
Universidade de Aveiro
2023

Pedro Miguel
Ferreira Marques

Localização de Ativos com Sistemas Definidos por
Software

Asset Localization with Software Defined Systems

Universidade de Aveiro
2023

Pedro Miguel
Ferreira Marques

Localização de Ativos com Sistemas Definidos por
Software

Asset Localization with Software Defined Systems

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à conclusão da unidade curricular Dissertação, condição necessária
para obtenção do grau de Mestre em Engenharia Informática , realizada sob a
orientação científica do Doutor João Paulo Silva Barraca, Professor associado do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade de
Aveiro, e do Doutor Mário Luís Pinto Antunes, Professor auxiliar do Departamento
de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

Este trabalho é co-financiado pelo
Fundo Europeu de Desenvolvimento
Regional (FEDER), através do Pro-
grama Operacional Competitividade
e Internacionalização (COMPETE
2020) do Portugal 2020 [Projeto
SDRT com o nº 070192 (POCI-01-
0247-FEDER-070192)]

Este trabalho é co-financiado pela
FCT/MCTES através de fundos na-
cionais e quando aplicável cofinanci-
ado por fundos comunitários no âm-
bito do projeto UIDB/50008/2020-
UIDP/50008/2020

o júri / the jury
presidente / president Prof. Doutor José Luis Guimarães Oliveira

professor catedrático da Universidade de Aveiro

vogais / examiners committee Prof. Doutor João Nuno Lopes Barata
professor auxiliar do Departamento de Engenharia Informática da Faculdade de Ciências e Tec-
nologia da Universidade do Coimbra

Prof. Doutor João Paulo Silva Barraca
professor associado da Universidade de Aveiro

agradecimentos /
acknowledgements

Agradeço toda a ajuda que o meu orientador, Professor Doutor João Paulo Bar-
raca, e corrientador, Mário Luís Antunes, pelo acompanhamento dado durante o
desenvolvimento da dissertação. Também quero agradecer à minha família, amigos
e colegas pelo apoio e motivação ao longo deste tempo.

Palavras Chave Digital Twins, Internet of Things, Asset Management, Indoor Location.

Resumo Esta dissertação tem como objectivo a criação de um protótipo de uma plataforma
desenvolvida à volta do conceito de Digital Twins, capaz de gerir diferentes
entidades dentro de uma clínica médica. Numa fase inicial, é apresentado uma
introdução aos conceitos essenciais para o desenvolvimento da plataforma, bem
como diferentes soluções para problemas semelhantes já existentes. De seguida o
foco vira-se para o planeamento e implementação da plataforma, testando as suas
principais funcionalidades com o objectivo de determinar a sua eficácia de gestão
das diferentes entidades e recolha de dados no espaço físico.

Keywords Digital Twins, Internet of Things, Asset Management, Indoor Location.

Abstract This dissertation aims to create a prototype of a platform developed around the
concept of Digital Twins, capable of managing different entities within a medical
clinic. Initially, an introduction is given to the essential concepts for developing the
platform, as well as different solutions to similar existing problems. The focus then
shifts to planning and implementing the platform, testing its main features in order
to determine its effectiveness in managing the different entities and collecting data
in the physical space.

Contents

Contents i

List of Figures v

List of Tables vii

Lista de Excertos de Código ix

Glossário xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Outline . 2

2 State of the Art 3

2.1 Digital Twins . 3

2.2 Architectures . 5

2.2.1 Three Component Architecture . 5

2.2.2 Five Component Architecture . 6

2.3 Enabling technologies . 7

2.3.1 Machine Learning . 7

2.3.2 Cloud Computing . 7

2.3.3 Internet of Things . 8

2.3.4 Cyber-Physical Systems . 8

2.4 Indoor Safety Frameworks with Digital Twins . 8

2.4.1 Framework 1 - Indoor Safety Management System based on Digital Twin . . 8

2.4.2 Framework 2 - IoT and Digital Twin enabled smart tracking for Safety Man-

agement . 10

2.4.3 Analysis of Relevant Architectures . 12

i

3 Architecture 15

3.1 Problem Statement . 15

3.2 System Requirements . 16

3.2.1 Functional Requirements . 16

3.2.2 Non Functional Requirements . 17

3.3 Stakeholders and Expectations . 17

3.4 Alignment with Digital Twins . 18

3.5 System Architecture Overview . 18

3.5.1 Gathering Layer . 19

3.5.2 Mapping Layer . 20

3.5.3 Digital World Layer . 20

3.5.4 Application Layer . 20

3.6 State Machine Implementation . 21

3.6.1 Physical Entities . 21

3.6.2 Scenarios . 22

3.6.3 Client State Machine . 22

4 Prototype Implementation 25

4.1 Gathering Layer . 25

4.1.1 Data Sources . 26

4.1.2 Predictor . 28

4.2 Mapping Layer . 29

4.2.1 Eclipse Vorto . 30

4.2.2 Twin Creator . 30

4.2.3 Mapping Agent . 31

4.3 Digital World Layer . 33

4.3.1 Eclipse Ditto . 34

4.3.2 Digital Twin Agent . 35

4.3.3 MQTT Agent . 36

4.3.4 Antenna Module . 37

4.3.5 Entity Modules . 37

4.4 Application Layer . 38

5 Evaluation and Results 41

5.1 Entity Identification Evaluation . 41

5.2 Entity Creation . 43

5.3 Patient State Transition . 45

5.4 Antenna Control . 46

ii

6 Conclusion 49

6.1 Future Work . 49

References 51

iii

List of Figures

2.1 Digital Twin Architecture with 3 components . 5

2.2 Digital Twin Architecture with 5 components . 6

2.3 Proposed ISMS [21]. 9

2.4 IoT structure of the indoor safety management system based on LoRa technology [21]. . 10

2.5 The iSafeTrack Framework [22] . 11

3.1 System Architecture Overview . 19

3.2 Client State Machine . 23

4.1 Gathering Layer . 26

4.2 Gathering Layer using the Simulator . 27

4.3 Gathering Layer using the Clinic . 28

4.4 Mapping Layer Architecture . 29

4.5 System Architecture Overview . 34

4.6 Digital Twin Agent Architecture . 36

4.7 Application Layer Architecture . 38

5.1 Entity Identification Flow Diagram . 42

5.2 Entity Identification Message Sequence . 42

5.3 Entity Data Message . 43

5.4 Entity data stored in Eclipse Ditto . 43

5.5 Entity Creation Sequence . 44

5.6 Entity Update Message Sequence . 45

5.7 Entity data displayed in the Application Layer . 46

5.8 Antenna Agent Data Flow . 46

5.9 Request Message for the Antenna Module . 47

5.10 Response Message for the Antenna Module . 47

5.11 Antenna Control Message Sequence . 48

v

List of Tables

vii

Lista de Excertos de Código

4.1 Entity Infomodel . 32

4.2 Identification Function Block . 32

4.3 Position Function Block . 33

ix

Glossário

IoT Internet of Thing
RFID Radio Frequency Identification
IPS Indoor Position System
UUID Universally Unique Identifier
DT Digital Twin
DM Digital Model
DS Digital Shadow
DSL Domain Specific Language
NASA National Aeronautics and Space

Administration
SVM Support Vector Machine
LoRa Long Range
BIM Building Information Model

LPWAN Low Powered Wide Area Network
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
API Application Programming Interface
MQTT Message Queuing Telemetry Transport
AMQP Advanced Message Queuing Protocol
SVM Support Vector Machine
BIM Building Information Model
ISMS Indoor Safety Management System
DAM Detection of Abnormal Montionless
ML Machine Learning
CC Cloud Computing
CPS Cyber-Physical System

xi

CHAPTER 1
Introduction

The management of organizations within National Health Systems, encompassing hospitals
and health centers, encounters efficiency challenges not only because it is a complex area
of intervention given its specificity and demands, but also because of external factors and
unpredictable circumstances.

One such factor, is the rise of elderly population. In recent years the life expectancy of
the population has been increasing, which, being expected due to better living conditions and
medical assistance, has aggravated the already existing problems relating to management of
resources (human and material) in the National Health Systems [1].

An aging population, given its condition, translates into an increase in demand for the
services provided in these organizations, leading to a worsening of the problem, more patients,
requires a greater availability of resources, which is not always possible [2].

1.1 Motivation

The problem the project is designed around is related to the healthcare industry. With
an aging population, ever more prominent management issues in hospitals and clinics due to
lack of workforce, and the possibility of high-scale disease events, a system that can ease the
management of the healthcare body is becoming more desirable.

While the presented problem is vast, the context of this project will only go to the scale
of a prototype solution for a clinic. The solution will focus on visualizing the position and
determining the required entities’ state at any moment.

Since this is one of the most sensitive areas of any society, one that at any given moment
will have to be able to act or react depending on the circumstances, it is urgent to find
solutions that can help optimize management to achieve economic viability of National Health
Systems.

Awareness of this reality has led to the search for new alternative solutions that allow for
cost reduction, without ever neglecting maximum patient satisfaction, for example, maximizing
the efficiency of the service provided.

1

The increased search for new solutions that can help in the management of the organizations
that make up the National Health Systems has triggered the development of new solutions for
hospital management, which include the automation of processes [3].

Many hospital organizations have already implemented these process automation solutions,
using active localization technologies through Radio Frequency Identification (RFID).

Using radio frequency technology and Digital Twin (DT), it is possible to monitor the
movements of patients through the various hospital sectors, how the various equipment is
being used, the existing stocks, as well as the supply of medicines to patients.

1.2 Objectives

This dissertation aims to explore system integration solutions, in a perspective of high
reconfigurability and alignment with Internet of Thing (IoT) techniques in the scope of DT.
Thus, we intend to develop a solution that uses low-cost RFID location devices that are
activated in a centralized and highly parameterized way, making them more effective than
traditional ones, not forgetting the reduced energy impact and flexibility to specific scenarios.

The goal of the system is to be able to receive data related to human and equipment
position from a clinic like space in the outside world (be it real world or simulated), using
it to create a digital representation of the entities present in the physical world. These
representations, together with all data received, will be stored in a platform that can also
utilize the gathered data to determine the state in which the digital representations of each
entity finds themselves in at any moment. These new versions should be able to showcase
themselves in an easy-to-use platform, evaluate the current state of the clinic and send
notifications in specific scenarios.

1.3 Thesis Outline

This document presents 6 chapters, the first being the one already shown, that is, the
introduction, where the motivation and goals of the project are explained. The remaining
chapters are:

1. Chapter 2 - State of the Art: Presentation of the core concepts of the thesis, such
as Digital Twins and indoor tracking methods and technologies. It is also showcased
similar solutions as a basis to the developed project and various tools that were used to
implement the solution.

2. Chapter 3 - Architecture: Describes the main scenarios expected for the system to
handle and how it is structured,in depth look at modeled entities.

3. Chapter 4 - Prototype Implementation: Describes of how the system was built and
implemented and how each component is structured and how they interact with each
other and the physical world.

4. Chapter 5 - Results: Describes of what will be evaluated in the system, how and the
results of said tests.

5. Chapter 6 - Conclusion: A brief overview of the work done over the course of the thesis
and future work that can be done.

2

CHAPTER 2
State of the Art

The goal of this thesis can be summarized as a system that combines DTs and Indoor
Position System (IPS) to create a tool capable of handling and managing the state of not
only all entities residing inside a closed space, but also being able to classify what they are
currently doing.

Both of these systems are complex topics that need to be understood before being able
to be applied effectively. The former can be seen as a digital representation of a physical
entity, connected to each other, while an IPS, as the name implies, is a system focused around
providing and gathering positional data in an indoor scenario, useful for, in the case of this
thesis, managing and keeping track of a cluster of different types of entities.

The research made for this work was done with the objective of gathering and grasping
all necessary information to build an efficient IoT system capable of monitoring assets and
workers in the healthcare sector in the scope of DT.

This chapter is comprised of four main sections, the first being where the concept of DT
is presented, then commonly proposed architectures take the focus, the third part elaborates
about the main enabling technologies for DTs and ending the chapter with previous work
related to the thesis, culminating on a summary of how these works built their frameworks of
DTs for their project.

2.1 Digital Twins

The notion of DT is not recent, as it was first introduced by Michael Grieves in 2003 at the
University of Michigan [4] during a presentation on product life cycle management. He defines
a DT as the virtual representation of a product, which contains three main components: a
physical entity, a virtual representation of said entity and the data links connecting both.
These elements are intertwined with one another, and the digital representation should try to
reflect as much as possible all information about the object it represents by detailed inspection
of the real world.

3

While the concept was introduced back in 2003, the first implementation of it was years
later in 2010 by National Aeronautics and Space Administration (NASA) in the Technology
Roadmap document, where a DT is used to reproduce conditions in space and perform flight
readiness tests [5].

Through the integration with enabling technologies, DT are able to be applied in a
multitude of fields where the fusion between the physical and virtual spaces benefits it, such as
healthcare, aviation and manufacturing [6]. However due to a multitude of different solutions
for each of these fields a diverse and incomplete understanding of its concept exists.

Based on the given definitions of a DT, the most common way to describe it is as a digital
version of some physical entity [7], which leads to terms such as Digital Model, Digital Shadow
and DT being used as if they were synonymous.

A Digital Model (DM) is a digital representation of an existing or planned physical object
that does not use any form of automated data exchange between the physical object and
the digital object. The digital representation might include a more or less comprehensive
description of the physical object.

These models might include, but are not limited to simulation models of planned factories,
mathematical models of new products, or any other models of a physical object, which do not
use any form of automatic data integration. Digital data of existing physical systems might
still be in use for the development of such models, but all data exchange is done in a manual
way. A change in state of the physical object has no direct effect on the digital object and
vice versa [8].

Based on the definition of a DM, if there further exists an automated one-way data flow
between the state of an existing physical object and a digital object, one might refer to such
a combination as Digital Shadow (DS). A change in state of the physical object leads to a
change of state in the digital object, but not vice versa [8].

If further, the data flows between an existing physical object and a digital object are fully
integrated in both directions, one might refer to it as DT. In such a combination, the digital
object might also act as a controlling instance of the physical object. There might also be
other objects, physical or digital, which induce changes of state in the digital object. A change
in state of the physical object directly leads to a change in state of the digital object and vice
versa [8].

Despite the great number of different types of highly specific implementations of DT,
according to [9], a DT can be a set of technologies that enable the virtualization and
optimization of a real-world object or system. In addition to this, a DT must have the
following properties [10]:

1. Real-time and bi-univocal connection with the physical entity it represents. [11]
2. Self-evolution, meaning that any change done to the physical side of the DT will affect

the digital side in real-time and vice versa [12].
3. Continuous analysis using machine learning [10]
4. Availability of the data acquired over time [12]

4

5. Domain dependence, as in providing services specific to the industry it is being built for
[10]

2.2 Architectures

Because there are several definitions of DTs, depending on the context and the area
applied, there are also several architectures associated with it.

These different implementations, labeled as DT architectures, are built around the concept
of components, in which each component is responsible for a specific task and provides
information to other components while being from one another.

The architectures studied by reading the scientific documentation surrounding DT for this
document were the Three Component and Five Component architectures [13].

2.2.1 Three Component Architecture

This architecture applies the three components described by M. Grieves in its original
introduction [4], these being the physical space, the virtual space and and information
processing space.

The authors of [14] explain in detail the implementation of each of the three concepts of a
DT, demonstrated in Figure 2.1:

Physical
Space

Information
Processing
Space

Virtual
Space

Figure 2.1: Digital Twin Architecture with 3 components

The physical space consists of machines, people, materials, or systems separated and
distributed across the physical space itself, interconnected by IoT technologies. These tech-
nologies consist of different types of sensors and communication equipment that collect data
from an associated physical object. All useful information linked to the physical space and to
each object present in it is collected thanks to these sensors, such as an RFID tag for example,
and is then processed to be used by the virtual space. In addition, the physical space reacts
to all the feedback sent by the virtual counterpart.

The virtual space is the digital representation built using the data collected in the physical
space. It consists of virtual models that, with the data obtained by the information processing

5

space originating in the physical space, will be used by functions present in this DT component
to be later delivered to the physical space.

The physical and virtual spaces are linked thanks to the Information Processing Space.
This component is responsible for storing, processing, and mapping the data it receives.

2.2.2 Five Component Architecture

The next example of an architecture related to DTs is the five component architecture, as
is the case of [13] who propose that a complete DT should include five components, showcased
in Figure 2.2:

Physical
Space

Virtual
Space

Service

Data

Connection
Connection

Connection

Connection Connection

Connection

Figure 2.2: Digital Twin Architecture with 5 components

These five dimensions are equally important and necessary for the application of a DT,
according to the previously referenced document, because each component has its own
functionality that distinguishes it from the others, but it also needs to communicate and share
data with other DT components to fulfill its function.

The responsibilities of each component are listed as follows:

6

• Physical Space Component: basis used to build the virtual component, since it is the
source of the data needed to perform simulations and monitoring.

• Virtual Space Component: supports the simulation, decisions, and control of the physical
component.

• Service: provides support processes for managing and controlling the physical component
and other processes for operating and evolving the virtual component.

• Data: needed to do any kind of operation and to create new results. It’s the core of
the architecture and includes data from the physical component, virtual component,
and the service. It also contains data fusion of these three components and methods for
modeling, optimization, and prediction.

• Connections: bridge that connect all the other four components of the DT and allows
communication between them.

2.3 Enabling technologies

With the advancement of a select group of fields, several DT related concepts have evolved
considerably, and because of it, not only did it make it possible to implement DT, but also
made it feasible to perform realistic simulations in virtual environments and gave rise to high
interest in the research area related to them.

The following sections explores the commonly cited enabling technologies for DT [15].

2.3.1 Machine Learning

Machine Learning (ML) techniques are used in conjunction with DT to interpret informa-
tion from the data gathered from its physical component to be later used in optimization and
monitoring purposes.

Depending on the specific implementation, use cases and services provided by the DT, a
vast array of techniques can be implemented to suit its needs, such as parameter optimization
and future predictions. Some of the most commonly used algorithms for these purposes are
deep learning, regression or supervised/unsupervised learning [15].

DT can also benefit ML, because they can generate data to train ML models with [16].
One negative aspect of ML is that it is perceived as a “Black Box” because they lack

transparency which is key for DT for anomaly detection, fault identification and root cause
analysis [17]. A way to address this problem is to integrate data-driven models into the DT.

2.3.2 Cloud Computing

Because of its characteristics, DT can be used to mirror systems with varying complexity,
from small and simple to large and complex.

While small systems are easy to implement, to deal with large and complex systems,
distributed and parallel computing becomes a necessity.

Cloud Computing (CC), acting as a data warehouse and providing heavy-processing
capabilities, creates an environment suitable for any complex simulations that the DT [18]
may need to do to fulfill its use cases.

7

2.3.3 Internet of Things

Internet of Things is an enabling technology that connects the virtual and physical
counterparts due to its ability to aggregate data from multiple sources via a diverse selection
of communication mediums that facilitate data mining and analytics throughout distributed
systems [19]. A few devices that make this possible are smart sensors, wearables and RFID
tags.

The choice of which IoT devices, communication protocols and platforms can influence
the synchronization rate between the physical and virtual components, which in turn depends
on the specific use case of the DT.

2.3.4 Cyber-Physical Systems

Cyber-Physical System (CPS) refers to the union of real and virtual systems, where the
physical side is represented by the array of equipment that captures data such as sensors
and actuators, networking and computation capabilities, while the virtual side is filled with
computer-based algorithms that control the physical side and provide self-configuration,
self-adaptation and self-preservation.

The majority of CPS integrating DT come from the manufacturing industry [20], where
the conventional factory equipment is converted into a CPS by adding IoT equipment such as
sensors to connect them to their Digital component to generate intelligent results.

2.4 Indoor Safety Frameworks with Digital Twins

This subsection of the document is aims to analyze two Indoor Positioning systems that
implemented DT and understand what work was done and what can be applied or improved
during implementation of the project proposed for this dissertation.

2.4.1 Framework 1 - Indoor Safety Management System based on Digital Twin

The project presented in [21] has the objective of creating a framework for a Indoor Safety
Management System (ISMS), based on the DT model. As it is explained, the building in
which the ISMS is going to be implemented is equipped with various IoT sensors that can
detect temperature, humidity, smoke, and any factor that needs to be monitored that could
cause harm to the building and to its inhabitants. While the building is being constructed, its
Building Information Model (BIM) is simultaneously developed by engineers and all relevant
information, including sensors and their location, are saved. This data is then converted into
a 3D visualization of the entire building in a webpage, using WebGL technology.

Beyond just representing the building in a 3D manner, all data gathered by the IoT sensors
are then sent to the webpage for data visualization and to be analyzed by ML processes,
namely Support Vector Machine (SVM).

After the gathered data has been processed, it will be used by the Web platform built-
in security models developed for the system, such as the visual safety status monitoring,
danger alarm and positioning, danger classification and level assessment, and danger response
suggestions to evaluate and display warnings for the safety management staff in case of an

8

emergency. This staff can access the webpage for useful information and suggestions on how
to handle dangerous situations, by using computers, smartphones, tablets, or any other device
that can access the network. This process is displayed in Figure 2.3:

Figure 2.3: Proposed ISMS [21].

Data collection is possible using a proposed IoT system, developed by the team, showcased
in Figure 2.4, comprised of four layers, the first being the perception layer, that includes all
sensors that are used to acquire data, the second layer is the network layer, built using Long
Range (LoRa) technology responsible to send data from the Perception Layer to the layer
above it. This third layer that receives data from the Network Layer, is known as the Service
Layer, responsible for data storage and analysis using SVM. After all data is analyzed, the
results are sent to the final fourth layer, the Application Layer, that will display warnings
based on the results.

According to the results of this work, the authors concluded that the feasibility of DT for
solving problems related to building safety, the intuitiveness of indoor safety management, the
feasibility of using IoT systems to evaluate danger in an indoor scenario was confirmed. They
also note that improvements can be made, for example adding more aspects that where not
tested, such as monitoring areas to verify if any harmful gases are present in that environment.

9

Figure 2.4: IoT structure of the indoor safety management system based on LoRa technology [21].

2.4.2 Framework 2 - IoT and Digital Twin enabled smart tracking for Safety Management

Because of the extreme conditions of working in warehouses and fatal accidents, the
authors of this document [22] develop a DT enabled framework for indoor safety tracking
named iSafeTrack that links the assets of the physical world to the cyber world using IoT
devices.

This framework, shown in Figure 2.5, is comprised of four layers, these being the Physical
World, IoT devices and Services, the Cyber world and, the stakeholders. The physical world
is comprised not only of physical assets, such as the workers or any machine or material they
need to interact with during work, but also attributes related to physical world itself, such
as time and space, which are crucial for tracking workers. The IoT devices and services is
made up of all IoT sensors that gather data from the physical world and send it to the cyber
world. They use a wireless sensor tag as the main device to gather data, being made up of a
1D/2D barcode for identification, an accelerometer to recognize movement patterns and a
Bluetooth low energy communication model that transmits the sensed data but also functions
as a signal strength emitter for indoor positioning purposes.

All data gathered by the tags is then collected by the IoT edge gateway. This device
also provides three essential services, these being registration services that guarantee the
authorized edge gateway to be recorded, the configuration services that ensure data destination
is correct, settings for geo location and time-window scanning, and execution services that
realize fundamental functions such as executing fainting detection algorithms, scan sensed
accelerometer data, filter Bluetooth low energy signals through a Kalman Filter and transmit
organized data to the cyber world layer of the framework.

To determine if a worker is abnormally stationary and the stakeholders need to be warned
of potential danger, the Detection of Abnormal Montionless (DAM) method was proposed.
This method is executed every time tri-axial accelerator data from the smart tag is broadcasted

10

Figure 2.5: The iSafeTrack Framework [22]

and received by the gateway. This data is transformed into coordinates using a self-learning
genetic position algorithm proposed by the authors, that will then be used to calculate the
total amplitude of the three axes. This value will be compared to a threshold and in case it is
bigger, and the operator is not in a labeled area where a supervisor can verify their status, a
warning is sent to the cyber world, to notify the supervisors.

The cyber world is the third layer of the framework, and it acts as an interactive virtual
representation of the physical world for the stakeholders to manipulate and gather useful
information as they see fit. A few characteristics of this layer are the ability to change
parameters such as fainting detection threshold values and location environment noise values.
Data from the physical world is mapped into the cyber world.

The last layer is made up of the stakeholders, such as operators, superiors, and super
managers of the warehouse, that will be interacting with the system and act when it alerts
them in case of an emergency. Different types of stakeholders have different types of access
to the system. Operators are the main tracking targets, and because of it they only provide
basic information about themselves, while the supervisors are responsible for view the status
of health and location of the operators by interacting with the cyber world, and in case of
an emergency, they can trigger professional help. The super manager is the only element of
the stakeholders that can change parameter settings because he is the one responsible of how
effective the tracking system needs to be.

The authors end the document stating that the adoption of DT and IoT technologies to

11

make a safety system was deployed and implemented successfully and the proposed self-learning
genetic positioning algorithm can recognize abnormal motionless behavior and improve over
time. They further state that the system can be improved in three major ways, the first being
the addition of new parameters to monitor related to human health, such as blood pressure,
by integrating multi-function IoT sensors. The second upgrade would be how data relating to
human health is handled, due to privacy issues. And finally, the last improvement is to also
virtualize equipment and cargo for better asset coordination.

Both projects successfully implement an indoor system based on DT which focus on
the safety of their inhabitants. The proposed frameworks can be used for building different
systems, based on indoor positioning, and tracking and had a similar structure, being made up
of, in most cases, similar layers. However, the first framework only dealt with the environment,
and did not track any physical target through the building and the second, even though
it tracked workers, not only it did not do the same for objects, but it was also focused on
verifying their behavior, and it did not predict their future positions and status.

2.4.3 Analysis of Relevant Architectures

The architecture for this project, that will be mentioned on the next chapter, was built
with the proposed frameworks referenced as a starting foundation, in other words, it’s layer
based, each layer having a different structure and a unique function.

The way these layers were built depends on the project itself and the context surrounding
it, meaning that even though they ended up with various differences and functionalities,
analysing their structured showed a way to generalise each layer into one of four categories,
that fulfill the definition proposed by M. Grieves of a DT and any type of interaction with it.
These categories are as follows: Real World and Data Gathering, Data Transformation and
Transportation, Virtual World and Data Processing, Application and Data Displaying.

Real World and Data Gathering

This first type of layer stands at the bottom any framework and represents the Physical
Space in the 3 component DT architecture, and includes any type of physical entity that
could influence the gathering of data for the system to use, this includes the actual entities
being modeled and virtualized in the system and the sensors and data gathering equipment
being used. These entities can range from a small to a large amount, and from few to many,
depending on the case.

The first framework described in the state of the art [21] uses a “Perception” Layer, that
uses indoor environment information acquisition terminals relying on LoRa as a transmission
protocol. These consist of various parts, such as a LoRa module and various sensors used to
measure the operating conditions of a building, that can sense oxygen, carbon-monoxide and
smoke concentration, temperature and door/window opening and closing statuses. Other type
of equipment present in this layer are cameras, which capture indoor images to determine the
number of people in the various rooms.

Because it’s objective is to manage indoor safety, the building itself is also part of this
layer, in the form of a BIM model.

12

Another interpretation of this type of layer is showcased in [22], which proposes a “Physical
World” layer, and any asset present in a warehouse as a part of this layer, this includes Space
that refers all humans, machines, materials and their precise location information, and Time
that represents current and any historical points during the lifecycle of a physical entity. Part
of the “IoT Devices and Services” layer present in this last document also falls under this
category, because it includes the physical data gathering sensors.

Data Transformation and Transportation

This type of layer is representative part of the “Information Processing Space”, focusing
entirely on managing and allowing communication to be possible between the real physical
entity and its virtual counterpart.

The work [21] implements a “Network Layer”, that is built using LoRa wireless commu-
nication technology in a Low Powered Wide Area Network (LPWAN) that receives indoor
safety information data from its sensing terminals mentioned before and sends it to a cloud
server through a 4G network. This cloud server can then be accessed by its local server (part
of the next layer) through the Internet.

As mentioned above, the other document referenced has a layer called [22] that mixes
physical IoT devices and the transport of data, and because of this, it also falls under this
category.

Virtual World and Data Processing

This layer is a fusion of two components of the DT model referenced above, being made
up of the “Information Processing Space”, focused on storage, processing and mapping data,
and also being made up of the “Virtual Space” that represents the digital versions of the
entities present in the real world, their current state and their operations.

An application of this type is the “Service Layer” present in [21], that uses a SQL database
to store data related to the building and its parameters and performs data analysis and
processing using an SVM algorithm for danger classification, categorization and alarms and
assisting the management of the building by making suggestions based on the data it currently
possesses.

On the other hand, [22] proposes a “Cyber World” that is manly seen as a portal for
different stakeholders to view and monitor the Warehouse, however, because it also deals with
data storage and some data processing, it also falls in this category.

Application and Data Displaying

The final type of category,unlike the previous three, does not represent any component in
the architecture proposed by M. Grieves in [4], instead it portrays the interactions of outside
agents, such as humans, with the DT architecture itself.

As mentioned above, the “Cyber World” layer fits perfectly in this category, as it enables
interaction of the stakeholders of the project with the different DT present in it, such as
altering parameter settings of the indoor tracking procedure such as fainting detection and
noise value thresholds. The status of the assets is also showcased to any user and it can

13

illustrate the assets situations and necessary actions. Another layer presented in the same
document is the Stakeholders, such as operators, superiors and super managers are considered
part of this type of layer because they interact with the system itself, being informed of the
status of entities present in the physical world and being able to change data inside the digital
world.

An “Application Layer” is showcased in [21], that includes a platform that allows for safety
status monitoring, danger alarm and positioning both with a scene viewer, danger handling
suggestions and danger classification, which is vital to give the users feedback on how the
system that is being managed evolving through time, and in the case that a critical situation
happens, they get notified.

14

CHAPTER 3
Architecture

Developing an effective system requires a structured approach to ensure both the quality
of the development and the product itself. Following the previous chapter, enough information
has been given to start introducing how the project was developed and why it was built in
the first place.

This chapter will serve as a bridge between the theoretical analysis of the underlying
technologies and concepts that need to be understood and a more practical application of
these concepts in building a foundation for the project’s construction. As we transition from
theory to practice, various concepts on building the proposed framework will be explored to
ensure that all context behind the system’s building is understood.

In the following sections, the focus will shift to several critical aspects. It starts with
showcasing the problem the project seeks to solve clearly and concisely. Then, its requirements
will be exposed to understand the trajectory of how the project was built. Subsequently, the
stakeholders will be identified with the intent to understand for whom the project is being
built. Lastly, the alignment of the technologies used to build this system with the context of
the problem will be explained and made clear to the reader.

After that there is an overview of the system’s architecture, providing a bird’s-eye view of
how the various layers and components interact. This serves as a roadmap for the detailed
exploration that follows. Then visiting the essential design considerations is essential, which
include the definition of entities. These considerations lay the groundwork for the practical
implementation steps that follow.

3.1 Problem Statement

As a stepping stone, the previously analyzed frameworks have features that can be
particularly useful in such a context because they use gathered data to conclude whether or
not to inform the primary users, operators, or staff of the abnormal behavior of the monitored
entities(the building itself or the workers) to take preventive action.

15

Solving the presented issue will be helpful as a foundation for other software to help
automate clinic management and, hopefully, scale it up to the level of large hospitals.

3.2 System Requirements

System requirements are helpful when designing a new system, as they impose on the
developer the necessary features and the primary objectives the system must fulfill to be con-
sidered ready for use. However, it also guides the project’s development, prevents unnecessary
features from being implemented, and serves as a reference point during development and
discussion.

These requirements can be divided into two sets: functional and non-functional. The
former relates to what the system must accomplish, and often are conceptualized as the
system’s operational blueprint, delineating the array of tasks, processes, and operations that
the system must perform. These operations encapsulate the essential capabilities of the system
and are integral to achieving the core objectives it is designed to do.

On the other hand, the latter goes beyond the basic functionality and captures a broader
spectrum of criteria that determine how the system should accomplish its goals and executes
its functionalities. Parameters such as performance efficiency, reliability, scalability and
maintainability are all parameters that can form a non-functional requirement. Adherence
to this type of requirements augments the system’s overall efficacy, resilience, and user
satisfaction.

Following this, the rest of the chapter will be focused on exposing the main requirements
identified for the project and explaining their importance for its development.

3.2.1 Functional Requirements

Essential requirements for our IoT system to handle multiple DT for our clients and track
their position in the clinic were identified. These requirements were chosen to make the system
proposed in this thesis to be able to meet the expectations of the thesis and the stakeholders
that could benefit from the project.

The list of Functional Requirements goes as follows:

1. Asset Digital Representation: All entities detected inside the clinic must have a corre-
sponding digital representation stored inside the system.

2. Remote Asset Management: The system must be able to manage all assets that it
detects remotely, using all available information and methods that it has at its disposal.

3. Entity Location Prediction: A fundamental requirement in this project is the ability
to predict where an entity is in real-time within the clinic, which is essential for
understanding how many entities are inside the clinic.

4. Entity Identification: The system must be able to differentiate between every entity, or
else it is impossible to know where it is and what its state could be.

5. Entity State Prediction: Knowing which entity the system is dealing with and its
position, the system can begin predicting the state of the currently observed entities.

16

6. Concurrent Entity Handling: The system must be capable of dealing with multiple
entities at once at any given moment, or it will not be able to deal with the average
load of information that a clinic needs to process daily.

7. User Interface: An easy-to-use interface must be available for the target users to get the
information they need from the system. For them, it is not relevant how we deal with
the data coming from the clinic, and it is more relevant for them to access the data
already processed and ready to use as they see fit.

8. Real-Time Data Visualization: The data that reaches the end user needs to come in
real time because this data is used to make decisions and help manage the clinic.

3.2.2 Non Functional Requirements

The non-functional requirements were chosen to make the system the project structure
more concise, up gradable, and easy to implement.

The list that follows show these requirements:

1. Use Open-Source technologies, protocols, and platforms: Open-source technologies have
advantages as being transparent, cost-effective, and having an active community of
developers, which makes it ideal for a project on the scale of this thesis.

2. Microservice Architecture: Microservices can be developed independently, have their
individual tasks, and be decoupled from one another. Another advantage is that every
microservice has its environment; they are modular, easy to maintain, and make faults
easier to identify.

3. Layered Architecture: The application being divided into layers has advantages such as
having a clear structure, separating tasks by layer responsibility, having less complexity,
being scalable, and being easier to set up. Another advantage to this architecture is that
it follows a similar approach as the projects found and discussed in the state-of-the-art.

4. Scalability: While the project does not have a scope that requires the system to adapt
to substantial workloads, having the option to make it adapt in case the need arises is
always useful.

5. Uniform communication protocol for inter-layer communication: To make the project
more concise and easy to implement, it was chosen to maintain the same communication
protocols between layers. It also makes collaboration between services easier, promotes
system maintainability, and reduces needless complexity with multiple communication
types.

3.3 Stakeholders and Expectations

Stakeholders are individuals or groups interested in the technology prototype and its
outcome, and have influence and input on how it should be built and how it should function.

Because of its small-scale, this section will be brief, but it will go over who the stakeholders
are and what they expect the results to be:

• Clinic Medics and Staff: These are the primary users of the system; they are the ones
who will get practical improvement using it in their daily activities.

17

• Patients: These are secondary users of the system; they get a passive improvement in
their experience because they do not use the system directly but are benefiting from the
fact that the clinic will be more organized and give a better service to them.

Overall, the expectations are simple: improved clinic management, which in turn gives a
better experience for the patients.

3.4 Alignment with Digital Twins

To understand why DT and IoT are technologies that benefit a project like this is essential.
The problem involves monitoring an indoor system, where IoT technologies excel at,

because they can create intelligent systems of objects that communicate with each other,
acquiring data that can be used for management purposes.

This is beneficial to apply DT. They encapsulate every entity that needs to be monitored
and can update the virtual version in real time. The virtual version can also give notifications
that can affect the physical counterpart.

In the context of a clinic management system, the DT mirrors the physical system, which
includes the patients, staff and equipment, and even intangible aspects like workflows, behaviors
and stats. This digital mirroring facilitates real-time monitoring, predictive analytics, and
strategic decision-making, all underpinned by real-world, real-time data.

All this encapsulates the three pivotal components of a DT: the physical world, the
virtual counterpart and the data link that connects and updates the other two in a continuous
synchronization and bi-directional way.

3.5 System Architecture Overview

The architecture of any software project forms the backbone of its design and functionality.
In this section, the fundamental aspects of the system’s architecture will be explained in
detail, going over the type of architecture used, the tasks of each element, how they achieve
said tasks, and the data flow from start to finish of execution.

As mentioned in previous chapters, the system is built using a Layered Architecture
to satisfy the established non-functional requirements and because it is used commonly in
systems similar to the one proposed in this document. Each layer is imbued with a specific
responsibility. However, this does not mean that each layer is just one service executing tasks.
It is the opposite. In most cases, each layer is composed of multiple smaller microservices,
each with an even more atomic objective that it must fulfill while working together with other
microservices in the same layer or outside of it.

The system’s design, visible in Figure 3.1, can be related to what was introduced in
Chapter Two regarding DT architectures. A small-scale project such as the one developed will
have the three main components of a 3-Component Architecture. To remind the reader these
are the Physical, the Digital, and the Information Processing Component. Each piece can be
identified in a corresponding architecture layer: The Gathering Layer represents the Physical
component, as it comprises all IoT technologies that gather data on the target that needs to

18

Gathering
Layer

Application
Layer

Digital
World
Layer

Mapping
Layer

Source and Gathering of Data

Data Showcasing and Interaction

Digital Twin Operations and Storage

Data Mapping and Transportation

Figure 3.1: System Architecture Overview

be tracked and digitized. The Mapping Layer converts the raw data collected into a usable
state that can be applied later, just like the described Information Processing component.
Finally, the Digital World Layer is a direct implementation of the Digital Component, being
responsible for transforming the processed data into helpful predictions and simulations that
can influence the Physical component directly or indirectly. There is one last layer that is
left out of the 3-Component Architecture, and that is the Application Layer. The lack of a
matching component to the mentioned architecture is because a DT does not require one.
However, it is helpful to exist as it gives a clear and visible representation of what is being
processed in the whole DT ecosystem.

It is essential to state that changing the overall framework of the DT is possible, and
having a different architecture, like the 5-Component Architecture, is feasible, especially in
more extensive and more complex scenarios where the data load and overall scope of the
space the system is dealing with is far more extensive than a clinic. In such a case, having
more layers, each with its specialized theme, could benefit the performance and outcome of
the system.

Next, a quick summary of each layer will give further insight into how they work.

3.5.1 Gathering Layer

The Gathering Layer fits the role of a “Real World and Data Gathering” layer, comprising
any technology focused on indoor positioning data acquisition, such as antennas, RFID tags,
Bluetooth sensors, or any other IoT sensor, the physical entities, such as patients or equipment.

The purpose of this layer is to gather positioning data in real-time. The data is in a raw
state that must be processed for any state predictions. This layer also sends the collected
data to the layer above it for this data processing.

Because it interacts directly with the physical world, it is the lowest layer in the architecture.

19

3.5.2 Mapping Layer

The Mapping Layer serves two purposes: identifying the type of entity with the data it
receives and transforming the data from a raw state to a usable form.

Entity identification is made using the RFID associated with an RFID tag, and depending
on the result, a specific payload will be generated to be sent to the layer above.

While most data it receives comes from the Gathering Layer, it will also receive notifications
from the layer above for confirmation that the entity it is dealing with already exists. When
an entity is already saved, it will simply create an update message to be sent instead of
creating a new DT to speed up the overall data mapping process.

3.5.3 Digital World Layer

The Digital World Layer is dense with responsibilities. It stores various forms of data,
such as state transitions and DT; it determines the current state and state changes, notifies if
entities are already part of the system, and updates the user interface in the layer above.

State transitions are made possible due to the implementation of state machines that use
the processed data from the Mapping Layer to verify various parameters with the current
payload to change the state if certain conditions are met.

These state machines were built using specific scenarios of the typical behavior of the
entity associated with said machine. Both of these concepts will be further explained later in
this chapter.

3.5.4 Application Layer

The Application Layer serves the purposes of data display and user interaction.
It comprises a backend that receives data from the Digital World Layer. The data in the

notifications it receives is then sent to the frontend.
While it is a simple application, the objective is to showcase the current state of the DT

dwelling inside the clinic and to help the staff manage any asset as they see fit.
The system was built with a specific data flow in mind, it starts with detecting a tag by

one or multiple antennas, that will then generate raw positional data sent to the Mapping
Layer, where the entity associated with the tag will be identified.

The Mapping Layer will try to fetch the recognized entity, and in case it does, a payload
to update is generated, otherwise, a payload create a digital version of the entity will be sent
to the Digital World Layer that, when received, will be saved and used to predict the entity’s
current state. Any entity change will be saved onto a database and then it will notify the
Application Layer.

The Application Layer will receive the data from below and update the User Interface
for the staff to get a High-Level view of the state of all entities being tracked by the system.
Depending on their evaluation, they may act as they see best.

20

3.6 State Machine Implementation

This section will delve into the critical considerations of the software system design relating
to the state machine for dealing with patients.

The main factor that guided the development of the system was how data had to be
transported and showcased; because all data was related on the entities of the clinic and in
their virtualization, the answer lied in them.

By gaining insight into these entities and their connection with DT, we can comprehensively
understand how the system operates and achieves its objectives. Real-time monitoring of
these entities is essential for creating a responsive and dynamic healthcare environment that
allocates resources based on real-time needs.

By seamlessly integrating physical entities into our DT framework, we can bridge the gap
between the physical and digital aspects of the clinic ecosystem, which empowers us to make
data-driven decisions, automate processes, and enhance patient experience.

With this in mind, state machines were built for the project to achieve its goals of
monitoring and predicting behavior, and will be showcased, as well as the thought process for
their development.

This section will delve into how these machines were developed, starting with all relevant
entities that dwell within the clinic, the scenarios that encapsulate their behavior and ending
on the state machine itself and how it works.

3.6.1 Physical Entities

In the context of our IoT system designed for a healthcare clinic, many physical entities
play a crucial role in shaping the functionality and efficiency of the project.

These entities, including patients, medical staff, objects, and antennas, form the backbone
of our ecosystem.

Patients are at the core of any healthcare facility, and their well-being is paramount. They
are the recipients of medical care and attention. In this thesis, tracking patients within the
clinic is essential to monitor their movements. This tracking aids in optimizing patient flow
by predicting their current behavior, which will help reduce waiting times and enhance overall
healthcare delivery.

The medical staff, including doctors, nurses, and support personnel, are the caregivers
responsible for diagnosing, treating, and ensuring the well-being of patients. Tracking medical
staff within the clinic facilitates the efficient allocation of resources, such as assigning doctors
to specific patients or areas. It ensures that the right medical expertise is readily available
when needed, leading to improved patient care and optimized workflow.

Objects within the clinic encompass a wide range of medical equipment, devices, and
assets essential for diagnosis and treatment. Monitoring the location and condition of objects
is critical for inventory management and ensuring that the necessary tools are available when
required. This tracking minimizes downtime due to equipment unavailability and enhances
the quality of healthcare services.

21

Antennas are the communication nodes that enable the IoT system to collect data,
transmit information, and interact with other entities. They play a pivotal role in data
collection, ensuring real-time updates on the location and status of patients and medical
equipment. Antennas enable seamless communication between physical entities and their DT,
facilitating data-driven decision-making and quick responses to critical situations. While they
are considered entities in the project context, they are not modeled as a DT. They are only
used to gather information from the environment in a periodic fashion. More information
about how antennas are handled in the project is available later in this chapter.

3.6.2 Scenarios

Scenarios are representations of different behaviors considered typical for entities to display
in the context of the system.

They are used to guide the development of state machines, to compare simulated results
with what is expected, and to aggregate testing data.

Initially, all entities modeled as DT were planned to have scenarios to describe their
behavior; unfortunately, due to problems during development, the scenarios for the medical
staff and objects were cut out of the project.

For client entities, the scenarios used were:
• Appointment Behavior - The patient enters the clinic, awaits their turn, goes to the

first corridor, enters the office, has an appointment, leaves the office, and then leaves
the clinic. This behavior is expected when a patient has a doctor’s appointment in the
clinic.

• Treatment Behavior - The patient enters the clinic, awaits their turn, goes to the first
corridor, goes to the second corridor in the direction of the treatment cabins, enters the
treatment room, enters a cabin, is treated, returns to the reception room, and leaves
the clinic. This behavior is to deal with patients that need to be treated by a doctor in
the clinic.

• Giving Up Behavior - The patient enters the clinic, stays in the reception room, and
leaves after waiting too long. This represents a patient who waited for too long in the
reception area.

3.6.3 Client State Machine

Using the behaviors showcased in the previous section, a state machine was developed to
simulate the expected states a patient can have when dealing with the clinic environment.

The absence of state machines associated with medical staff and objects results in their
need for predefined scenarios, and, as stated previously, they originally were built with some
standard behavior in mind but were cut in the final stretch of the thesis development.

22

OUTSIDE

WAITING
RECEPTION

IN
OFFICE

IN
CORRIDOR

GOING
TREATMENT

IN
TREATMENT

APPOINTMENT
DONE

INSIDE

Figure 3.2: Client State Machine

Figure 3.2 showcases a patient state machine, where any possible patient life cycle can be
observed.

The state machine has 7 possible states, but it is possible to identify two types of states:
those of when a user is active inside the clinic, and the outside state that represents that the
user either exited the clinic or timed out because no antenna could find its tag in a certain
time frame.

A patient, when created, always starts in the Outside state and later moves on to other
ones as data is received from the Gathering Layer.

All possible states that the state machine has are the following:

• OUTSIDE - Every client starts and ends its life cycle in this state. It represents
the client staying outside the clinic and only has a state it can go to “WAIT-
ING_IN_RECEPTION”.

• WAITING_IN_RECEPTION - The client enters the clinic and waits in reception. It
only has a possible state to go “IN_CORRIDOR”. It can timeout and return to being
in the “OUTSIDE” state, indicating that the client waited too long, gave up, and left
the clinic.

• IN_CORRIDOR - This state indicates that the patient was called for an appointment
or treatment.

• IN_AN_OFFICE - This state means the client is in an office with a doctor, begins
when the client enters the office and ends when the client exits it. This state means
that the patient is in an Appointment Scenario.

• GOING_TO_TREATMENT - This state of the client’s life cycle is triggered when he
is in a Treatment Scenario, which represents the client walking through the corridor to
the treatment area.

23

• IN_TREATMENT - This state can only happen in a Treatment Scenario after the “GO-
ING_TO_TREATMENT” state. It represents that the patient entered the treatment
area successfully and is currently receiving treatment with a doctor.

• APPOINTMENT_DONE - This is the last state for the patient in both the Treatment
and Appointment Scenarios. It means the client successfully attended the clinic, either
just a quick checkup or complete treatment. The resulting state will be “OUTSIDE”,
ending the life cycle.

The state transitions don’t change by chance, and instead have associated parameters and
data from inside the clinic. This data is gathered by the antennas.

The state machine will change the patient’s current state upon receiving that necessary
data. This process involves considering its current state, one specific antenna that will trigger
the change,the distance to this specified antenna, and whether the patient is moving closer to
or farther from the antenna. The module identifies the next state in the patient’s behavioral
sequence by evaluating these factors.

The state machine also has an associated timeout period to avoid indefinite waiting. If
no data arrives within the specified timeout, it will reset the itself by returning the patient’s
state as if they were outside of the clinic.

The transitions of patient states within the state machine are driven by a series of predefined
parameters and the data acquired from within the clinic, acquired through the antennas
scattered throughout the clinic.

The state machine is programmed to initiate a transition in the patient’s current state
upon receiving data gathered by the antennas. This transition process incorporates multiple
factors: the patient’s immediate preceding state, the identification of a specific antenna acting
as the trigger for the state change, the measured distance between the patient and this antenna,
and the trajectory of the patient’s movement. Based on these criteria, the state machine
predicts the subsequent state in the patient’s behavioral sequence, thus facilitating a dynamic
and responsive patient tracking system.

Incorporated into the state machine’s is a fail-safe mechanism in the form of a predefined
timeout period. This feature is essential for avoiding a scenario of indefinite waiting in the
absence of incoming data. Should the system encounter a situation where requisite data is
not received within the established timeout threshold, it resets the patient’s state, as if the
patient were positioned outside the clinical premises, thereby ensuring the system’s robustness
in data-limited contexts.

24

CHAPTER 4
Prototype Implementation

In the preceding chapters, we’ve explored the conceptual foundations, and critical consid-
erations of the DT based clinic asset management system. With a solid understanding of the
DT framework and the layered microservices architecture, the implementation of the project
will be explained in this chapter.

The chapter goes through each layer of the system, and, layer by layer, the functionality,
data flow, and communication mechanisms that underpin the system are explored.

4.1 Gathering Layer

The Gathering Layer stands as the primary interface between the system and the physical
world. Entrusted with the crucial task of collecting and processing raw data, this layer
captures information generated by various physical entities within the clinical environment.
Its operations are integral to transforming this raw data into a format that is usable for
subsequent layers of analysis and application.

In terms of composition, the Gathering Layer encompasses a diverse array of components:
modeled entities, their physical environment, and an assortment of IoT devices, such as
RFID tags and antennas. Furthermore, the layer employs a suite of microservices and tools,
designed to facilitate the conversion of gathered data into a format that is readily usable by
the Mapping Layer.

As illustrated in Figure 4.1, the architectural construct of the Gathering Layer is composed
of several key elements: the Data Source, entities inside the clinic, antennas that serve
as the primary data collectors, and the predictor that is responsible for data analysis and
interpretation. Each of these components plays a unique role in the data gathering process,
ensuring the efficient and accurate acquisition of information that is pivotal for the system.

This section is dedicated to an in-depth exploration of the Gathering Layer, providing a
comprehensive overview of its components and their functionalities and the significance of
this layer in the system.

25

DataSource

Entity

Mapping Layer

Predictor

Figure 4.1: Gathering Layer

4.1.1 Data Sources

One notable feature of the Gathering Layer is its adaptability. The architecture of this
layer can vary significantly based on the data source it interacts with. The system utilizes
two primary data sources: the simulator and the clinic. The architecture and components of
the Gathering Layer are tailored to efficiently handle data from each of these sources.

Both of these sources were used throughout the development lifecycle of the system, with
different objectives in mind.

Simulator

The simulator is a web tool developed to generate indoor positioning data. It comprises two
components, the frontend and the backend, and all communication between these components
is done by sending a JavaScript Object Notation (JSON) message through Message Queuing
Telemetry Transport (MQTT) Protocol using Mosquitto MQTT.

The previously mentioned protocol is a lightweight and efficient messaging protocol for
reliable communication between devices in low-bandwidth, high-latency, or unreliable networks.
It is used in systems where efficient real-time communication is essential, such as IoT systems
like the one proposed in this project.

MQTT follows a publish-subscribe communication model, where clients can publish
messages on specific topics, and other clients can subscribe to other topics of interest. This
model enables efficient data distribution and decouples message producers and consumers.

26

This protocol is used throughout most microservices in the system to maintain consistency
of communication between layers.

Another key feature of the simulator is that it uses Mapbox Gl, a suite of open-source
libraries that allows the creation of dynamic web applications with the ability to use maps
and is built using JavaScript and Python.

During the initial state of the system, a reliable data source was necessary during the
developmental phases. The simulator emerged as the ideal solution, providing simulated data
in GeoJSON files.

GeoJSON data was generated manually and served as a crucial asset during the early
stages of the project. It was used to prototype and refine entity behavior, entity tracking, and
state determination, and comprehensively test and validate the system’s initial design and
logic using simulated data.

Throughout the development process, the simulator provided a controlled environment for
testing under various scenarios.

It is important to note that the Simulator is a separate project developed alongside the
one described in this document, which means that while they are integral parts of the system,
their development and effectiveness are out of the grasp of this project.

When dealing with data from the simulator, the Gathering Layer is designed to interact
with GeoJSON data files. It uses this data to mimic real-world scenarios for testing and
development purposes. The architecture incorporates modules and data processing pipelines
optimized for simulator data ingestion.

Simulator
Frontend

Simulated Entity

Simulator
Backend

Digital Twin
System
Broker

Predictor

Figure 4.2: Gathering Layer using the Simulator

As seen in Figure 4.2, the Gathering Layer includes the simulator and the predictor. All
data generated comes from the predictor and all communication in the layer and between
layers is done using the MQTT Protocol.

Clinic

While the simulator was instrumental in system development, the final goal for the Digital
Twin system lay in its ability to operate in the real-world clinical environment.

The introduction of clinic data marked a significant transition from development to real-
world validation because it embodies the complexity and dynamics of an actual healthcare
clinic, including information on patients, medic staff, objects, and their movements within the
clinic.

27

This real-world data source challenged the system to adapt and perform seamlessly in a
dynamic and unpredictable environment while also having to deal with the management of
antenna behavior, which was done automatically by the simulator.

In this environment, testing for actual values related to entity identification and type
counting was possible, as they were unpredictable, unlike with the simulator.

In contrast, when interacting with clinic data, the Gathering Layer employs a different
architecture. This architecture is customized to handle real-time data streams from physical
entities within the clinic, such as patients, medical staff, objects, and antennas. The Gathering
Layer ensures that this data is efficiently collected, processed, and integrated into the system.

Antenna

Entities

Clinic
Broker

Digital Twin
System
Broker

MQTT Bridge

Predictor

Figure 4.3: Gathering Layer using the Clinic

As seen in Figure 4.3, this architecture includes the entities that will be modeled and the
predictor. Communication, however, is slightly different.

The clinic has its own MQTT Broker that communicates with the one responsible for the
communication of the rest of the system using a Bridge between them.

All traffic that handles antenna communication and data gathering goes to the Clinic
Broker, while the rest of the communication goes to the Digital Twin System.

The Gathering Layer handles real-time data streams efficiently. It establishes and manages
connections to various sensors, RFID antennas, and data collection points throughout the
clinic. This capability enables the system to receive and process data in real-time, supporting
dynamic decision-making and management within the healthcare environment.

4.1.2 Predictor

The predictor is a component built in Python and is responsible for calculating distance
using ML and different open-source libraries to do these operations.

This service, much like the Simulator, was developed alongside the one described in
this thesis, and it links the “Gathering Layer” and the “Mapping Layer,” sending indoor
information data in a JSON structure through the MQTT protocol.

Regardless of the data source, the Gathering Layer performs essential tasks such as data
transformation and normalization. This process of data handling is done by the Predictor,

28

which seen by the architectures mentioned previously, will always receive data regardless of
the source.

It converts raw data into a standardized format that can be easily processed by subsequent
layers. This process ensures consistency and reliability in the data flowing through the system.

4.2 Mapping Layer

The Mapping Layer plays a pivotal role in the overall architecture by serving as a vital
bridge between the Gathering Layer and the Digital World Layer while also facilitating data
flow within the system.

Its primary objective is to process incoming data from the Gathering Layer, determine
the entity type associated with RFID tags, and oversee the creation and update of Digital
Twins in the Digital World Layer. By fulfilling these tasks, the Mapping Layer significantly
enhances the efficiency and effectiveness of the system’s twin management and synchronization
processes.

Within this layer, the Twin Creator, working with the Mapping Agent, seamlessly commu-
nicates with the Digital World Layer. This combination of services establishes a robust layer
that enables effective twin management and synchronization throughout the system.

Gathering Layer

Digital World Layer

Twin Creator Mapping Agent

Mapping
Layer

Create/Update DTFetch/Responses

Figure 4.4: Mapping Layer Architecture

The structure of this layer can be seen in Figure 4.4
This section is dedicated to the Mapping Layer, providing an overview of its components,

their functionalities and the tools used in conjunction with the layer that enables it to fulfill

29

it’s objectives.

4.2.1 Eclipse Vorto

Eclipse Vorto 1 is a fundamental tool used in this layer.
Eclipse Vorto was adopted not just because it is an open-source tool that is used for entity

modeling into DT but because it also provides a way to map the results of this modeling
into a protocol used to communicate with Eclipse Ditto, the Ditto Protocol, which facilitates
communication with this central component of the project.

This open-source tool is also developed by the Eclipse Foundation. It gives modeling
language a repository for the modeled entities and a mapping engine that can convert JSON
data into different Protocols, such as AWS Cloud and Ditto Protocol.

These three tools given by Vorto are as follows: the Vorto Language, the Metamodel, and
the Repository.

The Vorto Language is a Domain Specific Language (DSL) that describes DT using a
simple grammar that lets developers focus only on describing expressively all of the attributes
that characterize their DT modules. It uses two high-level classes, the Information Model for
DT descriptions and Function Blocks for their capabilities.

The Metamodel defines how different entities, such as Information Models and Function
Blocks, relate. The Information Model describes an entity such as a physical device and is
made up of Function Blocks. It is common to see specific products, such as sensors, described
using Information Models, while Function Blocks describe their capabilities.

The capabilities that a Function Block can describe are seen below:

• Properties - Properties can be a Status or a Configuration. The former is a read-only
property that describes static information, while the latter is a read-write property that
describes data that can be updated.

• Events - Events define the data emitted from a device or entity.
• Operations - Operations represent a function that can be executed,it can have arguments

and return types.

The Repository provides two main functions: storage and mapping. It can store, manage,
and distribute all Information Models created and re-utilize Function Blocks. When describing
a DT, an interactive text editor is also provided to write code in Vorto Language. The
Repository also provides the Mapping Engine capable of mapping incoming data in JSON to
another Protocol, such as the previously mentioned Ditto Protocol.

4.2.2 Twin Creator

The Twin Creator is an integral part of the Mapping Layer. Its main objectives are
discerning the type of entity associated with a tag received from the Gathering Layer and
creating data payloads for DT creation or updating them if they already exist in the Digital
World Layer.

1https://eclipse.dev/vorto/

30

To achieve the previously described objectives, it comprises three queues for data trans-
portation and four threads, two for communication and two for data processing.

Starting with threads, each has its functionality, whether communicating with other
microservices or layers, or data processing and management.

The two threads tasked with handling communication are the Incoming and Outgoing
threads. The first receives data from the MQTT broker, either from the Mapping Layer or
the Digital World Layer, and sends it to the following thread, while the latter sends messages
it receives to the Mapping Agent.

The two threads tasked with data processing are the Message Processing Thread, tasked
with handling MQTT messages, verifying the integrity of their payload, and determining what
the message should be used for, while the Twin Processing Thread creates JSON messages
with instructions for the Mapping Agent to use.

The Twin Creator microservice utilizes three queues to manage message flow and commu-
nication within the Mapping Layer and within itself.

The first queue is the Incoming Queue, which receives incoming messages from external
sources, such as the Predictor or the Digital World Layer, and it links the Incoming Thread
to the Message Processing Thread.

The second queue is the Twin Queue, which stores the messages processed by the Message
Processing Thread. It connects this thread to the Twin Processing Thread.

The last queue is the Outgoing Queue, which connects the Twin Processing Thread to the
Outgoing Thread.

4.2.3 Mapping Agent

The Mapping Agent plays a vital role in communication and synchronization between
physical entities and their digital twins, acting as a mediator between the Twin Agent and
the Digital World Layer. Its primary purpose is to receive data from the Twin Agent, convert
it into the Ditto protocol, and facilitate the creation or updating of digital twins, ensuring
data consistency and synchronization across the system.

The Mapping Agent integrates the Eclipse Vorto Mapping Engine to transform incoming
data. This integration allows the Mapping Agent to map source data to Infomodel values
representing DT. It supports separate mapping engines for different entity types, ensuring
accurate representation of various entities.

After successful data mapping, the Mapping Agent creates or updates DT in the Digital
World Layer. It utilizes the TwinPayloadFactory from the Eclipse Vorto library to transform
the mapped results into JSON payloads. The payloads are modified to include the necessary
topic and path information for DT creation or update in the Ditto Protocol. Finally, to ensure
proper order and prevent data races, the Mapping Agent employs a queue for pending create
or update requests, which are then published with the modified payloads to the MQTT broker
to be sent to the Digital World Layer.

31

Vorto Model

To understand how the Mapping Agent converts JSON payloads into Ditto Protocol
payloads, it is required to understand the underlying concept of Vorto Models and the ones
developed for the entities that reside in the clinic.

In the project context, using Vorto models plays a pivotal role in streamlining the already-
mentioned tracking and monitoring of entities.

Vorto models are a standardized framework for describing and modeling devices and their
functionalities in the IoT ecosystem. As explained previously, these models provide a common
language for IoT devices, making integrating, managing, and interacting with them within
our system easier.

With Vorto models, the system can communicate seamlessly with various devices, regardless
of manufacturer or type. This interoperability is crucial in a healthcare setting where different
devices and equipment may come from different vendors.

By employing standardized Vorto models, we reduce the complexity of device configuration
and data interpretation, streamlining the development process and ensuring that data from
RFID tagged entities is efficiently processed and utilized.

Patients, medical staff, and objects within the clinic environment are all equipped with
RFID tags. These tags serve as the primary means of tracking and gathering positional
information. Due to this commonality in RFID tag usage and the fact that the information
we gather from the physical world is the same, it is practical to utilize similar Vorto models
for these entities.

The Information Model, seen in Listing 4.1 used for every entity, uses two Function blocks,
Identification, Listing 4.2, and Position, Listing 4.3. The former is responsible for the positional
data of the entity and represents the RFID tag itself. At the same time, Identification is used
for entity type differentiation and represents the physical entity.

Listing 4.1: Entity Infomodel

1 infomodel Entity {

2 functionblocks {

3 mandatory identification as Identification "user

data"

4 mandatory position as Position "user position using

tag"

5 }

6 }

Listing 4.2: Identification Function Block

1 functionblock Identification {

2 status {

3 optional userId as string

4 optional userType as string

32

5 }

6 }

Listing 4.3: Position Function Block

1 functionblock Position {

2 configuration {

3 optional lat as float " current user longitude "

4 optional lng as float " current user latitude "

5 mandatory antenna_dist as string "min distance to

an antenna "

6 }

7 status {

8 mandatory tagId as string

9 }

10 }

4.3 Digital World Layer

The next Layer, and the center of the entire system because its primary responsibility is
to manage the Virtual Component of Digital Twins, is the Digital World Layer.

As described in this chapter, its main functionalities are storing all of the Digital Twin
data, processing it, and notifying certain services whenever a Digital Twin is updated with
data from the physical space.

It comprises two distinct services, the first one being Eclipse Ditto, which has already
been described in this chapter, and the other being the Digital Twin Agent.

33

Mapping Layer

Application Layer

Eclipse Ditto

Twin Agents

Digital
World
Layer

Figure 4.5: System Architecture Overview

The architecture of the Layer can be seen in Figure 4.5

4.3.1 Eclipse Ditto

Eclipse Ditto 2 is an open-source framework developed by Eclipse Foundation that acts as
a centralized service for creating, managing, and interacting with Digital Twins in IoT.

It is the leading platform to store Digital Twins and manage communication in the Digital
World Layer. It facilitates the integration between physical objects and the Digital World
Layer, enabling real-time data collection and remote control of objects through an Application
Programming Interface (API). It offers advanced features such as Digital Twin lifecycle
management, event notifications, and access control, ensuring efficient and secure management
of digital objects.

Furthermore, Ditto is highly extensible and interoperable, as it supports various com-
munication protocols such as Hypertext Transfer Protocol (HTTP), MQTT, and Advanced
Message Queuing Protocol (AMQP), allowing integration with different IoT devices and
platforms. The platform also provides features for data mapping, message transformation,
and integration with other services and ecosystems.

Ditto Connections

Connections, in the context of Eclipse Ditto, act as bridges between the DTs managed by
Ditto and external entities in the rest of the system. These connections come in various types,
each tailored to specific communication protocols and use cases.

Through custom connections, Eclipse Ditto offers the flexibility to integrate with external
messaging services, including Eclipse Hono, RabbitMQT brokers, or Apache Kafka brokers.

2https://eclipse.dev/ditto/

34

This capability extends Ditto’s reach to a broader ecosystem of messaging systems, facilitating
data exchange and interoperability.

Connections in Ditto rely on transport protocols to transmit Ditto Protocol messages.
This framework supports one-way and two-way communication, catering to various use cases,
from simple data ingestion to complex command-response scenarios.

Ditto’s connectivity model is extensible, allowing for protocol-specific customizations
and adaptability. These protocols are responsible for sending data from outside to inside
Ditto and vice-versa. Currently, Ditto supports several connection types, including AMQP,
MQTT, HTTP, and Kaftka. These connection types accommodate diverse communication
requirements and scenarios.

To maintain data integrity and security, Ditto employs enforcement mechanisms that
validate the identity of devices and enforce precise message mappings to DT. These measure-
ments guarantee that messages from external systems correspond accurately to their intended
DT, enhancing overall system security.

Within connections, two fundamental components play pivotal roles: sources and targets.
Sources connect to external systems or message brokers to consume messages, encompassing

various message types such as commands, messages, live commands, live responses, live events,
and acknowledgments. They define multiple addresses, consumer counts, authorization
contexts, and enforcement information, ensuring efficient data consumption and processing.

A critical aspect of sources is the ability to define reply targets. These reply targets are
responsible for publishing responses to incoming commands. They inherit payload mapping
from the parent source, encompassing address definitions, header mapping, and expected
response types. Reply targets enable effective communication of responses, acknowledgments,
and error messages.

Targets connect to message brokers or external systems to publish messages. They
encompass different message types, including Thing messages, Thing events, Thing live
commands, Thing live responses, Thing live events, policy announcements, and connection
announcements. Targets specify one address, topics for message publication, authorization
contexts, and header mappings for external headers.

The types of messages published to target addresses can be defined through configurations,
allowing precise control over which messages are sent to external systems. Parameters
for message filtering are specified, akin to HTTP query parameters, enabling fine-grained
management of message publication.

Ditto empowers users to define which types of messages are published to target addresses
through configurable parameters. This fine-grained control over message filtering ensures that
only relevant data is sent to external systems. These filtering parameters are specified, like
HTTP query parameters, enabling effective management of message publication.

4.3.2 Digital Twin Agent

This Agent receives data from Eclipse Ditto, processes the Digital Twin data by predicting
the current state of an entity using state machines, storing the current active entities within
the clinic, and sending data to the Application Layer to be showcased to the clinic staff.

35

MQTT AgentClient Agent Antenna
Agent

Medic/Object
Agent

1...n
n...1

1...n

Figure 4.6: Digital Twin Agent Architecture

It is one Python microservice that is composed of multiple types of threads that deal with
different virtual instances of physical entities. They will be called modules for the sake of the
project.

The composition of this microservice, as seen in Figure 4.6, is:

• MQTT Agent - Main module of the microservice, it deals with communication between
modules and other microservices, work distribution for each module, and module
instantiation.

• Antenna Agent - Module that deals with physical antenna life cycle, sends and receives
data from the physical antennas in the clinic.

• Client Agent - Module that represents and predicts the state of a patient.
• Medic/Object Agent - Modules that represent the medical staff/objects.

4.3.3 MQTT Agent

The MQTT Agent module serves as the central component of the Digital Twin Agent, as
it acts as the bridge between external MQTT sources and facilitates seamless communication
and coordination within the service and the layer, ensuring the proper flow of information
and enabling effective management of the virtual entities and associated data.

Another vital function this module is responsible for is instantiating all Digital Twin logic
whenever a new entity enters the clinic.

To deal with incoming messages from other modules and to sending jobs to the right
modules, a command system was implemented. A command is a string that represents a job
for the MQTT Agent or any other module to do. This command is added to a list with a
payload for the task to be completed, and a module will only do its work if it recognizes the
command.

Regarding data storage, this module maintains a virtual representation of the clinic’s
floor plan using a dictionary, where each room is associated with its geometry. It also uses
dictionaries for storing access to the antenna, patient, medic, and object instances. However,
data gathered on these entities is stored using MongoDB.

36

Architecture

This module follows a similar architecture to the one in the Twin Creator but is altered to
fulfill its requirements.

It is comprised of the Incoming Thread, a thread that deals with incoming messages from
the MQTT broker, then the Incoming Message Handler, which is a thread that deals with
messages that come from MQTT or other modules within the Digital Twin Agent microservice
to be distributed to the correct module, and finally the Outgoing Message Handler, which is
responsible for sending messages through MQTT to services outside the Digital Twin Agent.

This module uses dictionaries to store both antenna macs and tag Universally Unique
Identifier (UUID), and it has access to different queues to communicate with other modules
of the MQTT Agents.

The final components of the architecture for miscellaneous tasks such as state change
storage and future updates, such as the MongoDB database, which stores data related to
state transition, loads the clinic map to predict in which area the entity might currently be,
and connect to the MQTT broker to communicate with outside microservices.

4.3.4 Antenna Module

The Antenna Module represents the digital counterpart of a physical antenna. This module
is responsible for managing the life cycle and variables associated with an instance of an
antenna, and it fulfills this primary function by communicating with its physical component
through the use of MQTT protocol through the transmission of data to the MQTT Agent,
this in turn is made possible by using an input and an output queue to deal with messages
that come from the MQTT Agent and has only one thread to deal with its task.

This module is only used when the Gathering Layer is communicating the clinic and not
with the Simulator.

4.3.5 Entity Modules

Entity Modules represent the three entities that dwell within the clinic, the patient, the
medic and the objects, and much like the Antenna Module, the Entity Modules have an input
and output threads that communicate with the MQTT Agent.

The Client Module module plays the role of serving as the primary receptor of processed
positional data collected throughout the system. This module tracks and predicts the patient’s
actions by utilizing state machines fed with data from other services. Additionally, it captures
and stores the room where the patient is likely located using the provided data.

The Medic Agent, and the Object Agent were suppose to also have state machines
associated with them, but due to problems with communication and time constraints, they
never were implemented, instead they are just object instances that feed information to the
Application Layer, as they have a similar data flow to the Client Agent, but they do not state
associated with them.

37

4.4 Application Layer

The Application Layer stands at the top of the architecture, just after the Digital World
Layer.

The primary purpose of the Application Layer is to provide a user-friendly and intuitive
interface for healthcare professionals, staff, and administrators. This layer facilitates real-time
monitoring, management, and decision-making by offering insights into the clinic’s operations,
patient status, and resource allocation.

Digital World Layer

Backend

Frontend

Application
Layer

Figure 4.7: Application Layer Architecture

This layer architecture can be seen in Figure 4.7, and is composed of two parts: the
backend and the frontend.

Smooth communication is a necessity for the Application Layer’s functionality. It seamlessly
connects with the Digital World Layer beneath it using the MQTT Protocol. However,
communication between the frontend and the backend is done using WebSockets, because an
open channel is required for real-time visual updates of the entities inside the clinic for the
requirements setup for the project to be met.

WebSocket is a communication protocol that provides a full-duplex, bidirectional, and
real-time communication channel over a single, long-lived connection between a client and a
server.

WebSocket’s full duplex communication enables two-way communication between client
and server. Both parties can send and receive data independently, which is essential for the
application layer because the processed data, notably positional data in a map, must be
rendered as it is available. Unlike an HTTP request, which is stateless and follows a request-
response pattern, WebSocket makes the desired outcome possible by allowing continuous,
low-latency communication between the front and backend of the application layer.

The frontend of the Application Layer is the visual aspect that users interact with through
web-based dashboards and interfaces. It’s designed for ease of use and accessibility. The

38

frontend leverages web technologies, such as Bootstrap, HTML, and JavaScript to ensure
responsive design and compatibility across various devices. It also uses MapBox GL to render
the map where the data is showcased.

The frontend gives a map of the clinic and a table for the users so they have access to
patient, resources and clinic staff monitoring. Data presentation is a critical aspect, and we
describe how real-time data from Digital Twins is visualized and made actionable.

The backend of the Application Layer handles the heavy lifting. It processes data from
the underlying layers, and manages the communication with the frontend. The backend is
built using Node.Js to ensure that it is small and effective at fulfilling its job.

39

CHAPTER 5
Evaluation and Results

The objective of this thesis was to develop a system that would accurately track specific
entities, these being either patients, objects or staff, inside a clinic using DT and RFID
technology and techniques.

The final stretch of work to be done is to evaluate the performance and results of the
system, to understand if the proposed requirements were met and if it is usable for a real-life
scenario, or at least, has the potential to be.

This chapter will go over the main functionalities that needed to be evaluated and tested,
these being entity identification, entity creation, patient state transition, antenna control.

5.1 Entity Identification Evaluation

The entity identification system serves as a keystone in our Digital Twin model and a
fundamental requirement for its work.

This functionality was built using the fact that the employed RFID tags have a UUID
that, by definition, is unique to each entity that is in the clinic. All clinical staff and objects
are known at the moment the system is running because it has a local file that maps the
UUID to a name of an object or staff member.

When the system, in this case the Twin Creator, starts, it reads the file and converts
it into an internal dictionary that serves as reference every time it receives data from the
predictor. If the UUID in the message is in the dictionary it can either be of a staff member
or an object, this will be identified immediately and an appropriate request to either create or
update a Digital Twin will be made. However if the message contains an UUID that is not
present in the dictionary, that means that the message contains data related to a client.

This procedure can be observed in Figure 5.1.
The message path within the Mapping Layer is based on the origin of the message it receives.

However, they follow a similar data flow to ensure efficient processing and communication.
The Twin Creator is prepared to receive Predictor and Eclipse Ditto messages. These will

trigger a data flow scenario to achieve a concrete purpose, seen in Figure 5.2.

41

Twin Creator
loads RFID
tag map

Twin Creator
receives entity

data

UUID is
recognized?

Yes
Entity Type
Identified

Entity is a
Pacient

No

Save UUID
and type
locally

Create/Update
Twin

End

Start

Figure 5.1: Entity Identification Flow Diagram

Predictor
Incoming_Thre

ad

Incoming_Queu

e

Message_Proce

ssing_Thread
Twin_Queue

Twin_Processi

ng_Thread
Tag_Map

Processed JSON

payload

Store JSON message

Get JSON message

JSON message

Process JSON

message

Store Twin Data

message

Get Twin Data

message

Twin Data message

Get UUID mappings

UUID mappings

Identify

Entity type

Figure 5.2: Entity Identification Message Sequence

The flow starts with the Predictor sending a message from the Gathering Layer. These
messages always has the same type of content, the UUID of the tag, the predicted latitude
and longitude, and the distance to the closest antenna. The message arrives in the Incoming
Thread through the MQTT broker and is stored in the Incoming Queue.

The Message Processing Thread will fetch this message and try to convert it into a JSON
object to make dealing with it easier. The MQTT topic of origin of the message will be
determined, and if it is from the Predictor, it will proceed to the next step.

A JSON object is created, seen in Figure 5.3, with the UUID and distance to the closest

42

Figure 5.3: Entity Data Message

antenna, extracted from the original message and the processed latitude and longitude. This
object is sent to the Twin Processing Thread through the Twin Queue.

The next phase of this scenario is in the Twin Processing Thread, where the entity type
is determined based on the UUID of the entity. This thread will consult the dictionary that
maps a tag UUID to a type of entity, if the UUID is present then it will send the message
with the DT data to the next service with the corresponding entity type, however if there is
no match, the system will assume that the entity is a patient and send the same message to
the one previously mentioned.

5.2 Entity Creation

The process of creating a new entity takes place after its type identification identification
which, as seen previously, is performed by the Twin Creator microservice. When this happens,
the Mapping Agent receives the data associated with the entity and its his responsibility to
assimilate the data linked to the identified entity and construct a Ditto Protocol message to
create an entry for this new entity in the Digital World Layer. This process has two steps:
the integration into Eclipse Ditto, and creating an instance of an Entity Module in the Twin
Agents microservice for the new entity.

The Mapping Agent initiates this stage by disseminating a Ditto Protocol message,
encapsulating all the necessary data pertaining to the entity. This message effectively signals
the integration of the new entity into Eclipse Ditto, utilizing the data structured in accordance
with the Vorto Model. As illustrated in Figure 5.4, the first step is accomplished when Eclipse
Ditto adds to its storage the data contained by the message published by the Mapping Agent.

Concurrently, the integration into Eclipse Ditto activates a Ditto connection. This
connection plays a pivotal role in transmitting the entity data to the Twin Agent microservice.
Upon receiving this information, the Twin Agent microservice undertakes the creation of
a new instance of an Entity Module. This step in the workflow is depicted in Figure 5.5,
showcasing the establishment of a running instance corresponding to the newly integrated
entity.

Figure 5.4: Entity data stored in Eclipse Ditto

43

Twin_Creator Mapping_Agent Eclipse_Ditto Twin_Agent

Send Entity Data

Create Ditto Protocol Message

Send Message

Create Digital Twin

Send Digital Twin Data

Run new instanc

Figure 5.5: Entity Creation Sequence

The message flow between all services is seen in Figure 5.5.

44

5.3 Patient State Transition

When an entity already exists inside the Digital World Layer, all data that is gathered
serves to update it. For the patients, however, the update will also affect the state machine.

The Client Agent starts its data flow by receiving incoming messages through a queue in
contact with the MQTT Agent. These messages consist of two types of data: data for state
determination and data specifying the patient’s room.

The lifecycle of the Client Agent module follows a simple pattern. Upon start-up, the
module sets the state to the default “OUTSIDE” and the current location to “Outside” and
awaits new data in the queue. The queue also has an associated timeout period to avoid
indefinite waiting. If no data arrives within the specified timeout, the module resets the state
machine, returning the patient’s location and state as if they were outside of the clinic.

The module determines the patient’s current state upon receiving the necessary data.
This process involves considering its current state, the distance to the specified antenna, and
whether the patient is moving closer to or farther from the antenna. The module identifies
the next state in the patient’s behavioral sequence by evaluating these factors.

When a state change occurs, the module records the previous state and the transition to
the new state in the database.

To end the life cycle, seen in Figure 5.6,this module will then send the positional data and
state to the MQTT Agent, so it can be sent to the Application Layer to be displayed in a
table, as seen in Figure 5.7.

Eclipse_Ditto MQTT_Agent Client_Module App_Layer

Send Client Data

Send Client Data

Update State Machine

Send Client Data

Figure 5.6: Entity Update Message Sequence

45

Figure 5.7: Entity data displayed in the Application Layer

5.4 Antenna Control

The antenna module is responsible for managing the activity of the physical antennas
inside the clinic. This module accomplishes this by following the life cycle seen in Figure 5.8 ,
which encapsulates the core logic required for a virtual antenna to interact with its physical
counterpart and participate in the data-gathering process of the system.

This process only begins if the physical antenna is turned on and both the physical and
digital antennas are connected to the MQTT Broker.

Create
request

message

Send
Message to

Antenna

Await
Response Timeout?

Yes

Send
Response

to
Database

Send
Response

to
Predictor

Figure 5.8: Antenna Agent Data Flow

The life cycle starts with the antenna module preparing a message that will be used to
activate the physical antenna, so that it can gather data on the position of entities inside the
clinic. This message contains three essential values. The first value the transactional_id that
tracks the number of times a virtual antenna tries to activate its physical counter-part, and
it’s shared across all virtual antennas. The second value is a list of energy powers for the
antenna to use when gathering, and the final value is the time it needs to scan for each power.
This message can be seen in Figure 5.9.

When the message is created, a it packaged into a payload for the MQTT Agent to send
to the physical antenna. This package is also comprised of three variables.

46

Figure 5.9: Request Message for the Antenna Module

Figure 5.10: Response Message for the Antenna Module

First, the ANTENNA_GET command signals to the MQTT Agent that a message will be
sent to the physical antenna. The second parameter is an MQTT topic specific to the antenna.
Lastly, a JSON message specifies the antenna’s data retrieval parameters. Subsequently, this
array is enqueued into the output queue, awaiting transmission to the physical antennas via
MQTT.

The virtual antenna then enters a waiting state, allowing a configurable time period in
seconds to receive a message from the physical antenna. This message should contain the
anticipated data. If the waiting time elapses without receiving the expected message, the
virtual antenna considers the delivery unsuccessful and repeats the entire process.

Upon receiving the awaited message, the virtual antenna extracts the MQTT topic and
payload. This message will not be processed, instead it packaged into a payload for the
MQTT Agent to send to the Predictor. The message received contains a parameter named
res that houses a list of gathered data for each level of power sent by the antenna module.
Each member of the list contains the following attributes: transaction_id, the power level,
the scanning time, the start time of scanning, the end time of scanning, and a dictionary for
each tag it found during the search. This can be seen in Figure 5.10.

With this information, the antenna performs two crucial actions. First, it creates a list with
two attributes: the ANTENNA_GATHERED_DATA command. This command instructs
the MQTT Agent to save the received data to the antenna collection in MongoDB. The list
also includes a dictionary that encapsulates the MQTT topic, payload, and the timestamp of
the message’s arrival.

Additionally, the virtual antenna creates another list with three attributes: the “ML”
command, which prompts the MQTT Agent to transmit the gathered data to the Predictor for
further processing. The list includes the data itself, which the Predictor will utilize to generate
data for later use, and the MAC address of the antenna, allowing proper identification and
association with the originating device.

The Antenna Agent Module ensures seamless operation and data flow within the system by
effectively managing the communication and synchronization between the virtual and physical
antennas. It enables data collection, processing, and transmission, facilitating subsequent
analysis and decision-making by the Machine Learning Agents.

The sequence described can be observed in Figure 5.11.

47

Antenna_Modul

e
MQTT_Agent Antenna Predictor

Generate request message

Generate request payload

Send Request Payload

Send Request Message

Gather Data

Send Gathered Data

Send Gathered Data

Send Data Payload to Store

Send Data to Predictor

Send Gathered Data to Process

Figure 5.11: Antenna Control Message Sequence

48

CHAPTER 6
Conclusion

Digital Twin based systems have the potential to build powerful indoor management
systems, as seen with previous projects that used indoor data to rebuild buildings and their
inhabitants to simulate and manage the flow of data inside them.

The general Layered Architecture was analysed from previous done work, to build a new
one for the use of this thesis. The new system, while having a similar general objective of
managing an indoor space, it differs from the other analysed work in its system requirements
and ability to change the direct data of a twin and use it for others analysis.

To make the system possible to run, various different Digital Twin open-source tools and
platforms were employed, such as Eclipse Ditto and Eclipse Vorto, and a Simulator that
represented a physical space and fed the system with indoor position and data relating to
different asset points, that represented the various entities.

The original vision for the project had RFID technology and techniques in mind for the
gathering of positional data, however it was not implemented as such. Because of this, features
such being able to determine the rooms were left impossible to implement, only being able to
guess based on the current state of the entity.

Even with this setback, the results were satisfying, and they are able to show the current
state of the entities dwelling within the analysed space, but they can still be improved.

6.1 Future Work

In terms of possible work that could be done to improve the overall performance and
usage of the system in the future boils down to two factors, the first being its application in a
real physical space. Real data is fundamentally different than that generated in a simulated
environment and it is impossible to create organic scenarios and paths that can enter in
conflict with the system, and because of this it is essential to have real entities roaming around
an actual real space to detect the faults of the system and improve it. Another positive of
dealing with a real space is the limitation regarding the amount of entities that can be placed
in the “Gathering Layer” will become less prevalent and the creation of a map that converts

49

raw entity messages to a specific type stops being randomly generated by the system and
instead is simply data that can be fed to the system and it handles the rest.

The second possible improvement is an expansion of the showcasing layer and its interac-
tions with the physical world. This could be achieved through an expansion of the back-end to
support operations that would notify entities when certain events would occur, this could be
achieved by having a device that would produce sound and vibrate to warn a medic that an
object that he needs is available. This could affect the way the state machines would operate.
The current version of the “Showcasing Layer” can be seen as base that can be developed into
a larger clinical platform.

One last addition that could be made is a better algorithm to determine the distance
parameters, as well as a better dataset. The latter can be improved with more use of the
system, specially if the data comes from a real world scenario.

50

References

[1] Retrato da saude 2018.

[2] Retrato mundial de envelhecimento e saude.

[3] B. Farahani, F. Firouzi, and K. Chakrabarty, “Healthcare iot,” in Intelligent internet of things, Springer,
2020, pp. 515–545.

[4] M. Grieves, “Digital twin: Manufacturing excellence through virtual factory replication,” White paper,
vol. 1, no. 2014, pp. 1–7, 2014.

[5] M. Shafto, M. Conroy, R. Doyle, et al., “Modeling, simulation, information technology & processing
roadmap,” National Aeronautics and Space Administration, vol. 32, no. 2012, pp. 1–38, 2012.

[6] B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin: Definitions, characteristics,
applications, and design implications,” IEEE Access, vol. 7, pp. 167 653–167 671, 2019. doi: 10.1109/
ACCESS.2019.2953499.

[7] A. Sharma, E. Kosasih, J. Zhang, A. Brintrup, and A. Calinescu, “Digital twins: State of the art theory
and practice, challenges, and open research questions,” Journal of Industrial Information Integration,
vol. 30, p. 100 383, 2022, issn: 2452-414X. doi: https://doi.org/10.1016/j.jii.2022.100383.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2452414X22000516.

[8] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling technologies, challenges and open
research,” IEEE Access, vol. 8, pp. 108 952–108 971, 2020. doi: 10.1109/ACCESS.2020.2998358.

[9] T. Sanislav, G. D. Mois, and S. Folea, “Digital twins in the internet of things context,” in 2021 29th
Telecommunications Forum (TELFOR), IEEE, 2021, pp. 1–4.

[10] A. Sharma, E. Kosasih, J. Zhang, A. Brintrup, and A. Calinescu, “(2020). digital twins: State of the art
theory and practice, challenges, and open research questions.,”

[11] J. Ríos, J. C. Hernandez, M. Oliva, and F. Mas, “Product avatar as digital counterpart of a physical
individual product: Literature review and implications in an aircraft,” Transdisciplinary Lifecycle
Analysis of Systems, pp. 657–666, 2015.

[12] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, “Digital twin-driven product design,
manufacturing and service with big data,” The International Journal of Advanced Manufacturing
Technology, vol. 94, no. 9, pp. 3563–3576, 2018.

[13] F. Tao and M. Zhang, “Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing,”
Ieee Access, vol. 5, pp. 20 418–20 427, 2017.

[14] Y. Zheng, S. Yang, and H. Cheng, “An application framework of digital twin and its case study,” Journal
of Ambient Intelligence and Humanized Computing, vol. 10, no. 3, pp. 1141–1153, 2019.

[15] S. Mihai, M. Yaqoob, D. V. Hung, et al., “Digital twins: A survey on enabling technologies, challenges,
trends and future prospects,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2255–2291,
2022. doi: 10.1109/COMST.2022.3208773.

[16] X. He, Q. Ai, R. C. Qiu, and D. Zhang, “Preliminary exploration on digital twin for power systems:
Challenges, framework, and applications,” arXiv preprint arXiv:1909.06977, 2019.

[17] S. E. Ahmed, O. San, K. Kara, R. Younis, and A. Rasheed, “Multifidelity computing for coupling full
and reduced order models,” Plos one, vol. 16, no. 2, e0246092, 2021.

51

https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/https://doi.org/10.1016/j.jii.2022.100383
https://www.sciencedirect.com/science/article/pii/S2452414X22000516
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/COMST.2022.3208773

[18] L. Lopez-Estrada, M. Fajardo-Pruna, S. Gualoto-Condor, J. Rios, and A. Vizan, “Creation of a
micro cutting machine tool digital-twin using a cloud-based model-based plm platform: First results,”
Procedia Manufacturing, vol. 41, pp. 137–144, 2019, 8th Manufacturing Engineering Society International
Conference, MESIC 2019, 19-21 June 2019, Madrid, Spain, issn: 2351-9789. doi: https://doi.org/
10.1016/j.promfg.2019.07.039. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2351978919310698.

[19] Z. Jiang, Y. Guo, and Z. Wang, “Digital twin to improve the virtual-real integration of industrial
iot,” Journal of Industrial Information Integration, vol. 22, p. 100 196, 2021, issn: 2452-414X. doi:
https://doi.org/10.1016/j.jii.2020.100196. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2452414X20300716.

[20] S. M. Bazaz, M. Lohtander, and J. Varis, “5-dimensional definition for a manufacturing digital twin,”
Procedia Manufacturing, vol. 38, pp. 1705–1712, 2019, 29th International Conference on Flexible
Automation and Intelligent Manufacturing (FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond
Industry 4.0: Industrial Advances, Engineering Education and Intelligent Manufacturing, issn: 2351-
9789. doi: https://doi.org/10.1016/j.promfg.2020.01.107. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2351978920301086.

[21] Z. Liu, A. Zhang, and W. Wang, “A framework for an indoor safety management system based on
digital twin,” Sensors, vol. 20, no. 20, p. 5771, 2020.

[22] Z. Zhao, L. Shen, C. Yang, W. Wu, M. Zhang, and G. Q. Huang, “Iot and digital twin enabled smart
tracking for safety management,” Computers & Operations Research, vol. 128, p. 105 183, 2021.

52

https://doi.org/https://doi.org/10.1016/j.promfg.2019.07.039
https://doi.org/https://doi.org/10.1016/j.promfg.2019.07.039
https://www.sciencedirect.com/science/article/pii/S2351978919310698
https://www.sciencedirect.com/science/article/pii/S2351978919310698
https://doi.org/https://doi.org/10.1016/j.jii.2020.100196
https://www.sciencedirect.com/science/article/pii/S2452414X20300716
https://www.sciencedirect.com/science/article/pii/S2452414X20300716
https://doi.org/https://doi.org/10.1016/j.promfg.2020.01.107
https://www.sciencedirect.com/science/article/pii/S2351978920301086
https://www.sciencedirect.com/science/article/pii/S2351978920301086

	Contents
	List of Figures
	List of Tables
	Lista de Excertos de Código
	Glossário
	Introduction
	Motivation
	Objectives
	Thesis Outline

	State of the Art
	Digital Twins
	Architectures
	Three Component Architecture
	Five Component Architecture

	Enabling technologies
	Machine Learning
	Cloud Computing
	Internet of Things
	Cyber-Physical Systems

	Indoor Safety Frameworks with Digital Twins
	Framework 1 - Indoor Safety Management System based on Digital Twin
	Framework 2 - IoT and Digital Twin enabled smart tracking for Safety Management
	Analysis of Relevant Architectures

	Architecture
	Problem Statement
	System Requirements
	Functional Requirements
	Non Functional Requirements

	Stakeholders and Expectations
	Alignment with Digital Twins
	System Architecture Overview
	Gathering Layer
	Mapping Layer
	Digital World Layer
	Application Layer

	State Machine Implementation
	Physical Entities
	Scenarios
	Client State Machine

	Prototype Implementation
	Gathering Layer
	Data Sources
	Predictor

	Mapping Layer
	Eclipse Vorto
	Twin Creator
	Mapping Agent

	Digital World Layer
	Eclipse Ditto
	Digital Twin Agent
	MQTT Agent
	Antenna Module
	Entity Modules

	Application Layer

	Evaluation and Results
	Entity Identification Evaluation
	Entity Creation
	Patient State Transition
	Antenna Control

	Conclusion
	Future Work

	References

