
Universidade de Aveiro
2023

Ana Luísa
Gonçalves da Silva
Marques Ferreira

Testbed para Aplicações e Serviços 5G

5G Application & Service Testbed





Universidade de Aveiro
2023

Ana Luísa
Gonçalves da Silva
Marques Ferreira

Testbed para Aplicações e Serviços 5G

5G Application & Service Testbed

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor Diogo Gomes, Professor
auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Uni-
versidade de Aveiro, e do Doutor Rui Luís Andrade Aguiar, Professor catedrático
do Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro.





Dedico este trabalho aos meus pais.





o júri / the jury
presidente / president Arnaldo Silva Rodrigues de Oliveira

Professor Associado na Universidade de Aveiro

vogais / examiners committee Ana Cristina Costa Aguiar
Professora Auxiliar na Universidade do Porto

Diogo Nuno Pereira Gomes
Professor Auxiliar na Universidade de Aveiro





agradecimentos /
acknowledgements

Começo por agradecer aos meus pais e avós pelo incansável apoio, pela orientação
ao longo da minha vida e por me oferecerem condições para ser bem sucedida tanto
a nível profissional como pessoal. Quero também agradecer ao meu namorado,
Pompeu Costa, por me apoiar nos momentos mais difíceis e incentivar a nunca
desistir. Agradeço também aos meus amigos, nomeadamente ao João Gameiro,
ao Marco Ramos e por fim, mas não menos importante ao Rodrigo Martins, que
me acompanharam nestes últimos 5 anos e que passaram tanto momentos incriveis
como difíceis comigo. De seguida, quero agradecer aos meus orientadores, em
especial, ao Professor Doutor Diogo Gomes por me ter ajudado e orientado neste
percurso. Quero também deixar um agradecimento ao Rafael Direito e ao Daniel
Gomes por me terem ajudado e acompanhado o meu trabalho de perto no Instituto
de Telecomunicações. Deixo também os meus agradecimentos aos meus restantes
colegas do Instituto de Telecomunicações.





Palavras Chave 5G, NFV, Network Application, Validação, NEF.

Resumo Com o crescimento das tecnologias 5G, há a necessidade de adotar o paradigma
NFV para responder às necessidades de um ambiente 5G, o que leva à separação do
hardware das funções que ele fornece, acelerando o desenvolvimento de serviços.
No entanto, a adoção de NFV traz muitos desafios, um dos quais é a valida-
ção das VNF. O 5GASP é um projeto europeu que visa a encurtar o processo de
ideia-ao-mercado, criando um ambiente de teste 5G totalmente automatizado. Em
alinhamento com os objetivos do 5GASP, esta dissertação procura criar testes para
a validação de Network Applications usadas em ambiente 5G. Além disso, a Ar-
quitetura Baseada em Serviços oferece o NEF, que permite o acesso de aplicações
externas às funções da rede 5G. Com estes conceitos em mente, a solução apresen-
tada por esta dissertação utiliza o NEF para verificar se uma Network Application
consegue interagir corretamente com uma rede 5G. Isto é alcançado integrando
o NEF no pipeline de validação do 5GASP e desenvolvendo testes para avaliar o
comportamento das Network Applications. No geral, este documento apresenta a
arquitetura definida e a implementação desses mecanismos, juntamente com seus
respectivos resultados.





Keywords 5G, NFV, Network Application, Validation, NEF.

Abstract With 5G technologies growing, there is the need to adopt the NFV paradigm to
align with the demands of a 5G environment. This entails the decoupling of hard-
ware from the functions it provides, expediting service development. However, the
adoption of NFV raises many challenges, one of which is the validation of Virtu-
alized Network Functions. 5GASP is a European project that aims to shorten the
idea-to-market process by creating a fully automated and self-service 5G testbed.
In alignment with 5GASP’s objectives, this dissertation seeks to design tests for the
validation of Network Applications used within a 5G environment. Furthermore,
the Service-Based Architecture offers the NEF, which enables external application
access to 5G core functions. With these concepts in mind, the solution provided by
this dissertation uses NEF to verify whether a Network Application can correctly
interact with a 5G Network. This is achieved by integrating NEF into the vali-
dation pipeline of 5GASP and developing tests to assess the behavior of Network
Applications. In summary, this document presents the designed architecture and
the implementation of these mechanisms, along with their respective results and
outcomes.





Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background Concepts and Work Proposal 3

2.1 Before 5g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Network Function Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 European Telecommunications Standards Institute (ETSI) Management and

Orchestration (MANO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 MANO Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Open Network Automation Platform (ONAP) . . . . . . . . . . . . . . . . . . 6

2.3.2 Open Source MANO (OSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Network Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 5th Generation Mobile Network (5G) Core System Architecture . . . . . . . . . . . . 9

2.5.1 5G Core Network Capability & Network Exposure Function . . . . . . . . . . 11

2.6 Agile Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.2 Continuous Integration (CI)/Continuous Delivery (CD) . . . . . . . . . . . . 13

2.6.3 Harnessing DevOps and CI within a Network Function Virtualization

(NFV)Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Testing Automation Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

i



2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8.1 VITAL-5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8.2 EVOLVED-5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.3 5GMediaHUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.4 5GASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Work Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Architecture 39

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Architecture and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Modules’ Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Testing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Report File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Implementation 47

4.1 Network Exposure Function (NEF) Emulator . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Northbound Application Programming Interfaces (APIs) . . . . . . . . . . . . 47

4.1.2 Report Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.3 Emulation Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.4 Generating Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Report API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Mini API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Validation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Local Test Repository (LTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 5G Readiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.4 Generation of Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Results 59

5.1 5G Readiness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Testing Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Security Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Testing Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ii



5.3 Generation of Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Testing Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusions 73

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References 75

Appendix 79

Report Handler Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Create Monitoring Subscription Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Test Results Visualization Dashboard (TRVD)’s Web Interface . . . . . . . . . . . . . . . . 82

Robot File for the Unsuccessful Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iii





List of Figures

2.1 NFV Reference Architectural Framework [8] . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 ONAP’s London Release - Platform Architecture Diagram [12] . . . . . . . . . . . . . . . 6

2.3 OSM Main Architectural Components [19] . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 5G Core System Architecture [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 DevOps Axes [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 CI/CD Pipeline [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 VITAL-5G Testing & Validation Framework [42] . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 VITAL-5G Testing & Validation Procedure [42] . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Methodology of defining metrics in the Vital-5G [47] . . . . . . . . . . . . . . . . . . . . . 20

2.10 EVOLVED-5G System Architecture [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Network Application lifecycle phases and relation with architectural components [50] . . 22

2.12 EVOLVED-5G NEF Emulator Architecture [30] . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 EVOLVED-5G NEF Emulator Swagger User Interface (UI) [54] . . . . . . . . . . . . . . 27

2.14 EVOLVED-5G NEF Emulator Dashboard [54] . . . . . . . . . . . . . . . . . . . . . . . . 27

2.15 EVOLVED-5G NEF Emulator Map [54] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.16 Network Application tests [57] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.17 5GMediaHUB Logical Architecture [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.18 Overall Experimentation Tools Layer Architecture [59] . . . . . . . . . . . . . . . . . . . 31

2.19 5G Application & Services Experimentation and Certification Platform (5GASP)’s CI/CD

Service High Level Architecture [67] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.20 5GASP Architectural Workflow [67] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 High Level Interactions with the Shared file . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Components’ Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Endpoints added by 5GASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Developed Handover endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 UI for the Generation of Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Endpoints that enable the Generation of Values . . . . . . . . . . . . . . . . . . . . . . . 50

v



4.5 Report API endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Implemented Components’ Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Test’s Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 TRVD’s Web Interface Portraiting an Unsuccessful Validation Process . . . . . . . . . . . 82

2 report.html Robot File for the Unsuccessful Execution of the NEF Handovers Test . . . . 83

vi



List of Tables

4.1 Northbound APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Implemented 5G Readiness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Dummy Network Applications’ Communication with NEF Emulator . . . . . . . . . . . . 62

5.2 Dummy Network Application 1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Dummy Network Application 2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Dummy Network Application 3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Dummy Network Application 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Dummy Network Application 5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Dummy Network Application 6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Dummy Network Application 7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 Dummy Network Application 8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.10 Dummy Network Application 9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.11 Dummy Network Application 10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.12 Dummy Network Application 11 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.13 Dummy Network Application 12 Communication with NEF Emulator . . . . . . . . . . . 70

5.14 Dummy Network Application 12 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii





Acronyms

3GPP 3rd Generation Partnership Project
5G 5th Generation Mobile Network
5GASP 5G Application & Services

Experimentation and Certification
Platform

5GC 5G Core
5GPPP 5G Infrastructure Public Private

Partnership
AF Application Function
AGV Automated Guided Vehicle
AMF Access and Mobility Management

Function
API Application Programming Interface
AR Augmented Reality
AUSF Authentication Server Function
BSS Business Support Systems
CAPEX Capital Expenditures
CAPIF Common API Framework
CI Continuous Integration
CD Continuous Delivery
CDSO Cross-Domain Service Orchestrator
CLI Command-Line Interface
CNF Containerized Network Function
CP Control Plane
CPU Central Processing Unit
DN Data Network
ECOMP Enhanced Control, Orchestration,

Management & Policy
ELCM Experiment Life-Cycle Manage
ETSI European Telecommunications

Standards Institute
HTML HyperText Markup Language
IM Information Model
IoT Internet of Things
IP Internet Protocol
ISG Industry Specification Group
JSON JavaScript Object Notation
KPI Key Performance Indicator
LTR Local Test Repository
MANO Management and Orchestration
NAS Non-Access Stratum

MTP Motion-to-Photon
NBI Northbound Interface
NEF Network Exposure Function
NF Network Function
NFV Network Function Virtualization
NFVI Network Function Virtualization

Infrastructure
NFVO Network Function Virtualization

Orchestrator
NIDD Non-IP Data Delivery
NODS Network Application Onboarding and

Deployment Service
NPN Non-Public Networks
NRF Network Repository Function
NS Network Service
NSO Network Service Orchestrator
NSSAAF Network Slice Specific Authentication

and Authorization Function
NSSF Network Slice Selection Function
ONAP Open Network Automation Platform
Open-O Open Orchestrator
OPEX Operating Expenditures
OSM Open Source MANO
OSS Operations Support Systems
PCF Policy Control Function
PD Performance Diagnosis
PDU Protocol Data Unit
QoE Quality of Experience
QoS Quality of Service
RA Results Analytics
RAM Random Access Memory
RAN Radio Access Network
REST Representational State Transfer
RO Resource Orchestrator
RSRP Reference Signal Received Power
SA Stand Alone
SBA Service-Based Architecture
SCP Service Communication Proxy
SDN Software-Defined Networking
SLA Service Level Agreement
SME Small and Medium-sized Enterprises
SMF Session Management Function

ix



SMS Short Messaging Service
SUPI Subscription Permanent Identifier
SSL Secure Sockets Layer
T&L Transportation and Logistics
TRVD Test Results Visualization Dashboard
TSP Telecommunication Service Provider
UDM Unified Data Management
UE User Equipment
UI User Interface
UP User Plane

UPF User Plane Function
VIM Virtualised Infrastructure Manager
VNF Virtual Network Function
VR Virtual Reality
WP Work Package
XML Extensible Markup Language
XR Extended Reality
YAML YAML Ain’t Markup Language
YANG Yet Another Next Generation

x



CHAPTER 1
Introduction

In recent years, Telecommunication Service Providers (TSPs) have been undergoing a
transition from hardware-centric systems to software-driven ones. This shift arises from the
fact that physical equipment often reaches the end of its lifecycle quickly, requiring frequent
replacements. Additionally, this hardware is typically designed for specific tasks, making it
challenging to adapt for different purposes and functionalities.

With Traditional Networks, TSP struggled with significant Capital Expenditures (CAPEX)
and Operating Expenditures (OPEX), due to limitations in flexibility and scalability, which
in turn, lead to extended time-to-market periods [1].

Moreover, the adoption of 5G brings higher bandwidth, reduced latency, low power
consumption and more cost-effective networks, thus enabling better and faster network
services, which is a crucial necessity in today’s fast-paced and interconnected world [2].

NFV emerges as a solution to the challenges previously mentioned. The NFV paradigm
facilitates the separation of Network Functions (NFs) from the hardware they traditionally
rely on, enabling their deployment through Virtual Network Functions (VNFs) [3].

By adopting this approach, TSPs can reduce expenses related to equipment and its
maintenance. Additionally, this method offers scalability, flexibility, and time-saving benefits,
resulting in increased production efficiency[3].

Nevertheless, transitioning from hardware-based systems to virtualized ones using the
NFV paradigm presents numerous challenges.

One such challenge within NFV is the validation of VNFs, which is the focus of this
dissertation. Before deploying their Network Applications with real operators, application
owners must confirm that their applications function effectively in a 5G environment. Hence,
the necessity for detailed validation processes.

To facilitate NFV technology, 3rd Generation Partnership Project (3GPP) has established
specifications for the 5G System Architecture. The main distinction from traditional network
architectures is the utilization of NFs that provide services to others through the use of APIs.
This architecture is referred to as Service-Based Architecture (SBA). One noteworthy NF

1



is NEF. NEF offers an interface for external applications to access capabilities from the 5G
Core (5GC), such as NFs exposed by the NEF. However, there is currently no implementation
of a real NEF available. Nonetheless, NEF is an interesting NF for validating VNFs and
evaluating their compatibility with the 5G infrastructure. The EVOLVED-5G1 project has
developed a NEF emulator that provides some functionalities and will be used in the context
of this dissertation as the foundation for tests validating VNFs.

1.1 Motivation

The 5GASP2 project represents a Horizon 2020 research and innovation initiative funded
by the European Union. Its primary objective is to reduce the idea-to-market timeline by
establishing a comprehensive and self-service testbed within Europe. Furthermore, 5GASP is
dedicated to fostering innovation in the realm of experiment and test operations across diverse
domains. It offers essential software support tools for the secure and reliable CI/CD of VNFs
[4]. Given that 5GASP offers a testbed for application owners to validate their applications,
the need for having and conducting tests becomes self-evident.

1.2 Goals

The main objective of this dissertation is to create tests that enable the validation of
VNFs. Moreover, it is crucial not only to integrate these tests into the 5GASP project but
also to enhance the NEF emulator. This extension of the NEF emulator is vital to enable
the creation of tests centered around it, adding another goal for this dissertation. The work
developed is associated with the 5GASP’s Work Package (WP) 5, with the intention of being
incorporated into the project.

1.3 Dissertation Outline

The content of this dissertation is structure as follows. Chapter 2 provides an overview
of the background concepts and related work relevant to this dissertation. Based on the
background concepts covered in Chapter 2, a work proposal is formulated in Section 2.9,
aligned with the goals introduced in Section 1.2.

Then, Chapter 3 presents the proposed architecture designed to address the work proposal,
integrating the NEF emulator with the 5GASP’s Validation Pipeline. Chapter 4 covers the
architecture’s implementation and the creation of tests for validating VNFs.

Following the presentation of the architecture and implementation, Chapter 5 details how
the solution was tested and presents the results obtained from the developed tests.

Chapter 6 provides a conclusion and offers suggestions for future work.
Lastly, this document includes a list of references used to write this dissertation, along

with an appendix.

1https://evolved-5g.eu/
2https://www.5gasp.eu/

2



CHAPTER 2
Background Concepts and Work

Proposal

This Chapter serves as an introduction to all the concepts essential for comprehending the
work developed in this dissertation.

To begin, the transition from traditional network systems to the current 5G era is
introduced, highlighting the adoption of the NFV paradigm.

A key element of NFV is the MANO Framework, a platform responsible for the management
and orchestration of NFV. This Chapter provides an overview of this platform and its several
implementations, including ONAP and OSM.

Given the dissertation’s focus on the validation of VNFs, the concept of Network Applica-
tions is explained, since they are the applications that are deployed as VNFs and need to be
validated.

Additionally, it is addressed the 5G Core System Architecture, with particular emphasis
on the NEF, as well as the significance of DevOps and CI/CD concepts, which are the key
enablers for the tests and validation process that this dissertation aims to create, and even
Automation Testing Frameworks are addressed.

Furthermore, various related projects are mentioned to give an overview of other research
efforts related to VNFs validation and testing.

Lastly, a work proposal is formulated.

2.1 Before 5g

Over the last decade, there has been a substantial increase in the demands placed on
mobile and other communication networks. Initially limited to basic functions like phone calls
and text messages, these networks now play a crucial role in supporting the foundation of a
modern digital economy. As the world shifts away from 20th century operational paradigms,
these networks are expected to facilitate new modes of operation, adapting to the challenges
of the 21st [5].

3



The motivation behind 5G extends beyond creating a new core network, it arises from the
convergence of various requirements and demands, including [5]:

1. Expanding business case requirements from a diverse range of economic players, including
industrial firms pioneering novel use cases.

2. Emerging core network technologies fostering expectations of increased operational
efficiency and flexibility.

3. Changing dynamics in balancing business, societal, and environmental considerations to
deliver services in innovative ways.

Furthermore, traditional network devices, designed with specific purposes, lead to increased
costs when adopting new technologies, due to the need of replacement, which is a challenge
as the demand for bandwidth skyrockets due to video, mobile, and Internet of Things (IoT)
applications. Service providers aim to expand and scale their networks while keeping costs in
check. However, traditional devices impose limitations that hinder scalability, raise deployment
costs, and reduce operational efficiency [6].

The industry is undergoing a shift from hardware-centric to virtualized, software-based
networks. A critical facilitator of this transition is the NFV approach, which involves replacing
dedicated physical network devices with software programs running on standard computer
hardware to perform the same network functions. This evolution is driven by the need to
address the previously mentioned requirements and constraints [6].

In Section 2.2, the introduction of NFV, its architecture and its advantages in addressing
the aforementioned limitations are discussed.

2.2 Network Function Virtualization

NFV enables the replacement of physical network devices performing specific NFs with
one or more software programs executing the same network functions while running on generic
computer hardware. NFV decouples the software from hardware, offering the ability to use
any commercially available hardware to implement the VNFs [6].

According to [3], [6], some of the NFV architecture advantages are:

• Hardware flexibility, since Network Operators have the freedom to choose and build the
hardware, reducing equipment cost;

• Agility, by rapidly deploying, terminating, reconfiguring or changing the topological
location of a VNF;

• Decrease of the time-to-market, minimizing the lifecycle of creating a network system;
• Scalability and Elasticity, due to the capability of a VNF to expand and stretch resources

or to scale them down according to the requirements;
• Test-setups, without the need of creating a replica of the production environment to

run in-house tests.

In Europe, the organization tasked with setting the standards for NFV is the ETSI. In
2012, they established an Industry Specification Group (ISG) dedicated to researching and
providing guidelines for NFV [7].

4



Figure 2.1: NFV Reference Architectural Framework [8]

The latest release is Release 4 which addresses the work developed in 2019 and 2020 with
a set of new features, among them are [9]:

• NFV-MANO automation and autonomous networks;
• NFV enhancements for 5G;
• SBA for NFV-MANO;
• Continuous VNF integration.

2.2.1 ETSI MANO

MANO is one of the most relevant elements of the ETSI NFV architecture, being respon-
sible for the orchestration and lifecycle management of the resources involved in NFV.

Figure 2.1 depicts the ETSI NFV architectural framework, which includes MANO.
This framework consists of three main functional blocks [6], [10]:

• Network Function Virtualization Orchestrator (NFVO) - responsible for the
orchestration of Network Function Virtualization Infrastructure (NFVI) resources across
multiple Virtualised Infrastructure Managers (VIMs) and the lifecycle management of
Network Services.

• VNF Manager - in charge of the lifecycle management of VNF instances.
• VIM - responsible for controlling and managing the NFVI compute, storage, and

network resources.

There are several NFV MANO implementations, developed by different projects like
ONAP and OSM, which are going to be addressed next.

5



2.3 MANO Solutions

2.3.1 ONAP

ONAP is a open-source project founded by AT&T and China Mobile, now under the Linux
Foundation. It was formed through the combination of the Enhanced Control, Orchestration,
Management & Policy (ECOMP) and Open Orchestrator (Open-O) projects into ONAP [11].
It aims to provide a comprehensive platform for automating and managing networks, with a
focus on Software-Defined Networking (SDN) and NFV.

ONAP allows organizations and their network or cloud providers to collaboratively instan-
tiate network elements and services in a dynamic process with real-time responses to events.
Some key components of the architecture are [12]:

• Design Time Environment - offers tools, techniques and repositories for defining
resources, services, and products.

• Runtime Environment - provides a model- and policy-driven orchestration and control
framework for an automated instantiation and configuration of services and resources.

• Shared Services - gives ONAP’s modules shared capabilities and utilities.
• External API - provides northbound interoperability for the ONAP Platform.
• OOM - provides the ability to manage cloud-native installation and deployments to

Kubernetes-managed cloud environments.

Figure 2.2: ONAP’s London Release - Platform Architecture Diagram [12]

6



Figure 2.2 presents the architecture of the most recent ONAP’s release, where the compo-
nents of each framework mentioned before are displayed.

2.3.2 OSM

The OSM project, led by ETSI, aims to create an open-source solution for managing
and orchestrating NFV in order to assist Telecommunication Operators in deploying NFV
solutions efficiently and cost-effectively. As it is an ETSI initiative, OSM is fully compliant
with ETSI’s NFV standards [13].

Starting from Release 4, the OSM project has included the OSM Northbound API which
is standardized in ETSI GS NFV-SOL 005 [14]. This API allows Operations Support
Systems (OSS) and Business Support Systems (BSS) to interact with the NFVO through
RESTful APIs. The OSM Release 9, which was released in December 2020, also included the
support of a new standard, ETSI GS NFV-SOL 006 [15], which replaces the syntax used in
VNF and Network Service (NS) descriptors [16], [17].

Regarding some interesting added features from the previous releases, worth of mentioning,
Release 7 added Containerized Network Functions (CNFs). Since then, OSM can model the
deployment of Kubernetes1 workloads using Juju2 bundles or Helm3. Until Release 8, only
Helm version 2 was supported, changing in the next release, 9, to support Helm version
3. Release 10, brought the ability for on-demand horizontal scaling of Juju bundle-based
Kubernetes workloads, enabling applications to scale-out to provide additional capacity and
release their resources, or scale in, as usage returns to the baseline [17], [18].

Currently OSM is at Release 14, but the 5GASP project is adopting the Release 12.
The ETSI MANO main components were already addressed in Section 2.2.1, so the main

approaches of OSM will be addressed next.
Figure 2.3 represents the OSM Main Architectural Components.
The OSM consists of two decoupled orchestrators namely, Resource Orchestrator (RO)

and Network Service Orchestrator (NSO). The RO provides orchestration in the SDN and
cloud technology domains. The NSO handles lifecycle management of network services and
VNFs and consumes information models such as Yet Another Next Generation (YANG) [20].

The strategy of OSM focuses on reducing the complexity of integration through four main
principles [21]:

• A well-known Information Model (IM) that enables the modeling and automation of
the entire lifecycle of NFs, NSs, and Network Slices.

• A unified Northbound Interface (NBI), based on ETSI GS NFV-SOL 005, which enables
the full operation of system and the NSs and Network Slices under its control.

• The extended concept of Network Service in OSM, allows for the integration of an
NS across various domains, including virtual, physical, and transport. This extension
enables control over the entire lifecycle of a NS while interacting with VNFs.

1https://kubernetes.io/
2https://juju.is/
3https://helm.sh/

7



Figure 2.3: OSM Main Architectural Components [19]

• In addition, OSM can also manage the lifecycle of Network Slices, assuming if required
the role of Slice Manager, extending it also to support an integrated operation.

2.4 Network Applications

The concept of Network Application emerged in the 5GPP Horizon 2020 ICT-41 calls,
initially lacking a precise and comprehensive definition within the established standards and
the broader 5G community. Consequently, there arose a need for a shared definition among
the ICT-41 projects to establish a common understanding of this term.

As a result, it refers to a set of services, deployed over 5G infrastructures, that provide
specific functionalities tailored to various industries and their associated use cases. Moreover,
a Network Application is defined as a software component that interacts with the control
plane of a mobile network by consuming standardized APIs from the 5GC, Radio Access
Network (RAN) Intelligent Controller, and edge computing. These applications provide
services to vertical industries either by integrating within their existing systems or by exposing
business APIs [22], [23].

Additionally, the Network Application ecosystem aims to simplify the implementation and
deployment of vertical systems on a large scale. It involves a middleware layer that allows
third parties and network operators to contribute to the development of Network Applications

8



based on the level of interaction and trust. In certain cases, Network Applications residing
in the operator domain can have additional access to network capabilities beyond what is
available to third-party Network Applications [23].

Nonetheless, it is imperative to address the requirement of testing and validating Net-
work Applications within a 5G virtualized experimental environment, encompassing diverse
implemented functions and vertical-specific configurations. This crucial step guarantees the
desirability and viability of these applications for Telecommunication Operators, thereby
fostering their inclination to embrace and utilize them [24].

2.5 5G Core System Architecture

The 3GPP specification for the 5G System Architecture has been formulated to facilitate
data connectivity and services, thereby allowing deployments to implement technologies like
NFV and SDN. Some fundamental principles and concepts in this regard include [25]:

• Separate the User Plane (UP) and the Control Plane (CP) functions for scalability and
flexible deployment.

• Modularize the function design for efficient network slicing.
• Define procedures, i.e. the set of interactions between NFs, as reusable services.
• Implement unified authentication.
• Support stateless NFs for resource flexibility.
• Enable capability exposure.
• Allow concurrent access to local and centralized services.

Moreover, in 5GC, a significant departure from traditional network architectures is the
adoption of service-based interactions between NFs, replacing the traditional "nodes" and
"network elements" connected by interfaces. Each NF in 5GC provides services to others,
accessible via APIs over NF interfaces within the common SBA. This approach enables
specific NF functionalities to be easily accessed and utilized by others [5].

The 3GPP TS 23.501 [26] specifies the overall 5G SBA for the core network, which involves
the conversion of traditional network elements into NFs. Figure 2.4 depicts this architecture
in release 16.

The control plane is composed by NFs that offer their services to any other applicable
NFs via a common framework of interfaces accessible to all [27].

Figure 2.4 includes the following NFs and other modules [27] [28]:

• Authentication Server Function (AUSF) - Performs authentication between User
Equipment (UE) and the network.

• Session Management Function (SMF) - Responsible for Protocol Data Unit (PDU)
session establishment, modification, and release between a UE and a data network. Also
interacts with the charging and policy systems.

• Access and Mobility Management Function (AMF) - Receives all connection and
session-related information from the UE, but is responsible only for handling connection,
registration, reachability, and mobility management tasks. All messages related to
session management are forwarded to the SMF.

9



• Policy Control Function (PCF) - Provides functionalities for the control and
management of policy rules, including rules for Quality of Service (QoS) enforcement,
charging and traffic routing.

• Network Repository Function (NRF) - It helps to provide the service discovery
function. Allows NFs to register their functionality and to discover the services offered
by other NFs present in the network.

• Network Slice Selection Function (NSSF) - Allows service providers to supply
specific portions of their network for specific use-cases, i.e., selects the set of network
slice instances to accommodate the service request from a UE.

• Network Slice Specific Authentication and Authorization Function (NSSAAF)
- Performs authentication and authorization specific to a slice.

• NEF - Provides an interface for outside applications to communicate with the 5G
network to obtain network-related information about monitoring, provisioning, analytics
reporting and policy and charging.

• Unified Data Management (UDM) - Responsible for access authorization and
subscription management.

• User Plane Function (UPF) - Handles the user plane path of PDU sessions.
• Application Function (AF) - Provides session-related information to the PCF so

that the SMF can ultimately use this information for session management.
• UE - Allows a user access to network services.
• (Radio) Access Network ((R)AN) - Provides access to a 5G core network. This

includes the 5G RAN and other wireless and wired access networks.
• Data Network (DN) - Allows UE to be logically connected by a session.
• Service Communication Proxy (SCP) - The SCP enables multiple NFs to communi-

cate with each other and with user plane entities in a highly distributed multi-access edge
compute cloud environment. This provides routing control, resiliency, and observability
to the core network.

The goal of this model is to maximize the modularity, reusability, and self-containment of
NFs, and to enable flexible growth through the use of NFV and SDN. This allows for greater
flexibility and scalability in the network [27].

3GPP has selected the Representational State Transfer (REST) architectural design model
to support the design and communication between the distributed components the 5GC [28].

10



Figure 2.4: 5G Core System Architecture [27]

2.5.1 5G Core Network Capability & Network Exposure Function

One of the key NFs of the 5GC is the NEF, which provides secure means for attaching
services and exposing capabilities provided by other 5GC NFs to external systems. This
brings the concept of openness by enabling new levels of programmability in the core and edge
domains, which allows third-party innovators, also known as vertical industries, to control
and monitor the deployment process and performance of their services [29].

The exposure of the 5G capabilities is securely made through the NEF’s APIs, hiding
all the underlying network topology, to external third parties that may use them to build
network aware applications. Furthermore, the internal communication between the NFs, that
compose the SBA, is also made via the Northbound APIs [30].

To delve into further details, the NEF comprises several services described as Monitoring
services, Policy and Charging Services, Application Provisioning Services, Analytics Services
and IoT specific services

This services can be categorized as follows [30]:

• Monitoring Services - Provides monitoring capabilities for UEs such as loss of
connectivity, reachability, location, access type, roaming status, etc.

• Policy and Charging Services - Enables to request QoS policies to utilize the radio
resources efficiently and provides information about the network status.

• Application Provisioning Services - Provides applications with the means to assist
the network by providing application related information that may provoke the 5GC to
take different actions.

11



• Analytics Services - Allows efficient QoS management, traffic steering and mobility
management by exposing network analytics.

• IoT Services - NEF exposes APIs that allow the external application to exchange
data with the UE using different non-Internet Protocol (IP) data delivery methods:
Short Messaging Service (SMS) and Non-Access Stratum (NAS) based Non-IP Data
Delivery (NIDD).

2.6 Agile Methodology

2.6.1 DevOps

DevOps, introduced by Patrick Debois, Gene Kim, and John Willis in 2007-2009, is a set
of practices that blend Development and Operations, fostering team collaboration. It reduces
barriers between developers, who aim to innovate and deliver quickly, and operations, focused
on ensuring production system stability and the quality of system changes, all while enhancing
business value and competitiveness through faster user-oriented results. This approach extends
the principles of agile processes [31], [32].

To enhance collaboration and communication between Development and Operations, it’s
vital to incorporate key elements which include [31], [32]:

• Increased frequency of application deployments through CI/CD.
• Automated unit and integration testing.
• Establishment of user feedback collection mechanisms.
• Ongoing monitoring of applications and infrastructure.

As illustrated in Fig. 2.5, to attain the aforementioned elements, DevOps relies on three
fundamental pillars as its core foundation [31]:

1. Collaborative Culture - At the heart of DevOps is the dissolution of specialized teams
like developers, Ops, and testers that worked separately. Instead, multidisciplinary
teams with a shared objective come together to swiftly deliver added value to the product

2. Processes - Achieving swift deployment requires the implementation of agile methodolo-
gies, featuring iterative phases for enhanced functionality, quality, and prompt feedback.
The DevOps process comprises several key stages such as planning, development, con-
tinuous integration, delivery, deployment, and monitoring.

3. Tools - The selection of tools and products holds immense significance. The conventional
approach of segregated teams, each relying on their specialized tools, has given way to a
more integrated and cooperative toolset, bridging communication gaps.

12



Figure 2.5: DevOps Axes [31]

2.6.2 CI/CD

CI is the critical initial step for ensuring consistent and high-quality software. It involves
maintaining the software in a deployable state, including rigorous checks to ensure that the
code compiles and maintains a reasonable level of quality at all times. This approach validates
software immediately upon check-in to source control, offering assurance that it functions
correctly and remains reliable even as new code is added [33].

CI relies on storing application code in a central repository that keeps track of all the
changes committed by the developers. Each code change initiates an automated build process,
generating a consistent build artifact stored in a core repository. This reproducible build
process guarantees the same outcome with every execution from the same code [34].

CD builds upon CI by maintaining a consistently stable code mainline, allowing production
deployment at any time. This reliability is upheld through automated deployment and testing,
ensuring a single artifact is built and stored centrally. Testing and deploying across different
environments follow the same standardized process, using the identical artifact. Automated
testing on a production-like test machine ensures consistency, backed by comprehensive tests
to meet both functional and nonfunctional requirements [34].

In conclusion, through the implementation of CI and CD, the software supply chain is
automated, allowing for the rapid delivery of application code to production. This, in turn,
yields secure and higher-quality code, delivers faster feedback, and ultimately shortens the
time-to-market for the product [34]. Fig. 2.6 portrays the CI/CD pipeline.

13



Figure 2.6: CI/CD Pipeline [31]

2.6.3 Harnessing DevOps and CI within a NFVContext

As refered in Section 2.1, organizations need to adapt their strategies to align with
demands for speed, automation, flexibility, rapid time-to-market, and cost-efficiency, due to
the requirements of 5G.

The deployment and configuration of a complete NFV infrastructure for obtaining its full
benefits is a complex and time-consuming endeavor. To simplify NFV operations, automation
is crucial, reducing human intervention, eliminating barriers between VNF providers and
service providers, and enabling incremental VNF deployment [35], [36].

DevOps plays a crucial role in this context. It represents a modern software engineering
culture characterized by automation, collaboration, and communication between software
developers and network infrastructure operators. DevOps offers a well-defined set of method-
ologies, tools, and platforms for programming and service execution [35], [36].

When integrated with NFV service providers, DevOps reduces the manual effort required
for onboarding VNFs and configuring infrastructure by automating processes. As a result, it
accelerates the time-to-market for new services [35], [36].

Combining DevOps with NFV unlocks the potential to [35]:

• Automate the deployment and testing of newly updated network services.
• Perform testing and benchmarking on components within the NFV infrastructure.
• Achieve efficient VNFs onboarding, deployment, scaling, and resilience through policy-

driven, rapid processes.
• Automatically fine-tune VNFs deployment parameters, including Central Processing

Unit (CPU) and Random Access Memory (RAM), during deployment or runtime.
• Enforce real-time monitoring of anticipated VNFs operational behavior within the NFV

infrastructure.
• Automatically adjust resource scaling and apply patches based on real-time monitoring

events.

14



The exploration of this topic can be further delved into by referring to ETSI GR NFV-TST
006 [37], which outlines the ETSI perspective on integrating CI/CD and DevOps methodologies
to validate VNFs.

2.7 Testing Automation Frameworks

Automation of the testing and validation processes is needed to minimize human inter-
vention as much as possible. Several automation tools exist to validate the behavior of an
application and provide results that application developers can consult. Their aim is to
increase the application’s test coverage, ensuring that the developed tests are reusable, easy
to maintain, and stable. Relying on Testing Automation Frameworks allows for the automatic
execution of code analysis, unit tests, integration tests, and more [38].

These frameworks enable improved testing efficiency and accuracy, resulting in reduced
testing application costs and offering the following benefits: (i) decreased human intervention,
(ii) code reusability in testing, (iii) reduced maintenance and test development expenses, and
(iv) enhanced test efficiency [38].

Currently, several frameworks are used, such as Selenium4, Cypress5, Appium6, Robot
Framework7, and WebDriverIO8, among others.

The Robot Framework will be described in more detail in this work, as it was the tool
used to develop the tests explained later in this document. This choice was made because the
tool was already in use in the 5GASP project.

The Robot Framework is an open-source, versatile, and user-friendly test automation
framework designed to automate test cases and processes. It has an easy syntax, utilizing
human-readable keywords [39].

One of the notable strengths of the Robot Framework is its extensibility. Users can
create custom libraries and keywords using Python or Java, allowing for the adaptation of a
wide range of systems and applications. It also includes built-in libraries for common tasks,
reducing the need for extensive coding in many cases [39].

Concerning the testing process output, Robot Framework produces Extensible Markup
Language (XML) and HyperText Markup Language (HTML) interactive report files.

2.8 Related Work

The European 5G Infrastructure Public Private Partnership (5GPPP) has several projects
focused on creating end-to-end 5G platforms for automated validation of Network Applications
and services for 5G developers and experimenters. In this Section it will be highlighted recently
completed or ongoing projects that aim to achieve this goal, such as (i) VITAL-5G9, (ii)

4https://www.selenium.dev/
5https://www.cypress.io/
6http://appium.io/docs/en/2.1/
7https://robotframework.org/
8https://webdriver.io/
9https://www.vital5g.eu/

15



EVOLVED-5G10, (iii) 5GMediaHUB11 and lastly the project that this dissertation is part of,
(iv) 5GASP.

2.8.1 VITAL-5G

The VITAL-5G project, which is part of the H2020 program (ICT-41-2020), runs alongside
5GASP and focuses on enhancing Transportation and Logistics (T&L) services. It involves
Small and Medium-sized Enterprisess (SMEs) and stakeholders in a collaborative effort to
provide an open, secure, and virtualized 5G environment enabling testing, validation, and
verification of Network Applications [40].

The project’s main goal is to establish a flexible experimentation facility with an intelligent
virtual platform and three distributed European 5G-testbeds with T&L facilities that cover
scenarios spanning from river and sea-ports to warehouses. These resources, along with
associated vertical infrastructure, allow real-life testing of T&L Network Applications using
5G connectivity [41].

To validate 5G services provides a Testing & Validation Framework and a detailed procedure
to do so that are explained throughout this Section. Also, the use cases are described in this
Section. In the context of this dissertation, VITAL-5G defined a methodology for defining
metrics that will be address.

Testing & Validation Framework

The VITAL-5G Testing & Validation Framework, illustrated in Fig. 2.7, provides advanced
testing capabilities using specialized monitoring and testing tools specific to the testbed, along
with globally accessible platform testing tools. This allows for the validation of network
and vertical services across the three VITAL-5G trial sites. Experimenters can access these
capabilities centrally through the VITAL-5G Portal. They can define their experiments, set
up specific test cases, configure validation parameters, and receive validation reports through
the portal [42].

The most crucial element of the entire process is the Testcase template, enabling experi-
menters to specify test details, configure network and infrastructure elements, define metrics
and Key Performance Indicators (KPIs), and outline validation conditions for the experiment
[42].

Two additional modules play a significant role in this process [42], [43]:

• Results Analytics (RA) - This module gathers experiment-generated metrics, com-
putes chosen KPIs designated by the experimenter, and verifies them against predefined
acceptable parameters.

• Performance Diagnosis (PD) - The PD module gathers, parses, and analyzes exper-
iment data, providing insights into the performance of different experiment components.
It identifies anomalies, traces the source of issues, and diagnoses potential problems or
performance reductions encountered during the experiment.

10https://evolved-5g.eu/
11https://www.5gmediahub.eu/

16



Figure 2.7: VITAL-5G Testing & Validation Framework [42]

Testing & Validation Procedure

The testing and validation process within the experimentation service involves defining,
executing, and monitoring tests. It includes collecting and processing metrics, ensuring
successful test execution, and evaluating outcomes against experimenter-defined validation
KPIs to validate the service under test [42].

Pictured in Fig. 2.8, the VITAL-5G Testing & Validation process is divided into four
distinct stages [42]:

1. Experiment Design - This phase involves defining the experiments in detail, whether
they relate to validate a specific T&L service or evaluate network performance under
specific circumstances. The Testcase Template is introduced here, providing the necessary
context and information for the specific tests.

2. Experiment Execution - In this stage, a range of local and global monitoring tools
are activated to continuously gather data in line with the measurements, requisites, and
KPIs stipulated in the Testcase by the experimenter. Real-time visualization of the
experiment’s progress is facilitated during this phase.

3. Results Evaluation & Service Validation - The network and/or service components’
performance undergoes evaluation, and service functionalities are validated in alignment
with the predetermined KPIs and the evaluation and validation criteria set forth by
the experimenter. During this phase, the RA module and the PD module are activated.
Their purpose is to analyze the gathered results, offering valuable perspectives on the
performance of the chosen components and potentially the overall end-to-end service.

17



4. Experiment Finalization - This phase concludes the experimentation activities,
ensuring proper closure, and features result visualization and reporting.

Figure 2.8: VITAL-5G Testing & Validation Procedure [42]

European Testbeds & Use Cases

VITAL-5G focuses on vertical organizations within the T&L sectors. It provides three
testbeds containing T&L facilities that focuses in scenarios ranging from river and sea ports
to warehouses. Each facility is enhanced with pre-commercial 5G network installations. These
networks supply the necessary mobile connectivity for T&L services and incorporate advanced
features like network programmability, slicing, and monitoring. Additionally, they are coupled
with virtual computing resources to execute service applications. This approach enables the
controlled and adaptable replication of various operational conditions. As a result, vertical
organizations can design and execute diverse experiments to validate the functionalities and
performance of their T&L services in specialized and adjustable 5G environments [44].

The project revolves around three distinct use cases [41], [44]–[46]:

• Automated Vessel Transport - This use case focuses on demonstrating the automation
of logistics transport via vessels, utilizing advanced 5G communication technology. The
Port of Antwerp serves as the execution site, where 5G connectivity and slicing are
leveraged to control semi-autonomous vessels within the challenging port environment.
Real-time transmission of high-bandwidth camera feeds and sensor data occurs from
the vessels to a central command center, which then sends real-time steering commands
back to the vessels.

• 5G Connectivity and Data-Enabled Assisted Navigation Using IoT Sensing
and Video Cameras - This use case involves the implementation of an assisted
navigation system using IoT sensing and video cameras. The system is installed at a
river port, the Galati port, as well as on ships and barges. The objective is to enhance

18



safety and security during river port operations and ship navigation, even in adverse
weather and water conditions.

• Automation and Remote Operation of Freight Logistics - Based in a Greek
depot, this use case covers all standard warehouse operations, including receiving,
stocking, picking, checking, packaging, labeling, and shipping services. The aim is to
showcase the applicability of 5G technology within a comprehensive logistics context.
The integration of Automated Guided Vehicles (AGVs) in this operational system aims
to optimize warehousing processes.

Overall, these use cases collectively showcase the potential of 5G technology to revolutionize
various aspects of transportation and logistics, from vessel control and navigation to warehouse
operations.

KPIs

The project’s extensive range of pilots and the inclusion of diverse 5G ecosystem elements,
such as the 5G radio, core network, NFV infrastructure, VITAL-5G platform, and services for
each use case, prompted a analysis of essential metrics. These metrics are pivotal for evaluating
and validating the performance of 5G-boosted vertical services in port and warehouse contexts
[47].

To achieve this, four distinct metric categories were established, each aligned with the
broader scope of the 5G ecosystem, they are related to: network, infrastructure, platform,
and service metrics [47].

A standardized methodology was created to define metrics across all categories, including
metric type, measurability, priority, description, testbed components, stakeholders, mea-
surement frequency, source, and specifics. Non-Functional metrics assess vertical service
deployment and management efficiency, unrelated to end user experience, e.g., vessels or
AGVs. Functional metrics assess network, infrastructure, platform, and service performance,
directly impacting user perception. Measurability and priority are evaluated for each metric to
determine complexity and importance in delivering 5G-powered vertical services in VITAL-5G.
Involved testbed components pinpoint measurement elements, while parties responsible for
metrics are tracked. Measurement granularity reflects real-time or non-real-time assessment,
often in seconds, minutes, or days. Measurement description are detailed in test cases,
outlining procedures for tests and data collection [47].

Fig. 2.9 shows how Vital-5G defines metrics.

19



Figure 2.9: Methodology of defining metrics in the Vital-5G [47]

2.8.2 EVOLVED-5G

The EU-funded EVOLVED-5G project, under the ICT-41-2020 call, aims to upgrade
the 5G experimentation potential in Europe and materialise the openness of 5G to vertical
industries by creating a Network Application development and verification environment[48].
This project will mainly contribute towards the fourth industrial revolution or Industry 4.0,
allowing for the development of industry-oriented Network Applications which will be tested,
validated and certified in a vendor-agnostic experimentation platform. It builds upon the
concept that SBA allows the exposure of network services and capabilities through the NEF,
a border function of the 5GC network, that enable Network Applications to consume APIs
that combined compose a new service [49].

The components of the EVOLVED-5G facility are structured into clusters referred to
as environments, each corresponding to a specific stage in the lifecycle of the Network
Application. These stages include development and verification (Workspace Environment),
validation (Validation Environment), certification (Certification Environment), and release
to the Marketplace, which is also treated as an environment. Moreover, the 5G Non-Public
Networks (NPN) Environment plays a crucial role in facilitating both the validation and
certification stages within the Network Application’s lifecycle [50].

Figure 2.10 illustrates the architecture of the EVOLVED-5G system, followed by an
elaboration on the included environments [50], [51].

• Workspace Environment - This environment functions as a collaborative space
for Network Application implementation, equipped with tools and functionalities to
facilitate development and verification for functional testing of Network Applications.
It involves two distinct phases in the Network Application lifecycle: Development and

20



Figure 2.10: EVOLVED-5G System Architecture [50]

Verification.
• Validation Environment - This environment focuses on enabling the connection

between the Network Application and the Vertical Application through controlled
scenarios that simulate real operating conditions for the Network Application. Referred
to as the Validation phase in the Network Application lifecycle, this stage involves a
series of coordinated tests agreed upon with the Vertical Application provider. The
objective is to ensure the correct functioning of both the Network Application and the
Vertical Application in a more realistic setting that utilizes an actual 5G infrastructure.
Notably, the validation process covers the entire service provisioning chain, evaluating
not only Network Application functionality but also assessing the infrastructure as a
whole, including the extraction of performance KPIs.

• Certification Environment - In contemporary virtualized network domains, the
significance of conformance tests and quality evaluations cannot be overlooked. This
environment is explicitly tailored to fulfill this purpose. It comprises functional blocks
that contribute to transforming a validated Network Application into a certified one,
ensuring its compatibility with a 5G Stand Alone (SA) Network.

• Marketplace Environment - Within this environment, the final stage of the Network
Application lifecycle occurs: Certified Network Applications are released to the market,
becoming accessible to end users.

• 5G-NPN environment - This environment’s primary goal is to equip Network Ap-
plications with essential 5G native or northbound APIs. It also provides the necessary
connectivity infrastructure to support the objectives of the Validation and Certifica-
tion environments. It comprises both hardware and software components essential for

21



executing the validation and certification stages. These components involve ensuring
Network Application interoperability with the 5G network, devices, and management
and orchestration functionalities, among others. This layer, provides NEF and Common
API Framework (CAPIF) services.

Interconnecting these five environments is made possible through (i) CI/CD services, (ii)
a central repository referred to as the Open Repository, which includes repositories for both
source code and artifacts, and (iii) an added element that hosts services promoting community
development within the EVOLVED-5G ecosystem [50]. This configuration is depicted in
Figure 2.11.

Network Application Lifecycle

The relation between the architectural components and the different phases of the Network
Application lifecycle is depicted in Fig. 2.11.

Subsequently, a brief description of each phase is provided [50], [51]:

• Development phase - Development of the Network Application takes place during
this step.

• Verification phase - During this stage, the application’s compatibility with the 5GC
APIs is verified through testing.

• Validation phase - In this phase, both the Vertical Application and Network Appli-
cation are jointly deployed within an authentic 5G infrastructure, and their combined
functionality is subject to testing.

• Certification phase - This phase englobes the execution of certification audits.
• Publication phase - Certified Network Applications are readied for sale to end-users

through publication and management in the Marketplace.

Figure 2.11: Network Application lifecycle phases and relation with architectural components [50]

Verification, Validation & Certification Phases

The toolkit employed to guarantee Network Application alignment with the EVOLVED-5G
concept and framework involves a three-tier testing procedure, situated at the core of the

22



system through the Workspace (via the verification process), the Validation Environment,
and the Certification Environment [50].

During the verification phase, initiated and monitored by the developer through the
Command-Line Interface (CLI) Tool, interaction with the CI/CD Services component takes
place. This component, functioning as a host and overseer facilitated by an orchestrator,
manages essential verification tests crucial for evaluating Network Application functionalities,
which include building, deploying, and destroying pipelines for Network Application containers
[50].

Furthermore, the CI/CD Services component conducts other vital tasks, including static
code analysis, vulnerability scans, connectivity assessments with NEF and CAPIF services ,
and validation of the anticipated communication ports for the Network Application, particularly
with Vertical Applications and other services [50].

Within the verification phase, a diverse range of verification tests are executed by the
CI/CD Services component. This includes assessments of code correctness, containerization
success, 5G connectivity, and vulnerability scans. To facilitate this process, the CI/CD
component handles the construction and deployment of the Network Application, as well as
the NEF Emulator and CAPIF tool [50].

Upon completion of the verification process, the CI/CD Services component generates a
results report. This report is then communicated back to the developer and presented through
the CLI for review and consideration [50].

The validation phase follows the verification phase, with series of testing steps that
build upon the verification process. It includes all the tests conducted during verification,
serving multiple purposes. Firstly, it provides an evaluation of the Network Application,
allowing developers to iteratively enhance its quality before moving to validation. Secondly,
the validation phase tests the Network Application in a real environment, offering distinct
insights compared to the verification phase. Thirdly, it permits auditing of results by platform
operators, enabling early issue detection. Lastly, the validation ensures Network Application’s
operation under genuine or near-real network conditions, particularly with at least one Vertical
Application [50].

The Validation Environment’s frontend consists of the Dispatcher, an OpenAPI12 im-
plementation that manages authentication, experiment execution, and results retrieval. It
provides a centralized entry point that handles user management and redirects requests to the
appropriate backend component. Overseeing experiment execution, the Experiment Life-Cycle
Manage (ELCM) defines the structure of test cases, outlining tasks and the sequence of actions
required for conducting experiments. Results are stored in the Results Catalogue and can be
analyzed using the Analytics Module, a web interface offering statistical analysis tools [50].

The validation process tests both Network Application functionality and performance in
real network conditions, including Network Application-Vertical Application integration. Key
aspects assessed during validation include [50]:

1. Successful completion of all verification phase tests.
12https://www.openapis.org/

23



2. Testing the Network Application within a real infrastructure and under actual or
near-real network conditions in a 5G NPN.

3. Testing Network Application functionality for integration with a Vertical Application,
whether it’s specific to one Vertical Application or serves multiple.

4. Evaluating Network Application performance based on agreed-upon KPIs among Net-
work Application developers, platform owners, and Vertical Application providers.

Finally, overseen by the Certification Authority via an accredited Certification lab, the cer-
tification phase is initiated by the entity seeking certification, usually the Network Application
developers [50].

The proposed certification criteria are categorized into the following pillars [50]:

• Software Product Quality - Revolves around ensuring Network Applications’ com-
pliance with 3GPP standards for seamless integration and compatibility with 5G SA
mobile core networks.

• Security - The certification goals related to security are centered on identifying vul-
nerabilities within the source code and deployed artifacts of Network Applications.
Detecting vulnerabilities is essential to prevent breaches, fraud, maintain data privacy,
and isolate data from the execution environment. Activities such as code auditing and
application security analysis play a vital role in securing data exchange between Network
Applications and the NEF core function, safeguarding sensitive user information.

• Marketplace - The Marketplace marks the ultimate stage in the commercialization
of Network Applications, serving as the platform for publishing certified Network
Applications. Similar to public cloud providers, these Marketplaces have specific policies
that must be met before the Network Applications are published.

The certification execution environment within the EVOLVED-5G is treated as separate
from the Validation Environment. Although they can share infrastructure and utilities, they
operate with distinct configurations and provisioning setups [50].

While the validation process is thorough and accompanies minor updates to Network
Applications, the certification process occurs infrequently and is prompted solely by specific
recommendations or mandates. This infrequent execution approach helps keep costs low.
Certification activities could take place periodically to enhance reinforcement or coincide with
major software releases [50].

CAPIF Services

As the CAPIF Tool is one of the outcomes of the EVOLVED-5G project and it’s part of
the validation and certification of Network Applications, a brief description will be done in
the following paragraphs.

The standardization of CAPIF ensures a singular reference model for provisioning services
through APIs in 3GPP systems. The potential of this framework is due to the need for
interaction between vertical industries and mobile networks [52].

More in detail, the CAPIF Tool will is a software component that emulates the CAPIF
APIs of Release. 17 of TS 23.222 [53]. At its core, it implements REST APIs in order to

24



provide CAPIF services to Network Applications. CAPIF Tool enables Network Applications
to consume CAPIF services to register Network Applications as API Invokers and consume
5G System APIs exposed, such as those exposed by the NEF APIs in the Emulator [51].

NEF-Emulator

In the context of the EVOLVED-5G ecosystem, NEF services hold crucial significance for
the 5G NPN. The primary component of the project, Network Application, heavily relies on
NEF services to expose business APIs to vertical applications. Hence, it’s imperative that
Network Applications can communicate seamlessly with the NEF services offered by the 5GC
network. In order to expose the network’s capabilities, NEF needs to interface with various
NFs within the 5GC, referred to as Southbound APIs [52].

Currently, establishing communication with the southbound interface presents a significant
hurdle, given that both the Athens and Malaga Platforms do not fully implement the SBA
or the southbound interfaces required by NEF to provide standardized APIs. Nevertheless,
the Emulator conquers this obstacle by generating simulated events. To elaborate, the NEF
Emulator can be segmented into three distinct parts, as visualized in Fig.2.12. A comprehensive
description of the primary characteristics of these components is described below [30], [52],
[54]:

• Exposure Layer - It focuses on providing NEF APIs for 5GC functions, i.e, Northbound
APIs, including monitoring events and session establishment with QoS. Additional APIs
can be added later to this layer.

• Simulation Environment - Offers a geolocated environment for simulating 5G network
scenarios, allowing users to test service APIs. This includes simulating UE movement for
location monitoring, offering flexibility for Network Application developers to customize
scenarios.

• Common management Layer - This layer includes token-based user authentica-
tion/authorization using OAuth2.0. Users can create accounts, and each Network
Application developer has an isolated environment for configuration.

Moreover, the EVOLVED-5G NEF Emulator provides NEF services implemented as
RESTful APIs, the ones that were implemented are defined in TS29.122 [55] and are [30],
[50], [56]:

• MonitoringEvent API - This API allows a Network Application to access several
events which may occur in the 5GC. Some preeminent examples include location
reporting, loss of connectivity, and UE reachability. For instance, in the event of a
UE handover to a neighboring cell, NEF notifies the Network Application about this
occurrence, providing it with information about the new cell identifier to which the UE
has migrated.

• AsSessionWithQoS API - The AsSessionWithQoS API will allow a Network Applica-
tion to choose a predefined QoS profile from a list retrieved from the 5GC. Moreover,

25



Figure 2.12: EVOLVED-5G NEF Emulator Architecture [30]

a Network Application can indicate the desired level of QoS, e.g., jitter, latency, and
priority, for a given IP traffic flow.

The NEF Emulator is implemented using FastAPI13, a modern, high performance web
framework for building APIs with Python 3.6+. It is fully compatible with the open API
standard, OpenAPI14 and also provides interactive API documentation based on Swagger
UI15, that can be seen in Figure 2.13 and Redoc16. Almost all of its features are developed
following the RESTful API features [54].

For storing and preserving data, the emulator uses PostgreSQL which is a free and
open-source relational database management system. The feasibility of administration and
monitoring of the database is accomplished through pgAdmin, an open-source administration
and development platform for PostgreSQL.

To store and preserve data, the emulator uses PostgreSQL17, which is a free and open-source
relational database management system. Administration and monitoring of the database are
achieved through pgAdmin18, an open-source administration and development platform for

13https://fastapi.tiangolo.com/
14https://www.openapis.org/
15https://swagger.io/tools/swagger-ui/
16https://redocly.com/redoc/
17https://www.postgresql.org/
18https://www.pgadmin.org/

26



Figure 2.13: EVOLVED-5G NEF Emulator Swagger UI [54]

PostgreSQL.
The Dashboard displays details regarding the simulation’s components, such as UEs,

Cells, and predefined paths, which have been generated by a specific user. The Dashboard is
presented in Figure 2.14.

Figure 2.14: EVOLVED-5G NEF Emulator Dashboard [54]

For the simulation of the network a configurable set of 5G small cells are used. The details
of the cell include cell’s unique identifier, static geolocation and the coverage radius. Moreover,
base stations are implemented to connect all the cells. It is important to note here that, the
network does not reproduce a real operator deployment. To this end, the network scenario can

27



be dynamically configured by any user. Specifically, users can create their own base stations,
cells, UEs and predefined paths.

To simulate the network, a customizable collection of 5G small cells are used. These
cells are characterized by their unique identifiers, fixed geolocations, and coverage radius.
Additionally, base stations are integrated to interconnect all the cells. It’s crucial to emphasize
that the network doesn’t replicate a real-world operator’s deployment. Consequently, users
have the flexibility to dynamically configure the network scenario. More specifically, users can
generate their own base stations, cells, UEs, and predefined paths.

Figure 2.15: EVOLVED-5G NEF Emulator Map [54]

After the successful creation of the scenario for the emulation, the relevant information
details are depicted in the Map page using OpenStreetMap19. At the bottom of Map page,
there is an API User Interface that shows the monitoring of real time requests/notifications
that the NEF APIs receive and generate. Users can experiment with NEF services either
from the Swagger UI or directly through their application.

As previously mentioned, the primary objective of the verification process is to confirm the
seamless communication between the Network Application and the 5G network. Consequently,
the Network Application engages with the NEF Emulator to mimic this behaviour.

Three sets of tests are currently being defined, and can be seen in Figure 2.16. T1 and T2
refer to any communication initiated by the Network Application with synchronous responses
from the 5G NPN infrastructure[57]. Here, services are exposed through the NEF emulator
and CAPIF tool, utilizing NEF and CAPIF APIs respectively. T3 focuses on verifying
asynchronous communication between the Network Application and 5G services, initiated by
the 5G network and implemented through appropriate callback functions within the Network
Application. For T3, the relevant Network Application REST API is put into test[57]. In the
case of T1 and T2, verification tests are defined by exposing part of the NEF/CAPIF API

19https://www.openstreetmap.org/

28



invocation calls as REST APIs, enabling integration tests between the Network Application
and 5G components. Alternatively, when this approach is not desirable, the relevant tests
for the corresponding API calls are defined within the Network Application. In practice, the
verification tests for a Network Application are established as unit tests between the Network
Application and the exposed NEF and CAPIF APIs [57].

Figure 2.16: Network Application tests [57]

2.8.3 5GMediaHUB

The 5GMediaHUB project, funded by H2020 (ICT-41-2020), aims to speed up the testing
and validation process of 5G-enabled media applications and Network Applications developed
by third-party experimenters. This will be achieved through a facility that offers an open,
integrated and well-equipped experimentation environment [58].

To accomplish this, 5GMediaHUB presents an architecture where its main components are
(i) the Experimentation Tools layer, (ii) the NetApps & Slice layer, (iii) the 5G infrastructure
layer (iv) and the UE layer. Fig. 2.17 depicts 5GMediaHUB’s architecture [59].

Regarding the validation of 5G services, 5GMediaHUB has defined KPIs divided in three
groups, (i) the Core 5G KPIs that are related to the 5G network performance, (ii) the
Service KPIs that will be leveraged to quantify the performance of media applications when
deployed at 5G infrastructures (iii) and the Platform specific KPIs, to quantify the effect of
the experimentation facility in reducing the service creation and experiment setup times [60].
Each KPI is associated with a baseline value and a target value, which correspond to what
was possible before and after leveraging 5G technologies and innovations employed within the
project [61].

29



Figure 2.17: 5GMediaHUB Logical Architecture [59]

Experimentation Tools Layer

The Experimentation Tools Layer is composed by several components that are depicted in
Fig. 2.18. These components are [59]:

• User Management Module - responsible for the authentication and authorization of
all other modules in a single-sign on way;

• Experimenters Portal - user interface of the experimenter for setting up an experiment
and visualizing the data KPIs;

• Test, Planning & Reservation Engine - engine responsible for reserving all the
necessary resources for running an experiment;

• Validation, Testing & Verification Engine - in charge of validating if the Network
Applications meet the required KPIs and Service Level Agreement (SLA) guarantees;

• Continuous QoS/QoE Monitoring Engine - engine for calculating the necessary
KPIs based on the data collected by the experimenter’s portal. KPIs are then exposed
through REST APIs to 3rd party applications for use by the application developers;

• NetApps Repository - enables the developer to design and build Network Applications,
reuse already existing ones for extending their use and finally onboard them on the
Cross-Domain Service Orchestrator (CDSO);

• Data Collector - module responsible for collecting the data and KPIs from the
respective data sources, making them uniform, calculating the necessary KPIs and
storing the data in the database.

The Network Applications need to include (i) the advertised KPIs, allowing the workflow
to check if they’ve been met, (ii) the Jenkinsfile that will describe the steps of the automated

30



Figure 2.18: Overall Experimentation Tools Layer Architecture [59]

pipeline (iii) and one or more test applications that will utilise the Network Application and
will run during the workflow [61]. The Validation and Verification Engine will evaluate on
the test results by comparing the KPIs measured during the tests with the advertised KPIs
from the Network Applications and the results will be either Pass or Fail, then they will be
propagated to the data collector and the Netapps Repository[61].

Network Applications

The project strongly focuses on the media vertical sector, catering to applications that
involve extremely high-resolution video streaming (4K/8K) with elevated frame rates. It also
includes Augmented Reality (AR), Virtual Reality (VR), and Extended Reality (XR), along
with 360-degree immersive experiences, and more [62].

Having mentioned that, 5GMediaHUB has outlined three distinct usage cases, each with
multiple scenarios. The first use case relates to AR, VR, and XR applications, aiming to
provide a foundation for immersive technologies. The second case involves Smart Media
Production, designed to guarantee and assess the SLA compliance of these applications.
Lastly, the third case is centered around Smart Media Content Distribution, intended to
experiment with cross-domain media distribution through the Experimentation Facility, while

31



also evaluating its impact on QoS and Quality of Experience (QoE) [60], [63].

Immersive 360º VR Media Experiences

Taking into account the extensive range of KPIs established by 5GMediaHUB, the Immer-
sive 360º VR Media Experiences scenario, which falls within the ambit of the first use case,
will serve as example.

In this setting, individuals using VR headsets have the opportunity to fully engage with
a virtual environment, enabling them to explore their surroundings in a 360º manner. The
system configuration for this particular scenario facilitates the presentation of remote speakers
and their audience within a virtual conference setting [60].

Given the focus on video quality and transmission in this scenario, the upcoming KPIs
mostly concern video quality and the transmission of videos across 5G networks. So for this
case, 5GMediaHUB has defined to measure the following set of KPIs:

• Motion-to-Photon (MTP) Latency - measures the time between the movement of
the user, since they are using VR helmets, and the video content that is displayed.

• Rendered Video Quality - measures the video quality for the user.
• Missing display area - measures the maximum percentage of pixels without contents

under normal user behaviors.
• Application Latency - measures the full time where a position request from the

headset is answered with a new image buffer.
• Frame Error Rate - measures the percentage of video frames with errors.
• Video jitter - measures the maximum variation on the video frame rate measured over

time.
• Video Resolution - measures the total amount of pixels transmitted per frame in

adaptive streaming scenarios.
• Peak throughput Downlink and Network Bandwidth Downlink - measures the

peak throughput and network bandwidth downlinks.
• Reliability and Availability - measures if the application works as expected and its

uptime and accessibility.

2.8.4 5GASP

The 5GASP project aims at shortening the idea-to-market process through the creation of
a European testbed, fully automated and self-service. Enabling SMEs to develop Network
Applications, test them under close-to-real conditions and certify them before they finally
reach their targeted Network Operators and/or Vertical industry customers [4], [64].

This dissertation surges in the context of 5GASP and the more important outline in it,
taking into the account the work that will be implemented, is the CI/CD pipeline which will
be described in the following paragraphs.

5GASP has a CI/CD service where when a Network Application is onboarded on the
Portal, the CI/CD pipeline is triggered initializing the tests’ execution. These tests are being

32



monitored and when finished the testcases results are sent back, validating the Network
Application.

In detail, the onboarding and deployment process of a Network Application is triggered
by the interaction of the developer with the 5GASP Portal. 5GASP enables the onboarding
of a bundle containing the Network Application and a Testing Descriptor, which is a YAML
Ain’t Markup Language (YAML) file that allows developers to provide specifications of the
tests they wish to perform. Once the information is onboarded to the Network Application
Onboarding and Deployment Service (NODS), the CI/CD Service is triggered. This service,
which is illustrated in Fig. 2.19, is composed by some core elements [64]–[66]:

• CI/CD Manager - Is the entry-point for the CI/CD Service. It is available via a REST
API, implemented using FastAPI, and is triggered by the NODS. After the Network
Application’s deployment, the NODS submits a new request to the CI/CD Manager,
which will create a configuration file to be submitted to the CI/CD Agents located on
the testbeds where the Network Application was deployed. The CI/CD manager also
stores the results on the Results Repository. When the validation process ends, the
CI/CD Manager is responsible for informing the NODS so the developers can get the
results.

• CI/CD Agents - Are responsible for performing the tests on the Network Applications.
Each testbed has a CI/CD Agent deployed on the Network Slice where the Network
Applications will be deployed, and it’s registered in the CI/CD Manager, so it knows
how to communicate with it. The Agents receive the configuration file from the CI/CD
Manager, detailing the testing process. They are responsible for triggering the metrics
collection mechanisms in the Network Applications, gathering the tests from the LTR,
performing them on the Network Applications, and informing the CI/CD Manager of
the results of the tests which will be stored in the Results Repository.

• Local Test Repository - The LTRs store all the tests that can be performed in a
facility and make them available for the CI/CD Agents to gather and execute them on
the Network Applications.

• Test Results Visualization Dashboard - The TRVD enables the Network Application
developers to get the outcomes and outputs of the testing and validation phase. It will
present the outputs and results stored in the CI/CD Manager’s Results Repository.

Regarding the tests performed on the Network Applications, two types of tests are defined:
predefined-tests and developer-defined tests. Predefined-tests are already onboarded in the
5GASP ecosystem so that all the developers can use them to validate global aspects, such
as communication latencies or the bandwidth of the testbed. Developer-defined tests are
onboarded by the Network Application developers and address the behavior and singular
aspects of the Network Application they developed [67].

For a more comprehensive understanding of the 5GASP architecture, refer to Fig. 2.20
where it is illustrated.

33



Figure 2.19: 5GASP’s CI/CD Service High Level Architecture [67]

5GASP has several facilities, which are the Aveiro, Bucharest, Patras, Bristol, Ljubljana
and Murcia facilities. All these facilities are connected to the 5GASP Portal and to the NODS.
In the Aveiro facility is where the OSM release 12 is deployed.

Figure 2.20: 5GASP Architectural Workflow [67]

34



2.9 Work Proposal

Now that the background concepts were introduced, a work proposal must be conceived.
Thus, this section presents the problems addressed by this dissertation and presents a work
proposal to solve them. As mentioned before, this dissertation’s goals fall within the scope of
the 5GASP project.

As previously stated Section 2.8.4, 5GASP aims to provide a fully automated and self-
service testbed, which shortens the idea-to-market time. To do so, 5GASP has already
implemented a testbed featuring a CI/CD pipeline for conducting tests to validate Network
Applications. A set of pre-defined tests has also been developed to test mainly the VNF and
NS packages, covering elements such as the VNF and NS descriptors, the VNF Juju Charms,
among others.

Nevertheless, Network Applications need further validation in order to become certified
and to be ready for deployment in a real 5G infrastructure. This falls into the two objectives of
this dissertation: (i) the creation of additional tests designed to validate Network Applications
in accordance with the 5GASP testing scopes and consequently (ii) the expansion of the NEF
emulator to enable the creation of tests that take advantage of it.

Furthermore, the additional tests defined in this dissertation will mainly fall into the
5G Readiness Testing Scope defined by 5GASP. This scope purpose is to validate the
communication between the Network Applications and the 5G Network, thus the need for the
NEF, which is one of the components of the 5G architecture and not only provides extensive
network information but also enables network changes to be requested. Hence, it makes
it highly attractive to Network Applications in terms of interacting with the 5GC, as the
interaction process is very straightforward. This functionality will be provided through the
NEF Emulator.

Regarding the emulator, Northbound APIs will be added to expose a wider range of
network capabilities to the Network Applications for them to consume. The NEF emulator
will serve as the backbone for the tests developed in this dissertation. However, part of the
validation phase will require the logging of the used endpoints, to validate the interaction
with the Network Applications. To achieve this, an API will be developed along side the NEF
emulator. Additionally, it is essential to integrate the NEF emulator into the existing CI/CD
pipeline.

In addition, from the tester’s point of view, a Network Application is a black box. In other
words, there is no visibility or control over the internal operations of a Network Application.
However, the tester needs to control the flow of actions to avoid running tests immediately
upon startup, since essential components required for testing may not be available. To solve
this problem, there is a need for an additional API that will be provided as a standard to all
Network Applications, enabling them to define the logic for initiating interactions between
Network Applications and the NEF emulator.

Chapter 3 addresses the general architecture, while Chapter 4 addresses the implementation
of all the elements and tests developed.

35



2.10 Chapter Summary

This chapter begins by highlighting the challenges encountered in traditional networks,
including rising costs attributed to their lack of adaptability and flexibility in meeting evolving
network demands.

Section 2.2 introduces the NFV paradigm, proposed by ETSI. NFV enables the separation
of NFs from their physical infrastructure, providing greater flexibility, scalability, and faster
deployment capabilities. These advantages lead to a reduction in time-to-market.

In order to facilitate the adoption of the NFV paradigm, ETSI introduced the MANO
framework, which is detailed in Section 2.2.1. This framework plays a crucial role in managing
and orchestrating NFs, with its primary components being the NFVO, the VNF Manager and
the VIM. The MANO framework got widely adopted, leading to the appearance of numerous
implementations. Sections 2.3.1 and 2.3.2 provide insights into some of the most successful
implementations, with OSM standing out.

Section 2.4 introduces the concept of a Network Application, which has gained acceptance
within the 5G community. It refers to a collection of services deployed over 5G infrastructures
that simplify the implementation and deployment of vertical systems on large scale.

The 5GC System Architecture, specified by 3GPP is introduced in Section 2.5 where the
NFs that compose it are described. Furthermore, the NEF is referenced in more detail in
Section 2.5.1. NEF provides secure means for exposing capabilities provided by other 5GC
NFs to external systems.

Sections 2.6.1 and 2.6.2 present the concepts of DevOps and CI/CD, respectively. In
Section 2.6.3, these two concepts are integrated within an NFV environment, offering a more
smooth transition to NFV environments.

Section 2.7 presents several Testing Automation Frameworks and dives deep in the Robot
Framework, which was used in this work.

Section 2.8 presents other works developed in the context of this dissertation. Section
2.8.1 presents the VITAL-5G project, which offers a Testing & Validation Framework, and
introduces the Testcase template that serves to specify the test details, configure network
elements, and define metrics and KPIs. This project also introduces a way for defining metrics
to validate Network Applications. Section 2.8.2 presents EVOLVED-5G, which introduces
the CAPIF Tool, the NEF Emulator and an architecture to validate and certificate Network
Applications that use the emulator to validate some aspects of the interaction with the 5G
infrastructure. 5GMediaHUB is presented in Section 2.8.3 and focuses on Media Applications.
The architecture for the validation is presented and an example of one Network Application
and its KPIs are shown. The last project referenced is 5GASP, in Section 2.8.4, which is the
project where this dissertation is inserted. The overall architecture of the project is presented
alongside a detailed explanation of the CI/CD Pipeline.

Lastly, Section 2.9 presents the work proposal of the dissertation, where the two main
objectives are discussed: (i) the creation of additional tests designed to validate Network
Applications and consequently (ii) the expansion and integration of the NEF emulator into

36



the 5GASP CI/CD pipeline to enable the creation of tests centered on it.

37





CHAPTER 3
Architecture

Section 2.9 presented the work proposal for this dissertation. Within that chapter, two
distinct objectives were outlined: (i) the development of tests designed to validate Network
Applications and (ii) the extension of the NEF emulator to enable the creation of tests that
utilize it.

The purpose of this chapter is to introduce the architecture that has been devised to
accomplish the two aforementioned objectives.

First it is presented how the proposed components, namely the NEF emulator, the Report
API and the Mini API interact with each other. Afterwards, an architecture is proposed
integrating them on the 5GASP CI/CD pipeline.

3.1 Problem Statement

Network Applications must undergo validation to guarantee they meet the anticipated
quality and performance criteria, which are determined by both the application’s intended
purpose and the environment in which it will be used.

Throughout the course of this dissertation, the 5GASP project established various certifica-
tion criteria with varying levels of priority. Among these, the criteria identified as mandatory
serve as the fundamental requirements for certifying a Network Application. In the context of
this dissertation, the following mandatory criteria hold the utmost significance [68]:

• Should follow the NFV model [7].
• Should follow relevant 3GPP security definitions and recommendations.

Taking into account all the project’s definitions, five testing scopes were defined: (i) 5G
Readiness Testing, (ii) Security & Privacy Testing, (iii) Performance & Scalability Testing
and (iv) Availability & Continuity Testing [68].

Considering the previously mentioned definitions, the 5G Readiness and Security & Privacy
testing scopes carry greater significance and must be fulfilled by the Network Applications

39



in order for them to be certified by the project. Thus, this dissertation focuses on these two
scopes.

Another aspect to consider is that, as previously discussed in Chapter 1, there is currently
no actual implementation of NEF. The existing components consist solely of the standards
defining Northbound APIs. Additionally, the standards for Southbound APIs, which facilitate
communication between the NEF and the NFs within the 5GC, are in their early developmental
stages. Nevertheless, the EVOLVED-5G project has developed an emulator for the NEF, which
includes the implementation of two APIs, the MonitoringEvent API and the AsSessionWithQoS
API based on the TS29.122 [55] standard. This emulator enables the emulation of Southbound
behavior and offers the opportunity to incorporate additional Northbound APIs to expose
further capabilities.

Regarding the testing scopes, 5G Readiness entails certifying the Network Application
against the 5G Network, involving rigorous testing of its communication and interaction
capabilities. This is where the NEF emulator plays a crucial role, as NEF exposes the 5G
Network’s capabilities through Northbound APIs, allowing the simulation of communication
between Network Applications and the 5G Network.

The first proposal of this dissertation, consists of extending the Northbound APIs of the
NEF emulator, according to the standards, and to offer more network capabilities for external
applications to consume. Additionally, in the context of this work, they will serve to validate
if a Network Application follows the correct way of communicating with the 5G infrastructure.
To achieve this, Network Applications must make requests to the Northbound APIs, and these
interactions should be recorded for validation in the final stage.

The initial question that this raises is how to log the requests. The answer was to develop
an API, the Report API, that offers the possibility to create, delete, and retrieve a shared file
between the Report API and the emulator. Using this solution, the NEF emulator, through
an implemented decorator, intercepts requests made to the Northbound APIs. It captures
both the request and the corresponding response, and then records this information in the
shared file previously mentioned. This record includes details such as the names of the
endpoints invoked, the methods employed, the provided parameters, the transmitted payload,
the response’s status code, and its associated message, among other information. A high level
representation of what was just explained is presented in Figure 3.1

Figure 3.1: High Level Interactions with the Shared file

On the other hand, as stated in Section 2.9, Network Applications are viewed as black
boxes by testers, meaning that their internal code is unknown. This lack of control over the
course of Network Applications’ actions can pose challenges in controlling the flow of the

40



testing pipeline, as Network Applications may require a component that is not yet available.
The solution to avoid this issue, is to provide to the Network Application owners an API, the
Mini API, that will be used as a standardized interface for all Network Applications, offering
endpoints for them to define the logic to trigger interactions between Network Applications
and the NEF emulator. By adopting this approach, testers can exercise control over the
timing of communications to prevent conflicts with other pipeline components.

Once these components have been successfully integrated into the 5GASP CI/CD pipeline,
it becomes possible to create tests aimed at assessing the 5G Readiness of Network Applications.

3.2 Architecture and Specifications

The previous section listed the core components that will be used for the testing pipeline.
To summarize, these components are the following: (i) the Mini API, (ii) the NEF emulator,
(iii) the Report API, and (iv) the CI/CD Agent. A description of each component is presented
in the following subsection.

3.2.1 Components

Mini API

The Mini API is a REST API that has been developed using FastAPI. It aims to control
the flow of operations between the Network Applications and the 5G infrastructure. This
API is offered as a standard to all the Network Application owners, which are responsible to
develop it alongside their Network Applications in order for them to be validated within the
5G readiness scope.

NEF Emulator

The NEF emulator is the most important component of this proposal. Its primary aim is
to make 5G capabilities accessible to Network Applications by emulating a real-world 5G NEF.
These capabilities are made accessible through standardized Northbound APIs, which are
accessible via a REST API. Within the validation method proposed, the NEF emulator also
has the function to log the endpoints and associated information that are invoked by Network
Applications communicating with it. Additionally, the NEF emulator has the capability to
produce values for a particular API and its corresponding parameter. This functionality is
intended to reduce the reliance on placeholder values for the Network Application to utilize.

Report API

The Report API, also developed using FastAPI, serves to create, delete and retrieve the
shared file that exists between this API and the NEF emulator. The shared file is a JavaScript
Object Notation (JSON) file created to store the information about the communication that
takes place between the Network Application and the NEF Emulator, concerning the requests
made to Northbound APIs. Lastly, this file is then gathered and used on the validation process,

41



leveraging the logged data within to evaluate whether the Network Application follows correct
communication practices.

CI/CD Agent

The CI/CD Agent was not a component developed in this dissertation, it already existed
within the 5GASP project, as described in Section 2.8.4. The CI/CD Agent is responsible for
collecting tests from the LTR, running them, and transmitting their outputs and results to
the CI/CD Manager. Through the tests that are executed by the CI/CD Agent, the actions
to trigger the Report API and the Mini API are done.

3.2.2 Modules’ Interaction

The initial and crucial stage for this proposal involved defining how would each component
interact with one another. This is depicted in Fig. 3.2.

Throughout the Network Application development process, the Network Application
owners are responsible for implementing the logic of their Mini API endpoints to facilitate
testing, also they need to provide a Testing Descriptor that provides the testcases for the
Network Application to be tested.

Next, when the validation phase is reached, the Report API is activated to generate a
report file, which is a shared file with the NEF emulator to record the interactions made with
the emulator. Afterwards, the configuration of the Mini API is initiated, involving the setup
of parameters such as the emulator’s IP address, ports, credentials, and more. Following the

Figure 3.2: Components’ Interaction

42



configuration, the initiation of an operation becomes possible. This initiation is signaled,
through the tests, to the Mini API, which then in turn signals the Network Application to
trigger the desired operation. The Network Application subsequently calls the NEF emulator
endpoints associated with that operation. During this phase, the emulator logs the call and
the response that is sent back to the Network Application. Finally, to complete this cycle, it
is necessary to retrieve the report through the Report API. In the final stage of the tests the
Network Application is validated with the retrieved report, and once this is done, the report
is deleted.

3.3 Testing Pipeline

After introducing the main components proposed in this dissertation, the next step is to
integrate them into the 5GASP CI/CD pipeline, which was already described in Section 2.8.4.

Fig. 3.3 illustrates the proposed architecture.
The proposed architecture incorporates the NEF emulator and the Report API into the

Aveiro Facility. The NEF emulator is responsible for making standardized APIs available to
Network Applications, simulating events, and logging the interactions with it. The Report
API manages a shared file for logging purposes.

The Mini API is placed alongside the Network Application to trigger the interactions
made to the NEF emulator by the Network Application.

The proposed flow of the testing pipeline is as follows:

1. Onboarding of the Network Application with the Testing Descriptor into the 5GASP
Experimentation Service.

2. The 5GASP Experimentation Service triggers the CI/CD pipeline.
3. The CI/CD Manager triggers the CI/CD Agent to execute the tests.
4. Execution of the tests by the CI/CD Agent, which include the creation of the report file,

the initiation of the Mini API, the retrieval of the report, and its subsequent validation.
5. The validation is done and the results are propagated back to the 5GASP Experimenta-

tion Service.

Figure 3.3: Proposed Architecture

43



3.3.1 Report File

To have a better view of the validation process, it is essential to understand the structure
of the report file. In summary, the report file is a shared file controlled by the Report API.
Within this file, the NEF Emulator records the requests sent to it by the Network Applications
and their subsequent responses.

For example, a Network Application that authenticates using the NEF Emulator and
then subscribes using the MonitoringEvent API will have an associated report file with the
expected contents as shown in Code Block 3.1.

[
{

"id": 1,
"endpoint": "/api/v1/login/access-token",
"method": "POST",
"request_body": {},
"scsAsId": "napp",
"afId": null,
"subscriptionId": null,
"transactionId": null,
"configurationId": null,
"provisioningId": null,
"setId": null,
"nef_response_code": 200,
"nef_response_message": "{'access_token':'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9',

'token_type':'bearer'}"↪→

},
{

"id": 2,
"endpoint": "/nef/api/v1/3gpp-monitoring-event/v1/napp/subscriptions",
"method": "POST",
"request_body": {

"externalId": "10001@domain.com",
"notificationDestination":

"http://localhost:80/api/v1/utils/monitoring/callback",↪→

"monitoringType": "LOCATION_REPORTING",
"maximumNumberOfReports": 1,
"monitorExpireTime": "2023-03-09T13:18:19.495000+00:00",
"maximumDetectionTime": 1,
"reachabilityType": "DATA"

},
"scsAsId": "napp",
"afId": null,
"subscriptionId": null,
"transactionId": null,
"configurationId": null,
"provisioningId": null,
"setId": null,
"nef_response_code": 200,

44



"nef_response_message": "{'monitoringType':'LOCATION_REPORTING',
'externalId':'10001@domain.com' ,'ipv4Addr':'10.0.0.1',
'locationInfo':{'cellId':null, 'gNBId':null}}"

↪→

↪→

}
]

Code Block 3.1: Report file example
The first dictionary in Code Block 3.1 corresponds to the information associated with the

login request, while the second dictionary is related to the monitoring subscription request.
In general , each entry is expected to consist of several key elements. These elements

include an identifier used for numbering entries, the requested endpoint, the method used, any
applicable request body, and either the scsAsId or afId for identifying the Network Application
responsible for the request. Just on of these identifiers have a value ,t he choice between them
is determined by the specific Northbound API in accordance with the standards.

Furthermore, the entries contain the subscriptionId, transactionId, configurationId, pro-
visioningId, and the setId. The values associated with these parameters vary depending on
the Northbound API and method used. For instance, one of them will possess values when
executing a GET operation for a specific subscription given that they are mutually exclusive.

Lastly, the entry includes the nef_response_code and the nef_response_message. The
values of these two fields, once again, depend on the Northbound API utilized and the response
provided by the NEF Emulator.

3.4 Chapter Summary

This Chapter starts by introducing the problem statement, in Section 3.1, which dives
into the scopes of the tests that are present on the 5GASP project. It presents the two
scopes that will have emphasis on this dissertation, the 5G Readiness and the Security scopes.
Then the components that will be created, implemented and/or used to validate the Network
Applications are introduced, which are the NEF Emulator, the Report API, the Mini API,
and the CI/CD Agent and their description is made in Section 3.2.1. Section 3.2.2 follows with
the proposed interactions between them to support the validation of Network Applications.

Lastly, Section 3.3 integrates the components into the 5GASP CI/CD pipeline, enabling
automatic validation of Network Applications and Section 3.1 presents an example of what to
expect from a report file.

45





CHAPTER 4
Implementation

Chapter 3 presented the architecture proposed for this thesis. This Chapter presents the
implementation of what was proposed. Section 4.1 focuses on the NEF Emulator, starting
with an overview of the Northbound APIs added to the emulator. It proceeds to detail the
Report Handler, which is responsible for recording the interactions between the Network
Applications and the NEF emulator. Additionally, it discusses the endpoints introduced
to support the information retrieved from the emulation and mentions the Generation of
Values through the NEF Emulator, which enables the provision of more realistic values for
consumption by Network Applications. Sections 4.2, 4.3, and 4.4 provide insights into the
implementation of the Report API, the Mini API, and the Validation Tests, respectively.

4.1 NEF Emulator

4.1.1 Northbound APIs

As previous mentioned, in Chapter 1, at the time of this dissertation the only implemen-
tation of NEF is the emulator from the EVOLVED-5G project. The work developed was
forked from this project. As stated in Section 2.8.2, the NEF-Emulator has already two APIs
implemented, the MonitoringEvent API and the AsSessionWithQoS API from the TS29.122
[55] standard.

In order to assess the readiness for 5G compatibility, as previously mentioned, Network
Applications must establish communication with the 5G Network. Subsequently, the next
phase of this project involved determining the relevant APIs that needed implementation or
addition. This decision was guided by the consideration of which parameters were pertinent
to the Network Applications and could be supplied via their endpoints. This process relied on
references such as TS29.122 [55] and TS29.522 [56], which encompass the standards for the
Northbound APIs.

Table 4.1 presents an overview of the standardized Northbound APIs that were considered
for implementation. It indicates whether they were added, not added, or partially added i.e.
started but not concluded, in the NEF Emulator.

47



Northbound API Standard - Version Added
MonitoringEvent 29.122 - 17.8.0 Yes
AsSessionWithQoS 29.122 - 17.8.0 Yes
Resource Management of Background Data
Transfer (BDT)

29.122 - 17.8.0 Yes

Chargeable Party 29.122 - 17.8.0 Yes
Non-IP Data Delivery (NIDD) 29.122 - 17.8.0 No
Device Triggering 29.122 - 17.8.0 No
Group Message Delivery via MBMS by MB2 29.122 - 17.8.0 No
Group Message Delivery via MBMS by xMB 29.122 - 17.8.0 No
Network Status Reporting 29.122 - 17.8.0 Yes
Communication Patterns (CP) Parameters Pro-
visioning

29.122 - 17.8.0 Yes

Packet Flow Description (PFD) Management 29.122 - 17.8.0 Partially
Enhanced Coverage Restriction Control 29.122 - 17.8.0 No
Network Parameter Configuration 29.122 - 17.8.0 Yes
MSISDN-less Mobile-Originated SMS 29.122 - 17.8.0 No
RACS (Radio Capability Signaling) Parameter
Provisioning

29.122 - 17.8.0 Yes

Traffic Influence 29.522 - 17.8.0 Yes
NIDD (Non-IP Data Delivery) Configuration
Trigger

29.522 - 17.8.0 Partially

Analytics Exposure 29.522 - 17.8.0 Yes
5G LAN Parameter Provision 29.522 - 17.8.0 No
Applying BDT Policy 29.522 - 17.8.0 No
IPTV Configuration 29.522 - 17.8.0 No
LPI (Location Privacy Indicator) Parameter Pro-
vision

29.522 - 17.8.0 No

Service Parameter 29.522 - 17.8.0 No
ACS Parameter Provision 29.522 - 17.8.0 No
MO LCS Notify 29.522 - 17.8.0 No
AKMA 29.522 - 17.8.0 No

Table 4.1: Northbound APIs

The implementation of these APIs exclusively consists of the endpoints outlined in the
standards, without integrating any interaction with the scenarios simulated by the NEF
emulator. From the perspective of a tester, the emulator’s values are irrelevant, what truly
matters is the application’s behavior and communication with the emulator. Consequently,
only the endpoints are necessary to achieve the validation of the 5G Readiness on Network
Applications.

48



4.1.2 Report Handler

To achieve the aim of this dissertation, which focuses on validating Network Applications,
it was required to log the calls made from the Network Application to the NEF emulator.
To accomplish this, a function was incorporated into the emulator, which activates upon
each call made to it. The objective of this function is to document the invoked method and
endpoint, capture the body and/or parameters provided by the Network Application, and
record the response code and message generated by the NEF, among others. The Code Block
6.1, presented in the Appendix of this document, displays this function.

This is then incorporated into all the Northbound APIs developed to allow for the logging
of their respective endpoints.

The log file is stored within a shared volume, as both containers running the NEF Emulator
and the Report API operate on the same machine.

4.1.3 Emulation Endpoints

Throughout the course of this dissertation, 5GASP introduced several endpoints into the
emulation segment, which were intended for use in the testing phase. Figure 4.1 displays these
endpoints.

Figure 4.1: Endpoints added by 5GASP

Nonetheless, there was a need for an extra endpoint dedicated to identifying the occurrence
of a handover. To fulfill this requirement, an endpoint was introduced to provide information
regarding the cells involved in a handover event. This endpoint is presented in Figure 4.2.

Figure 4.2: Developed Handover endpoint

4.1.4 Generating Values

While the values supplied by the NEF emulator are essentially placeholders, it became
intriguing in the later stages of this dissertation to enhance the emulation aspect by introducing
a mechanism for generating and utilizing values for specific API parameters through a broker.
This effort aimed to move beyond mere dummy values and provide more realistic inputs to
the Network Application.

As this decision was made relatively late in the process, it was only implemented for
the AsSessionWithQoS API. This choice was based on the feasibility of obtaining values for
specific parameters and their relevance to Network Applications.

49



This feature provides a default sinusoidal function capable of generating values for a
designated parameter within the aforementioned API when requested. Users not only have
the flexibility to customize this function, but also have the option to create and switch to
their own custom functions for producing parameter values.

The default sinusoidal function implemented is described by the following formula:

f(x) = A sin(Bx + C) + D

where A represents the amplitude, which is the maximum distance from the centerline to
the peal of the wave, B is the angular frequency, which determines how quickly the function
oscillates, C is the phase shift, which shifts the function horizontally along the x-axis and D
is the vertical shift or offset, which shifts the function vertically along the y-axis.

Figure 4.3: UI for the Generation of Values

AsSessionWithQoS API the tests are automated, they cannot be initiated through the
UI. Therefore, it was necessary to create additional endpoints to facilitate this capability, as
illustrated in Figure 4.4.

Figure 4.4: Endpoints that enable the Generation of Values

It is crucial to clarify how a Testing Agent can make use of this function. First, it it required
to initiate the default production of values to the broker through the /test/api/v1/broker/start
endpoint. Once this is done, if necessary, adjustments to the sinusoidal coefficients can be
made using the /test/api/v1/broker/update_sinusoidal_parameters endpoint, or the entire

50



function responsible for generating values can be replaced by providing a Python file through
the /test/api/v1/broker/upload_file endpoint. As mentioned before, this method only works
for the AsSessionWithQoS API, so the next endpoints used are dedicated specially to this
API. The /test/api/v1/broker/trigger_qos and the /test/api/v1/broker/stop_qos, respectively,
signal the the AsSessionWithQoS API to start and stop consuming the values from the broker.
When this behaviour is triggered, it also indicates which parameter of the API is being
updated. If dealing with a nested parameter, it should be separated with a hyphen, as in the
case of usageThreshold-uplinkVolume. To stop the broker from generating values exists the
/test/api/v1/broker/stop endpoint.

To use the values generated by this functionality, an AsSessionWithQoS subscrip-
tion needs to be done, using the /api/v1/3gpp-monitoring-event/v1/scsAsId/subscriptions
POST method. From this, it is generated a unique identifier known as subscriptionId
and with it, the GET method from the AsSessionWithQoS API to retrieve specific in-
formation about this subscriptionId can be called using the /nef/api/v1/3gpp-monitoring-
event/v1/scsAsId/subscriptions/subscriptionId method. This method will provide details
about the requested subscriptionId, which will be updated with the values obtained from the
broker if its usage was previously signaled as described before.

It’s important to mention that this method has two limitations: (i) it only works for the
AsSessionWithQoS API, as previously stated, (ii) it can only be used on one parameter at a
time due to its implementation, and (iii) it only works on numeric parameters.

4.2 Report API

To tackle the problem discussed in the Section 2.9, an API, named Report API, was devel-
oped. It was implemented using the FastAPI 1 framework. This REST API is straightforward,
comprising only three endpoints, as depicted in Figure 4.5.

The API is encapsulated within a Docker Image and deployed alongside the NEF emulator
through Docker Compose. Its sole purpose is to manage the creation, deletion, and retrieval
of the report file, which serves as a shared file between the NEF Emulator and this API.

Figure 4.5: Report API endpoints

4.3 Mini API

The Mini API was developed using FastAPI. The aim of the API is to serve as a wrapper
to trigger the interactions between the Network Application and the NEF emulator. However,
it’s important to note that as of the time of this dissertation, the integration of Network

1https://fastapi.tiangolo.com/

51



Figure 4.6: Implemented Components’ Interaction

Applications with this new concept has not yet been implemented, nor has their interaction
with the NEF emulator been established.

Thus, the approach towards the Mini API deviated somewhat from the initial proposal.
In this dissertation the Mini API consolidates all the communication logic with the NEF
emulator within the start endpoint.

That is all the logic to communicate with the NEF emulator is being done inside the start
endpoint of the Mini API due to the lack of maturity of the Network Applications.

The ideal scenario was introduced in Figure 3.2, but with the considerations just made
the scenario implemented is described in Figure 4.6.

This API is also nested within a Docker Image and deployed through Docker Compose.

4.4 Validation Tests

After implementing the components proposed for the validation of the Network Applica-
tions, the last thing to do is implement the actual tests. As already mentioned in Section 3.1,
this dissertation focus is on tests related to the 5G Readiness and Security scopes.

Before presenting the tests developed in the context of this dissertation, it is crucial to
establish both the location for their storage and the necessary file specifications as well as to
define the structure of these tests.

52



Once completed the discussion of the storage location and test structure, the tests will be
described.

4.4.1 LTR

As mentioned in Section 2.8.4, the LTR is an element of the 5GASP CI/CD Service, that
stores all the developed tests and makes them available for the CI/CD Agent to execute them.

The file structure of the LTR is shown in the Code Block 4.1 with three of the tests created
in the context of this dissertation:

These tests were developed using the Robot Framework. The tests are composed by: (i)
a Python file, which contains code for executing the test and validating the response, (ii) a
Robot file, that contains all the Test Cases, (iii) a Markdown 2 file, to describe the test, his
inputs and outputs, and (iv) a text file, that contains the requirements needed to run the test.

.
|-- nef_login
| |-- nef_login.py
| |-- test_nef_login.robot
| |-- docs.md
| --- test_nef_login.txt
|-- nef_monitoring_subscription
| |-- nef_monitoring_subscription.py
| |-- test_nef_monitoring_subscription.robot
| |-- docs.md
| --- requirements.txt
--- nef_ue_location_acquisition

|-- nef_ue_location_acquisition.py
|-- test_nef_ue_location_acquisition.robot
|-- docs.md
--- requirements.txt

Code Block 4.1: File Structure of the LTR.

4.4.2 5G Readiness

The tests defined in this scope aim to verify the ability of a Network Application to
communicate and interact with the NEF emulator in order to test the readiness of the
Network Application for the 5G Network.

Within this scope, as all the tests use the NEF emulator and consequently the Mini API
and the Report API, they have all the same structure. This can be seen in Figure 4.7.

Initially, it is made the call to create the shared file, which is done through a request
to the Report API. After this, the start endpoint of the Mini API is invoked, this is when
the interactions with the NEF emulator occur and when it logs all the communication done.
Finally, the report file generated is retrieved, which is another call to the Report API and
then is validated according to the respective test being conducted. Lastly, the request to the
Report API to delete the report file generated is done.

2https://www.markdownguide.org/

53



Figure 4.7: Test’s Structure

The tests developed in order to test if a Network Application does the correct communica-
tion with the NEF emulator are displayed in Table 4.2.

Test Description
Authentication with NEF emulator Validates the authentication of a Network

Application to use the NEF emulator.
Creation of a Monitoring Subscription Validates if a Network Application is able

to subscribe to a Monitoring Event.
Creation of a QoS Subscription Validates if a Network Application is able

to subscribe to a QoS Event.
Acquisition of an UE Location Validates if a Network Application is able

to retrieve an UE location.
Acquisition of an UE Handover Event Validates if a Network Application is able

to retrieve information about a handover
event.

Acquisition of an UE Path Losses Validates if a Network Application is able
to retrieve information about path losses.

Acquisition of an UE Serving Cell Validates if a Network Application is able
to retrieve information about the serving
cell node

Acquisition of an UE Reference Signal Re-
ceived Power (RSRP)

Validates if a Network Application is able
information about the RSRP.

Table 4.2: Implemented 5G Readiness Tests

The first entry of the Table 4.2, aims to validate if a Network Application can authenticate
for access to the NEF emulator. Following this, the second and third tests validate if the
Network Application can correctly use the Northbound APIs, the Monitoring Event API and
the AsSessionWithQoS API, to subscribe to this services. The remaining five tests featured in
the table use the additional endpoints added to the emulator and test whether a Network

54



Application can get a certain information related to a given UE.
To provide a more complete overview of a test developed in this dissertation, the

nef_monitoring_subscription test has been selected as an illustrative example. Code Block 6.2,
situated in the Appendix, displays the Python file, while Code Block 4.2 presents the Robot
file. By examining the two Code Blocks, it becomes clear that the Python file follows the
structure defined in Figure 4.7, and, more importantly, it incorporates a function responsible
for validating the report against the endpoint and method used and the response generated
by the NEF emulator. Finnaly, the validation result produced by this test is verified within
the Robot File to determine the success or failure of the test.

*** Settings ***
Library nef_monitoring_subscription.py
Test Timeout 15 minutes

*** Test Cases ***
Testing the creating of a monitoring subscription in NEF

${nef_monitoring_subscription_status}= Test NEF Monitoring Subscription
%{nef_monitoring_subscription_report_api_ip}
%{nef_monitoring_subscription_report_api_port}
%{nef_monitoring_subscription_report_name}
%{nef_monitoring_subscription_mini_api_ip}
%{nef_monitoring_subscription_mini_api_port}
%{nef_monitoring_subscription_nef_ip}
%{nef_monitoring_subscription_nef_port}
%{nef_monitoring_subscription_nef_user}
%{nef_monitoring_subscription_nef_pass}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

IF '${nef_monitoring_subscription_status[0]}' in ['0']
Pass Execution \n${nef_monitoring_subscription_status[1]}

ELSE IF '${nef_monitoring_subscription_status[0]}' in ['1', '2', '3', '4']
Fail \n${nef_monitoring_subscription_status[1]}

ELSE
Fail \nUnknown Error

END

Code Block 4.2: test_nef_monitoring_subscription.robot

4.4.3 Security

The focus of this dissertation is the 5G Readiness scope, however two tests were developed
for the Security scope.

The objective within this scope is to assess whether a Network Application adheres to the
security and privacy standards established by 3GPP.

This scope holds significant importance, and within the context of this dissertation, two
tests proposed by 5GASP were created. These two tests developed were:

• Secure Sockets Layer (SSL) Protected APIs Test - Validates if the Network
Application’s VNFs offered APIs are protected with SSL. The SSL protocol is used
to establish secure and encrypted connections between a client and a server, in other

55



words ensures the confidentiality and integrity of data transmitted over the internet.
Regarding Network Applications, they need to have a SSL certificate to authenticate
their identity an to keep their privacy and interactions secure.

• Openstack Port Security - Validates if the Network Application’s VNFs have the
Port Security enabled, when deployed in Openstack. IP forwarding is the ability for an
operating system to accept incoming network packets on one interface, recognize that it
is not meant for the system itself, but that it should be passed on to another network,
and then forwards it accordingly. Concerning the Network Applications they are in
their private network, if they access the 5G network and if between the IP forwarding is
enabled their traffic could be forwarded to a third network causing a breach on security.
This test verifies whether Port Security is enabled when using OpenStack because the
Port Security feature in OpenStack blocks IP forwarding.

4.4.4 Generation of Values

A test was developed to validate whether the NEF Emulator can generate values for a
specific parameter of a AsSessionWithQoS API asked by a Network Application, taking into
account the limitations of this process.

Although the structure of the test is the same as that of the 5G Readiness tests, the
function for validating the report is slightly different. Code Block 4.3 illustrates this function.

def validate_report(report, params):
errors = []
first_value = None
second_value = None
subsId = None
keys = params.split("-")
for request in report:

if request["endpoint"] ==
f"/nef/api/v1/3gpp-as-session-with-qos/v1/netapp/subscriptions":↪→

if request["method"] != "POST":
errors.append("Wrong method used.")
break

elif request["nef_response_code"] not in [200, 201 ,409]:
errors.append(f"Unable to create QoS Subscription due to:

{request['nef_response_message']}")↪→

break
else:

msg = request['nef_response_message'].replace("'", "\"")
json_msg = json.loads(msg)
subsId = json_msg['link'].split('/')[-1]

if len(keys) > 1:
current_doc = json_msg
for key in keys[:-1]:

current_doc = current_doc[key]

first_value = current_doc[keys[-1]]

56



else:
first_value = json_msg[params]

for request in report:
if request["endpoint"] ==

f"/nef/api/v1/3gpp-as-session-with-qos/v1/netapp/subscriptions/{subsId}":↪→

if request["method"] != "GET":
errors.append("Wrong method used.")
break

elif request["nef_response_code"] not in [200, 409]:
errors.append(f"Unable to get QoS Subscription due to:

{request['nef_response_message']}")↪→

break
else:

msg = request['nef_response_message'].replace("'", "\"")
json_msg = json.loads(msg)

if len(keys) > 1:
current_doc = json_msg
for key in keys[:-1]:

current_doc = current_doc[key]

second_value = current_doc[keys[-1]]
else:

second_value = json_msg[params]

if first_value == second_value:
errors.append("Parameter not updated.")

return errors

Code Block 4.3: validate_report function from nef_generate_values.py
What sets this function apart from its counterparts in the 5G Readiness tests is that in

this one, two iterations of the report are performed. This is because the first iteration has
two objectives. The first objective is to validate the correct creation of a QoS subscription
within the NEF emulator. The second objective is to retrieve the subscriptionId created by
the NEF emulator for that subscription. Additionally, in the first iteration, the initial value
of the parameter that is supposed to change is saved. The Network Application, to consume
the values generated by the broker, needs to do a GET request to retrieve the specific QoS
subscription with the previously retrieved subscriptionId. This behavior is checked in the
second iteration. If the request is made correctly, the value of the desired parameter is saved.
In the end, this allows for a comparison of the two saved values. If the first value is different
from the last value, it indicates that the generation of values through the NEF was successful.

4.5 Chapter Summary

This Chapter presented the implementation of the components proposed for the validation
process and the new tests developed.

57



Section 4.1 begins to address the NEF Emulator. First, in Section 4.1.1 the Northbound
APIs from TS29.122 [55] and TS29.522 [56] that were explored are presented, and a table
displayed which of them were added to the emulator is shown. Then in Section 4.1.2 the
functionality added to the NEF Emulator for logging the interactions done between the
Network Applications and the emulator is explained. Afterwards the endpoints added to
support information given by the emulation provided by the NEF emulator are presented
in Section 4.1.3. The final point mentioned, regarding the emulator is the Generation of
Values, presented in Section 4.1.4, where an explanation of how the implementation was done,
a display of the UI provided, the endpoints that allow for the generation of values and a
description of how to generate values are presented.

Sections 4.2 and 4.3 present the implementation of the two APIs developed, respectively,
the Report API and the Mini API.

Lastly, the validation tests are presented in Section 4.4. Where the 5G Readiness tests,
the Security tests and the tests for the generation of values described and explained.

58



CHAPTER 5
Results

After implementing the proposed solutions, it is now necessary to validate them. Therefore,
this Chapter addresses the results obtained through the tests created.

Section 5.1 discusses the 5G Readiness Tests. It begins by describing the methodology
used to perform the evaluation of the tests and then presents the results.

Sections 5.2 and 5.3 follow the same structure as Section 5.1 but focus on the Security
Tests and the Generation of Values using the NEF Emulator, respectively.

5.1 5G Readiness Tests

The tests developed for the 5G Readiness scope aim to validate the interaction between
Network Applications and the NEF emulator.

To support these tests, functionalities were added to the NEF emulator, namely the Report
Handler, and two APIs were created: the Report API and the Mini API.

The developed components and tests were integrated within the 5GASP CI/CD pipeline.
However, these tests were not executed in actual Network Applications because they do

not yet implement communication with both the NEF Emulator and the Mini API.

5.1.1 Testing Scenario

Although real Network Applications weren’t used, it is still possible to use dummy Network
Applications that interact with the NEF emulator, as this aligns with the intended purpose of
this scope.

Additionally, the tests developed needed some form of validation. However, measuring the
tests’ execution time, for example, doesn’t make much sense as it doesn’t provide any value
given the nature of the tests.

So, to validate the functionality of these tests, an exhaustive evaluation was done, where
several dummy Network Applications were created with or without points of failure.

Two additional points worth mentioning are: (i) the 5G Readiness tests are not mandatory,
meaning that a Network Application does not need to be validated against all of them. For

59



instance, a Network Application could only be interested in subscribing to Monitoring Events,
meaning that it doesn’t need to subscribe to the QoS, and in the same way, another Network
Application that could only need to subscribe to QoS events doesn’t need to subscribe to
Monitoring Events. It depends on the purpose of the application, and (ii) consequently, since
the Network Application is seen as a black box for the tester, the Network Application owners
define what the application does in terms of accessing the 5G infrastructure. Therefore, they
need to commit to the interactions they make, and validation is based on that. If they commit
to communicating with the 5G infrastructure, they must do so correctly.

Thus, to perform the exhaustive evaluation, eight dummy Network Applications were
developed, each making multiple requests to the NEF Emulator. Table 5.1 presents the
interactions performed by each dummy Network Application.

Network Application Interactions

Dummy Network
Application 1

• Authentication on the NEF Emulator.
• Create a Monitoring Subscription.
• Acquisition of the UEs Location.
• Acquisition of the Serving Cell of the UE

with Subscription Permanent Identifier (SUPI)
202010000000001.

• Create a QoS Subscription.

Dummy Network
Application 2

• Authentication on the NEF Emulator.
• Create a Monitoring Subscription.
• Create a QoS Subscription.

Dummy Network
Application 3

• Authentication on the NEF Emulator.
• Create a Monitoring Subscription.
• Acquisition of the UEs Location.
• Acquisition of the RSRPs for the UE with SUPI

202010000000001.
• Acquisition of the Path Losses for the UE with SUPI

202010000000001.

60



Dummy Network
Application 4

• Create a Monitoring Subscription.
• Acquisition of the Serving Cell of the UE with SUPI

202010000000001.
• Acquisition of the Handovers for the UE with SUPI

202010000000002.
• Create a QoS Subscription.

Dummy Network
Application 5

• Authentication on the NEF Emulator.
• Acquisition of the UEs Location.
• Acquisition of the Path Losses for the UE with SUPI

202010000000001.
• Acquisition of the Serving Cell of the UE with SUPI

202010000000001.
• Acquisition of the RSRPs for the UE with SUPI

202010000000001.
• Acquisition of the Handovers for the UE with SUPI

202010000000002.
• Create a QoS Subscription.

Dummy Network
Application 6

• Authentication on the NEF Emulator.
• Create a Monitoring Subscription.
• Acquisition of the Handovers for the UE with SUPI

202010000000001.
• Create a QoS Subscription.

Dummy Network
Application 7

• Authentication on the NEF Emulator.
• Create a Monitoring Subscription.
• Create a QoS Subscription.

61



Dummy Network
Application 8

• Authentication on the NEF Emulator.
• Create a Monitoring Subscription.
• Acquisition of the Serving Cell of the UE with SUPI

202010000000001.
• Acquisition of the Handovers for the UE with SUPI

202010000000003.
• Acquisition of the UEs Location.
• Acquisition of the Path Losses for the UE with SUPI

202010000000001.
• Acquisition of the RSRPs for the UE with SUPI

202010000000001.
• Create a QoS Subscription.

Table 5.1: Dummy Network Applications’ Communication with NEF Emulator

The Network Applications were developed using several Mini APIs which implies having
to onboard several VNFs onto the pipeline.

The VNF and the NS for each Mini API were onboarded onto an OSM Release 12 instance
and deployed. The template tags of the NS were used on the Testing Descriptor to define the
IP address of the Mini API instance.

The Testing Descriptor should be provided by each Network Application. To show an
example of the test cases defined in the Testing Descriptor for Dummy Network Application
2, Code Block 5.1 is presented.

testcases:
- testcase_id: 1

type: pre-defined
scope: 5g_readiness
name: nef_login
description: Test if the Network Appllication can authenticate withing NEF
parameters:

- key: report_api_ip
value: 10.255.28.183

- key: report_api_port
value: 3000

- key: report_name
value: report.json

- key: mini_api_ip
value: {{deployment_info|miniapi_final-nsd|vnf1|vnf-cp0-ext|ip-address}}

- key: mini_api_port
value: 3001

- key: nef_ip
value: 10.255.28.183

- key: nef_port

62



value: 8888
- key: nef_user

value: admin1@my-email.com
- key: nef_pass

value: pas
- key: napp_endpoint

value: /start/2/1

- testcase_id: 2
type: pre-defined
scope: 5g_readiness
name: nef_monitoring_subscription
description: Test if the Monitoring Subscription of the Network Appllication is right
parameters:

- key: report_api_ip
value: 10.255.28.183

- key: report_api_port
value: 3000

- key: report_name
value: report.json

- key: mini_api_ip
value: {{deployment_info|miniapi_final-nsd|vnf1|vnf-cp0-ext|ip-address}}

- key: mini_api_port
value: 3001

- key: nef_ip
value: 10.255.28.183

- key: nef_port
value: 8888

- key: nef_user
value: admin1@my-email.com

- key: nef_pass
value: pas

- key: napp_endpoint
value: /start/2/2

- testcase_id: 3
type: pre-defined
scope: 5g_readiness
name: nef_qos_subscription
description: Test if the Network Application is able to do a QoS Subscription
parameters:

- key: report_api_ip
value: 10.255.28.183

- key: report_api_port
value: 3000

- key: report_name
value: report.json

- key: mini_api_ip
value: {{deployment_info|miniapi_final-nsd|vnf1|vnf-cp0-ext|ip-address}}

- key: mini_api_port

63



value: 3001
- key: nef_ip

value: 10.255.28.183
- key: nef_port

value: 8888
- key: nef_user

value: admin1@my-email.com
- key: nef_pass

value: pas
- key: napp_endpoint

value: /start/2/3

Code Block 5.1: test_nef_monitoring_subscription.robot

5.1.2 Results

Results were collected based on the previously described testing scenario.
The results gathered here will address each individual dummy Network Application. It is

important to note that the dummy Network Applications were intentionally designed to fail
certain tests at specific known points in order to validate the correctness of the developed
tests. In a real-world scenario, it is evident that a Network Application owner develops their
application with the belief that it functions properly, and the tests are conducted to verify
this belief.

The results displayed in Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 were obtained through
the web interface of the TRVD generated from the executed tests. As illustrative examples,
Figures 1 and 2, display the web interface of the TRVD for the Dummy Network Application 5
and the report.html created by the Robot Framework for the nef_handovers test, respectively,
after the validation process was concluded.

Dummy Network Application 1

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Pass Pass

Create a Monitoring
Subscription

Pass Pass

Acquisition of UEs
Location

Pass Pass

Acquisition of the
Serving Cell of the UE

with SUPI
202010000000001.

Pass Pass

64



Create a QoS
Subscription.

Pass Pass

Table 5.2: Dummy Network Application 1 Results

Dummy Network Application 2

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Fail - Wrong
credentials used

Fail - Unable to authenticate
due to: Incorrect email or

password.

Create a Monitoring
Subscription

Fail - Lack of
authentication

Fail - Unable to create a
monitoring subscription due

to: Could not validate
credentials

Create a QoS
Subscription.

Fail - Lack of
authentication

Fail - Unable to create a QoS
subscription due to: Could

not validate credentials

Table 5.3: Dummy Network Application 2 Results

Dummy Network Application 3

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Fail - Wrong
Implementation

Fail - Unable to authenticate
due to: Incorrect email or

password

Create a Monitoring
Subscription

Fail - Lack of
authentication
due to wrong

implementation

Fail - Unable to create a
monitoring subscription due

to: Could not validate
credentials

Acquisition of UEs
Location

Fail - Lack of
authentication
due to wrong

implementation

Fail - Unable to get UEs
information due to: Could not

validate credentials

65



Acquisition of RSRP
for the UE with SUPI

202010000000001

Fail - Lack of
authentication
due to wrong

implementation

Fail - Unable to get RSRP
information due to: Could not

validate credentials

Acquisition of Path
Losses for the UE with
SUPI 202010000000001

Fail - Lack of
authentication
due to wrong

implementation

Fail - Unable to get path
losses due to: Could not

validate credentials

Table 5.4: Dummy Network Application 3 Results

Dummy Network Application 4

Interaction with
NEF Emulator

Expected
Result

Result

Create a Monitoring
Subscription

Fail - Lack of
authentication

Fail - Unable to create a
monitoring subscription due

to: Not authenticated
Acquisition of the

Serving Cell for the UE
with SUPI

202010000000001

Fail - Lack of
authentication

Fail - Unable to get serving
cell information due to: Not

authenticated

Acquisition of
Handovers for the UE

with SUPI
202010000000002

Fail - Lack of
authentication

Fail - Unable to get handovers
due to: Not authenticated

Create a QoS
Subscription.

Fail - Lack of
authentication

Fail - Unable to create a QoS
subscription due to: Not

authenticated

Table 5.5: Dummy Network Application 4 Results

Dummy Network Application 5

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Pass Pass

Acquisition of UEs
Location

Pass Pass

66



Acquisition of Path
Losses for the UE with
SUPI 202010000000001

Fail - Emulation
environment

needs to be active

Fail - Unable to get path
losses due to: The emulation

needs to be ongoing
Acquisition of the

Serving Cell for the UE
with SUPI

202010000000001

Fail - Emulation
environment

needs to be active

Fail - Unable to get serving
cell information due to: The

emulation needs to be ongoing

Acquisition of RSRP
for the UE with SUPI

202010000000001

Fail - Emulation
environment

needs to be active

Fail - Unable to get RSRP
information due to: The

emulation needs to be ongoing
Acquisition of

Handovers for the UE
with SUPI

202010000000002

Fail - Emulation
environment

needs to be active

Fail - Unable to get handovers
due to: The emulation needs

to be ongoing

Create a QoS
Subscription.

Pass Pass

Table 5.6: Dummy Network Application 5 Results

Dummy Network Application 6

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Pass Pass

Create a Monitoring
Subscription

Fail - Wrong
payload

Fail - Unable to create a
monitoring subscription due

to: [’loc’: [’body’,

’maximumNumberOfReports’],

’msg’: ’value is not a

valid integer’, ’type’:

’type_error.integer’]

Acquisition of
Handovers for the UE

with SUPI
202010000000001

Pass Pass

67



Create a QoS
Subscription.

Fail - Wrong
payload

Fail - Unable to create a QoS
subscription due to: [’loc’:

[’body’, ’qosReference’],

’msg’: ’value is not a

valid integer’, ’type’:

’type_error.integer’]

Table 5.7: Dummy Network Application 6 Results

Dummy Network Application 7

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Pass Pass

Create a Monitoring
Subscription

Fail - Wrong
method used

Fail - Test Failed due to the
following errors: Wrong

method used.

Create a QoS
Subscription.

Pass -
Subscription
already exists

Pass

Table 5.8: Dummy Network Application 7 Results

Dummy Network Application 8

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Pass Pass

Create a Monitoring
Subscription

Pass Pass

Acquisition of the
Serving Cell for the UE

with SUPI
202010000000001

Pass Pass

Acquisition of
Handovers for the UE

with SUPI
202010000000003

Pass Pass

68



Acquisition of UEs
Location

Pass Pass

Acquisition of Path
Losses for the UE with
SUPI 202010000000001

Pass Pass

Acquisition of RSRP
for the UE with SUPI

202010000000001
Pass Pass

Create a QoS
Subscription.

Fail- Wrong
method used

Fail - Test Failed due to the
following errors: Wrong

method used.

Table 5.9: Dummy Network Application 8 Results

5.2 Security Tests

5.2.1 Testing Scenario

To test the Security tests developed, three Dummy Network Applications were created, to
test the different outcomes of the two security tests.

5.2.2 Results

The results displayed in Tables 5.10, 5.11 and 5.12 were obtained through the web interface
of the TRVD generated from the executed tests. The tests validate if the Openstack Port
Security is enabled and if the Network Application has a SSL certificate.

Dummy Network Application 9

Test
Expected

Result
Result

Openstack Port
Security

Pass Pass

SSL Audit
Fail - No SSL

certificate

Fail - Test Failed due to the
following errors: Not SSL

protected.

Table 5.10: Dummy Network Application 9 Results

Dummy Network Application 10

Test
Expected

Result
Result

69



Openstack Port
Security

Fail - Openstack
Port Security

disabled

Fail - Test Failed due to the
following errors: Port Security

disabled.
SSL Audit Pass Pass

Table 5.11: Dummy Network Application 10 Results

Dummy Network Application 11

Test
Expected

Result
Result

Openstack Port
Security

Pass Pass

SSL Audit Pass Pass

Table 5.12: Dummy Network Application 11 Results

5.3 Generation of Values

The method for generating values for the AsSessionWithQoS API was added to the NEF
emulator in order to provide more real values for the Network Applications to use, if they
choose to do so.

5.3.1 Testing Scenario

To test the functionality to Generate Values through the NEF emulator, a twelfth Dummy
Network Application was created. The aim of this Network Application is to do a QoS
Subscription and then request to generate values for consumption through the NEF Emulator.
Given the limitations of the method for generating values, i.e. only works on a parameters
at a time, the Network Application has to chose a parameter of their interest to where the
values will be attributed. Table 5.13 displays the interactions between the Dummy Network
Application and the NEF Emulator.

Network Application Interactions

Dummy Network
Application 12

• Authentication on the NEF Emulator.
• Create a QoS Subscription.
• Generate Values for the usageThreshold-uplinkVolume

parameter.

Table 5.13: Dummy Network Application 12 Communication with NEF Emulator

70



5.3.2 Results

Results were collected based on the previously described testing scenario. The results
displayed in Table 5.14 were also obtained through the web interface of the TRVD generated
from the executed tests.

To clarify the second test on the table, it validated if the Network Application was able to
request the NEF Emulator to create a QoS subscription and then if it was capable of doing
the requests for the generation of values process for a specific parameter. It validated if the
initial value of the parameter was the same as after the process for generating values was
carried out.

Dummy Network Application 12

Interaction with
NEF Emulator

Expected
Result

Result

Authentication within
the NEF Emulator

Pass Pass

Generate Values with
for the usageThreshold-
uplinkVolume parameter

Pass Pass

Table 5.14: Dummy Network Application 12 Results

5.4 Chapter Summary

This Chapter begins by addressing the results for the 5G Readiness Tests. In Section
5.1.1 the scenarios in which the tests were used, are presented. Eight Dummy Network
Applications were created, to simulate the interaction between a Network Application and
the NEF emulator. In these eight Dummy Network Applications, several cases to fail the
validation were made on purpose. Section 5.1.2 presents all the tables for the Dummy Network
Applications demonstrating the expected results versus the results gathered after the validation
process was finished.

After presenting the 5G Readiness Tests, Security tests are addressed in Section 5.2. This
Section follows the same structure as the previous one. Section 5.2.1 addresses the scenario
where the tests were performed and after 5.2.2 presents the results obtained regarding this
scope of tests.

Lastly, the Generation of Values is addressed in Section 5.3, where a twelfth Dummy
Network Application was created to simulate the interactions needed to request the NEF
emulator to produce values for a AsSessionWithQoS subscription. As before, the testing
scenario is first addressed in Section 5.3.1 and then the results obtained after executing the
tests are presented in Section 5.3.2.

71





CHAPTER 6
Conclusions

6.1 Conclusions

With the transition into the world of NFV, Network Operators face the challenge of
making sure VNFs perform correctly. The current approach to validate VNFs leans heavily
on automation. Projects like VITAL-5G, EVOLVED-5G, 5GMediaHUB, and 5GASP, among
others not mentioned here, prove that they are striving for full automation in the Network
Applications validation process.

The work presented in this dissertation is aligned with the 5GASP’s goals centers around
two primary goals: (i) the development of tests designed to validate Network Applications
and (ii) the extension of the NEF Emulator to enable the creation of tests that utilize it.

Regarding the second objective, several Northbound APIs that follow the TS29.122 [55]
and TS29.522 [56] standards were added to the NEF emulator providing more capabilities
exposed to external applications. However, the 5GASP’s Network Applications ended not
using them so tests around them weren’t developed either.

To reach the development of tests, the flow of how they would run had to be defined, which
lead to the creating of a Report API with the objective to manage the file shared between
this API and the NEF Emulator, where the emulator registers the interactions made between
the NEF emulator and the Network Applications. This API was very simple and worked for
the desired outcome.

The Mini API, was also a outcome of this dissertation and it is being heavily used in the
5GASP project. It was created with the purpose of controlling the flow of the interactions
made between the Network Applications and the NEF Emulator. Testers can’t access the code
inside Network Applications, so it was crucial to manage when these interactions happened,
especially when some CI/CD Service components might not be available. The Mini API
ended to not communicate with an actual Network Application but did successfully trigger
the interactions that were implemented on it.

Regarding the development of tests, 5G Readiness tests were the main focus of this
work. These tests were built around two existing APIs, the MonitoringEvent API and

73



AsSessionWithQoS API, since Network Application developers had more interest in these
capabilities. To evaluate the tests and see if they could verify the correct behavior of a
Network Application, eight Dummy Network Applications were developed. In these dummy
applications, several tests were made to fail on purpose, to validate if the test could catch the
errors. For instance, the dummy Network Applications could not be able to authenticate with
the NEF Emulator, or could be requesting for the creation of a subscription providing wrong
payloads, among others. All the results obtained for the Dummy Network Applications were
the expected.

The work in this dissertation also explored the possibility to generate more close to real
values for the Network Applications to consume through the NEF emulator. This functionality,
although limited, was also a successful addition. Also serves the purpose to demonstrate that
a more deep exploration of this functionality is possible and feasible.

The work developed in this dissertation was an important outcome for evaluating if
Network Applications are 5G ready. With the validation proposed on this dissertation, we
are able to know if Network Applications are or not prepared to communicate with a general
NEF.

6.2 Future Work

In terms of implementing additional Northbound APIs, it’s important to note that not all
of these have been integrated. This means there is an opportunity to expand the functionality
of the NEF Emulator by incorporating these remaining APIs. It’s worth mentioning that due
to time constraints, there was not the opportunity to conduct tests utilizing these new APIs.

The inclusion of more Northbound APIs brings about the potential for enhancing the
emulator’s capability in terms of emulation. It offers the possibility to add new features
that interact with the new integrated APIs, thereby increasing the utility and realism of the
emulator.

Regarding the feature for generating more realistic values for Network Applications, there
is room for improvement in terms of flexibility. The process can be made less restrictive in
two key aspects. First, it can be designed to be more versatile, allowing a broader range of
APIs to benefit from this data generation process. Second, it can be made less restrictive in
terms of the number and types of parameters for which values are generated, aiming for a
more generic approach applicable to all Northbound APIs.

Expanding the range of tests is another point for further development. Diversifying
the testing suite to cover the Northbound APIs that have been added but not yet utilized
is important. The introduction of additional APIs requires the development of tests that
effectively utilize them and requires the actualization of the report handler to support them.

Furthermore, it is essential to highlight that, at the time of writing this dissertation, real
Network Applications were not prepared to use the validation the process described in this
work, leading to their non-utilization. In the future, a significant focus is to conduct the
testing using real Network Applications with the proposed and implemented solution, which
will be done in the 5GASP project.

74



References

[1] C. Bouras, P. Ntarzanos, and A. Papazois, “Cost modeling for SDN/NFV based mobile 5G networks,”
in 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), 2016, pp. 56–61. doi: 10.1109/ICUMT.2016.7765232.

[2] R. Direito, D. Gomes, and R. L. Aguiar, “Towards a Fully Automated System for Testing and Validating
NetApps,” in 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), 2022,
pp. 231–233. doi: 10.1109/NetSoft54395.2022.9844037.

[3] M. Chiosi and et all, “White paper: Network Functions Virtualisation - An Introduction, Benefits,
Enablers, Challenges & Call for Action,” Tech. Rep. 1, Oct. 2012.

[4] 5GASP, Accessed 2023. [Online]. Available: https://5g-ppp.eu/5gasp/.

[5] S. Rommer, P. Hedman, M. Olsson, L. Fried, S. Sultana, and C. Mulligan, 5G Core Networks: Powering
Digitalization. Elsevier/Academic Press, 2020, isbn: 978-0-08-103009-7. [Online]. Available: https:
//www.oreilly.com/library/view/5g-mobile-core/9781484264737/.

[6] R. Chayapathi, S. F. Hassan, and P. Shah, Network Functions Virtualization (NFV) with a Touch of
SDN, [Online; accessed 2023], 2016. [Online]. Available: https://ptgmedia.pearsoncmg.com/images/
9780134463056/samplepages/9780134463056.pdf.

[7] ETSI ISG NFV, “ETSI GS NFV 002 V1.1.1: Network Function Virtualisation (NFV): Architectural
Framework,” Tech. Rep. 1, Oct. 2013.

[8] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, “NFV orchestrator placement for
geo-distributed systems,” in 2017 IEEE 16th International Symposium on Network Computing and
Applications (NCA), 2017, pp. 1–5. doi: 10.1109/NCA.2017.8171391.

[9] Network Functions Virtualisation (NFV), Accessed 2023. [Online]. Available: https://www.etsi.org/
technologies/nfv.

[10] ETSI ISG NFV, “ETSI GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation (NFV);
Management and Orchestration,” Tech. Rep. 1, Dec. 2014.

[11] L. Networks, “White Paper: Orchestration,” 2018, [Online; accessed 2022]. [Online]. Available: https:
//www.onap.org/wp-content/uploads/sites/20/2019/07/35752846-0-Lumina-Orchestration-
2.pdf.

[12] ONAP Documentation - Architecture, Accessed 2022. [Online]. Available: https://docs.onap.org/en/
latest/platform/architecture/index.html.

[13] Open Source Mano, Accessed 2023, Available: https://osm.etsi.org/. [Online]. Available: https://osm.
etsi.org/.

[14] ETSI GS NFV-SOL 005, Network Functions Virtualisation (NFV) Release 3; Protocols and Data
Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point, Mar. 2023. [Online].
Available: https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/04.04.01_60/gs_NFV-
SOL005v040401p.pdf.

[15] ETSI GS NFV-SOL 006, Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models;
NFV descriptors based on YANG Specification, Mar. 2023. [Online]. Available: https://www.etsi.org/
deliver/etsi_gs/NFV-SOL/001_099/006/03.07.01_60/gs_NFV-SOL006v030701p.pdf.

75

https://doi.org/10.1109/ICUMT.2016.7765232
https://doi.org/10.1109/NetSoft54395.2022.9844037
https://5g-ppp.eu/5gasp/
https://www.oreilly.com/library/view/5g-mobile-core/9781484264737/
https://www.oreilly.com/library/view/5g-mobile-core/9781484264737/
https://ptgmedia.pearsoncmg.com/images/9780134463056/samplepages/9780134463056.pdf
https://ptgmedia.pearsoncmg.com/images/9780134463056/samplepages/9780134463056.pdf
https://doi.org/10.1109/NCA.2017.8171391
https://www.etsi.org/technologies/nfv
https://www.etsi.org/technologies/nfv
https://www.onap.org/wp-content/uploads/sites/20/2019/07/35752846-0-Lumina-Orchestration-2.pdf
https://www.onap.org/wp-content/uploads/sites/20/2019/07/35752846-0-Lumina-Orchestration-2.pdf
https://www.onap.org/wp-content/uploads/sites/20/2019/07/35752846-0-Lumina-Orchestration-2.pdf
https://docs.onap.org/en/latest/platform/architecture/index.html
https://docs.onap.org/en/latest/platform/architecture/index.html
https://osm.etsi.org/
https://osm.etsi.org/
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/04.04.01_60/gs_NFV-SOL005v040401p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/04.04.01_60/gs_NFV-SOL005v040401p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/006/03.07.01_60/gs_NFV-SOL006v030701p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/006/03.07.01_60/gs_NFV-SOL006v030701p.pdf


[16] ETSI, “OSM Release FOUR - Release Notes,” Tech. Rep. 1, May 2018.

[17] OSM - Technical Steering Committee, “OSM Release NINE - Release Notes,” Tech. Rep. 1, Dec. 2020.

[18] OSM - Technical Steering Committee, “OSM Release TEN - Release Notes,” Tech. Rep. 1, Jun. 2021.

[19] ETSI, “Experience wih NFV Architecture, Interfaces, and Information Models,” Tech. Rep. 1, May
2018.

[20] L. Mamushiane, A. A. Lysko, T. Mukute, J. Mwangama, and Z. D. Toit, “Overview of 9 Open-Source
Resource Orchestrating ETSI MANO Compliant Implementations: A Brief Survey,” in 2019 IEEE 2nd
Wireless Africa Conference (WAC), 2019, pp. 1–7. doi: 10.1109/AFRICA.2019.8843421.

[21] ETSI, “OSM Scope, Functionality, Operation and Integration Guidelines,” Tech. Rep. 1, Dec. 2019.

[22] A. Hermosilla, J. Gallego-Madrid, P. Martinez-Julia, et al., “Deployment of 5g network applications over
multidomain and dynamic platforms,” in 2022 IEEE Future Networks World Forum (FNWF), 2022,
pp. 276–281. doi: 10.1109/FNWF55208.2022.00055.

[23] T. Xirofotos, “NetApp: Opening up 5G and beyond networks,” Tech. Rep. 1, Sep. 2022.

[24] European Commission, Horizon 2020 - Work Programme 2018-2020 - Information and Communication
Technologies, Oct. 2020. [Online]. Available: https://ec.europa.eu/research/participants/data/
ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf.

[25] ETSI TS 123 501 V16.6.0, 5G; System System architecture for the 5G System (5GS), Oct. 2020.
[Online]. Available: https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/
ts_123501v160600p.pdf.

[26] 5G; System architecture for the 5G System (5GS) (3GPP TS 23.501 version 16.18.0 Release 16), [Online;
accessed 2023], 2023. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/123500_123599/
123501/16.18.00_60/ts_123501v161800p.pdf.

[27] W. Stallings, “Chapter 3: Overview of 5G Use Cases and Architecture,” in 5G Wireless: A comprehensive
introduction. Addison Wesley Professional, 2021, pp. 87–93, isbn: 9780136767206. [Online]. Available:
https://www.oreilly.com/library/view/5g-wireless-a/9780136767206/ (visited on 12/12/2022).

[28] R. S. Shetty, 5G Mobile Core Network: Design, Deployment, Automation, and Testing Strategies.
Apress, 2021, pp. 1–372. doi: https://doi.org/10.1007/978-1-4842-6473-7. [Online]. Available:
https://www.oreilly.com/library/view/5g-mobile-core/9781484264737/ (visited on 12/12/2022).

[29] D. Tsolkas and H. Koumaras, “On the development and provisioning of vertical applications in the beyond
5g era,” IEEE Networking Letters, vol. 4, no. 1, pp. 43–47, 2022. doi: 10.1109/LNET.2022.3142088.

[30] D. Fragkos, G. Makropoulos, A. Gogos, H. Koumaras, and A. Kaloxylos, “Nefsim: An open ex-
perimentation framework utilizing 3gpp’s exposure services,” in 2022 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2022, pp. 303–308. doi:
10.1109/EuCNC/6GSummit54941.2022.9815829.

[31] M. Krief, Learning DevOps - Second Edition. Packt Publishing, 2022. [Online]. Available: https :
//oreilly.com/library/view/learning-devops/9781801818964/.

[32] L. Z. Len Bass Ingo Weber, DevOps: A Software Architect’s Perspective. Addison-Wesley Professional,
2015. [Online]. Available: https://oreilly.com/library/view/devops-a-software/9780134049885/.

[33] S. Rossel, Continuous Integration, Delivery, and Deployment. Packt Publishing, 2017. [Online]. Available:
https://oreilly.com/library/view/continuous-integration-delivery/9781787286610/.

[34] H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD): A Practical Guide to
Designing and Developing Pipelines. Apress, 2023. [Online]. Available: https://oreilly.com/library/
view/continuous-integration-ci/9781484292280/.

[35] The Convergence of NFV and DevOps for Accelerated Innovation, Accessed: 19-09-2023. [Online].
Available: https://dzone.com/articles/convergence-of-nfv-amp-devops-for-accelerating-inn.

[36] SDN/NFV DevOps: Release Automation for Network Operators, Accessed: 19-09-2023. [Online]. Available:
https://devops.com/sdn-nfv-devops-release-automation-for-network-operators/.

76

https://doi.org/10.1109/AFRICA.2019.8843421
https://doi.org/10.1109/FNWF55208.2022.00055
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.18.00_60/ts_123501v161800p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.18.00_60/ts_123501v161800p.pdf
https://www.oreilly.com/library/view/5g-wireless-a/9780136767206/
https://doi.org/https://doi.org/10.1007/978-1-4842-6473-7
https://www.oreilly.com/library/view/5g-mobile-core/9781484264737/
https://doi.org/10.1109/LNET.2022.3142088
https://doi.org/10.1109/EuCNC/6GSummit54941.2022.9815829
https://oreilly.com/library/view/learning-devops/9781801818964/
https://oreilly.com/library/view/learning-devops/9781801818964/
https://oreilly.com/library/view/devops-a-software/9780134049885/
https://oreilly.com/library/view/continuous-integration-delivery/9781787286610/
https://oreilly.com/library/view/continuous-integration-ci/9781484292280/
https://oreilly.com/library/view/continuous-integration-ci/9781484292280/
https://dzone.com/articles/convergence-of-nfv-amp-devops-for-accelerating-inn
https://devops.com/sdn-nfv-devops-release-automation-for-network-operators/


[37] ETSI GR NFV-TST 006, Network Functions Virtualisation (NFV); Testing; Report on CICD and
DevOps, Dec. 2022. [Online]. Available: https://www.etsi.org/deliver/etsi_gr/NFV-TST/001_099/
006/01.02.01_60/gr_NFV-TST006v010201p.pdf.

[38] Best Test Automation Frameworks, Accessed 2023, Available: https://www.browserstack.com/guide/best-
test-automation-frameworks. [Online]. Available: https://www.browserstack.com/guide/best-test-
automation-frameworks.

[39] Robot Framework, Accessed 2023. [Online]. Available: https://robotframework.org/.

[40] VITAL-5G, Accessed 2023. [Online]. Available: https://www.vital5g.eu/.

[41] Target Use Cases - VITAL-5G, Accessed 2023. [Online]. Available: https://www.vital5g.eu/target-
use-cases/.

[42] VITAL-5G, “D1.4 Testing and validation methodology,” Tech. Rep., Dec. 2021.

[43] VITAL-5G, “D2.1 Initial Network Application blueprints and Open Repository design,” Tech. Rep.,
Apr. 2023.

[44] VITAL-5G, “D1.2 System Specifications and Architecture,” Tech. Rep., Dec. 2021.

[45] VITAL-5G, “D1.1 Report on use case requirements,” Tech. Rep., Jun. 2021.

[46] K. Trichias, G. Landi, E. Seder, et al., “VITAL-5G: Innovative Network Applications (NetApps) Support
over 5G Connectivity for the Transport & Logistics Vertical,” in 2021 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021, pp. 437–442. doi:
10.1109/EuCNC/6GSummit51104.2021.9482437.

[47] VITAL-5G, “D4.1 Trial planning and experimentation methodology,” Tech. Rep., Jun. 2022.

[48] EVOLVED-5G, Accessed 2023. [Online]. Available: https://evolved-5g.eu/.

[49] Objectives - EVOLVED-5G, Accessed 2023. [Online]. Available: https://evolved-5g.eu/objectives/.

[50] EVOLVED-5G, “D2.3 Overall framework for NetApp development and evaluation,” Tech. Rep., Oct.
2022.

[51] EVOLVED-5G, “D2.2 Design of NetApps development and evaluation environments,” Tech. Rep., Oct.
2021.

[52] EVOLVED-5G, “D3.2 NetApp Certification Tools and Marketplace development (intermediate),” Tech.
Rep., Jun. 2022.

[53] LTE; 5G; Common API Framework for 3GPP Northbound APIs (3GPP TS 23.222 version 17.7.0
Release 17), [Online; accessed 2023], 2022. [Online]. Available: https://www.etsi.org/deliver/etsi_
ts/123200_123299/123222/17.07.00_60/ts_123222v170700p.pdf.

[54] EVOLVED-5G, “D3.1 Implementations and integrations towards EVOLVED-5G framework realisation
(intermediate),” Tech. Rep., Dec. 2021.

[55] Universal Mobile Telecommunications System (UMTS); LTE; 5G; T8 reference point for Northbound
APIs (3GPP TS 29.122 version 17.10.0 Release 17), [Online; accessed 2023], 2023. [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/129100_129199/129122/17.10.00_60/ts_129122v171000p.
pdf.

[56] 5G; 5G System; Network Exposure Function Northbound APIs; Stage 3 (3GPP TS 29.522 version
17.10.0 Release 17), [Online; accessed 2023], 2023. [Online]. Available: https://www.etsi.org/deliver/
etsi_ts/129500_129599/129522/17.10.00_60/ts_129522v171000p.pdf.

[57] EVOLVED-5G, “D4.1 5G Exposure Capabilities for Vertical Applications (Intermediate),” Tech. Rep.,
Feb. 2021.

[58] Home - 5GMediaHUB, Accessed 2023. [Online]. Available: https://www.5gmediahub.eu/.

[59] 5GMediaHUB, “D1.8 Architecture Design & Technical Specifications - Final,” Tech. Rep., Feb. 2023.

77

https://www.etsi.org/deliver/etsi_gr/NFV-TST/001_099/006/01.02.01_60/gr_NFV-TST006v010201p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-TST/001_099/006/01.02.01_60/gr_NFV-TST006v010201p.pdf
https://www.browserstack.com/guide/best-test-automation-frameworks
https://www.browserstack.com/guide/best-test-automation-frameworks
https://robotframework.org/
https://www.vital5g.eu/
https://www.vital5g.eu/target-use-cases/
https://www.vital5g.eu/target-use-cases/
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482437
https://evolved-5g.eu/
https://evolved-5g.eu/objectives/
https://www.etsi.org/deliver/etsi_ts/123200_123299/123222/17.07.00_60/ts_123222v170700p.pdf
https://www.etsi.org/deliver/etsi_ts/123200_123299/123222/17.07.00_60/ts_123222v170700p.pdf
https://www.etsi.org/deliver/etsi_ts/129100_129199/129122/17.10.00_60/ts_129122v171000p.pdf
https://www.etsi.org/deliver/etsi_ts/129100_129199/129122/17.10.00_60/ts_129122v171000p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129522/17.10.00_60/ts_129522v171000p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129522/17.10.00_60/ts_129522v171000p.pdf
https://www.5gmediahub.eu/


[60] 5GMediaHUB, “D1.2 Use Case Analysis and Target KPIs - Final,” Tech. Rep., Jan. 2023.

[61] 5GMediaHUB, “D1.6 DevOps Implementation and Testing Methodology and Benchmarking of Results -
Final,” Tech. Rep., Feb. 2023.

[62] A. Siokis, K. Ramantas, G. Margetis, et al., “5G experimentation environment for third party media
services: the 5GMediaHUB project,” in 2021 IEEE International Mediterranean Conference on Commu-
nications and Networking (MeditCom), 2021, pp. 1–6. doi: 10.1109/MeditCom49071.2021.9647663.

[63] Use Cases - 5GMediaHUB, Accessed 2023. [Online]. Available: https://www.5gmediahub.eu/use-
cases/.

[64] K. Trantzas, C. Tranoris, S. Denazis, et al., “An automated CI/CD process for testing and deployment
of Network Applications over 5G infrastructure,” in 2021 IEEE International Mediterranean Conference
on Communications and Networking (MeditCom), 2021, pp. 156–161. doi: 10.1109/MeditCom49071.
2021.9647628.

[65] 5GGASP, “D5.1 Initial Report on Test Plan Creation and Testing Methodologies,” Tech. Rep. 1, Jan.
2023.

[66] 5GGASP, “D5.3 Development of testing tools and framework for the Automotive and PPDR Verticals,”
Tech. Rep. 1, Apr. 2022.

[67] 5GGASP, “D2.3 : The 5GASP Revised Reference Architecture and Community Components,” Tech.
Rep. 1, Jul. 2023.

[68] 5GGASP, “D5.4 Initial Report for the Network Application certification testing,” Tech. Rep. 1, Mar.
2023.

78

https://doi.org/10.1109/MeditCom49071.2021.9647663
https://www.5gmediahub.eu/use-cases/
https://www.5gmediahub.eu/use-cases/
https://doi.org/10.1109/MeditCom49071.2021.9647628
https://doi.org/10.1109/MeditCom49071.2021.9647628


Appendix

Report Handler Function

class ReportLogging(APIRoute):
def get_route_handler(self) -> Callable:

original_route_handler = super().get_route_handler()

async def custom_route_handler(request: Request) -> Response:
try:

request_body = {}
try:

request_body = await request.json()
except JSONDecodeError:

pass

response = await original_route_handler(request)

extra_fields = {
'endpoint': request.url.path,
'method': request.method,
'request_body': request_body,
**self.get_query_params(request.query_params),
'nef_response_code': response.status_code,
'nef_response_message':

response.body.decode(response.charset).replace('"', "'"),↪→

}

self.update_log_file(extra_fields)

return response
except (RequestValidationError, HTTPException) as exc:

status_code = 422 if isinstance(exc, RequestValidationError) else
exc.status_code↪→

extra_fields = {
'endpoint': request.url.path,
'method': request.method,
'request_body': exc.body if isinstance(exc, RequestValidationError) else

request_body,↪→

**self.get_query_params(request.query_params),
'nef_response_code': status_code,

79



'nef_response_message': exc.detail if isinstance(exc, HTTPException) else
exc.errors(),↪→

}

self.update_log_file(extra_fields)

raise HTTPException(status_code=status_code, detail=exc.detail if
isinstance(exc, HTTPException) else exc.errors())↪→

return custom_route_handler

def read_log_file(self):
with open(settings.REPORT_PATH) as fp:

return json.load(fp)

def write_log_file(self, listObj):
with open(settings.REPORT_PATH, 'w') as json_file:

json.dump(listObj, json_file, indent=4, separators=(',', ': '))

def update_log_file(self, extra_fields):
global logs_count

logs_count += 1

log_entry = {
'id': logs_count,
**extra_fields

}

listObj = self.read_log_file()
listObj.append(log_entry)
self.write_log_file(listObj)

def get_query_params(self, request_query_params):
query_params = {

'scsAsId': None,
'afId': None,
'subscriptionId': None,
'transactionId': None,
'configurationId': None,
'provisioningId': None,
'setId': None,

}

for param_name in query_params:
if param_name in request_query_params:

query_params[param_name] = request_query_params[param_name]

return query_params

Code Block 6.1: Report Handler

80



Create Monitoring Subscription Test

import requests
import json

def validate_report(report):
errors = []
for request in report:

if request["endpoint"] ==
"/nef/api/v1/3gpp-monitoring-event/v1/netapp/subscriptions":↪→

if request["method"] != "POST":
errors.append("Wrong method used.")
break

elif request["nef_response_code"] not in [200, 409]:
errors.append(f"Unable to create a monitoring subscription due to:

{request['nef_response_message']}")↪→

break
return errors

def test_nef_monitoring_subscription(report_api_ip, report_api_port, report_name,
mini_api_ip, mini_api_port, nef_ip, nef_port, nef_user, nef_pass):↪→

try:
report_api_url = f"http://{report_api_ip}:{report_api_port}" + "/report/"

# 1. Delete any existing report
response = requests.delete(report_api_url)

if not (response.status_code == 200 or response.status_code == 404):
print(f"Error deleting the report")
raise Exception(f"Error deleting the report")

# 2. Create Report
response = requests.post(report_api_url)

if response.status_code == 409:
print(f"Report cound't be created")
raise Exception(f"Report cound't be created")

# 3. Call the MiniAPI to run the code
mini_api_url = f"http://{mini_api_ip}:{mini_api_port}" + "/start/"

data = {
"configId": 1,
"duration": 10,
"nef_ip": nef_ip,
"nef_port": nef_port,
"nef_username": nef_user,
"nef_pass": nef_pass

}

81



response = requests.post(mini_api_url, params=data)

if response.status_code != 200:
print(f"Error while calling the MiniAPI")
raise Exception(f"Error while calling the MiniAPI")

# 4. Get Report
response = requests.get(report_api_url)

if response.status_code == 404:
print(f"Report does not exist")
raise Exception(f"Report does not exist")

report = response.json()

with open(report_name, 'w', encoding='utf-8') as f:
json.dump(report, f, ensure_ascii=False, indent=4)

except Exception as e:
print(f"An error occured. Exception {e}")
return 2, f"An error occured. Exception {e}"

# 5. Validate the Report
errors = validate_report(report)

if len(errors) != 0:
errors_str = '\n\t- '.join(errors)
print(f"Test Failed due to the following errors: {errors_str}")
return 1, f"Test Failed due to the following errors: {errors_str}"

else:
print("Successful test.")
return 0, f"Successful test."

Code Block 6.2: nef_monitoring_subscription.py

TRVD’s Web Interface

Figure 1: TRVD’s Web Interface Portraiting an Unsuccessful Validation Process

82



Robot File for the Unsuccessful Execution

Figure 2: report.html Robot File for the Unsuccessful Execution of the NEF Handovers Test

83


	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Goals
	Dissertation Outline

	Background Concepts and Work Proposal
	Before 5g
	Network Function Virtualization
	etsi mano

	mano Solutions
	onap
	osm

	Network Applications
	5g Core System Architecture
	5g Core Network Capability & Network Exposure Function

	Agile Methodology
	DevOps
	ci/cd
	Harnessing DevOps and ci within a nfvContext

	Testing Automation Frameworks
	Related Work
	VITAL-5G
	EVOLVED-5G
	5GMediaHUB
	5GASP

	Work Proposal
	Chapter Summary

	Architecture
	Problem Statement
	Architecture and Specifications
	Components
	Modules' Interaction

	Testing Pipeline
	Report File

	Chapter Summary

	Implementation
	nef Emulator
	Northbound api
	Report Handler
	Emulation Endpoints
	Generating Values

	Report api
	Mini api
	Validation Tests
	ltr
	5g Readiness
	Security
	Generation of Values

	Chapter Summary

	Results
	5G Readiness Tests
	Testing Scenario
	Results

	Security Tests
	Testing Scenario
	Results

	Generation of Values
	Testing Scenario
	Results

	Chapter Summary

	Conclusions
	Conclusions
	Future Work

	References
	Appendix
	Report Handler Function
	Create Monitoring Subscription Test
	trvd's Web Interface
	Robot File for the Unsuccessful Execution


