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A B S T R A C T

We present a novel Pharmacokinetic/Pharmacodynamic (PK/PD) model for the induction phase of anesthesia,
incorporating the 𝜓-Caputo fractional derivative. By employing the Picard iterative process, we derive a
solution for a nonhomogeneous 𝜓-Caputo fractional system to characterize the dynamical behavior of the
drugs distribution within a patient’s body during the anesthesia process. To explore the dynamics of the
fractional anesthesia model, we perform numerical analysis on solutions involving various functions of 𝜓
and fractional orders. All numerical simulations are conducted using the MATLAB computing environment.
Our results suggest that the 𝜓 functions and the fractional order of differentiation have an important role in
the modeling of individual-specific characteristics, taking into account the complex interplay between drug
concentration and its effect on the human body. This innovative model serves to advance the understanding
of personalized drug responses during anesthesia, paving the way for more precise and tailored approaches to
anesthetic drug administration.
1. Introduction

Pharmacokinetic/Pharmacodynamic (PK/PD) modeling is a mathe-
matical approach used in pharmacology to study the relationship be-
tween drug concentrations (Pharmacokinetics) and their effects on the
body (Pharmacodynamics) [1,2]. The PK/PD models help researchers
and clinicians to understand how drugs are absorbed, distributed,
metabolized, and eliminated from the body [3].

The PK/PD models integrate Pharmacokinetic and Pharmacody-
namic data to characterize the time course of drug action [4]. These
models can be simple or complex, depending on the drug’s characteris-
tics and the purpose of the modeling. The parameters of these models
were fitted by Schnider et al. in [5]. Some common types of PK/PD
models include:

1. Linear PK/PD models. The basic structure of a linear PK/PD
model consists of two main components: the Pharmacokinetic
component, which describes the drug concentration–time pro-
file in the body, and the Pharmacodynamic component, which
relates to the drug concentration to the observed effect [6].

2. Non-linear PK/PD models. These models can incorporate vari-
ous components, such as saturable drug elimination, receptor
binding kinetics, and indirect response models. These models
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provide a more accurate representation of the concentration–
effect relationship and can be used to optimize dosing regimens
and predict drug responses in different populations [7].

3. Mechanistic PK/PD models. These models incorporate known
biological mechanisms, such as drug–receptor interactions, en-
zyme kinetics, or signal transduction pathways. They provide a
more detailed representation of drug action but require more
data and knowledge about the underlying biology [8].

4. Population Pharmacokinetic models. These models are used to
describe the time course of drug exposure in patients and to
investigate sources of variability in patient exposure. They can
be used to simulate alternative dose regimens, allowing for
informed assessment of dose regimens before study conduct
[9,10].

In recent years, the field of fractional derivatives has emerged as
a promising approach to model and understand complex biological
processes characterized by non-integer order dynamics [11–13]. This
unique mathematical framework has found diverse applications in
various areas of biology, where traditional integer-order calculus falls
short in capturing the intricacies of these systems [14,15].

One prominent field where fractional derivatives have made signif-
icant contributions is Neurobiology. By employing fractional calculus,
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researchers have been able to delve into the dynamics of neural systems
with a greater level of realism. This includes modeling the behavior of
neurons, synaptic transmission, and the propagation of nerve impulses.
The incorporation of fractional derivatives enables the consideration
of memory effects and non-local behavior, providing a more accurate
representation of neural processes [16].

Another area where fractional derivatives have shown their effi-
cacy is in Biomedical Signal Processing. Biomedical signals, such as
electroencephalograms (EEG), electrocardiograms (ECG), and blood
pressure signals, are often complex and exhibit non-integer order dy-
namics. By utilizing fractional order filters and operators, meaningful
information can be extracted from these signals, leading to improved
analysis and interpretation. Fractional calculus has proven to be a valu-
able tool in enhancing our understanding of these vital physiological
signals [17].

Furthermore, the field of Cancer Modeling has witnessed the appli-
cation of fractional derivatives [18]. Tumor growth and the intricate
interactions between cancer cells and the immune system present com-
plex dynamics that can be effectively captured using fractional order
models. By incorporating non-local effects and memory into the model-
ing process, fractional derivatives provide a comprehensive framework
for studying cancer progression. This approach has the potential to shed
light on the underlying mechanisms and aid the development of novel
therapeutic strategies [19,20].

The field of Pharmacokinetics and Pharmacodynamics plays a cru-
cial role in understanding the behavior of drugs in biological sys-
tems [2]. Traditional PK/PD models have predominantly relied on
integer-order derivatives to describe various processes involved in drug
absorption, distribution, metabolism, and elimination [1,21,22]. How-
ever, these models often fall short in accurately capturing the complex-
ity of Pharmacokinetic behaviors [23,24].

Fractional calculus offers a promising alternative by providing a
more precise representation of these intricate dynamics [25]. A number
of studies have shown that certain drugs follow an anomalous kinetics
that can hardly be represented by classical models. Indeed, fractional-
order pharmacokinetics models have proved to be better suited to
represent the time course of these drugs in the body and also they
can describe memory effects and a power-law terminal phase. There-
fore, they give rise to more complex kinetics that better reflects the
complexity of the human body. In [24], a fractional one-compartment
model with a continuous intravenous infusion is considered, where it
allows to determine how the infusion rate influences the total amount
of drug in the compartment. Moreover, in the case of multiple dosing
administration, recurrence relations for the doses and the dosing times
that also prevent drug accumulation are presented. Hence, in [26],
a PK model was introduced employing a fractional-order approach
akin to mammillary dynamics. This model was specifically designed to
incorporate considerations of tissue entrapment, thereby altering the
anticipated drug concentration profiles. The proposed model shows a
limitation in data fit profiles, without transgressing the fundamental
principles of mass balance and physiological states. The mathematical
study of the amount of drug administered as a continuous intravenous
infusion or oral dose for fractional-order mammillary type models is
investigated in [27].

For pharmacokinetic and pharmacodynamic models, the first frac-
tional one was introduced in [28]. By utilizing the Caputo fractional
derivative, the authors presented a fresh perspective on the intricate
relationships between drug dosages, absorption rates, and therapeu-
tic outcomes. Since then, some few applications of fractional PK/PD
models have appeared in the literature [29,30]. In [29], the authors
study the discrete and discrete fractional representation of a PK/PD
model describing tumor growth and anti-cancer effects in continuous
time considering a specific times scale, while in [30] a fractional
PK/PD model in anesthesia is developed to describe the nonlinear
2

characteristics of the PK/PD patient models.
In this article, we propose a novel fractional four-compartmental
PK/PD model for the induction phase of anesthesia, employing the
𝜓-Caputo fractional derivative. This innovative approach involves re-
placing each ordinary derivative in the classical PK/PD model inves-
tigated in [22,31] with the 𝜓-Caputo fractional derivative of order
𝛼 ∈ (0, 1] [32].

By incorporating fractional derivatives into the model, we aim to
capture the intricate dynamics of anesthesia induction more accurately.
Furthermore, based on the Picard iterative process, we establish a so-
lution for the nonhomogeneous 𝜓-Caputo fractional differential system
of equations in terms of matrix Mittag-Leffler functions. The solution
provides a deeper understanding of the dynamics and behavior of the
anesthesia process, taking into account the complex interplay between
drug concentration and its effect on the body.

To validate the effectiveness of our proposed model, we conduct
numerical simulations. Specifically, we determine the optimal anes-
thesia dosage for a 53-year-old male weighing 77 kg and measuring
177 cm, while considering the minimum treatment time [31]. These
simulations enable us to evaluate the performance and applicability of
the fractional PK/PD model in a practical context.

Through the article, we aim to demonstrate the potential of frac-
tional derivatives in advancing our understanding of biology, partic-
ularly in the field of PK/PD modeling. By incorporating fractional
calculus into these models, we can unlock new insights and improve our
ability to predict and optimize drug behavior within biological systems.

The paper is organized as follows. In Section 2, we provide a review
of several definitions and properties of fractional calculus that are
essential for our subsequent discussions (Section 2.1); and we recall
the Pharmacokinetic and Pharmacodynamic models proposed by Bailey
et al. [33] and Schnider [5] (Section 2.2), discussing their bispectral
index (Section 2.3) and the equilibrium points (Section 2.4). Our orig-
inal contributions are then given in Section 3: we obtain a solution
to a general linear nonhomogeneous 𝜓-Caputo fractional system (Sec-
tion 3.1); we introduce a novel PK/PD model for the induction phase
of anesthesia based on the 𝜓-Caputo fractional derivative (Section 3.2);
and finally we compute the model parameters using the Schnider
model [5], presenting the numerical results of the fractional PK/PD
model corresponding to different 𝜓 functions and fractional orders
(Section 3.3). We conclude with Section 4, discussing the implications
and limitations of our results, and with Section 5, summarizing our
findings and outlining potential directions for future research.

2. Preliminaries

In this section, we recall several definitions, properties of fractional
calculus, and the classical PK/PD model, that will be used in the sequel.

2.1. Fundamental definitions and results

Throughout the paper, 𝜓 designates a function of class 𝐶1[𝑎, 𝑏] such
that 𝜓 ′(𝑡) > 0, for all 𝑡 ∈ [𝑎, 𝑏].

efinition 1 (See [34]). The left 𝜓-Riemann–Liouville fractional inte-
ral of a function 𝑓 of order 𝛼 ∈ (0, 1) is defined by

𝐼𝛼,𝜓𝑎 𝑓 (𝑡) = 1
𝛤 (𝛼) ∫

𝑡

𝑎
𝜓 ′(𝑠) (𝜓(𝑡) − 𝜓(𝑠))𝛼−1 𝑓 (𝑠) d𝑠,

here 𝛤 (⋅) is the Euler Gamma function.

emark 1. We remark that 𝛤 (𝑥+1) = 𝑥𝛤 (𝑥), for all 𝑥 > 0, and for any
ositive integer 𝑛 we have 𝛤 (𝑛 + 1) = 𝑛!.

efinition 2 (See [34]). The 𝜓-Caputo fractional derivative of a func-
ion 𝑓 of order 𝛼 ∈ (0, 1) can be defined as follows:

𝐷𝛼,𝜓𝑓 (𝑡) = 1 𝑡
(𝜓(𝑡) − 𝜓(𝑎))−𝛼 𝑓 ′(𝑠) d𝑠.
𝑎 𝛤 (1 − 𝛼) ∫𝑎
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We have the following properties of the fractional operators with
respect to function 𝜓 .

Lemma 1 (See [34]). Let ℜ(𝛼) > 0 and ℜ(𝛽) > 0. Then,

𝐼𝛼,𝜓𝑎 (𝑓 (𝑥) − 𝑓 (𝑎))𝛽−1 (𝑡) =
𝛤 (𝛽)

𝛤 (𝛽 + 𝛼)
(𝑓 (𝑡) − 𝑓 (𝑎))𝛽−𝛼−1 .

Theorem 1 (See [32]). Let 𝛼 ∈ (0, 1) and 𝑓 ∈ 𝐶1(𝑎, 𝑏). Then,

𝐼𝛼,𝜓𝑎
𝐶𝐷𝛼,𝜓

𝑎 𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑎).

The Mittag-Leffler function appears naturally in the solution of frac-
tional differential equations and in its various applications: see [35,36]
and references therein.

Definition 3 (See [35]). The Mittag–Leffler function of one parameter,
of a matrix 𝐴, is defined as

𝐸𝛼(𝐴) =
+∞
∑

𝑙=0

𝐴𝑙

𝛤 (𝛼𝑙 + 1)
, 𝑅𝑒(𝛼) > 0. (1)

Definition 4 (See [35]). The Mittag–Leffler function of two parameters,
of a matrix 𝐴, is defined as

𝐸𝛼,𝛼′ (𝐴) =
+∞
∑

𝑙=0

𝐴𝑙

𝛤 (𝛼𝑙 + 𝛼′)
, 𝑅𝑒(𝛼) > 0, 𝛼′ > 0. (2)

emark 2. The matrix exponential function is a special case of the
atrix Mittag–Leffler function [36]. For 𝛼′ = 1, we have 𝐸𝛼,1(𝐴) =
𝛼(𝐴) and 𝐸1,1(𝐴) = 𝑒𝐴.

We now recall the notion of generalized convolution integral.

efinition 5 (See [37]). Let 𝑓 and 𝑔 be two functions which are
iecewise continuous at any interval [𝑎, 𝑏] and of exponential order.
he generalized convolution of 𝑓 and 𝑔 is defined by

𝑓 ∗𝜓 𝑔
)

(𝑡) = ∫

𝑡

𝑎
𝑓 (𝑠)𝑔

(

𝜓−1(𝜓(𝑡) + 𝜓(𝑎) − 𝜓(𝑠))
)

𝜓 ′(𝑠) d𝑠.

.2. The classical PK/PD model: state of the art

The Pharmacokinetic/Pharmacodynamic (PK/PD) model comprises
our compartments: intramuscular blood (𝑦1(𝑡)), muscle (𝑦2(𝑡)), fat
𝑦3(𝑡)), and the effect site (𝑦4(𝑡)). The inclusion of the effect site com-
artment (representing the brain) is necessary to account for the
inite equilibration time between the central compartment and the
entral nervous system concentrations [33]. This model is employed to
haracterize the distribution of drugs within a patient’s body and can
e mathematically described by a four-dimensional dynamical system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�1(𝑡) = −(𝑎1 0 + 𝑎1 2 + 𝑎1 3) 𝑦1(𝑡) + 𝑎2 1 𝑦2(𝑡) + 𝑎3 1 𝑦3(𝑡) + 𝑢(𝑡),
�̇�2(𝑡) = 𝑎1 2 𝑦1(𝑡) − 𝑎2 1 𝑦2(𝑡),
�̇�3(𝑡) = 𝑎1 3 𝑦1(𝑡) − 𝑎3 1 𝑦3(𝑡),
�̇�4(𝑡) =

𝑎𝑒 0
𝑣1
𝑦1(𝑡) − 𝑎𝑒 0 𝑦4(𝑡),

(3)

subject to the initial conditions

𝑦1(0) = 𝑦2(0) = 𝑦3(0) = 𝑦4(0) = 0, (4)

where 𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡) and 𝑦4(𝑡) represent, respectively, the masses of
the propofol in the compartments of blood, muscle, fat, and effect site
at time 𝑡. The control 𝑢(𝑡) represents the continuous infusion rate of
the anesthetic. The parameters 𝑎1 0 and 𝑎𝑒 0 represent, respectively, the
rate of clearance from the central compartment and the effect site.
The parameters 𝑎1 2, 𝑎1 3, 𝑎2 1, 𝑎3 1 and 𝑎𝑒 0∕𝑣1 are the transfer rates of
the drug between compartments. All these parameters depend on age,
weight, height and gender, and the relations can be found in Table 1.
3

Table 1
Parameter values for model (3) according with Schnider models [5].

Parameter Estimation

𝑎10 (min−1) 0.443 + 0.0107 (weight − 77) − 0.0159 (LBM − 59) + 0.0062 (height − 177)
𝑎12 (min−1) 0.302 − 0.0056 (age − 53)
𝑎13 (min−1) 0.196
𝑎21 (min−1) (1.29 − 0.024 (age − 53)) ∕ (18.9 − 0.391 (age − 53))
𝑎31 (min−1) 0.0035
𝑎𝑒0 (min−1) 0.456
𝑣1 (l) 4.27

A schematic diagram of the dynamical control system (3) is given
in Fig. 1.

Following Schnider et al. [5], the lean body mass (LBM) is calcu-
lated using the James formula, which performs satisfactorily in normal
and moderately obese patients, but not so well for severely obese
cases [38]. The James formula calculates LBM as follows:

for Male, LBM = 1.1 × weight − 128 ×
(

weight
height

)2
, (5)

for Female, LBM = 1.07 × weight − 148 ×
(

weight
height

)2
. (6)

2.3. The bispectral index (BIS)

The bispectral index (BIS) serves as an indicator of anesthesia
depth, obtained by analyzing the electroencephalogram (EEG) signal
and reflecting the effect site concentration of 𝑦4(𝑡). It provides a quan-
itative measure of a patient’s level of consciousness, ranging from 0
indicating no cerebral activity) to 100 (representing a fully awake
atient). According to clinical guidelines, maintaining BIS values within
he range of 40 to 60 is considered essential to ensure adequate
eneral anesthesia during surgical procedures [39]. BIS values below
0 indicate a deep hypnotic state, while values above 60 may increase
he risk of awareness under anesthesia. Thus, it is crucial to closely
onitor and regulate the BIS value within the optimal range of 40 to
0 to prevent unintended consciousness during anesthesia and ensure
atient safety [40].

Empirically, the BIS can be described by a decreasing sigmoid
unction, as outlined by Bailey et al. [33]:

𝐼𝑆(𝑦4(𝑡)) = 𝐵𝐼𝑆0

(

1 −
𝑦4(𝑡)𝛾

𝑦4(𝑡)𝛾 + 𝐸𝐶
𝛾
50

)

, (7)

where the parameters in the BIS model have specific interpretations.
Function 𝐵𝐼𝑆0 gives the BIS value of an awake patient that is typically
et to 100; 𝐸𝐶50 corresponds to the drug concentration at which

50% of the maximum effect is achieved, while 𝛾 is a parameter that
captures the degree of nonlinearity in the model. According to Haddad
et al. [41], typical values for these parameters are 𝐸𝐶50 = 3.4 mg∕l, and
𝛾 = 3.

2.4. The equilibrium point

The equilibrium points are computed by putting the right-hand side
of the four equations given in (3) equal to zero with the condition

𝑦4 = 𝐸𝐶50. (8)

It results that the equilibrium point 𝑦𝑒 =
(

𝑦𝑒 1, 𝑦𝑒 2, 𝑦𝑒 3, 𝑦𝑒 4
)

is given by

𝑦𝑒 1 = 𝑣1 𝐸𝐶50, 𝑦𝑒 2 =
𝑎1 2 𝑣1 𝐸𝐶50

𝑎2 1
, 𝑦𝑒 3 =

𝑎1 3 𝑣1 𝐸𝐶50
𝑎3 1

, 𝑦𝑒 4 = 𝐸𝐶50,

(9)

and the value of the continuous infusion rate for this equilibrium is

𝑢 = 𝑎 𝑣 𝐸𝐶 . (10)
𝑒 1 0 1 50
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Fig. 1. Schematic diagram of the PK/PD model with the effect site compartment of Bailey and Haddad [33].
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The fast state is defined by

𝑒𝐹 (𝑡) = (𝑦1(𝑡), 𝑦4(𝑡)). (11)

For more information on the classical PK/PD model we refer the
nterested reader to [42].

. Main results

We begin by using the Picard iterative process to prove a series
olution to a linear nonhomogeneous 𝜓-Caputo fractional system: see
heorem 2, in Section 3.1. Then, we generalize the state-of-the-art
K/PD model (3) by introducing in Section 3.2 a more general 𝜓-
aputo fractional PK/PD model that is covered by our Theorem 2. We

inish our new results in Section 3.3, by investigating numerically the
ew fractional model and comparing the efficacy of function 𝜓 .

.1. Solution of linear nonhomogeneous 𝜓-Caputo fractional systems

Consider the following linear nonhomogeneous fractional equation:

𝐷𝛼,𝜓
𝑎 𝑦(𝑡) = 𝐴𝑦(𝑡) + 𝑢(𝑡), 𝑡 > 𝑎, (12)

ubject to the initial condition

(𝑎) = 𝑦0, (13)

here 𝐶𝐷𝛼,𝜓
𝑎 is the 𝜓-Caputo fractional derivative of order 𝛼 ∈ (0, 1],

uch that

𝐷𝛼,𝜓
𝑎 𝑦(𝑡) =

[𝐶𝐷𝛼,𝜓
𝑎 𝑦1(𝑡), 𝐶𝐷𝛼,𝜓

𝑎 𝑦2(𝑡),… , 𝐶𝐷𝛼,𝜓
𝑎 𝑦𝑛(𝑡)

]𝑇 ,

𝐴 is a 𝑛×𝑛 matrix, 𝑢(𝑡) =
[

𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑛(𝑡)
]𝑇 is a piecewise continuous

integrable function on [𝑎,+∞), and the initial condition is 𝑦(𝑎) =
[

𝑦1(𝑎), 𝑦2(𝑎),… , 𝑦𝑛(𝑎)
]𝑇 .

Lemma 2. Let 𝑝 ∈ N, 𝛼 ∈ (0, 1], and 𝑓 be a piecewise continuous function
of exponential order at any interval [𝑎, 𝑏]. Then,

𝐼 (𝑝+1)𝛼,𝜓𝑎 𝑓 (𝑡) =
(𝜓(𝑡) − 𝜓(𝑎))𝑝𝛼+𝛼−1

𝛤 (𝑝𝛼 + 𝛼)
∗𝜓 𝑓 (𝑡).

Proof. Follows by using the change of variable 𝑧 = 𝜓−1 (𝜓(𝑡) + 𝜓(𝑎)
−𝜓(𝑠)), Definition 5, and performing direct calculations. □

Lemma 3. Let 𝛼 ∈ (0, 1] and 𝐶 be a constant. Then, one has

𝐼𝛼,𝜓𝐶 = 𝐶 (𝜓(𝑡) − 𝜓(𝑎))𝛼 .
4

𝑎 𝛤 (𝛼 + 1)
Proof. From Definition 1, we have

𝐼𝛼,𝜓𝑎 𝐶 = 𝐶
𝛤 (𝛼) ∫

𝑡

𝑎
𝜓 ′(𝑠) (𝜓(𝑡) − 𝜓(𝑠))𝛼−1 d𝑠

= 𝐶
𝛤 (𝛼)

[𝛼−1 (𝜓(𝑡) − 𝜓(𝑠))]𝑡𝑎

= 𝐶
𝛤 (𝛼 + 1)

(𝜓(𝑡) − 𝜓(𝑎))𝛼 ,

nd the proof is complete. □

Now, we shall utilize the Picard iterative process [43] to formulate
series solution to (12)–(13).

heorem 2. The solution of the initial value problem (12)–(13) can be
iven in series form as

(𝑡) =
∞
∑

𝑙=0

𝐴𝑙 (𝜓(𝑡) − 𝜓(𝑎))𝑙𝛼

𝛤 (𝑙𝛼 + 1)
𝑦(𝑎) +

∞
∑

𝑙=0

𝐴𝑙 (𝜓(𝑡) − 𝜓(𝑎))𝑙𝛼+𝛼−1

𝛤 (𝑙𝛼 + 𝛼)
∗𝜓 𝑢(𝑡). (14)

roof. Applying the fractional integration operator 𝐼𝛼,𝜓𝑎 to both sides
f Eq. (12), and using Theorem 1, we obtain the following expression:

(𝑡) = 𝑦(𝑎) + 𝐴𝐼𝛼,𝜓𝑎 𝑦(𝑡) + 𝐼𝛼,𝜓𝑎 𝑢(𝑡).

et 𝜙𝑘 be the 𝑘th approximate solution with the initial one given by

0(𝑎) = 𝑦(𝑎)

nd, for 𝑘 ≥ 1, the recurrent formula

𝑘(𝑡) = 𝑦(𝑎) + 𝐴𝐼𝛼,𝜓𝑎 𝜙𝑘−1(𝑡) + 𝐼𝛼,𝜓𝑎 𝑢(𝑡) (15)

eing satisfied. From formula (15) and Lemma 3, one has

𝜙1(𝑡) = 𝑦(𝑎) +
𝐴 (𝜓(𝑡) − 𝜓(𝑎))𝛼

𝛤 (𝛼 + 1)
𝑦(𝑎) + 𝐼𝛼,𝜓𝑎 𝑢(𝑡),

𝜙2(𝑡) = 𝑦(𝑎) +
𝐴 (𝜓(𝑡) − 𝜓(𝑎))𝛼

𝛤 (𝛼 + 1)
𝑦(𝑎) +

𝐴2 (𝜓(𝑡) − 𝜓(𝑎))2𝛼

𝛤 (2𝛼 + 1)
𝑦(𝑎)

+ 𝐴𝐼2(𝛼,𝜓)𝑎 𝑢(𝑡) + 𝐼𝛼,𝜓𝑎 𝑢(𝑡),

⋮

𝜙𝑘(𝑡) =
𝑘
∑

𝑙=0

𝐴𝑙 (𝜓(𝑡) − 𝜓(𝑎))𝑙𝛼

𝛤 (𝑙𝛼 + 1)
𝑦(𝑎) +

𝑘−1
∑

𝑙=0
𝐴𝑙𝐼 (𝑙+1)(𝛼,𝜓)𝑎 𝑢(𝑡).

y virtue of Lemma 2 and by taking the limit 𝑘 ⟶ ∞ for 𝜙𝑘(⋅), we
btain the series formula (14) for the solution of (12)–(13). □

Note that, in terms of the matrix Mittag–Leffler functions (1) and
2), the solution (14) may be written as

(𝑡) = 𝐸𝛼 (𝐴(𝜓(𝑡) − 𝜓(𝑎))𝛼) 𝑦(𝑎) + (𝜓(𝑡) − 𝜓(𝑎))𝛼−1

𝛼 (16)

× 𝐸𝛼,𝛼 (𝐴(𝜓(𝑡) − 𝜓(𝑎)) ) ∗𝜓 𝑢(𝑡).
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3.2. A fractional PK/PD model

Motivated by system (3), we introduce here our 𝜓-Caputo fractional
Pharmacokinetic/Pharmacodynamic model, which is obtained by re-
placing each ordinary derivative in the system (3) by the 𝜓-Caputo
fractional derivative of order 𝛼 ∈ (0, 1]. Then, our proposed PK/PD
model can be expressed by the following four-dimensional fractional
dynamical system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶𝐷𝛼,𝜓
0 𝑦1(𝑡) = −(𝑎1 0 + 𝑎1 2 + 𝑎1 3) 𝑦1(𝑡) + 𝑎2 1 𝑦2(𝑡) + 𝑎3 1 𝑦3(𝑡) + 𝑢1(𝑡),

𝐶𝐷𝛼,𝜓
0 𝑦2(𝑡) = 𝑎1 2 𝑦1(𝑡) − 𝑎2 1 𝑦2(𝑡),

𝐶𝐷𝛼,𝜓
0 𝑦3(𝑡) = 𝑎1 3 𝑦1(𝑡) − 𝑎3 1 𝑦3(𝑡),

𝐶𝐷𝛼,𝜓
0 𝑦4(𝑡) =

𝑎𝑒 0
𝑣1
𝑦1(𝑡) − 𝑎𝑒 0 𝑦4(𝑡),

(17)

subject to the initial conditions

𝑦1(0) = 𝑦2(0) = 𝑦3(0) = 𝑦4(0) = 0. (18)

According to the dynamical system (12), one may write system (17)–
(18) in a matrix form as follows:
𝐶𝐷𝛼,𝜓

0 𝑦(𝑡) = 𝐴𝑦(𝑡) + 𝐵 𝑢1(𝑡) (19)

with 𝑦(𝑡) =
[

𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡), 𝑦4(𝑡)
]𝑇 ∈ R4, 𝑦(0) = [0, 0, 0, 0]𝑇 ,

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

−(𝑎1 0 + 𝑎1 2 + 𝑎1 3) 𝑎2 1 𝑎3 1 0
𝑎1 2 −𝑎2 1 0 0
𝑎1 3 0 −𝑎3 1 0
𝑎𝑒 0
𝑣1

0 0 −𝑎𝑒 0

⎞

⎟

⎟

⎟

⎟

⎠

and 𝐵 =

⎛

⎜

⎜

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

.

One mentions that the continuous infusion rate 𝑢1(𝑡) is to be chosen
in such a way to transfer the system (17) from the initial state (wake
state) to the fast final state (anesthetized state).

Remark 3. If 𝜓(𝑡) = 𝑡 and 𝛼 = 1, then the fractional system (17) reduces
to the classical PK/PD model (3) [22].

3.3. Numerical simulations

To administer anesthesia to a 53-year-old man weighing 77 kg and
measuring 177 cm, we utilize our proposed fractional PK/PD system
described by:
{

𝐶𝐷𝛼,𝜓
0 𝑦(𝑡) = 𝐴𝑦(𝑡) + 𝐵 𝑢1(𝑡),

𝑦(0) = (0, 0, 0, 0)𝑇 ,
(20)

where, according with Table 1 and [31], the matrix 𝐴 is taken as

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

−0.9175 0.0683 0.0035 0
0.3020 −0.0683 0 0
0.1960 0 −0.0035 0
0.1068 0 0 −0.4560

⎞

⎟

⎟

⎟

⎟

⎠

and 𝐵 =

⎛

⎜

⎜

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, (21)

with

𝑢1(𝑡) =

{

106.0907mg∕min if 0 ≤ 𝑡 < 0.5467,
0 if 0.5467 < 𝑡 ≤ 1.8397.

(22)

From Theorem 2 of Section 3.1, written in form (16), the solution
of system (20) is given by

𝑦(𝑡) = 𝐸𝛼 (𝐴(𝜓(𝑡) − 𝜓(0))𝛼) 𝑦(0) + (𝜓(𝑡) − 𝜓(0))𝛼−1

× 𝐸𝛼,𝛼 (𝐴(𝜓(𝑡) − 𝜓(0))𝛼) ∗𝜓 𝑢(𝑡)
(23)

with 𝑢(𝑡) = 𝐵𝑢1(𝑡) =
[

𝑢1(𝑡), 0, 0, 0
]𝑇 .

Fig. 2 showcases the solutions derived from the fractional PK/PD
model (20), considering the function 𝜓(𝑡) = 𝑡 and exploring different
fractional order values: 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.9, and 𝛼 = 0.85. In
Fig. 3, the curves represent the controlled BIS (Bispectral Index) asso-
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ciated with the optimal continuous infusion rate of the administered P
anesthetic 𝑢(𝑡). It is noteworthy that when the function 𝜓(𝑡) = 𝑡 and the
fractional order is set to 𝛼 = 1, then the obtained results resemblance
those derived from the classical PK/PD model (3). However, altering
the fractional orders introduces variations in the degree of anesthesia.
The recorded values for all fractional orders fell within the range of
40 to 50 (corresponding to the classical model), thus ensuring the
condition of anesthesia. Nevertheless, it is crucial to acknowledge that
lower fractional order values entail a higher risk of awareness during
anesthesia.

Fig. 4 illustrates the solutions of the fractional PK/PD model (20)
associated with the functions 𝜓(𝑡) = 𝑡, 𝜓(𝑡) =

√

𝑡, 𝜓(𝑡) = 𝑡2, and
𝜓(𝑡) = 𝑡+ 0.2, when considering a fractional order of 𝛼 = 1. The graphs
shown in Fig. 5 depict the controlled BIS corresponding to a specific
value of the fractional order 𝛼 = 1, under functions 𝜓(𝑡) = 𝑡, 𝜓(𝑡) =

√

𝑡,
𝜓(𝑡) = 𝑡2 and 𝜓(𝑡) = 𝑡 + 0.2. It is observed that selecting functions
(𝑡) =

√

𝑡 and 𝜓(𝑡) = 𝑡2 does not yield satisfactory anesthesia results.
n the other hand, employing the functions 𝜓(𝑡) = 𝑡 and 𝜓(𝑡) = 𝑡 + 0.2

eads to favorable anesthesia outcomes. In subsequent simulations, we
ill maintain the functions 𝜓(𝑡) = 𝑡 and 𝜓(𝑡) = 𝑡+0.2 while altering the

ractional orders.
In Fig. 6, we present the solutions of the fractional PK/PD model

20) corresponding to the functions 𝜓(𝑡) = 𝑡 and 𝜓(𝑡) = 𝑡 + 0.2,
nder the fractional orders 𝛼 = 1, 𝛼 = 0.9, and 𝛼 = 0.8. The curves
epresenting the controlled BIS are displayed in Fig. 7. It is worth
oting that the recorded BIS values for all fractional orders ranged
rom 50 (resembling the classical model) to 60, thereby satisfying the
ondition of anesthesia. However, it is crucial to acknowledge that
ower fractional order values, specifically with the function 𝜓(𝑡) =
+ 0.2, result in a reduced risk of awareness during anesthesia.

. Discussion

The 𝜓-Caputo fractional PK/PD model represents a notable ad-
ancement in modeling due to its ability to capture intricate drug
esponse dynamics, considering the complex relationship between drug
oncentration and physiological effects. In comparison to conventional
odeling approaches, the incorporation of the 𝜓-Caputo fractional
erivative and the fractional order 𝛼 enable a more comprehensive
epresentation of non-local and memory-dependent effects, offering a
ore nuanced understanding of the induction phase of anesthesia.
owever, it should be noted that the 𝜓-Caputo fractional PK/PD model

s more complex compared to conventional modeling approaches [22,
1] because it relies on fractional calculus and an unknown 𝜓 function,
ntroducing additional parameters, and requires specialized mathemat-
cal knowledge. Therefore, its use should be reserved for situations
here traditional models are insufficient for capturing the intricacies
f the system being modeled with conventional models, based on
nteger-order calculus, remaining the standard for most PK/PD mod-
ling tasks due to their ease of use and the availability of established
ethodologies and software [42].

Complex systems often require sophisticated modeling techniques
hat consider intricate interactions and feedback mechanisms. Addition-
lly, the availability of high-quality data, incorporating a wide range
f variables, significantly enhances the reliability of model predic-
ions. Given this, the accuracy and predictability of 𝜓-Caputo fractional
K/PD models are contingent upon the complexity of the research
omain and the quality of available data, presenting some limitations:
i) additional parameters; and (ii) data requirements. Indeed, (i) the
-Caputo model introduces extra parameters associated with the frac-

ional orders, which need to be estimated from data. These additional
arameters can make the model more complex and require more data
or accurate estimation. (ii) Fractional PK/PD models may require
ore extensive data to accurately estimate parameters and capture

he complexities of the system. Conventional models, in some cases,
ight work with fewer data points. Moreover, the 𝜓-Caputo fractional

K/PD model inherently carries uncertainties related to the selection
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Fig. 2. Analysis of the fractional PK/PD model (20) with functions 𝜓(𝑡) = 𝑡 for fractional orders 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.9 and 𝛼 = 0.85.

Fig. 3. Analysis of controlled BIS with functions 𝜓(𝑡) = 𝑡 for fractional orders 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.9 and 𝛼 = 0.85.

Fig. 4. Analysis of the fractional PK/PD model (20) with functions 𝜓(𝑡) = 𝑡, 𝜓(𝑡) =
√

𝑡, 𝜓(𝑡) = 𝑡2 and 𝜓(𝑡) = 𝑡 + 0.2 for fractional order 𝛼 = 1.
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Fig. 5. Analysis of controlled BIS with functions 𝜓(𝑡) = 𝑡, 𝜓(𝑡) =
√

𝑡, 𝜓(𝑡) = 𝑡2 and 𝜓(𝑡) = 𝑡 + 0.2 for fractional order 𝛼 = 1.

Fig. 6. Analysis of the fractional PK/PD model (20) with functions 𝜓(𝑡) = 𝑡 and 𝜓(𝑡) = 𝑡 + 0.2 for fractional orders 𝛼 = 1, 𝛼 = 0.9, and 𝛼 = 0.8.

Fig. 7. Analysis of controlled BIS with functions 𝜓(𝑡) = 𝑡 and 𝜓(𝑡) = 𝑡 + 0.2 for fractional orders 𝛼 = 1, 𝛼 = 0.9, and 𝛼 = 0.8.
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of the function 𝜓 and the fractional order 𝛼, which can impact the
model’s reliability in predicting anesthesia dosage. Uncertainties in this
model can arise from various sources, e.g. (i) measurement uncertainty
(errors in drug concentration measurements can propagate into the
model, affecting the accuracy of estimated parameters and predictions),
(ii) inter-individual variability (patients can have varying physiological
characteristics, which can lead to inter-individual variability in drug
response, with the model not capturing all aspects of this variability,
potentially resulting in suboptimal dosing for some patients), (iii) intra-
individual variability (even within the same individual, the response
to anesthesia drugs can vary due to factors like changes in organ
function, health status, or concurrent medications, and in that case
the 𝜓-Caputo fractional model may not account for all these factors,
leading to uncertainty in dosing recommendations for the same patient
at different times), (iv) parameter estimation uncertainty (the model
relies on various parameters such as clearance, volume of distribution,
and rate constants, and estimating these parameters from experimental
data can introduce uncertainty), (v) data uncertainty (the quality and
quantity of data used to estimate model parameters can vary, and this
can lead to uncertainties in the model; sparse or noisy data can result
in less reliable model predictions, affecting the accuracy of anesthesia
dosage recommendations), (vi) model structure uncertainty (the 𝜓-
Caputo fractional PK/PD model itself is a simplification of the complex
processes occurring in the body, not fully capturing all relevant mech-
anisms, leading to uncertainties in predictions). Consequences of these
uncertainties in the case of anesthesia (dosage) can be significant:
underdosing, if the model underestimates the required dosage, in which
case patients may not achieve the desired level of anesthesia, leading
to inadequate pain control or awareness during surgery; overdosing, if
the model overestimates the required dosage, with patients receiving
an excessive anesthesia, leading to complications such as extended
recovery times, respiratory depression, or other side effects.

While the 𝜓-Caputo fractional PK/PD model shows advancements
in capturing complex drug responses, there might be certain types of
drugs or treatments for which this modeling approach may not be
as suitable. Some reasons why fractional PK/PD modeling may not
be ideal in certain cases include: (i) non-linear pharmacokinetics; (ii)
complex drug interactions; (iii) short-acting anesthetics.

Finally, it should be remarked that patient safety must be always
of primary importance, especially concerning regulatory aspects like
the Bispectral Index (BIS). Any modeling approach should promote
patient safety by accurately predicting drug responses and aiding in
the development of safer and more effective treatment protocols. Some
key aspects on patient safety and the regulation of PKPD models, with
a focus on BIS monitoring, are:

• Balancing Technology and Clinical Expertise. While PKPD mod-
els and BIS monitoring are valuable tools in anesthesia, they
should not replace the judgment and expertise of skilled anes-
thesiologists. The safe administration of anesthesia requires a
combination of technology and clinical acumen.

• Evidence-Based Practice. The development and use of PKPD mod-
els and monitoring devices like BIS should be based on rigorous
scientific evidence and clinical studies. Regulatory bodies should
require strong evidence of safety and efficacy before approving or
endorsing these technologies.

• Regulatory Oversight. Regulatory agencies play a crucial role in
ensuring that medical devices and models are safe and effective.
They should establish and enforce guidelines for the development
and use of PKPD models and monitoring devices, including BIS.
Regular assessments and updates should be conducted to account
for evolving scientific knowledge.

• Continuous Monitoring. Real-time monitoring of patients during
surgery is essential for patient safety. Monitoring parameters,
including BIS values, should be continuously observed and inter-
preted by trained personnel to respond promptly to any adverse
8

events or deviations.
• Individualized Care. Each patient is unique, and anesthesia man-
agement should be tailored to their specific needs and responses.
PKPD models can provide guidance, but individualized care re-
mains central to patient safety.

5. Conclusion

The incorporation of the 𝜓-Caputo fractional derivative in Pharma-
okinetics and Pharmacodynamics modeling represents a significant ad-
ancement in the field. Indeed, by utilizing fractional-order derivatives,
esearchers can more accurately capture the complex and non-local
ehavior observed in drugs within biological systems.

The choice of the function 𝜓 and the fractional order 𝛼 holds critical
mportance in modeling the relationship between drug concentrations
nd pharmacological effects. This approach provides a more realistic
epresentation of drug efficacy and dose–response relationships, allow-
ng for a deeper understanding of the intricate dynamics involved in
rug–target interactions.

While our study successfully demonstrates the potential of the 𝜓-
aputo fractional PK/PD model in capturing complex drug responses
uring the induction phase of anesthesia, it is crucial to acknowl-
dge certain limitations. The current model’s applicability may be
onstrained by the specific parameters chosen and the simplifications
mployed to facilitate numerical analysis. Furthermore, the availability
f comprehensive clinical data for model validation remains a chal-
enge, which could affect the generalizability of the findings. Future
esearch efforts should focus on addressing these limitations to further
nhance the applicability and robustness of the proposed model. More-
ver, further research is necessary to explore the impact of the chosen
unction 𝜓 and the fractional order 𝛼 on time-delayed responses. This
rea remains open for investigation, and future studies can delve into
nderstanding how different choices of 𝜓 and 𝛼 influence the temporal
spects of drug responses.

In summary, the incorporation of 𝜓-Caputo fractional derivatives
n Pharmacokinetics and Pharmacodynamics modeling offers valuable
nsights and advancements. By refining the choice of function 𝜓 and
ractional order 𝛼, researchers can enhance the accuracy and real-
sm of drug modeling, paving the way for a more comprehensive
nderstanding of drug behavior in biological systems.
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