subtraction (NeMos) network. Our

experiments verify competitive results in the balance between e®ectiveness and e±ciency.

Keywords: Neural network; representation learning; motion estimation; background subtrac-

tion; change detection.

1. Introduction

Change Detection is a fundamental semantic segmentation task that handles the

identi¯cation of changing or moving areas in the ¯eld of view of a camera. With the
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swift progress in computer vision, practical utilization of it in visual systems has

involved advanced tasks such as behavior analysis,1,2 instance segmentation3 and

tra±c analysis.4 While there are various online and o®line algorithms that have been

proposed, online algorithms are arguably much more favorable as they can make

predictions on demand for large-scale inputs of essentially all tasks. By

making continuous predictions on demand, and even detecting and dealing with

out-of-distribution signals, online Change Detection algorithms have been pivotal for

proper, timely understanding of scene dynamics and extraction of interesting attri-

butes in many systems.

One popular approach is Change Detection via background modeling and

Background Subtraction (BgS). The background modeling step aims to construct

ideal backgrounds, which are scene captures containing only stationary objects and

features (e.g. streets, houses) uninteresting to the systems analytic purposes. Then,

by comparing visual inputs from a video sequence with their backgrounds, the BgS

technique can localize all desired targets (i.e. so-called foregrounds like cars, pedes-

trians, etc.) for analysis. Despite having been challenged by a plethora of real-life

scenarios such as shadows, illumination changes, dynamic background, among

others,5 background modeling and BgS remain prominent topics of research toward

being applied to a wide range of applications including video surveillance, smart

environments, and content retrieval.

Prominent online approaches6 include pixel-based statistical frameworks such as

the Gaussian Mixture Models (GMMs).7–10 These GMM frameworks are based on

the hypothesis that background intensities can be observed most frequently in a

video sequence recorded from a still camera, thereby creating explicit mathematical

structures for simple inferences. Additionally, this design notably entails general

applicability under illumination changes (e.g. from moving clouds), view noises (e.g.

rain, snow°akes), and implicit motions (e.g. river water). However, they struggle to

perform e®ectively when the background intensity hypothesis fails (i.e. stopped

objects or visual noises in the scene presenting prolonged intensity values in certain

regions), resulting in corrupted backgrounds and inaccurate foreground estimations.

On the whole, it is thanks to their simplicity and e±ciency on CPUs that make

GMM-driven approaches very appealing, but their lack of not only explicit

parallel-computing design with GPUs, but also limited consideration for scene se-

mantics for better foregrounds have made them much less relevant in modern re-

search, especially concerning big data and deep learning (DL).

On the other hand, ever-advancing processing units specialized for large-scale

data are making Deep Neural Networks (DNNs) not only powerful, but also trac-

table. However, in addition to a reliance on labels for practical utilization in real

scenarios, existing architectures have inevitable trade-o®s between computational

e±ciency and high accuracy, among which also include DL architectures for back-

ground modeling and Change Detection. With respect to labeled data for Change

Detection in particular, authors in Ref. 11 saw a clear lack of labels for training

general motion detectors, and there is currently no universal dataset that can ensure
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all possible scenes' true properties are appropriately presented. These ¯ndings have

obviously presented many challenges, but it has also motivated research into de-

signing DNNs that can achieve high accuracy, while utilizing as little labeled data as

possible.12,13 Nevertheless, because domain generalization14 is a complex, still un-

solved problem in research to overcome data biases, especially with regards to a

semantic segmentation task like Change Detection, learned models can always be

susceptible to unseen contextual variations that may occur in the real world.15,16

Through highly parallelizable neural architectures, the literature on DNNs has

shown that they can approximate any functions up to any arbitrary accuracies. This

signi¯es that we can e±ciently utilize their parallelism to not only approximate the

mechanism behind the optimization of GMM for background modeling, but we can

also facilitate a more e±cient data-driven foreground extractor that uses few labels.

Unfortunately, little research has focused on striking a balance between e®ectiveness

and e±ciency for real-time, scalable, and reliable processing.

Hence, in this paper, we propose a real-time, highly e®ective network design for BgS

that uses few learning labels. Our novel approach essentially reserves most of DNNs'

bene¯ts, addresses the sequentialism of GMM-based background modeling, and shows

that backgrounds can be used to streamline foreground extraction processes at high

accuracies. Essentially, we develop a dual framework of BgS consisting of two modules

in this paper: (1) Background Modeling by Convolutional Density Approximation

(CDA) for direct density estimation of background distributions; and (2) Foreground

Extraction by Neural Motion Subtraction (NeMos) that estimates changed regions

based on contextual constraints. Our contributions are summarized as follows:

. First, inspired by the existing computing technologies and Bishop,17 we present

our formulation of a GMM-based background solver via CDA. It is a feed-forward,

2800-parameter parallelizable Convolutional Neural Network (CNN) that simu-

lates a posterior probability function conditioned on the temporal history at each

pixel location. The architecture is lightweight, compressed, and e±cient by

addressing the conventional sequentialism of GMM-based background models,

and it performs as an e®ective codebook for mapping arrays of pixel values to the

corresponding GMM functions.

. Second, to technically model the underlying generator of input data, we propose a

self-supervised learning strategy based on unsupervised learning and data aug-

mentation. In particular, the strategy includes an unsupervised objective function

that guides CDA to approximate the parameters of GMMs via expectation

maximization, and teaches it to behave as a permutation invariant network.

The proposed background modeling architecture not only achieves high degrees of

mathematical interpretability, but also possesses adaptation to contextual

dynamics with the neural statistical analysis. Furthermore, with self-supervision,

the framework can be pre-trained with an inexhaustible amount of data.

. Third, we propose to use a context-driven, 700-parameter neural foreground ex-

traction component called NeMos, on top of background models, for e®ectively
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and e±ciently segmenting the di®erence mapping between input frames and their

corresponding background estimations. This is motivated not only by our

construction of GMM-driven background models with CDA to provide for sum-

marized semantic understanding of a context-rich scene, but also by addressing the

prohibitive expenses of existing segmentation networks for Change Detection.

The network can properly maintain generalization across a scenario's dynamics in

real time.

The organization of this paper is as follows. Section 2 encapsulates the synthesis of

recent approaches in background initialization and foreground segmentation.

The proposed method is described in Sec. 3. Experimental evaluations are discussed

in Sec. 4. Finally, our conclusion and motivations toward future works are discussed

in Sec. 5.

2. Related Works

The new era of video analysis has witnessed a proliferation of methods that con-

centrate on Change Detection. In fact, studies in recent decades have been encap-

sulated in various conceptual and experimental perspectives.6,15,18 The literature has

speci¯cally remarked on both unsupervised and supervised learning, particularly on

the two most prominent concepts used in BgS or foreground detection: statistics-

based approaches that are unsupervised and supervised DNNs. This work has been

extended from our preprint19 to further investigate self-supervision and experimental

results.

2.1. Statistics

Statistics-driven methods have been widely studied in terms of both research and

practical applications due to simplicity, lightweightness, and online adaptation to

scene dynamics without label training. Deployed methods in the practice of this

category are usually sample-based (e.g. temporal median,20 histograms,21 code-

books22) or via estimations of the multi-modular probability density function (PDF)

(e.g. the GMMs7) on data inputs.

Sample-based approaches essentially record the history of observed input pixels

by sets of intensity values representing a background model. From a new input value,

an algorithm compares the corresponding set to that pixel value to determine

whether that pixel belongs to the background, and selectly adapts the model. For

example, a codebook algorithm like Ref. 23 records all intensities in YCrCb color space

at each pixel, which is done over a period of time through quantization of scene multi-

modularity. In a similar way, Ref. 24 estimates visual changes by extracting histogram

features, and thresholding their means over their highest probable occurrence proba-

bility. Another recently proposed approach employs a weight-sample-based strategy25

that rapidly adapts to changing scenarios by a reward-and-penalty function on

samples. Recently, Agrawal and Natu26 presented a two-level adaptive thresholding

4 S. V.-U. Ha et al.
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algorithm to remove shadow pixels and detect foregrounds. The algorithm is based on

the YCbCr color space, and uses the intensity ratio method for improved pixel-wise

recognition.

In parallel, popular approaches also aim to construct the PDF of data, where

pixels' spatio-temporal visual features are captured in the corresponding probabi-

listic models at either pixel-level or region-level. In the last decades, scientists have

proposed a variety of statistical models to resolve the problem of background

modeling and subtraction. Stau®er and Grimson7 proposed a pioneering work that

handled gradual changes in outdoor scenes using pixel-level GMM with a sequential

K-means distribution matching algorithm. To enhance the foreground/background

discrimination ability regarding scene dynamics, Pulgarin-Giraldo et al.27 improved

GMM with a contextual sensitivity that used a Least Mean Squares formulation to

update the parameter estimation framework. By validating the robustness of back-

ground modeling in a high amount of dynamic scene changes, Ha et al.28 proposed a

GMM with a high variation removal module using entropy estimation. On the other

hand, Zhao et al.29 showed that BgS is possible with the integration of alternative

cues about foreground and background on freely-moving cameras, where foreground

cues can be extracted from the GMM compensated with image alignment, and

background cues can be obtained from the spatio-temporal features ¯ltered by the

homography transformation. Then, in an e®ort to address the sequential bottleneck

among statistical methods in pixel-wise learning, an unsupervised, tensor-driven

framework of GMM was proposed by Ha et al.10 with a balanced trade-o® between

satisfactory foreground mask and exceptional processing speed. However, the

approach's number of parameters requires a lot of manual tuning. Overall, statistical

models were developed with explicit probabilistic hypotheses to sequentially present

the correlation of history observation at each image point or a pixel block, added

with a global thresholding approach to extract foregrounds. This global thresholding

technique for foreground detection usually leads to a compromise between the seg-

regation of slow-moving objects and rapid adaptation to sudden scene changes

within short-term measurement. This trade-o® usually damages the image-BgS in

multi-contextual scenarios, which is considered a sensitive concern in motion esti-

mation. Hence, regarding foreground segmentation from background modeling, it is

critical to improve frame di®erencing from constructed background scenes with a

better approximation mechanism, and utilize parallel technologies.

Drawn from the published methods, statistical studies essentially aim to

characterize the history of pixels' intensities with generalistic background models.

The construction of these models is conveniently unsupervised and can be e®ectively

adaptive to the dynamics of their input domains. However, indiscriminate adapt-

ability entails compromises between valuable incorporation of domain contexts and

over-adaptations of foreground objects into background models. While addressing

these e®ects has shown promising results, they entail extra computational burdens

corresponding to improved accuracy, but still without full consideration of scene

properties for segmenting accurate foregrounds. Regarding GMM-based approaches

Real-Time Change Detection with Convolutional Density Approximation 5
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speci¯cally, the GMM mathematical framework has not only demonstrated strong

multi-modular approximations of input statistics where e®ective background

extraction procedures may excel, but it has also shown how highly customizable it

can be in the extensive literature to address speci¯c problems. Nevertheless, in terms

of computations, there has yet to be a common, explicit computing framework for

GMM-based approaches in which pixel-wise processing for high dimensionalities and

scales can be accomplished with GPUs.

2.2. Deep neural networks

Unlike statistical frameworks, neural networks can explicitly exploit nonlinear data

manipulations on parallel distributed computing paradigms with modern techno-

logies by label training. Their goal is to generalize an equivariant function of fore-

ground segmentation across video sequences where there can be visual changes of

varying degrees of complexity, which is by either BgS or direct foreground extraction.

Recently, there have been many attempts to apply DNNs to BgS. Inspired by

LeNet-530 used for handwritten digit recognition, one of the earliest e®orts to sub-

tract the background from the input image frame was done by Braham et al.31 This

work explores the potential of visual features learned by hidden layers for fore-

ground–background pixel classi¯cation. Similarly, Wang et al.32 proposed a deep

CNN trained on only a small subset of frames as there is a large redundancy in a

video taken by surveillance systems. The model requires a hand-labeled segmenta-

tion of moving regions as an indicator in observed scenes. Lim et al.33 constructed an

encoder–decoder architecture with the encoder inherited from VGG-16.34 The pro-

posed encoder–decoder network takes a video frame, along its corresponding

grayscale background and its previous frame as the network's inputs to compute

their latent representations, and to deconvolve these latent features into a fore-

ground binary map. Another method is DeepBS35 which was proposed by Babaee

et al. to compute the background model using both SuBSENSE36 and Flux Tensor

method.37 The authors extract the foreground mask from a small patch from

the current video frame and its corresponding background to feed into the CNN,

and the mask is later post-processed to give the result. Nguyen et al. proposed a

motion feature network38 to exploit motion patterns via encoding motion features

from small samples of images. The method's experimental results showed that the

network obtained promising results and was well-performed on several unseen data

sequences.

Regarding direct foreground extraction, these models essentially construct

implicit backgrounds within the hidden states, and cluster pixel regions by recog-

nizing semantic classes of interest in the training set. An excellent proposed approach

is the scene-speci¯c FgSegNet series of encoder–decoder architectures12,13 proposed
by Long et al. FgSegNet is one of the top-performing approaches in Change Detec-

tion that is built on top of VGG-16 of convolutional layers. There is also a published

work from Chen et al.39 which aims to exploit high-level spatial-temporal features

6 S. V.-U. Ha et al.
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with a deep pixel-wise attention mechanism and convolutional long short-term

memory (ConvLSTM). Chen et al. introduced a pixel-wise deep sequence learning

architecture with attention mechanism and ConvLSTM to Change Detection. On

the other hand, Yang et al.40 proposed an end-to-end multi-scale spatiotemporal

propagation network to detect motions. Instead of using ConvLSTM or 3D con-

volutions, they developed a feature aggregation block to fuse motion features of

various scales. Similarly, to take into account multi-scale features, Houhou et al.41

presented a deep multi-scale network for BgS, which fuse both the RGB color

channels and depthmaps to perform spatio-semantic BgS at various scales. Recently,

Gouizi and Megherbi42 extended the U-net architecture with more skip connections

on residual micro-autoencoder blocks. The approach is called Nested-Net, which

produces high accuracy at the expense of signi¯cant computational costs over U-net

and many skip connections.

All things considered, neural-network-based methods signi¯cantly bene¯t from

learning a transformation from an input batch of consecutive frames to manually

labeled foregrounds of visual changes. From training with selected samples, these

approaches are able to accurately generalize to varying degrees of contextual dynamics

within a scene, essentially by constructing a numerical understanding of foreground

extraction within a network parameters. However, recentDNNs-basedmethods do not

ensure real-time performance, which is a crucial requirement for practical systems that

need on-the-°y predictions. Despite the fact that DNNs can utilize the parallel-com-

puting mechanisms of modern hardware very well, and can also make use of

data for high-accuracy prediction, hardly any work has been done to investigate a

proper balance between e®ectiveness and e±ciency for DNNs-based Change Detection

models.

Therefore, inspired by how statistics-based models are very popular with

application scientists,6 we advocate real-time processing and high accuracy to ac-

count for the convenience, scalability, and functionality of deploying DNNs in

practical scenarios.

3. Methodology

In our work, we propose a framework consisting of two CNNs, as shown in Fig. 1.

First, grounded on a generalized GMM model like Ref. 7, the ¯rst network models

posterior PDFs conditioned on records of temporal information to construct back-

ground scenes. The vanilla form of GMM on background modeling is very simple for

neural networks to approximate, as highly frequent intensity values are skewed

toward background values. Then, the second component is developed to perform

deep BgS across thresholds of di®erences, in which we show that a CNN-based

encoder–decoder not only can be used in estimating frame-to-background di®erences

like Ref. 35, but by leveraging generalized backgrounds, it can also make accurate

predictions e±ciently.

Real-Time Change Detection with Convolutional Density Approximation 7

V
ie

tn
am

 J
. C

om
p.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 6
2.

10
1.

20
6.

41
 o

n 
04

/0
2/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



3.1. Convolutional density approximation of gaussians

In this section, we ¯rst propose to formulate the GMM problem under DNNs' per-

spectives. Following Zivkovic,8 let ÂT
c ¼ fx1;x2; . . . ;xT jxi 2 ½0; 255�cg be the set of T

observed color signals at a pixel position, where c is the number of dimensions in the

color space, the distribution of pixel intensity xi can be modeled by a linear com-

bination of K probabilistic components μk and their corresponding posterior func-

tions P ðxijμkÞ. The marginal probability PðxiÞ of the mixture is de¯ned in the

following equation:

P ðxÞ ¼
XK
k¼1

P ðμkÞ � PðxjμkÞ ¼
XK
k¼1

�k � N ðxj¹k; �kÞ; ð1Þ

where P ðμkÞ ¼ �k is the non-negative mixing coe±cient that sums to unity over all

k's, representing the likelihood of occurrence of the kth Gaussian distribution μk.

In practice, real-life recorded scenes have often presented various degrees of

changing context dynamics (e.g. body of water, waving trees, changing weather,

illumination, etc.). Obviously, while also taking into account acquisition noises, a

single Gaussian would not be su±cient to model the pixel's values. This multi-

modality ought to be captured by a mixture of adaptive Gaussians. To also avoid

performing costly matrix inversion,7 each color channel in the color space is assumed

to be distributed independently, thus each Gaussian component in the mixture is

described with a scalar variance �k.

P ðxjμkÞ ¼ N ðxj¹k; �kÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þc� c
k

p exp � jjx� ¹kjj2
2�k

� �
; ð2Þ

where ¹k is the estimated mean and �k is the estimated universal covariance of color

channels in the kth Gaussian component.

Fig. 1. The overview of the proposed method for background modeling and foreground detection.

8 S. V.-U. Ha et al.
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From this hypothesis, we propose an architecture called Convolutional Density

Approximation (CDA), which employs a set of nonlinear transformations f�ð�Þ to

formulate a conditional GMM-based density function of x given a set of randomly

selected, vectorized data points ÂT :

yT ¼ f�ðÂT
c Þ � P ðxjÂT

c Þ: ð3Þ
In this work, we incorporate the mixture density model with the CNN instead of a

multi-layer perceptron as done by Bishop et al. in the vanilla research.17 In the

proposed scheme, the network itself learns to act as a feature extractor to formulate

statistical inferences on temporal series of intensity values. First, as the background

image contains the most frequently presented intensities in the sequence of observed

scenes, we take advantage of this in CDA intuition to exploit the most likely in-

tensity value that will rise in the background image via consideration of temporal

arrangement. Second, the memory requirement to store so many weights with multi-

layer perceptron may rule out certain hardware implementations. In convolutional

layers, the scheme of weight sharing in the proposed CNN reduces the number of

parameters, making CDA lighter and exploiting the parallel processing of a set of

multiple pixel-wise analyses within a batch of video frames.

The architecture of CDA contains seven learned layers, not counting the input

��� two depthwise convolutional, two convolutional, and three dense layers. Our

network is summarized in Fig. 2. The input of our rudimentary architecture of the

proposed network is a time series of color intensity at each pixel, which was analyzed

with noncomplete connection schemes in four convolution layers regarding temporal

perspective. Finally, the feature map of the last convolution layer was connected

Fig. 2. The proposed architecture of Convolution Density Network of GMM.

Real-Time Change Detection with Convolutional Density Approximation 9
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with three di®erent con¯gurations of dense layers to form a three-fold output of the

network which presents the kernel parameter of the GMM.

The main goal of CDA is to construct an architecture of CNN that presents

multivariate mapping in the form of GMM with the mechanism of o®line learning.

With the simulated probabilistic function, we aim to model the description of the

most likely background scenes from actual observed data. In other words, the reg-

ularities in the proposed CNN should cover a generalized presentation of the in-

tensity series of a set of consecutive frames at the pixel level. To achieve this

proposition, instead of using separate GMM for each pixel-wise statistical learning,

we consider using a single GMM to formulate the temporal history of all pixels in the

whole image. Accordingly, CDA architecture is extended through a spatial extension

of temporal data at image points with an extensive scheme de¯ned in Fig. 2.

The network output yT , whose dimension is ðcþ 2Þ �K, is partitioned into three

portions y�ðÂT
c Þ, y�ðÂT

c Þ, and y�ðÂT
c Þ of GMM:

yT ¼ ½y�ðÂT
c Þ;y�ðÂT

c Þ;y�ðÂT
c Þ�;

¼ ½y1
�; . . . ;y

K
� ;y

1
�; . . . ;y

K
� ;y

1
�; . . . ;y

K
� �: ð4Þ

With our goal of formulating the GMM, we impose a di®erent restriction on

threefold outputs from the network:

. First, as the mixing coe±cients �k indicate the proportion of data accounted for by

mixture component k, they must be de¯ned as independent and identically dis-

tributed probabilities. To achieve this regulation, in principle, we activate the

network output with a softmax activation function:

�kðÂT
c Þ ¼

expðyk
�ÞPK

l¼1 expðy l
�Þ

: ð5Þ

. Second, in realistic scenarios, the measured intensity of observed image signals

may °uctuate due to a variety of factors, including illumination transformations,

dynamic contexts, and bootstrapping. Hence, we restrict the value of the variance

of each component to the range ½��min; ��max� so that each component does not span

spread the entire color space, and does not focus on one single color cluster:

�kðÂT
c Þ ¼

��min � ð1� �̂kÞ þ ��max � �̂k

255
; ð6Þ

where �kðÂT
c Þ is normalized toward a range of ½0; 1� over the maximum

color intensity value, 255; and �̂k is the normalized variance activated through a

hard-sigmoid function, from the output neurons y� that correspond with the

variances:

�̂kðÂT
c Þ ¼ max 0;min 1;

2� yk
� þ 5

10

� �� �
: ð7Þ

10 S. V.-U. Ha et al.
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In this work, we adopt the hard sigmoid function because of the piecewise linear

property and correspondence to the bounded form of a linear recti¯er function

(ReLU) of the technique. Furthermore, this was proposed and proved to be more

e±cient in both software and specialized hardware implementations by Cour-

bariaux et al.43

. Third, the mean of the probabilistic mixture is considered on a normalized RGB

color space where the intensity values retain in a range of ½0; 1� so that they can be

approximated correspondingly with the normalized input. Similar to the nor-

malized variance �̂k, we have

�kðÂT
c Þ ¼ max 0;min 1;

2� yk
� þ 5

10

 !" #
: ð8Þ

From the proposed CNN, we extract the periodical background image for each

block of pixel-wise time series of data in a period of T . This can be done by taking the

weighted average of the estimated means, essentially summarizing the contextual

dynamics of the scene into one background image.

BGðÂT
c Þ ¼

XK
k¼1

�kðÂT
c Þ � �kðÂT

c Þ: ð9Þ

3.2. Learning posterior estimation

In practice, particularly in each real-life scenario, the background model must cap-

ture multiple degrees of dynamics, which is more challenging by the fact that scene

dynamics may also change gradually under external e®ects (e.g. lighting deviations).

These e®ects convey the latest information regarding contextual deviations that may

constitute new background predictions. Therefore, the modeling of backgrounds

must not only take into account the various degrees of dynamics across multiple

imaging pixels of the data source, but it must also be able to adaptively update its

predictions concerning semantic changes.

Equivalently, to approximate a statistical mapping function for background

modeling, the proposed neural network function has to be capable of approximating

a conditional PDF, thereby estimating a multi-modular distribution conditioned on

its time-wise latest raw imaging inputs. The criteria for the neural statistical function

to be instituted can be summarized as follows:

. By taking adaptiveness into account, the neural probabilistic density function can

directly interpolate predictions in evolving scenes upon reception of new data.

. As a metric for estimating distributions, input data sequences cannot be weighted

in terms of order.

Hence, we have developed a self-supervised approach.

Real-Time Change Detection with Convolutional Density Approximation 11
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3.2.1. Adaptive objective function

To satisfy the ¯rst criterion, we propose to use an unsupervised loss function capable

of directing CDA's parameters toward adaptively capturing the conditional distri-

bution of data inputs.

At every single pixel, the proposed CNN estimates the probabilistic density

function on the provided data by parameterizing the GMM. Speci¯cally, given a set

ÂT
c of vectorized data points, �k, �k and �k shall be functions parameterized by the

set. Thus, Eq. (B.1) can be modi¯ed for target x:

P ðxÞ ¼
XK
k¼1

�kðÂT
c Þ � N ðxj¹k; �kÞ; ð10Þ

where

Nðxj¹k; �kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þc � � c
kðÂT

c Þ
q exp � jjx� �kðÂT

c Þjj
2�kðÂT

c Þ
� �

: ð11Þ

In this loss objective, the data distribution to be approximated is the set of data

points relevant to background construction. This is rationalized by the goal of

directing the neural network's variables toward generalizing universal statistical

mapping functions. Even with constantly evolving scenes where the batches of data

values also vary, this loss measure can constitute fair weighting on the sequence of

inputs thanks to explicit design to capture various pixel-wise dynamics over a video

scene, and encompass unseen perspectives.

Practical modeling: We establish the mapping function on the RGB color space,

which would require optimizing the loss on not just any 3-channeled pixel, but for

b ¼ H �W spatial blocks of image intensity data, over the temporal data axis T

L ¼
Xb
i

LðiÞð�T
c Þ ¼

Xb
i

XT
j

LðiÞ
j ð12Þ

with

LðiÞ
j ¼ � ln

XK
k¼1

�
ðiÞ
k Nðxjj� ðiÞ

k ; �
ðiÞ
k Þ

" #
; ð13Þ

where xj is the jth element of the ith time-series data Â
T ;ðiÞ
c of pixel values; �ðiÞ, �ðiÞ,

and �ðiÞ are, respectively, the desired mixing coe±cients, means, and variances that

commonly model the distribution of Â
T ;ðiÞ
c in GMM.

We de¯ne LðiÞ
j as the error function for our learned estimation on an observed

data point xj, given the locally relevant dataset Â
T ;ðiÞ
c for the neural function. LðiÞ

j is

based on the statistical log-likelihood function and is equal to the negative of its

magnitude. Hence, by minimizing this loss measure, we will essentially be

12 S. V.-U. Ha et al.
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maximizing the expected likelihood value of the GMM-based neural probabilistic

density function P ðxÞ.
Employing stochastic gradient descent on the negative logarithmic function LðiÞ

j

involves not only monotonic decreases, which are steep when close to zero, but also

upon convergence it also leads to the proposed neural function approaching an op-

timized mixture of Gaussians PDF. In addition, since this loss function depends

entirely on the input and the output of the network (i.e. without

external data labels), it is completely unsupervised. Optimization of the function is

intended for the network to generalize on new data that is available on the °y

without labels.

Learning by back-propagation: Learning can only be achieved if we can obtain

suitable equations of the partial derivatives of the error L with respect to outputs of

the network. As we describe in the previous section, y�, y�, and y� present the

proposed CDA's outputs that formulate to the latent variables of GMM. The partial

derivatives @LðiÞ
j =@yðkÞ can be evaluated for a particular pattern and then summed

up to produce the derivative of the error function L. To simplify the further analysis

of the derivatives, it is convenient to introduce the following notation that

presents the posterior probabilities of the component k in the mixture, using Bayes

theorem:

�
ðiÞ
k ¼ �

ðiÞ
k Nðxjj¹ ðiÞ

k ; �
ðiÞ
k ÞPK

l¼1 �
ðiÞ
l Nðxjj¹ ðiÞ

l ; �
ðiÞ
l Þ

: ð14Þ

First, we need to consider the derivatives of the loss function with respect to the

network's outputs y� that correspond to the mixing coe±cients �k. Using Eqs. (B.14)

and (B.15), we obtain

@LðiÞ
j

@�
ðiÞ
k

¼ ��
ðiÞ
k

�
ðiÞ
k

: ð15Þ

From this expression, we perceive that the value of �
ðiÞ
k explicitly depends on y

ðlÞ
� for

l ¼ 1; 2; . . . ;K as �
ðiÞ
k is the result of the softmax mapping from y

ðlÞ
� as indicated in

Eq. (B.6). We continue to examine the partial derivative of �
ðiÞ
k with respect to a

particular network output y
ðlÞ
� , which is

@�
ðiÞ
k

@y
ðlÞ
�

¼ �
ðiÞ
k ð1� �

ðiÞ
l Þ if k ¼ l;

��
ðiÞ
l �

ðiÞ
k otherwise:

(
ð16Þ

By the chain rule, we have

@LðiÞ
j

@y
ðlÞ
�

¼
X
k

@LðiÞ
j

@�
ðiÞ
k

@�
ðiÞ
k

@y
ðlÞ
�

: ð17Þ

Real-Time Change Detection with Convolutional Density Approximation 13
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From Eqs. (B.15), (B.18), (B.19), and (B.21), we then obtain

@LðiÞ
j

@y
ðlÞ
�

¼ �
ðiÞ
l � �

ðiÞ
l : ð18Þ

For y
ðkÞ
� , we make use of Eqs. (B.3), (B.7), (B.34), (B.14), and (B.15), by dif-

ferentiation, to obtain

@LðiÞ
j

@y
ðkÞ
�

¼ 0:2ð��max � ��minÞ
255

�k

c

2�
ðiÞ
k

� jjxj � ¹kjj2
2ð� ðiÞ

k Þ2

 !
ð19Þ

for �2:5 < y
ðkÞ
� < 2:5. This is because of the piece-wise property in the de¯nition of

the hard-sigmoid activation function.

Finally, for y
ðkÞ
� , let �

ðiÞ
k;l be the lth element of the mean vector, where l is an

integer, which lies in ½0; cÞ and suppose that �
ðiÞ
k;l corresponds to an output o�

k of the

network. We can get derivative of �
ðiÞ
k;l by taking Eqs. (B.3), (B.9), (B.14), (B.15) into

the di®erentiation process:

@LðiÞ
j

@y
ðk;lÞ
�

¼ �0:2� �
ðiÞ
k � x

ðiÞ
j;l � �

ðiÞ
k;l

�
ðiÞ
k

" #
ð20Þ

for �2:5 < y
ðkÞ
� < 2:5.

From Eqs. (B.22), (B.34), and (B.31), we validate the primary conceptualization

that the loss objective is di®erentiable and optimizable by our CDA formulation.

3.2.2. Inducing permutation invariance

True to fundamental theories in statistics, the posterior PDF on the history of

intensity occurrences ought not to depend on the order of appearances. To satisfy the

second requirement, the order of the inputs should not matter upon loading, which is

proper for any statistical function that estimates PDFs. In other words, regardless of

what sampled pixel values appear ¯rst, estimates of the population distribution only

depend on their frequency. We propose an augmentation method to revise the loss

objective as a self-supervised procedure to induce permutation invariance.

We denote �nðÂT
c Þ as the n permutation of ÂT

c , such that n is an integer and

�1ðÂT
c Þ ¼ ÂT

c . Thus, we aim to satisfy

�kðÂT
c Þ � �kð�nðÂT

c ÞÞ;
�kðÂT

c Þ � �kð�nðÂT
c ÞÞ;

�kðÂT
c Þ � �kð�nðÂT

c ÞÞ;
ð21Þ

which is applied 8nj1 � n � T !.

14 S. V.-U. Ha et al.
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We implicitly drive the model's parameters to achieve condition (21) by slight

modi¯cation of the loss function on random samples of integer n:

L ¼
Xb
i

LðiÞð�nðÂT
c ÞÞ; ð22Þ

which is to regularize model parameters for generalized inferencing of a diverse range

of cases, as the convolutional operations have demonstrated rotational and trans-

lational robustness, but not against permutational variance.

3.3. Background modeling for e±cient foreground extraction

In this section, we show that the utilization of background models can provide

su±cient information for foreground extraction, thereby reducing the required

computational expenses involved while maintaining decent accuracies. Hence, we

developed a convolutional auto-encoder, called NeMos, to simulate nonlinear frame-

background di®erencing for foreground detection on background models.

Traditionally, thresholding schemes are employed to ¯nd the highlighted

di®erence between an imaging input and its corresponding static view in order to

segment motion. For example, Stau®er and Grimson7 employed variance thresh-

olding on background-input pairs by modeling the static view with GMM. While

experimental results suggest certain degrees of applicability due to its simplicity, the

approach lacks °exibility as the background model is usually not static and

may contain various motion e®ects such as occlusions, stopped objects and shadow

e®ects.

In practice, a good design of a di®erence function between the current frame and

its background must be capable of facilitating segmentation across a plethora of

scenarios and e®ects. However, regarding countless scenarios in real life, where there

are unique image features and object behaviors, there is yet any explicit mathe-

matical model that is general enough to cover them all. Thus, e®ective subtraction

requires high-degreed nonlinearity in order to approximate a model for the under-

lying mathematical framework. Following the universal approximation theorem,44

we design the technologically parallelizable neural function for an approximation of

such framework. Speci¯cally, we make use of a CNN to construct a foreground

segmentation network. The motive is further complemented by two folds.

. CNNs have long been known for their e®ectiveness in approximating nonlinear

functions with arbitrary accuracy.

. CNNs are capable of balancing between both speed and generalization accuracy,

especially when given an e®ective design and enough representative training data.

We exploit the use of a pair of the current video frame and its corresponding

background as the input to the neural function and extract motion estimation.

By combining this with a suitable learning objective, we explicitly provide the neural

Real-Time Change Detection with Convolutional Density Approximation 15
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function with enough information to mold itself into a context-driven nonlinear

di®erence function, thereby restricting model behavior and its search directions. This

also allows us to scale down the networks parameter size, width, and depth to focus

on learning representations while maintaining generalization for unseen cases. As

empirically shown in the experiments, the proposed architecture is lightweight in

terms of the number of parameters, and is also extremely resource-e±cient.

Compared to approaches that perform semantic segmentation on single images

to cluster pixels of certain known classes in the training set (e.g. FgSegNet12),

NeMos relies on existing input data to perform a learned pixel-wise subtraction

procedure on input signals, conditioned on obvious and implicit distinctions.

Essentially given,

It ¼ BGt þ �ðFGtÞ; ð23Þ
where FGt is a binary foreground map and � represents the pixel-wise transfor-

mation function such that �ðFGtÞ ¼ It � BGt. Thus, to solve the equation

FGt ¼ ��1ðIt � BGtÞ ¼ �ðIt;BGtÞ, we seek to approximate the equivariant func-

tion � by a neural network that operates using all necessary information in It and

BGt. This means we can not only circumvent expensive analytic operations on

spatio-temporal 4D colored tensors, but can also avoid associating pixel regions

with certain target classes that may require more data or heavier architectures for

full semantic segmentation operations.

3.3.1. Architectural design

The overall °ow of the NeMos is shown in Fig. 3. We employ the encoder–decoder
design approach for our segmentation function. With this approach, data inputs are

compressed into a low-dimensional latent space of learned informative variables in

Fig. 3. The proposed architecture of NeMos grounded on convolutional autoencoder for foreground

detection.

16 S. V.-U. Ha et al.
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the encoder, and the encoded feature map is then passed into the decoder, thereby

generating foreground masks.

Not only do we reduce the network size compared to FgSegNet, we also utilize the

use of depthwise separable convolution introduced in MobileNets45 so that our

method can be suitable for mobile vision applications. Because this type of layer

signi¯cantly scales down the number of convolutional parameters, we reduced the

number of parameters of our network by approximately 81.7% compared to using

only standard 2D convolution, rendering a lightweight network of around 2,800

parameters. Interestingly, even with such a small set of parameters, the network still

does not lose its ability to generalize predictions at high accuracy. Our architecture

also employs normalization layers, but only for the decoder. This design choice is to

avoid the loss of information in projecting the contextual di®erences of background-

input pairs into the latent space via the encoder, while formulating normalization to

boost the decoders learning.

Encoder. The encoder can be thought of as a folding function that projects the

loaded data into an information-rich low-dimensional feature space. In our archi-

tecture, the background image estimated by CDA is concatenated with imaging

signals such that raw information can be preserved for the neural network to freely

learn to manipulate. Moreover, with the background image also in its raw form,

context-speci¯c scene dynamics (e.g. moving waves, camera jittering, intermittent

objects) are also captured. In addition, by explicitly providing a pair of the current

input frame and its background image to segment foregrounds, our designed network

essentially constructs a simple di®erence function that is capable of extending its

behaviors to accommodate contextual e®ects. Thus, we theorize that approximating

this neural di®erence function would not require an enormous number of parameters.

In other words, it is possible to reduce the number of layers and the weight size of the

foreground extraction network to accomplish the task. Hence, the encoder only

consists of a few convolutional layers, with two max-pooling layers for downsampling

contextual attributes into a feature-rich latent space.

Decoder. The decoder of our network serves to unfold the encoded feature map

into the foreground space using convolutional layers with two upsampling layers to

restore the original resolution of its input data. In order to facilitate faster training

and better estimation of the ¯nal output, we engineered the decoder to include

instance normalization, which is more e±cient than batch normalization.46 Using

upsampling to essentially expand the latent tensors, the decoder also employs con-

volutional layers to induce nonlinearity like the encoder.

The ¯nal output of the decoder is a grayscale probability map where each pixel's

value represents the chance that it is a component of a foreground object. We use the

hard sigmoid activation function because of its property that allows faster gradient

propagation, which results in less training time. At inference time, the ¯nal seg-

mentation result is a binary image obtained by placing a constant threshold 	, which

is experimentally determined, on the generated probability map.

Real-Time Change Detection with Convolutional Density Approximation 17
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3.3.2. Loss objective

We penalize the output of the network using the cross-entropy loss function com-

monly used for segmentation tasks ½x; y�, as the goal of the model is to threshold the

value of each pixel. The description of the loss function is as follows:

L ¼ �
XH
i¼1

XW
j¼1

½Yi;j logðŶi;jÞ þ ð1�Yi;jÞ logð1� Ŷi;jÞ�; ð24Þ

where Y is the corresponding target set of foreground binary masks for Ŷ. We

minimize EðLÞ on batches of predicted foreground probability maps. The network is

trained for about 1000 epochs for each sequence in CDnet using Adam optimizer with

the learning rate ¼ 0:005. The designed architecture is enabled to learn not only

pixel-wise motion estimates of the training set, but it also is taught to recognize

inherent dynamics in its data to accurately interpolate region-wise foreground pre-

dictions of unseen perspectives.

4. Experiments and Discussion

4.1. Experimental setup

In this section, we verify experimentally the capabilities of the proposed method via

comparative evaluations. Our goals are to evaluate the e®ectiveness and e±ciency of

CDA and NeMos in background modeling and subtraction. Our proposed scheme is

designed to explicitly incorporate probabilistic density properties into the architec-

ture to achieve accurate adaptiveness, while taking advantage of parallel computing

technologies often used with DNNs to compete with state-of-the-art works in speed

given its light structure. Therefore, we compare the accuracy of the proposed

framework not only with unsupervised approaches that are light-weighted and

generalizable without pretraining: GMM ��� Stau®er & Grimson,7 GMM ��� Ziv-

kovic,8 SuBSENSE,36 PAWCS,47 TensorMoG,10 BMOG,9 FTSG,37 SWCD,48 but

also with the data-driven, supervised models which trade computational expenses for

high accuracy performance: FgSegNet S,12 FgSegNet,12 FgSegNet v2,13 Cascade

CNN,32 DeepBS,35 STAM.49

First, in terms of BgS results, we employ quantitative analysis on the

CDnet-201450 dataset. Our metrics are those that can be appraised from confusion

matrices, i.e. Precision, Recall, F-Measure, False-Negative Rate (FNR), False-

Positive Rate (FPR), and Percentage of Wrong Classi¯cation (PWC). With overall

results being drawn from the combination of all confusion matrices across given

scenarios, the benchmarks on CDnet-2014 were performed by comparing foreground

predictions against provided ground-truths. Through our results, we observe the

capabilities of NeMos in leveraging background models of CDA for context-driven

BgS.
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Then, we proceed with an ablation study to evaluate the contribution of the

background generator, CDA, to the overall architecture on the Scene Background

Modeling (SBMnet) dataset.51 The metrics include AGE (Average Gray-level Error),

pEPs (Percentage of Error Pixels), pCEPs (Percentage of Clustered Error Pixels),

MS-SSIM (MultiScale Structural Similarity Index), PSNR (Peak-Signal-to-Noise-

Ratio), and CQM (Color image Quality Measure). The ¯rst three measure the in-

tensity-level error di®erence between the algorithm's output with the provided

ground-truth, where lower estimation values indicate better background estimates.

In contrast to how the ¯rst three are sensitive to small variations and require in-

tensity-level exactness with referenced ground-truth, the latter three focus on

quantifying the visual and structural quality of the background image generated by

an algorithm. As exact background images are virtually impossible to obtain due to

unavoidable variations of the camera's capturing process, these structural- and vi-

sual-focused metrics provide for more objectiveness in background evaluations

against reference ground-truths (higher values indicate better results).

Finally, we will also analyze all methods in terms of processing speed with the

image resolution of 320� 240 and draw ¯nal conclusions.

4.2. Implementation

In our experiments, the number of Gaussians K is empirically and heuristically to

balance the CDA's capability of modeling constantly evolving contexts (e.g.

moving body of water) under many e®ects of potentially corruptive noises. With

K too big, many GMM components may be unused or they simply capture var-

ious noises within contextual dynamics. As the Gaussian component corre-

sponding to the background intensity revolves around the most frequently

occurring color subspaces to draw predictions, the extra components serve only as

either placeholders for abrupt changes in backgrounds, be empty, or capture in-

termittent noises of various degrees. In practice, noise Gaussian components in

GMM are pulse-like as they would appear for short durations, and low-weighted

because they are not as often matched as background components. Nevertheless,

they still present corruptive e®ects to our model. Our proposed CDA model was

set up with the number of Gaussian components K ¼ 3 for all experimented

sequences, and was trained on the CDnet-2014 dataset with Adam optimizer

using a learning rate of 
 ¼ 1e�4.

In addition, the constants ��min and ��max were chosen such that no Gaussian

components span the whole color space while not contracting to a single point that

represents noises. If the ½��min; ��max� interval is too small, all of the Gaussian com-

ponents will be likely to focus on one single color cluster. Otherwise, if the interval is

too large, some of the components might still cover all intensity values, making it

hard to ¯nd the true background intensity. Based on this assumption and experi-

mental observations, we ¯nd that the di®erence between color clusters usually does

not exceed approximately 16 at minimum and 32 at maximum.

Real-Time Change Detection with Convolutional Density Approximation 19
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Regarding NeMos, the value of 	 was empirically chosen to be 0.3 to extract the

foreground e®ectively even under high color similarity between objects and back-

ground.

The training dataset for NeMos is chosen by hand so that the data maintains a

balance between background labels and foreground labels since imbalanced data will

increase the model's likelihood of being over¯tted. We chose just 200 labeled ground

truths to train the model. This is only up to 20% of the number of labeled frames for

some sequences in CDnet, and 8.7% of CDnet's labeled data overall. During training,

the associated background of each chosen frame is directly generated using CDA as

NeMos is trained separately from CDA because of the manually chosen input-label

pairs.

4.3. Results on CDnet 2014 benchmarks

With 53 video sequences (length varying from 1,000 to 7,000 frames) spread over 11

di®erent scenarios, the CDnet-2014 dataset50 is the current biggest, most compre-

hensive large-scale public dataset for evaluating algorithms in the ¯eld of online

video Change Detection. Using it, we demonstrate empirically the e®ectiveness of our

proposed approach across a plethora of scenarios and e®ects. For each thousands-

frame sequence of a scenario, we sample only 200 foreground images for training our

foreground estimator. This strategy of sampling for supervised learning is the same as

that of FgSegNet and Cascade CNN. The experimental results are summarized in

Table 1, which highlights the F-measure quantitative results of our approach com-

pared against several existing state-of-the-art approaches. Despite its compact

Table 1. F-measure comparisons over all of 11 categories in the CDnet 2014 dataset.

Notes: 	Semi-Unsupervised; Experimented scenarios include bad weather (BDW), low frame rate (LFR),
night videos (NVD), turbulence (TBL), baseline (BSL), dynamic background (DBG), camera jitter

(CJT), intermittent object motion (IOM), shadow (SHD), and thermal (THM). In each column, is for

the best, is for the second best, and is for the third best.
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architecture, the proposed approach is shown to be capable of signi¯cantly out-

performing unsupervised methods, and competing with complex deep-learning-

based, supervised approaches in terms of accuracy.

In comparison with unsupervised models built on the GMM background modeling

framework like GMM ��� Stau®er & Grimson, GMM ��� Zivkovic, BMOG, and

TensorMoG, the proposed approach is better augmented by the context-driven

motion estimation plugin, without being constrained by simple thresholding

schemes. Thus, it is able to provide remarkably superior F-measure results across the

scenarios, especially on those where there are high degrees of noises or background

dynamics like LFR, NVD, IOM, CJT, DBG and TBL. However, it is a little worse

than TensorMoG on BDW, SHD, IOM, and CJT, which may be attributed to

TensorMoG's carefully tuned hyperparameters on segmenting foreground, thereby

suggesting that the proposed method is still limited possibly by its architectural size

and training data. Comparison with other unsupervised methods is also conducted,

using mathematically rigorous approaches such as SuBSENSE, PAWCS, FTSG, and

SWCD that are designed to tackle scenarios commonly seen in real life (i.e. BSL,

DBG, SHD, and BDW). Nevertheless, the F-measure results of the proposed ap-

proach around 0.90 suggest that it is still able to outperform these complex unsu-

pervised approaches, possibly ascribing to its use of hand-labeled data for explicitly

enabling context capturing.

In comparison with supervised approaches, the proposed approach is apparently

very competitive against the more computationally expensive state of the arts. For

instance, our approach considerably surpasses the generalistic methods of STAM and

DeepBS on LFR and NVD, but it loses against both of these methods on SHD

and CMJ, and especially is outperformed by STAM on many scenarios. While STAM

and DeepBS are constructed using only 5% of CDnet-2014, they demonstrate good

generalization capability across multiple scenarios by capturing the holistic features

of their training dataset. However, despite being trained on all scenarios, their

behaviors showcase higher degrees of instability (e.g. with LFR, NVD) than our

proposed approach on scenarios that deviate from common features of the dataset.

Finally, as our proposed method is compared against similarly scene-speci¯c

approaches like FgSegNets, Cascade CNN, the results were within expectations for

almost all scenarios that ours would not be signi¯cantly outperformed, as the com-

pared models could accommodate various features of each sequence in their big

architectures. However, surprisingly, our method surpasses even these computa-

tionally expensive to be at the top of the LFR scenarios. This suggests that, with a

background for facilitating motion segmentation from an input, our trained model

can better tackle scenarios where objects are constantly changing and moving than

even existing state-of-the-arts.

Interestingly, NeMos+CDA on the PTZ sequence returns substantially correct

results, even better than its performances on BDW, NVD, SHD, or CJT. It can be

hypothesized that NeMos would rather work with averaged-out backgrounds to

perform raw semantic extraction, than with noisy motions (i.e. snow droplets,

Real-Time Change Detection with Convolutional Density Approximation 21
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shadows, jitters, lighting shifts) for context-driven BgS. Nevertheless, the sub-

dataset PTZ is more limited in terms of observable objects and images in the region

and scenario of interest compared to others, as can also be observed in the poor

performance of DeepBS which attempted to generalize learning on imbalanced

learned data.

Overall, with small training sets, NeMos+CDA achieved decent results in Pre-

cision, Recall, FPR, FNR, PWC, and a score of 0.8774 in average F-measure, which

is much higher than any compared unsupervised approaches and can practically

compete with other, more computationally expensive, supervised approaches despite

its light-weighted structure. Table 2 presents evaluation metrics of a confusion

matrix.

4.4. Result on SBMnet benchmarks

We perform an empirical ablation study of how the background generator, CDA,

contributes to the overall architecture with the SBMnet dataset51 for evaluating

background estimation results. The SBMnet dataset has 80 real-life video sequences

and their corresponding ground-truth backgrounds for references over eight scenarios

(illumination changes, cluttering, camera jitter, intermittent motion, etc.). It is an

often-used dataset to quantitatively evaluate background modeling algorithms.

Some of the algorithms that do notmodel the background, e.g. FgSegNet, SWCD, etc.,

are left out by default. For brevity, Table 3 provides the overall quantitative rankings

(across all dataset sequences) of the proposed method along with state-of-the-art

Table 2. Result of quantitative evaluation on CDnet

2014 dataset.

Notes: 	Semi-Unsupervised; In each column, is for the best,

is for the second best, and is for the third best.

22 S. V.-U. Ha et al.
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background estimation algorithms which are originally based on Gaussian Mixture

Estimation.

In general, Table 3 demonstrates that the traditional GMM-based methods,

GMM ��� Stau®er & Grimson, GMM ��� Zivkovic, and TensorMoG, are the top-

performing methods in the background modeling domain. The proposed CDA

module is outperformed by these traditional GMM-based algorithms in terms of the

pixel-based metrics, i.e. AGE, pEPs, and pCEPs, which measure the intensity dif-

ference between the generated background and the ground-truth. However, the gains

of CDA on visual quality measurements, i.e. MS-SSIM, PSNR, and CQM, signify

that the background generated by CDA is competitive against the top GMM-based

methods on the background estimation domain in terms of textural and semantic

information compared to the ground-truth.

The shortcomings of the proposed background extraction methods in its exact

background grayscale estimation show up very clearly in the three metrics AGE,

pEPs, and pCEPs, where lower results are better. The background component of the

proposed method consistently falls out of the top-3 best methods. There are two main

possible reasons why such shortcomings exist. First, the ¯rst three grayscale-based

metrics are highly sensitive to small variations in the estimated background as these

metrics measure the estimation result based entirely on its absolute di®erence with

the provided ground-truth. In real life, however, obtaining a completely accurate

background image is inherently impossible since the camera cannot consistently

capture the same signal for every pixel in the image, i.e. avoiding variations in

capturing pixel signals is inherently impossible. Thus, while these metrics surely

provide some degree of con¯dence in the computed background image quality, they

cannot serve as the absolute determination of the image quality. Second, our design

of CDA focuses on speed e±ciency with a small temporal window in contrast to

traditional GMM-based methods that can capture long-term pixel signals to estimate

the background intensities with high accuracy. This tradeo® between the e±ciency

and e®ectiveness of the algorithm results in a clear disadvantage for CDA in esti-

mating the grayscale signal as close as possible to the ground-truth compared to the

other ¯ve methods. However, the absolute di®erence of the CDAmodule with the top

performing method on each metric is still within an acceptable margin: 6.7557 in

Table 3. Comparison on the SBMnet dataset.

Notes: In each column, is for the best, is for the second best,
and is for the third best.
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AGE (compared to GMM ��� Zivkovic), 0.0758 in pEPs (compared to GMM ���
Stau®er & Grimson), and 0.0741 in pCEPs (compared to TensorMoG).

In contrast, on the other three metrics (MS-SSIM, PSNR, and CQM) which

measure the visual and structural distortion of estimated backgrounds against

ground-truths, the proposed CDA yields very good results. The focus of these metrics

was to quantify the errors in arti¯cially generated image's visual quality as perceived

by humans as closely as possible. In these metrics, higher quantitative values cor-

respond to better background estimations. The e®ectiveness of CDA's background

images' quality is showcased with (1) the di®erence with the top-1 method in MS-

SSIM, TensorMoG with parameter tuning, is only a marginal value of 0.0364, and (2)

CDA consistently shows up as the second best method in PSNR and CQM. Thus,

backgrounds approximated by CDA are images of decent quality, with good textural

and semantic information compared to ground-truths.

As an unsupervised, generalistic approach, although our proposed CDA module is

less competitive against traditional GMM-based methods on grayscale error esti-

mations of the background, the good results on visual quality metrics imply that the

semantic information of the generated background and the input image are very

similar. This semantic similarity between the background and the input frame

possibly has suppressed a large number of background distractors from the input

frame for the imbalance foreground segmentation learning task (very high di®erence

in the number of pixels classi¯ed as background compared to the number of fore-

ground pixels). However, it should be noted that CDA is still independent of NeMos,

which means that any background generation algorithm can theoretically replace

CDA in reducing background distractors.

Nevertheless, there are two main reasons for the preference of CDA over other

algorithms. First, because CDA is advantageous in maintaining adaptation in cases

where environmental changes happen often (e.g., illumination changes) like tradi-

tional GMM approaches, its learning to generalize for a small local temporal history

is comparable to the slow, gradual adaptation of GMM-based family of algorithms.

Thus, with CDA providing suitable backgrounds (via feed-forwarded GMM

approximations of windowed data) in a timely manner for NeMos, the latter module

is supported with suppression of distractions, which contributes greatly to the reason

why NeMos can be such light-weighted but still maintains e®ective context-driven

segmentation. Secondly, most importantly, CDA is the more modern paradigm of

background modeling with GMM, in which CDA is highly parallelizable on modern

hardware and avoids the speed-throttling nature of sequential paradigm of methods

such as GMM ��� Stau®er & Grimson, GMM ��� Zivkovic, SuBSENSE, and PAWCS

in pixel-wise background generation.

4.5. Computational speed comparison

The proposed framework was implemented on a CUDA-capable machine with an

NVIDIA GTX 1070Ti GPU or similar, along with the methods that require CUDA

24 S. V.-U. Ha et al.
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runtime, i.e. TensorMoG, DeepBS, STAM, FgSegNet, and Cascade CNN. For un-

supervised approaches, we conducted our speed tests on the con¯guration of an Intel

Core i7 with 16GB RAM. Our results are recorded quantitatively with execution

performance in frame-per-seconds (fps), and time (milliseconds) versus accuracy in

Fig. 4. At the overall speed of 129.4510 fps (from about 3,500 parameters), with CDA

(about 2,800 parameters) module processing at 402.1087 fps, NeMos+CDA is much

faster than other supervised deep learning approaches, of which the fastest ���
FgSegNet S ��� runs at 23.1275 fps. By concatenating estimations of background

scenes with raw signals for foreground extraction, our approach makes e±cient use of

hardware resources due to its completely lightweight architecture and the latent-

space-limitation approach. In contrast, other DNNs are burdened with a large

number of trainable parameters to achieve accurate input-target mapping. Fur-

thermore, the proposed scheme dominates the mathematically rigorous unsupervised

methods frameworks in terms of speed and accuracy such as SuBSENSE, SWCD,

and PAWCS, as their paradigms of sequential processing are penalized by signi¯cant

penalties in execution. Signi¯cantly, the average speeds of the top three methods are

dramatically disparate. With the objective of parallelizing the traditional imperative

outline of rough statistical learning on GMM, TensorMoG reformulates a tensor-

based framework that surpasses our dual architecture at 302.5261 fps. On the other

hand, GMM ��� Zivkovic's design focuses on optimizing its mixture components,

thereby signi¯cantly trading o® its accuracy to attain the highest performance.

Notwithstanding, our proposed framework gives the most balanced trade-o® (top-

left-most) in addressing the speed-and-accuracy dilemma. Our model outperforms

other approaches of top accuracy ranking when processing at exceptionally high

speed, while obtaining good accuracy scores, at over 90% on more than half of

CDnet's categories and at least 84%.

Fig. 4. Computational speed and average F-measure comparison with state-of-the-art methods.
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5. Conclusion

This paper has developed a novel, two-stage BgS framework with a GMM-based

CNN for background modeling, and a convolutional auto-encoder NeMos to simulate

input-BgS for foreground detection, thus being considered as a search space limita-

tion approach to compress a model of DNNs, while keeping up good accuracy. Our

¯rst and second contributions in this paper include a pixel-wise, light-weighted, feed-

forward CNN representing a multi-modular conditional PDF of the temporal history

of data, and a corresponding self-supervised training strategy for the CNN to learn

from virtually inexhaustible datasets for approximating the mixture of Gaussian

density function. In such a way, the proposed CDA not only gains the better ca-

pability of adaptation in contextual dynamics with humanly interpretable statistical

learning for extension, but it is also designed in the tensor form to exploit modern

parallelizing hardware. Secondly, we showed that incorporating such statistical

features into NeMos's motion-region extraction phase promises more e±cient use of

powerful hardware, with prominent speed performance and high accuracy, along

with a decent generalization ability using a small-scale set of training labels, in a deep

nonlinear scheme of only a few thousand parameters.

Since CDN constructs GMMs out of each pixel's ¯xed-sized temporal window,

neighborhood information is not captured while redundant temporal information

may have been incorporated. Inspired by DGCNN,52 which learns irregular neigh-

borhood patterns through the GMM and optimizes the neural network kernels ac-

cordingly over graph data, we are investigating irregular patterns of convolution on

spatio-temporal data to e±ciently and adaptively distinguish background and

foreground features. In particular, sampling window widths out of the constructed

GMMs can potentially overcome the issues of ¯xed-width temporal convolution, so

an extension to spatio-temporal irregular convolution can address the e±ciency

issues commonly observed in 3D convolution.
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Appendix A. Formulation of Equation (2)

De¯nition 3.2.1, Eqs. (3.2.1) and (3.2.2) in the textbook by Tong53 can be revisited in

Fig. A.1.

We adopt the original mathematical formulation of the Gaussian distribution to

the setting of background modeling on multi-channeled videos. To avoid performing

costly matrix inversion, each color channel in the color space is assumed to be

26 S. V.-U. Ha et al.
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distributed independently, so each Gaussian component in the mixture is simply

described with a positive scalar variance value (i.e. �). Hence, we get a positive

de¯nite covariance matrix (i.e. §) for each Gaussian distribution, represented as a

diagonal matrix with values equal to the same positive scalar across the diagonal. As

a result, under general input data of c dimensions (e.g. if the video is encoded in

RGB, then c ¼ 3), the determinant of § is the multiplication of the same value �

across c diagonal values (i.e. j§j ¼ �c), and the inversion of§ can simply be§�1 ¼ 1
�

so that §�1§ is an identity matrix.

§ ¼
�

�
�

2
4

3
5: ðA:1Þ

Equations (3.2.1) and (3.2.2) are combined and adopted as

fðx;¹;§Þ ¼ 1

ð2�Þc=2j§j1=2 exp
�ðx�¹Þ0§�1ðx�¹Þ=2; x 2 ½<þ�c ðA:2Þ

then equivalently for our case, at the kth Gaussian component,

fðx;¹k;§kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þcj§kj

p exp � ðx� ¹kÞ0§�1
k ðx� ¹kÞ
2

� �
; x 2 ½<þ�c

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þc� c
k

p exp � jjx� ¹kÞjj2
2�k

� �
: ðA:3Þ

Appendix B. Formulation Proof of CDA-GM

B.1. Formulation of CDA-GM

Let ÂT
c ¼ fx1;x2; . . . ;xT jxi 2 ½0; 255�cg be the time series of the T most recently

observed color signals of a pixel where the dimension of the vector xi in the color

space is c, the distribution of pixel intensity xi can be modeled by a linear combi-

nation of K probabilistic components μk and their corresponding conditional PDFs

P ðxijμkÞ. The marginal probability PðxiÞ of the mixture is

PðxÞ ¼
XK
k¼1

PðμkÞP ðxjμkÞ ¼
XK
k¼1

�k � N ðxj�k; �kÞ; ðB:1Þ

Fig. A.1. Snippet from p. 26 of Ref. 53.
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where �k is a non-negative mixing coe±cient for μk:

XK
k¼1

�k ¼ 1: ðB:2Þ

We use the re-formulated multivariate Gaussian distribution as

Nðxj�k; �kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þc� c

k

p exp � jjx� ¹kjj2
2�k

� �
; ðB:3Þ

where ¹k is the estimated mean and �k is the estimated universal covariance of

examined color channels in the kth Gaussian component μk.

Our proposed CNN formulates a conditional formalism of GMM density function

of x given a set of randomly selected, vectorized data points ÂT :

yT ¼ f�ðÂT
c Þ � P ðxjÂT

c Þ; ðB:4Þ

where f�ð�Þ is a set of nonlinear transformations.

The network output yT , whose dimension is ðcþ 2Þ �K, is partitioned into three

portions y�ðÂT
c Þ, y�ðÂT

c Þ, and y�ðÂT
c Þ of GMMs:

yT ¼ ½y�ðÂT
c Þ;y�ðÂT

c Þ;y�ðÂT
c Þ�

¼ ½y1
�; . . . ;y

K
� ;y

1
�; . . . ;y

K
� ;y

1
�; . . . ;y

K
� �: ðB:5Þ

With our goal of formulating the GMM, we restate the three restrictions on

network outputs:

. First, as �k indicates the proportion of data accounted for by mixture component

k, they are de¯ned as independent, weighted scores:

�kðÂT
c Þ ¼

expðyk
�ÞPK

l¼1 expðy l
�Þ

: ðB:6Þ

. Second, we restrict the value of the variance of each component to the range

½��min; ��max� so that the components do not span the entire color space.

�kðÂT
c Þ ¼

��min � ð1� �̂kÞ þ ��max � �̂k

255
; ðB:7Þ

where �̂k is the normalized variance that was activated through a hard-sigmoid

function from the output neurons y�:

�̂kðÂT
c Þ ¼

0 if yk
� < �2:5;

0:2� yk
� þ 0:5 if � 2:5 � yk

� � 2:5;

1 otherwise:

8><
>: ðB:8Þ

28 S. V.-U. Ha et al.
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. Third, the mixture mean is standardized from the corresponding network outputs

with a hard-sigmoid function:

�kðÂT
c Þ ¼

0 if yk
� < �2:5;

0:2� yk
� þ 0:5 if �2:5 � yk

� � 2:5;

1 otherwise:

8><
>: ðB:9Þ

We choose the hard-sigmoid function for the means and the variances, as explained.

From the proposed CNN, we extract the periodical background image for each

block of pixel-wise time series of data in a period of T , by taking the weighted average

of the estimated means,

BGðÂT
c Þ ¼

XK
k¼1

�kðÂT
c Þ � �kðÂT

c Þ: ðB:10Þ

Accordingly, the corresponding frame-wise foreground mask of each input frame

is extracted from the Gaussian mixtures at each pixel location. Speci¯cally, we ap-

plied a threshold � on the squared Mahalanobis distance between the input frame

and the background distribution.

FGðxT
c Þ ¼

ðxT
c � BGðÂT

c ÞÞ2
~� 2
t

> �

� �
; ðB:11Þ

where

~� 2
t ¼ max½�2

kðÂT
c Þ � B̂Gk;T ðÂT

c Þ�; for k 2 ½1;K�: ðB:12Þ

B.2. Unsupervised training via backpropagation

Speci¯cally, given the set ÂT
c randomly selected, vectorized data points, it is possible

to retrieve the continuous conditional distribution of the data target x.

In our proposed loss function, the data distributions to be approximated are the

sets of data points that are relevant to background construction themselves.

L ¼
Xb
i

XT
j

LðiÞ
j ; ðB:13Þ

where

LðiÞ
j ¼ � ln

XK
k¼1

�
ðiÞ
k Nðxjj¹ ðiÞ

k ; �
ðiÞ
k Þ

 !
; ðB:14Þ

where xj is the jth element of the ith time-series data Â
T ;ðiÞ
c of pixel values; �ðiÞ, �ðiÞ,

and �ðiÞ are, respectively, the desired mixing coe±cients, means, and variances that
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commonly model the distribution of Â
T ;ðiÞ
c in GMM. We de¯ne LðiÞ

j as the error

function for our learned estimation on an observed data point xj, given the locally

relevant dataset Â
T ;ðiÞ
c for the neural function. LðiÞ

j is based on the statistical log-

likelihood function and is equal to the negative of its magnitude. Hence, by mini-

mizing this loss measure, we will essentially be maximizing the expectation value of

the GMM-based neural probabilistic density function P ðxÞ, from the history of pixel

intensities at a pixel position.

The key thing here is that whether the neural network can learn to optimize the

loss function with the standard stochastic gradient descent algorithm with back-

propagation. To simplify the further analysis of the derivatives using Bayes theorem,

it is convenient to introduce the following notation:

�k ¼
�k � N ðxjj¹k; �kÞPK
l¼1 �l � N ðxjj¹l; �lÞ

: ðB:15Þ

First, we need to consider the derivatives of the loss function with respect to

network outputs y� that correspond to the mixing coe±cients �k. Using Eq. (B.14)

and (B.15), we obtain

@Lj

@yk
�

¼ @Lj

@�k

� @�k

@yk
�

: ðB:16Þ

Thus,

@Lj

@�k

¼ � Nðxjj�k; �kÞPK
l¼1 �l � N ðxjj�l; �lÞ

¼ ��k

�k

: ðB:17Þ

From this expression, we perceive that the value of �
ðiÞ
k explicitly depends on y

ðlÞ
� for

l ¼ 1; 2; . . . ;K as �
ðiÞ
k is the result of the softmax mapping from y

ðlÞ
� as indicated in

Eq. (B.6). We continue to examine the partial derivative of �
ðiÞ
k with respect to a

particular network output y
ðlÞ
� , which is

@�k

@y l
�

¼

expðy l
�Þ �
XK

p¼1
expðyp

�Þ � ½expðyk
�Þ�2XK

p¼1
expðyp

�Þ
h i

2
if k ¼ l;

� expðy l
�Þ � expðyk

�ÞXK

p¼1
expðyp

�Þ
h i

2
otherwise;

8>>>>>><
>>>>>>:

ðB:18Þ

which can be simpli¯ed to

@�k

@y l
�

¼ �k � ð1� �kÞ if k ¼ l;

��l � �k otherwise:

�
ðB:19Þ

By chain rule, we have

@Lj

@y l
�

¼
X
k

@Lj

@�k

� @�k

@y l
�

ðB:20Þ

30 S. V.-U. Ha et al.
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thus,

@Lj

@y l
�

¼
X
k

��k

�k

� @�k

@y l
�

¼
X
k

�k � �l

 !
� �l: ðB:21Þ

From Eqs. (B.15), (B.18), (B.19), and (B.21), we then obtain

@Lj

@y l
�

¼ �l ��l: ðB:22Þ

For y
ðkÞ
� , we make use of Eqs. (B.3), (B.7), (B.33), (B.14), and (B.15), by dif-

ferentiation, to obtain

@Lj

@�k

¼ @

@�k

� � ln
XK
l¼1

�l �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þc� c

l

p exp � jjxj � ¹ljj2
2�l

� � !" #

¼ �
@

@�k
� PK

l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 
� �
PK
l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 


¼ �
�k � 1ffiffiffiffiffiffiffiffi

ð2�Þc
p � @

@�k
1ffiffiffiffi
� c
k

p � exp � jjxj�¹kjj2
2�k

	 
� �
PK
l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 
 : ðB:23Þ

Let A ¼ �k � 1ffiffiffiffiffiffiffiffi
ð2�Þc

p , and B ¼PK
l¼1 �l � 1ffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þc� c
l

p expð� jjxj�¹ljj2
2�l

Þ.
Thus,

@Lj

@�k

¼ �
A � @

@�k
1ffiffiffiffi
� c
k

p � exp � jjxj�¹kjj2
2�k

	 
� �
B

: ðB:24Þ

We also let

C ¼ @

@�k

1ffiffiffiffiffiffi
� c
k

p � exp � jjxj � ¹kjj2
2�k

� �" #

¼ @

@�k

exp � jjxj�¹kjj2
2�k

	 

ffiffiffiffiffiffi
� c
k

p
2
4

3
5: ðB:25Þ
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Thus,

C ¼

exp � jjxj�¹kjj2
2�k

	 

� � jjxj�¹kjj2

2

	 

� � 1

� 2
k

	 

� ffiffiffiffiffiffi

� c
k

ph i

� c
2 � �

c
2�1

k � exp � jjxj�¹kjj2
2�k

	 
h i
� c
k

¼ 1

� c
k

� exp � jjxj � ¹kjj2
2�k

� �
� jjxj � ¹kjj2

2
� � c

2 �2

k � c

2
� � c

2 �1

k

� �

¼ 1ffiffiffiffiffiffi
� c
k

p � exp � jjxj � ¹kjj2
2�k

� �
� jjxj � ¹kjj2

2�2
k

� c

2�k

� �
: ðB:26Þ

So plugging in A, B and C, we get

@Lj

@�k

¼ �
�k � 1ffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þc� c
k

p � exp � jjxj�¹kjj2
2�k

	 

PK
l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 
 � jjxj � ¹kjj2
2�2

k

� c

2�k

� �

¼ �k �
c

2�k

� jjxj � ¹kjj2
2�2

k

� �
: ðB:27Þ

We also have

@�k

@�̂k

¼ ��max � ��min

255
: ðB:28Þ

And,

@�̂k

@yk
�

¼ 0:2 if �2:5 � yk
� � 2:5;

0 otherwise:

�
ðB:29Þ

Thus,

@Lj

@yk
�

¼ @Lj

@�k

� @�k

@�̂k

� @�̂k

@yk
�

¼ 0:2ð��max � ��minÞ
255

�k �
c

2�k

� jjxj � ¹kjj2
2�2

k

� �
ðB:30Þ

for �2:5 < y
ðkÞ
� < 2:5. This is because of the piece-wise property in the de¯nition

of the hard-sigmoid activation function.

Finally, for y
ðkÞ
� , let �

ðiÞ
k;l be the lth element of the mean vector where l is an integer

lies in ½0; cÞ and suppose that �
ðiÞ
k;l corresponds to an output o�

k of the network. We can

get derivative of �
ðiÞ
k;l by taking Eqs. (B.3), (B.9), (B.14), (B.15) into the

32 S. V.-U. Ha et al.
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di®erentiation process:

@Lj

@¹k

¼ @

@¹k

� � ln
XK
l¼1

�l �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þc� c

l

p exp � jjxj � ¹ljj2
2�l

� � !" #

¼ �
@

@¹k
� PK

l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 
� �
PK
l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 


¼ �
�k � 1ffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þc� c
k

p � @
@¹k

exp � jjxj�¹kjj2
2�k

	 
h i
PK
l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 


¼ �
�k � 1ffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þc� c
k

p � exp � jjxj�¹kjj2
2�k

	 

PK
l¼1

�l � 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þc� c

l

p exp � jjxj�¹ljj2
2�l

	 
 � @

@¹k

� jjxj � ¹kjj2
2�k

� �
: ðB:31Þ

Then, we get

@Lj

@¹k

¼ �k

2�k

� @

@¹k

�
½xj � ¹k�T ½xj � ¹k�

�
ðB:32Þ

¼ ��k

�k

� ½xj � ¹k�:

For data at each color channel l, we have

@�k;l

@yk;l
�

¼ 0:2 if �2:5 � yk;l
� � 2:5;

0 otherwise:

�
ðB:33Þ

Thus, for �2:5 < yk;l
� < 2:5,

@Lj

@yk;l
�

¼ @Lj

@�k;l

� @�k;l

@yk;l
�

¼ �0:2� �k �
xj;l � �k;l

�k

� �
: ðB:34Þ

From Eqs. (B.22), (B.34), and (B.31), when CDA-GM is performed data-driven

learning individually on each video sequence using Adam optimizer with a learning

rate of 
, the process tries to regulate the values of latent parameters in the mixture

model via minimizing the negative of log likelihood function.
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