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Gravitational waves provide a powerful enhancement to our understanding of fundamental physics.
To make the most of their detection we need to accurately model the entire process of their emission
and propagation toward interferometers. Cauchy-Characteristic Extraction and Matching are meth-
ods to compute gravitational waves at null infinity, a mathematical idealization of detector location,
from numerical relativity simulations. Both methods can in principle contribute to modeling by
providing highly accurate gravitational waveforms. An underappreciated subtlety in realising this
potential is posed by the (mere) weak hyperbolicity of the particular PDE systems solved in the
characteristic formulation of the Einstein field equations. This shortcoming results from the popular
choice of Bondi-like coordinates. So motivated, we construct toy models that capture that PDE
structure and study Cauchy-Characteristic Extraction and Matching with them. Where possible we
provide energy estimates for their solutions and perform careful numerical norm convergence tests
to demonstrate the effect of weak hyperbolicity on Cauchy-Characteristic Extraction and Matching.
Our findings strongly indicate that, as currently formulated, Cauchy-Characteristic Matching for
the Einstein field equations would provide solutions that are, at best, convergent at an order lower
than expected for the numerical method, and may be unstable. In contrast, under certain condi-
tions, the Extraction method can provide properly convergent solutions. Establishing however that
these conditions hold for the aforementioned characteristic formulations is still an open problem.

I. INTRODUCTION

The use of present and improved future gravitational
wave (GW) detectors such as the ground-based advanced
LIGO and Virgo [1, 2], Kagra [3], the Cosmic Ex-
plorer [4], and the Einstein Telescope [5], as well as the
space-borne detectors like LISA [6], Taiji [7], and Tian-
Qin [8], is already and will continue to deepen our under-
standing of gravity. To harness their power, gravitational
waveforms of high fidelity are necessary for the param-
eter estimation process [9]. These waveform models are
used to compare against observational data, and thus to
infer the underlying properties of the sources.

In the modeling process, a GW detector is typically
assumed to lie infinitely far away from the source in
an asymptotically flat spacetime. After emission, GWs
propagate towards future null infinity at the speed of
light where they can be detected. There are different
methods to calculate the detected gravitational radia-
tion; see [10] for a review. A widely used technique is
the extrapolation of the Weyl scalar ψ4 to null infinity,
which, in suitable coordinates [11], can be used to pre-
dict the effects of GWs on a detector. For this method,
the initial boundary value problem (IBVP) that results
in the production of GWs is solved, in a bounded numer-
ical domain with outer boundary rout. The value of ψ4

is then calculated on worldtubes of different radii, and
consequently used to fit a polynomial expansion, which

is finally taken to calculate ψ4 at the limit r → ∞. This
approach however is susceptible to systematic extrapo-
lation errors, which can be avoided using the Cauchy-
Characteristic Extraction (CCE) method [12–29]. CCE,
as illustrated in Fig. 1, allows one to calculate the grav-
itational radiation at future null infinity I+ directly. In
CCE, information from the Cauchy domain are passed
through a worldtube T to the characteristic one, and
propagated to I+.

Since the evolution of the Cauchy and the characteris-
tic setups are decoupled, this method can still be affected
by errors related to artificial boundary conditions im-
posed on the outer boundary of the Cauchy domain. One
way to control these errors is to enlarge the Cauchy do-
main, such that the artificial boundary conditions on rout
do not affect the solution within a smaller part of the do-
main, specifically up to the worldtube rext. The charac-
teristic setup is then used to extract the solution from rext
to I+. However, the initial data provided on the initial
null hypersurface for the CIBVP very often are not com-
patible to the IBVP solution outside rext, so there is still
a type of error that has not been removed [30].

A way to avoid this type of error as well is to evolve the
Cauchy and the characteristic setups simultaneously, and
allow information to flow via T both ways. This approach
is often called Cauchy-Characteristic Matching (CCM)
and can in principle provide gravitational waveforms of
high fidelity [20, 31, 32]. Recently, there has been an
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FIG. 1. The conformal diagram of part of Minkowski space-
time, where spatial i0, future temporal i+ and future null I+

infinities are shown. In gravitational waveform modelling, the
detector is assumed to be at I+. As is common in this context,
we abuse the terminology “Cauchy” to denote the IBVP for a
domain foliated by spacelike hypersurfaces that do not extend
to i0, but are truncated to some radius r∗, with r∗ = rout for
CCE and r∗ = rext for CCM. By “characteristic” we refer
to the CIBVP for GR. For Cauchy-Characteristic Extraction
(CCE) and Matching (CCM) information between the Cauchy
and characteristic domains are communicated via the world-
tube T .

important effort to improve and optimize characteristic
codes that can perform CCE and CCM [23, 29]. How-
ever, novel results regarding the hyperbolicity of Gen-
eral Relativity (GR) in the characteristic setup [33, 34]
pose pressing questions as to whether CCE and CCM as
currently performed for GR can indeed deliver on their
promise to produce highly accurate waveforms.

Within the framework of numerical relativity, the
characteristic initial boundary value problem (CIBVP)
for the Einstein field equations (EFE) is typically con-
structed using a Bondi-like coordinate system [20, 35, 36].
In CCE and CCM, the resulting Bondi-like CIBVP is
combined with the IBVP with a strongly or symmetric
hyperbolic formulation of GR, such as the generalized
harmonic formulation [37–39]. Characteristic codes for
GR based on a Bondi-like formulation have been widely
used in numerical simulations. For instance, the first
long-term evolution of a single black hole by the Binary
Black Hole Grand Challenge Alliance [40], was achieved
in such a setup. Many more codes have solved a Bondi-
like CIBVP providing, for instance studies of relativistic
stars [41, 42], and gravitational collapse [43–49]. This
success has led to the belief that these Bondi-like CIB-
VPs are well-posed.

A partial differential equation (PDE) problem is well-

posed if it has a unique solution that depends contin-
uously on the given data in an appropriate norm. Let
us for example consider the, first order, linear, constant
coefficient system with real-valued variables and coeffi-
cients

∂tu = Bp∂pu+Bu , (1)

where u is the state vector, ∂p denote spatial deriva-
tives, Bp are the principal matrices and the product Bu
denotes source terms. This system is weakly hyperbolic
(WH) if the principal symbol Ps ≡ Bpsp has real eigen-
values for all unit spatial co-vectors sp, and is called
strongly hyperbolic (SH) if furthermore Ps is uniformly
diagonalizable for all sp. In addition, if all the principal
matrices Bp can be brought simultaneously in a symmet-
ric form, then the system is called symmetric hyperbolic
(SYMH).
Let us now consider the initial value problem (IVP)

for the above system. Continuous dependence of the so-
lution u at all times t on the initial data f can be under-
stood as being able to provide an estimate of the form

||u(·, t)|| ≤ Keαt||f || , (2)

with real constants K ≥ 1 and α ∈ R, and || · || denoting
a suitable norm. The degree of hyperbolicity of the PDE
system determines well-posedness of the problem, with
the IVP for SH systems being (strongly) well-posed in
the L2 norm of the system. On the contrary, the IVP
of a system that is only WH but not SH, is ill-posed in
the L2 norm. However, under certain conditions it may
be weakly well-posed in a different norm that is not equiv-
alent to L2. More details on weak well-posedness can be
found in [50, 51]. The essential difference between strong
and weak well-posedness is that the first, in contrast to
the second, is maintained in the presence of lower order
perturbations (such as source terms).
The hyperbolicity analysis of free evolution schemes

used in numerical relativity can be performed by bring-
ing them to the form (1), via linearization and the con-
stant coefficient approach. In [33] such an analysis was
presented for the Bondi-Sachs free evolution system. Ex-
istence and uniqueness of solutions to the Bondi-like
CIBVP was shown in [52, 53]. In [54], a specific sub-
system of the full system was found symmetric hyper-
bolic, and consequently certain norm estimates were pro-
vided. However, the hyperbolicity analyses presented
in [33, 34] which consider the full PDE system (in the
linear, constant coefficient approximation), show that it
is only weakly hyperbolic. This result is in contrast to
that of [54] and implies that a Bondi-like CIBVP is ill-
posed in L2 (in the linear, constant coefficient approxi-
mation). It is therefore remarkable that several charac-
teristic codes can perform long simulations and produce
physically sensible results. This fact, in combination to
the existence of symmetric hyperbolic formulations of
GR that involve third order metric derivatives and use
Bondi-like gauges [55–58], suggest that there may still
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be some norm that is not equivalent to L2, which can
be used to demonstrate well-posedness of the standard
Bondi-like CI(B)VP with energy estimates. By standard
here we mean that GR is formulated only via the EFE
so that only up to second order metric derivatives are
involved, rather than including the Bianchi identities as
in [55–58]. However, finding such a norm and showing
even weak well-posedness for these second order Bondi-
like CI(B)VPs is still an open question.

Here, we concern ourselves with the following question:
what are the best error estimates we can obtain for CCE
and CCM with present setups and how can we test them
numerically? To address this question we focus on simple
toy models that have structure similar to that of GR
in the gauges typically employed. More specifically, we
employ a characteristic model that is WH in a similar way
to free evolution Bondi-like schemes, whereas the Cauchy
model is SYMH like for instance GR in harmonic gauge.
For completeness and comparison, we also consider cases
with SYMH CIBVPs and WH IBVPs. The WH system is
such that its IVP is weakly well-posed. The paper has the
following structure. In Sec. II we introduce the models
we use for our analysis and provide energy estimates for
each one of them. We also discuss under which conditions
we can obtain an energy estimate for CCE and CCM. In
Sec. III we discuss the discretization of the models, and
perform numerical experiments to address convergence
of solutions to discrete approximations of the previously
discussed norms. We summarize our findings in Sec. IV
and present our conclusions in Sec. V.

II. THE MODELS

In this section we construct toy models and provide
energy estimates for their solutions. For simplicity, we
focus on first order, linear, constant coefficient, homoge-
neous and real-valued PDEs. We study energy estimates
both for SYMH and WH models for the IBVP and the
CIBVP, as well as for their CCE and CCM. The structure
of the WH models are motivated by popular Bondi-like
formulations of GR, and follows the model used in [33].
Working with SYMH and not just SH systems allows us
to mimic the best case scenario in a current GR CCM
implementation, matching between a SYMH and a WH
system for the IBVP and CIBVP respectively. Further-
more, estimates including boundary terms are simpler to
obtain for SYMH systems than for systems that are only
SH. The estimates presented in the section form the basis
of our numerical tests presented in Sec. III.

D1
Tρmin

Tρmax

Σti

Σtf

∂ρ

∂t

∂z

FIG. 2. The Cauchy domain D1, with boundaries that are
spacelike Σti , Σtf and timelike Tρmin , Tρmax . Initial data are
provided on Σti and boundary data on Tρmin , Tρmax for the
right- and left-moving variables, respectively. The z direction
is compact.

A. The IBVP

Our Cauchy PDE model system is

∂tϕ1 = −∂ρϕ1 + ∂zψv1 , (3a)

∂tψv1 = −∂ρψv1 + ∂zϕ1 , (3b)

∂tψ1 = ∂ρψ1 + ∂zψ1 , (3c)

with ϕ1, ψv1 the right-moving fields, and ψ1 the left-
moving. This system is SYMH when the boxed term of
Eq. (3a) is included and only WH otherwise. The Cauchy
domain D1 in which we seek a solution is formed by t ∈
[ti, tf], ρ ∈ [ρmin, ρmax], and z ∈ [0, 2π) with z taken to
be periodic, see Fig. 2 for an illustration. The given
data for the IBVP consist of the initial and boundary
data. The former are ϕ1(ti, ρ, z), ψv1(ti, ρ, z), ψ1(ti, ρ, z)
on an initial spacelike hypersurface Σti , while the lat-
ter are ϕ1(t, ρmin, z), ψv1(t, ρmin, z) on the left bound-
ary Tρmin

since they are right-moving, and ψ1(t, ρmax, z)
on the right boundary Tρmax

, because it is left-moving.
The solution u1 to this IBVP at a later time tf > ti con-
sists then of ϕ1(tf , ρ, z), ψv1(tf , ρ, z), ψ1(tf , ρ, z) on the fi-
nal spacelike hypersurface Σtf , as well as the values of the
right-moving fields on the right boundary Tρmax

and the
left-moving on the left boundary Tρmin

for all t ∈ (ti, tf ].
To obtain an energy estimate for the solution to the

IBVP of the SYMH system (3) we follow the standard
procedure. Let us start with the L2 norm

||u1||2L2(Σt)
=

∫ (
ϕ21 + ψ2

v1 + ψ2
1

)
dρ dz . (4)

After acting on it with ∂t, using the right-hand-side
(RHS) of Eq. (3) to replace ∂tu1 and collecting total
derivatives, we obtain

∂t||u1||2L2(Σt)
=

∫ [
−∂ρϕ21 − ∂ρψ

2
v1 + ∂ρψ

2
1

+2∂z (ϕ1ψv1) + ∂zψ
2
1

]
dρ dz ,



4

where the total ∂z terms vanish since the data are as-
sumed to be periodic in the z direction throughout. Eval-
uating the total ∂ρ terms and integrating in t ∈ [ti, tf ]
we obtain

||u1||2L2(Σtf
) +

∫
Tρmax

(
ϕ21 + ψ2

v1

)
+

∫
Tρmin

ψ2
1

= ||u1||2L2(Σti
) +

∫
Tρmin

(
ϕ21 + ψ2

v1

)
+

∫
Tρmax

ψ2
1 , (5)

where we have re-arranged terms such that the left-hand-
side (LHS) includes only the solution and the RHS only
given data. This shows that the solution is completely
controlled by the given data in the norm described by
the LHS of Eq. (5).

Let us next consider the WH version of (3). First,
let us note that we fail to obtain an energy estimate in
the L2 norm for the WH case, due to the boxed term in
Eq. (3a). Instead, motivated by the analysis presented in
Sec. III.B of [33], we start with the “lopsided” or q norm

||u1||2q(Σt)
=

∫ [
ϕ21 + ψ2

v1 + ψ2
1 + (∂zϕ1)

2
]
dρ dz , (6)

where q is due to the adoption of the notation of [50]
for weak well-posedness and “lopsided” refers to the fact
that only the angular derivative of a certain variable is
included in the norm, and not of all variables. This norm
leads to

∂t||u1||2q(Σt)
=

∫ [
−∂ρϕ21 − ∂ρψ

2
v1 + ∂ρψ

2
1 − ∂ρ (∂zϕ1)

2

+2ψv1∂zϕ1 + ∂zψ
2
1

]
dρ dz ,

where now, due to the WH structure of the system the
term 2ψv1∂zϕ1 does not form a total derivative. The
lopsided modification of the original L2 norm was per-
formed exactly in a way that allows us to control this
term. To see this, let us first integrate in t and drop the
total derivative term ∂zψ

2
1 to obtain

||u1||2q(Σtf
) = ||u1||2q(Σti

) +

∫
Tρmin

[
ϕ21 + ψ2

v1 + (∂zϕ1)
2 − ψ2

1

]
+

∫
Tρmax

ψ2
1 − ϕ21 − ψ2

v1 − (∂zϕ1)
2
+

∫
D1

2ψv1∂zϕ1 .

Using that 2ψv1∂zϕ1 ≤ ϕ21+ψ
2
v1+ψ

2
1 +(∂zψ1)

2
the latter

reads

||u1||2q(Σtf
) ≤ ||u1||2q(Σti

) +

∫
Tρmin

[
ϕ21 + ψ2

v1 + (∂zϕ1)
2 − ψ2

1

]
+

∫
Tρmax

ψ2
1 − ϕ21 − ψ2

v1 − (∂zϕ1)
2
+

∫ tf

ti

∫
Σt′

||u1||2q(Σt′ )
,

which after using Grönwall’s inequality yields

eti−tf ||u1||2q(Σtf
) +

∫
Tρmin

ψ2
1 +

∫
Tρmax

[
ϕ21 + ψ2

v1 + (∂zϕ1)
2
]

≤ ||u1||2q(Σti
) +

∫
Tρmin

[
ϕ21 + ψ2

v1 + (∂zϕ1)
2
]
+

∫
Tρmax

ψ2
1 ,

(7)

where we have rearranged terms such that the LHS in-
cludes only the solution, and the RHS only the given
data, showing that the solution is completely controlled
by the given data in the q norm (6). It is important to re-
member that this result is subject to the structure of the
source terms, and that for generic source terms one can-
not provide such an energy estimate. This is the essential
difference between strong and weak well-posedness.
Since the q norm involves a specific derivative in its in-

tegrand, we find it useful to employ a norm for which one
can show energy estimates for the SYMH IBVP, which
also contains derivatives. We denote by H1 the following
norm

||u1||2H1(Σt)
=

∫ [
ϕ21 + ψ2

v1 + ψ2
1

+(∂ρϕ1)
2
+ (∂ρψv1)

2
+ (∂ρψ1)

2

+(∂zϕ1)
2
+ (∂zψv1)

2
+ (∂zψ1)

2
]
dρ dz . (8)

Let us consider the first order system that is formed af-
ter we enlarge the SYMH system (3), by including ∂ρu1

and ∂zu1 as variables. This system has the same princi-
pal structure as the original SYMH (3) and an energy es-
timate for its IBVP can be obtained starting with the H1

norm (8). Following the same steps that led to the esti-
mate (5) in the L2 norm, one can show that

||u1||2H1(Σtf
) +

∫
Tρmin

[
ψ2
1 + (∂ρψ1)

2
+ (∂zψ1)

2
]

+

∫
Tρmax

[
ϕ21 + ψ2

v1 + (∂ρϕ1)
2
+ (∂ρψv1)

2

+(∂zϕ1)
2
+ (∂zψv1)

2
]

= ||u1||2H1(Σti
) +

∫
Tρmax

[
ψ2
1 + (∂ρψ1)

2
+ (∂zψ1)

2
]

+

∫
Tρmin

[
ϕ21 + ψ2

v1 + (∂ρϕ1)
2
+ (∂ρψv1)

2

+(∂zϕ1)
2
+ (∂zψv1)

2
]
, (9)

where again the LHS involves only the solution, and the
RHS the given data. We can use this result to assess the
well-posedness of the IBVP of the SYMH system (3), in
a norm that includes derivatives. Notice that in com-
parison to the q norm (7), the H1 norm (9) contains the
same derivatives on all variables and so is symmetric,
rather than lopsided.

B. The CIBVP

The characteristic model we consider is

∂xϕ2 = ∂zψv2 , (10a)

∂xψv2 = ∂zϕ2 , (10b)

∂uψ2 =
1

2
∂xψ2 + ∂zψ2 , (10c)
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D2

Txmin

Txmax

Nui

Nuf

∂x

∂u

∂z

FIG. 3. The characteristic domain D2, with boundaries that
are null Nui , Nuf and timelike Txmin , Txmax . Initial data for
left-moving fields are provided on Nui and boundary data
on Tρmin , Tρmax for the right- and left-moving variables, re-
spectively. The z direction is compact.

where the fields ϕ2, ψv2 are right-moving, and propagate
with speed unity and ψ2 is left-moving with speed 1/2.
The system has two equations with derivatives only in-
trinsic to the characteristic surfaces Nu and one that in-
cludes also a derivative transverse to them. The system
is SYMH when the boxed term in Eq. (10a) is included,
and only WH otherwise. If we consider the coordinate
transformation

u = t− ρ , x = ρ ,

which implies

∂u = ∂t , ∂x = ∂t + ∂ρ ,

the SYMH version of the system (10) is the characteristic
version of the Cauchy system (3), provided that

ϕ1 = ϕ2 , ψv1 = ψv2 ψ1 = ψ2 ,

and similarly for the WH one.
We consider the CIBVP for the characteristic do-

main D2 shown in Fig. 3, that consists of u ∈ [ui, uf], x ∈
[xmin, xmax], and z ∈ [0, 2π) with z a periodic direction.
The given data are the left-moving field ψ2(ui, x, z) on
an initial characteristic Nui

, its value ψ2(u, xmax, z) on
the right boundary Txmax

and the values of the right-
moving fields ϕ2(u, xmin, z), ψv2(u, xmin, z) on the left
boundary Txmin

. The solution for which we next provide
energy estimates consists of ϕ2(uf , x, z) on a surface Nuf

with uf > ui, ϕ2(u, xmin, z) on the left boundary Txmin

and ϕ2(u, xmax, z), ψv2(u, xmax, z) on the right bound-
ary Txmax .
To obtain energy estimates in the characteristic do-

main, we can treat independently the left- and right-
moving fields, due to the fact that the right-moving fields
do not have an explicit ∂u time derivative. Let us first

consider the left-moving field and start from the energy

||u2||2left(Nu)
=

∫
Nu

ψ2
2 .

After acting with ∂u and replacing with the RHS of
Eq. (10c) we obtain

∂u||u2||2left(Nu)
=

∫
Nu

∂xψ
2
2 + ∂zψ

2
2 .

By evaluating the total derivatives and integrating in u ∈
[ui, uf ] we arrive to

2||u2||2left(Nuf
) +

∫
Txmin

ψ2
2 = 2||u2||2left(Nui

) +

∫
Txmax

ψ2
2 ,

(11)

where we have rearranged terms such that the LHS con-
tains only the solution and the RHS the given data, as
well as multiplied everything by a factor of 2, to cancel
the characteristic speed in the worldtube integrals. This
estimate allows us to completely control the solution for
the left-moving data by given data. If there are source
terms in Eq. (10c) that include the right-moving fields,
then the above calculation does not work. In that case
one needs to perform the calculation for the whole system
at once. Potentially, one also needs to consider a slightly
different computational domain such that there is an in-
tegrand involving both left- and right-moving variables
and offer the chance to control them using Grönwall’s in-
equality, as before. This however is beyond the scope of
the current paper.
Next, we consider the right-moving fields, focusing first

on the SYMH case. Let us start by considering the energy

||u2||2right(Tx)
=

∫
Tx

ϕ22 + ψ2
v2 .

By acting with ∂x and replacing with the RHS of
Eq. (10a), (10b) we obtain

∂x||u2||2right(Tx)
=

∫
Tx

2∂z (ϕ2ψv2) ,

where the integrand on the right is a total ∂z term, and
hence vanishes by periodicity in z. Then, integrating
in x ∈ [xmin, x

′] for some x′ ∈ (xmin, xmax], we arrive at
the estimate

||u2||2right(Tx′ ) = ||u2||2right(Txmin
) , (12)

where the LHS is the solution and the RHS the given
data. As also done in a similar calculation in [33], we can
take the supremum of ||u2||2right(Tx′ )

within (xmin, xmax]

to obtain a better estimate, since ||u2||2right(Tx′ )
is not

necessarily monotonically increasing with increasing x′.
Then, since Eq. (12) is true for all x′ ∈ (xmin, xmax] we
obtain

supx′ ||u2||2right(Tx′ ) = ||u2||2right(Txmin
) . (13)
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If we consider the WH model (10), then we should
consider the energy

||u2||2q−right(Tx)
=

∫
Tx

ϕ22 + ψ2
v2 + (∂zϕ2)

2
,

in analogy to the q norm (6). Following the same steps
as before we can arrive at

||u2||2q−right(Tx′ ) ≤ ||u2||2q−right(Txmin
)+∫ xf

xi

||u2||2q−right(Tx)
dx ,

where we have also used that 2ψv2∂zϕ2 ≤ ϕ22 + ψ2
v2 +

(∂zϕ2)
2
. Using again the Grönwall inequality and notic-

ing that ||u2||2q−right(Txmin
) involves only given (bound-

ary) data, and hence is a constant function of x or xf (so
non-decreasing), we obtain

exi−xf supx′ ||u2||2q−right(Tx′ ) ≤ ||u2||2q−right(Txmin
) , (14)

where we again took the supremum of x′ to obtain a
better estimate and the LHS contains only the solu-
tion and the RHS the given data and multiplied over-
all with exi−xf for later convenience in the continuum
analysis.

We can then proceed to add the estimates (11) and (12)
to obtain the estimate for the homogeneous, symmetric
hyperbolic system (10)

2||u2||2left(Nuf
) + supx′ ||u2||2right(Tx′ ) +

∫
Txmin

ψ2
2 =

2||u2||2left(Nui
) + ||u2||2right(Txmin

) +

∫
Txmax

ψ2
2 , (15)

or add (11) and (14) to obtain an estimate for the WH
characteristic model

2||u2||2left(Nuf
) + exi−xf supx′ ||u2||2q−right(Tx′ ) +

∫
Txmin

ψ2
2

≤ 2||u2||2left(Nui
) + ||u2||2q−right(Txmin

) +

∫
Txmax

ψ2
2 .

(16)

Subsequently, we drop the factor of 2 in the LHS of
Eq. (15) and (16) for convenience, but we still maintain
the hypersurface integrals which provide the control of
the solution on that region.

In analogy to the H1 norm (8) for the SYMH IBVP,
we also consider estimates in an H1 norm adapted to the
CIBVP, again by enlarging the SYMH characteristic sys-
tem (10) with ∂xu2 and ∂zu2. In the characteristic H1

norm one can show the following estimate for the en-

larged system

2||u2||2H1−left(Nuf
) + supx′ ||u2||2H1−right(Tx′ )+∫

Txmin

[
ψ2
2 + (∂xψ2)

2
+ (∂zψ2)

2
]

= 2||u2||2H1−left(Nui
) + ||u2||2H1−right(Txmin

)+∫
Txmax

[
ψ2
2 + (∂xψ2)

2
+ (∂zψ2)

2
]
, (17)

with

||u2||2H1−left(Nu)
=

∫
Nu

[
ψ2
2 + (∂xψ2)

2
+ (∂zψ2)

2
]
,

and

||u2||2H1−right(Tx)
=

∫
Tx

[
ϕ22 + ψ2

v2+

(∂xϕ2)
2
+ (∂xψv2)

2
+ (∂zϕ2)

2
+ (∂zψv2)

2
]
,

by simple commutation of partial derivatives.

C. CCE and CCM

Using the energy estimates from the previous subsec-
tions, we can now discuss energy estimates for CCE and
CCM. For CCE the estimate follows straightforwardly
from the previous results, and if both the IBVP and
CIBVP are individually well-posed in some norm, then
CCE is too. The only detail that needs attention for this
conclusion to be drawn is to choose the boundary data
on T0 such that they are controlled in the appropriate
norm for a WH CIBVP. Since these data are solutions
of the IBVP, this may amount to having enough control
over the derivatives of the solution on T0, so as to be
controlled not only in the L2 but also in the H1 norm,
as for instance shown in estimate (9). However, in this
case we “lose” derivatives, in the sense that we control
derivatives of more variables for the boundary data than
for the solution to the WH CIBVP.

For the composite CCM problem to be well-posed the
situation is more complicated, as the norms in which the
IBVP and the CIBVP are well-posed need to be in some
sense compatible. As shown in [33] the reason is that oth-
erwise, there is a remaining integral over the interface T0
as shown in Fig. 4. For completeness, we briefly repeat
here this calculation. First we consider matching the two
SYMH setups. By adding the estimates (5) and (15) and
using that u1|T0 = u2|T0 , we obtain

||u1||2L2(Σ(tf )
+ ||u2||2left(Nuf

) (18)

+

∫
Tρmin

ψ2
1 + supx′

∫
Tx′

ϕ22 + ψ2
v2 =

||u1||2L2(Σ(ti)
+ ||u2||2left(Nui

) +

∫
Tρmin

ϕ21 + ψ2
v1 +

∫
Txmax

ψ2
2 .
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T0Σti

Σtf

Nui

Nuf Txmax

Tρmin D1

D2

FIG. 4. The CCM domain D3 = D1 + D2, with bound-
aries the spacelike Σti , Σtf , the null Nui , Nuf and the time-
like Tρmin , Txmax . Initial data for all fields are provided on Σti ,
as well as on Nui only for left-moving fields. Boundary data
are given on on Tρmin for right-moving, and on Txmax for
left-moving fields. Data are communicated between the do-
mains D1 and D2 via the worldtube T0 = Tρmax = Txmin . The
z direction is compact.

The latter is the energy estimate for the composite CCM
problem when matching the IBVP and CIBVP of the
homogeneous symmetric hyperbolic Cauchy and charac-
teristic systems (3) and (10), respectively. Notice that,
as expected for the composite CCM problem, there is
no worldtube integral over T0. A similar estimate can
be obtained using the H1 norms and adding the higher
derivative estimates (9) and (17) for the SYMH IBVP
and CIBVP, respectively.

Let us next consider matching the IBVP of the SYMH
Cauchy system (3) to the weakly well-posed CIBVP of
the WH characteristic system (10). In this case we add
the energy estimates (5) and (16), which yields

||u1||2L2(Σ(tf )
+ ||u2||2left(Nuf

)+∫
Tρmin

ψ2
1 + exi−xf supx′

∫
Tx′

[
ϕ22 + ψ2

v2 + (∂zϕ2)
2
]

≤ ||u1||2L2(Σ(ti)
+ ||u2||2left(Nui

)+∫
Txmax

ψ2
2 +

∫
Tρmin

(
ϕ21 + ψ2

v1

)
+

∫
T0

(∂zϕ)
2
, (19)

where we have used that on T0, u1 = u2 in our mod-
els. The boxed term in the RHS of the latter is what
prevents us from obtaining an energy estimate for the
composite CCM in this setup and appears purely due to
the incompatibility of the norms in which the IBVP and
the CIBVP are well-posed and weakly well-posed, respec-
tively. Since this term is not part of the given data, then
the solution is not completely controlled by the intial and
boundary data, and so the above is not a valid energy es-
timate for this composite CCM. If instead of using the L2

estimate (5) for the IBVP, we use the H1 estimate (9),

the result would be similar, in that non-vanishing terms
including an integral over the interface T0 remain.
Finally, we consider the matching of two WH se-

tups. In this case, we combine the q norm estimates (7)
and (16) for the IBVP and CIBVP, respectively, to obtain

eti−tf ||u1||q(Σ(tf ) + ||u2||2left(Nuf
)+∫

Tρmin

ψ2
1 + exi−xf supx′

∫
Tx′

[
ϕ22 + ψ2

v2 + (∂zϕ2)
2
]

≤ ||u1||q(Σ(ti) + ||u2||2left(Nui
)+∫

Txmax

ψ2
2 +

∫
Tρmin

(
ϕ21 + ψ2

v1

)
. (20)

In this case we see that, due to the compatibility of the
norms, the integral over T0 vanishes and the LHS that
contains only the solution, is completely controlled by
the RHS, that includes only given data.

III. NUMERICAL EXPERIMENTS

We present numerical convergence tests for the indi-
vidual IBVP and CIBVP, as well as for CCE and CCM,
using discrete versions of the models analyzed in Sec. II.
We work with the homogeneous models, unless explicitly
stated otherwise. The implementation was performed us-
ing the Julia programming language [59] with the fol-
lowing details:

• The numerical domain is defined by:

t ∈ [0, tf ] , u ∈ [0, uf ] ,

ρ ∈ [−1, 0] , x ∈ [0, 1] , z ∈ [0, 2π) ,

where u = t− ρ, so for ρ = 0, tf = uf . We denote
the grid points for x as xi with i ∈ [1, . . . , N ] and
the grid spacing as hx ≡ x2 − x1, and so forth.

• All the derivatives that appear on the RHS of the
systems (3) and (10) are approximated by sec-
ond order accurate finite difference operators. The
derivative ∂x is approximated with a centered sten-
cil Dxfi = (fi+1 − fi−1)/(2hx) for the internal
points of the x grid. The derivative on the first
and last points is approximated with upwind sten-
cils that match the truncation error of the centered
one

Dxf1 =
−4f1 + 7f2 − 4f3 + f4

2hx
, (21)

DxfN =
4fN − 7fN−1 + 4fN−2 − fN−3

2hx
.

The same operators are used to approximate ∂ρ,
with hx → hρ, whereas for ∂z, the centered stencil
is used for the first and last points as well, taking
advantage of the periodicity in z.
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• All fields that involve explicit time derivatives,
that is ϕ1 , ψv1 , ψ1 , ψ2, are integrated in time using
the explicit fourth order Runge-Kutta integration
scheme.

• The fields ϕ2 , ψv2 that satisfy equations intrinsic
to the outgoing null hypersurfaces are integrated
for every timestep from x = 0 to x = 1 using the
trapezoidal rule, which is second order accurate.

• No Kreiss-Oliger artificial dissipation is applied.

• We choose a fixed timestep ht = 0.25hρ.

• The initial data are ϕ1(0, ρ, z) , ψv1(0, ρ, z) , ψ1(0, ρ, z)
on the initial spacelike hypersurface Σt=0, and
ψ2(0, x, z) on the initial null hypersurface Nu=0.

• For the IBVP, the boundary data
are ϕ1(t,−1, z) , ψv1(t,−1, z) on the world-
tube Tρ=−1, and ψ1(t, 0, z) on Tρ=0.

• For the CIBVP, ϕ2(t, 0, z) and ψv2(t, 0, z) are pro-
vided as boundary data on the worldtube Tx=0, as
well as ψ2(u, 1, z) on Tx=1.

• For CCE, boundary data for the IBVP are given
also on Tρ=0 for the left-moving field ϕ1. The val-
ues of the right-moving fields ϕ1 , ψv1 are propa-
gated from the Cauchy to the characteristic domain
via Tρ=x=0, as in CCM.

• For CCM, on the worldtube (interface) Tρ=x=0

the values of the right-moving fields are propa-
gated from the Cauchy to the characteristic do-
main via ϕ2(u, 0, z) = ϕ1(t, 0, z), ψv2(u, 0, z) =
ψv1(t, 0, z), and for the left-moving one from the
characteristic to the Cauchy via ϕ1(t, 0, z) =
ϕ2(u, 0, z).

• For the tests presented in the paper, all the numeri-
cal boundary data are provided with pure injection,
that is if g1(t, z) is the value of the grid function ϕ1
for ρ = −1, then ϕ1(t,−1, z) = g1(t, z). We have
also experimented with a different method for nu-
merical boundary data, namely by providing the
time derivative rather than the field itself. The re-
sults can be found in [60] and are qualitatively the
same.

The main focus of this work is to examine the con-
sequence of (a lack of) continuous dependence at the
continuum level, as in (2), under numerical approxima-
tion. Detecting lack of convergence for WH systems can
be subtle [61]. Numerical convergence tests that include
high frequency data are a good choice in order to achieve
this [33, 62, 63]. Low frequency data are not ideal to de-
tect the effect of weak hyperbolicity in numerical simula-
tions, since the solution may exhibit frequency dependent
exponential or polynomial growth, that may not be evi-
dent for small frequencies in finite simulation time. Thus,
the loss of convergence for an ill-posed problem may not

be evident if the given data are not properly chosen. We
run robust stability tests, which use high frequency given
data, and monitor the convergence of the obtained nu-
merical solutions in the norms presented in Sec. II.

Since we use uniform grids, we choose the high fre-
quency data to be random noise of a certain amplitude.
The random noise is added on top of an exact solution
to the PDE problems, which in our tests is zero. We
call these exact convergence tests, since we know the ex-
act solution to the PDE problem. To fix ideas, next we
present explicitly only the field ϕ1, but the discussion is
the same for all fields ψv1, ψ1, ϕ2, ψv2, ψ2. If we denote
by ϕ1 the continuum solution and ϕ1h the numerical at
resolution h, and assume that the dominant error for our
discretization is due to the second order finite difference
operators, then we expect the following relation to be
true

ϕ1 = ϕ1h +O(h2) .

Given ϕ1 = 0 in our setup, it follows that

ϕ1h = O(h2) .

We denote by hc and hm the coarse and medium reso-
lutions for which we solve the same PDE problem, and
construct the convergence factor

Q ≡ h2c
h2m

≃ ||ϕ1c||hc

||ϕ1m||hm

,

where≃ here denotes equality up to terms of order O(hc).
Notice that the above relation is true only when the ex-
act solution vanishes. Generically, when this is not true,
one needs to replace ϕ1c → ϕ1 − ϕ1c in the expression,
and similarly for the medium resolution. Every time we
increase resolution, we halve the grid spacing (for in-
stance hm = hc/2) and therefore the expected conver-
gence factor is Q = 4. We construct and monitor the
following quantity during our simulations

Cexact ≡ log2
||uhc ||hc

||uhm
||hm

, (22)

where || · ||h is the discrete approximation to the con-
tinuum norm || · ||. The forms of the state vector uh

and the norm || · ||h, depend on the specific discretized
PDE problem solved, and so are clarified in the follow-
ing subsections. Given that Q = 4, perfect second order
convergence corresponds to Cexact = 2 for our exact con-
vergence tests.
Motivated by the notation of the inequality (2), let us

denote as fh the numerical initial and boundary data,
which we specify as random noise of amplitude Ah cen-
tered around zero. It is important to choose this am-
plitude appropriately such that Cexact = 2 for all given
data. Since fh ∼ Ah, for a field that appears without
any derivative in the norm under consideration, we find
that when Ahm = Ahc/4,

Cexact = log2
||fhc

||hc

||fhm
||hm

∼ log2
O(Ahc)

O(Ahm
)
= 2 .



9

If however the norm includes a derivative of the field,
then due to the finite difference operators used the exact
convergence rate behaves as

O(Ahc
)/hc

O(Ahm)/hm
,

which for our setup is equal to 2 when we choose Ahm =
Ahc/8. Consequently, our recipe to obtain given data
that have Cexact = 2 is the following: every time we
double resolution, we drop the noise amplitude of the
given data by a factor of 4 for any field with no derivative
in the considered norm, and 8 for any field with at least
one derivative in the considered norm.

We run tests with given data that exhibit Cexact = 2
in the appropriate L2, q, or H1 norm for the setup under
consideration, and monitor the Cexact of the solution in
its L2, q, or H1 norm. We consider the test as passed
if the solution converges in the same norm as the given
data, at the same order; that is its Cexact tends to 2 with
increasing resolution. In any other case we consider the
test as failed. In our numerical experiments we see three
different ways in which a test can fail:

1. Cexact of the solution tends to a value different from
2 with increasing resolution, in the same norm as
the given data.

2. Cexact of the solution tends to 2 with increasing
resolution, but in a norm different than the given
data.

3. Cexact does not tend to any fixed value with in-
creasing resolution.

The first and second failing scenarios can actually happen
for the same solution, if we just monitor its convergence
in a different norm.

One argument to support our working definition of a
passed and failed test is the following. Consider inequal-
ity (2) at the semi-discrete level, for instance at resolu-
tion h, namely

||uh||h ≤ Keαt||fh||h ,

with K,α real constants and K ≥ 1. For a passed test
we have that

4 ≃ ||fh||h
||fh/2||h/2

=
||uh||h

||uh/2||h/2
,

where ≃ here denotes equality up to terms of order O(h),
and therefore

||uh/2||h/2 ≤ Keαt||fh/2||h/2 .

If this exact convergence rate is maintained for higher
resolution runs, then we can imagine taking the limit of
infinite resolution and recovering inequality (2) at the

continuum. If, in contrast, during the tests we see the
first type of failure, so that

||uh||h
||uh/2||h/2

≃ c ̸= 4 ≃ ||fh||h
||fh/2||h/2

,

with c some real positive constant, then after doubling
resolution n times we obtain

||uh/2n ||h/2n ≤
(
4

c

)n

Keαt||fh/2n ||h/2n

= K̃eαt||fh/2n ||h/2n ,

with K̃ ≡ (4/c)
n
K. If c < 4 consistently, then in the

limit of infinite resolution n → ∞, K̃ → ∞, whereas
if c > 4 consistently, K̃ → 0 as n → ∞. In either case
one does not recover the continuum version of inequal-
ity (2), which we interpret as failure of the solution to be
controlled by the given data. In this argument we con-
sider the theoretically expected value of Cexact for both
the solution and the given data, but in practice, we look
for a Cexact that tends to that value.
The second type of failure is an interesting scenario

realized in our tests, where we obtain the same conver-
gence rate for the solution and the given data, but only
in different norms,

4 ≃ ||fh||H1

||fh/2||H1

=
||uh||q
||uh/2||q

,

where we have dropped the subscript ∼ h in the different
discrete norms. In this case, one can at most obtain the
following inequality

||u||q ≤ Keαt||f ||H1 , (23)

by considering again the limit of infinite resolution, This
however is not the same as inequality (2), which is in-
volved in the textbook definition of well-posedness. More
importantly, since ||u||q is smaller than ||u||H1

(controls
less derivative terms), it is perfectly possible to obtain a
solution u with unbounded H1, but bounded q norm. In
this case, the blow-up would appear in derivatives of the
solution that are included in H1 but not in the q norm.
We therefore consider this scenario also a failure.
The lowest resolution we use for our tests is denoted

by h0 and has Nρ = Nx = 17 and Nz = 16. The grid
points and grid spacing for the different resolutions are
set according to

Nρ = Nx = 162D + 1 , Nz = 162D ,

hρ = hx =
1

Nρ − 1
, hz =

2π

Nz
,

and hD labels the different resolutions, for instance D =
0 corresponds to the lowest resolution h0. We perform
tests for D = 0, 1, 2, 3, 4, and compute Cexact only for
the timesteps that are common across all resolutions, in
other words at each timestep with h0 grid spacing. The



10

code and parameter files for the convergence tests can be
found in [60] and the data used to produce the following
convergence plots in [64]. In the following subsections,
all the norms should be understood as evaluated on the
numerical grid.

A. IBVP

First we examine numerical convergence of the Cauchy
setup. The discrete norms in which we test the conver-
gence of the solution are

||u1||2L2 =
∑
ρ,z

(
ϕ21 + ψ2

v1 + ψ2
1

)
hρhz (24)

+
∑

t,ρ=−1,z

ψ2
1 hthz +

∑
t,ρ=0,z

(
ϕ21 + ψ2

v1

)
hthz ,

||u1||2q =
∑
ρ,z

[
ϕ21 + ψ2

v1 + ψ2
1 + (Dzϕ1)

2
]
hρhz (25)

+
∑

t,ρ=−1,z

ψ2
1 hthz +

∑
t,ρ=0,z

[
ϕ21 + ψ2

v1 + (Dzϕ1)
2
]
hthz ,

||u1||2H1
=

∑
ρ,z

[
ϕ21 + ψ2

v1 + ψ2
1 (26)

+ (Dρϕ1)
2
+ (Dρψv1)

2
+ (Dρψ1)

2

+(Dzϕ1)
2
+ (Dzψv1)

2
+ (Dzψ1)

2
]
hρhz

+
∑

t,ρ=−1,z

[
ψ2
1 + (Dρψ1)

2
+ (Dzψ1)

2
]
hthz

+
∑

t,ρ=0,z

[
ϕ21 + ψ2

v1 + (Dρϕ1)
2
+ (Dρψv1)

2

+(Dzϕ1)
2
+ (Dzψv1)

2
]
hthz .

In our tests, we choose given data that converge in
either the L2, q, or H1 norms. Based on the energy es-
timates given Sec. IIA, these can be obtained by con-
sidering Eq. (24)-(26), but where the spacelike hypersur-
face sums are evaluated only for the initial data, and the
worldtube sums on the left boundary for right-moving
fields and on the right boundary for left-moving fields
i.e. the opposite of what is shown. We perform four
different tests:

• Test 1: convergence of the solution in the L2

norm (24), for L2 given data.

• Test 2: convergence of the solution in the q
norm (25), for q given data.

• Test 3: convergence of the solution in the H1

norm (26), for H1 given data.

• Test 4: convergence of the solution in the q
norm (25), for H1 given data.

Tests 1-3 examine, at the discrete level, continuous de-
pendence of the solution on the given data as described

by inequality (2). In contrast, test 4 examines the dis-
crete version of inequality (23). If the latter is satisfied,
it shows that a solution is controlled by given data that
converge in a bigger norm. In our particular setup, the q
norm (25) is smaller than the H1 (26) in the sense that
it allows control over fewer derivative terms. It then be-
comes clear that a blow-up in a derivative of the solution
can still happen, but fail to be detected by the q norm.
We consider test 4 because it can explain why CCE in-
volving a SYMH IBVP and a WH CIBVP can result
in well-posed PDE problems that exhibit the expected
numerical convergence. But test 4 does not address con-
tinuous dependence as understood in the standard sense
for well-posedness as in inequality (2).

The findings of our numerical tests 1, 2, 3, and 4 are
shown in Fig. 5. The top row of the figure shows Cexact
for a SYMH IBVP setup, whereas the bottom for a WH
one. Each column refers to one test, counting from 1 to 4
from left to right. Tests 1-3 provide the expected conver-
gence results, that is, for the SYMH case, good empirical
convergence of the solution in L2 and H1 norms and loss
of convergence in q norm. In contrast in the WH case, we
see Cexact = 2 only for test 2. Test 4 returns interesting
and potentially confusing results: both solutions to the
SYMH and WH setups exhibit good convergence in the q
norm for given data controlled in their H1 norm. This
can be understood in the following terms:

• SYMH: by monitoring the q norm, we take into
account only the ∂zϕ1 derivative of the solution.
This part still converges appropriately, and due to
its relative size in comparison to the non-derivative
terms, dominates the convergence rate. This does
not mean that test 4 provides numerical evidence
for well-posedness of the SYMH IBVP in the q
norm, which would be the case if test 3 was passed.

• WH: when we monitor the q norm, we ignore all the
derivatives that appear in H1 and not in q, which
are responsible for the loss of convergence. We only
monitor the ∂zϕ1 term, which convergences prop-
erly and due to its relative size, dominates the non-
derivative terms of the q norm. Since we are con-
sidering the homogeneous case, the loss of conver-
gence of the non-monitored derivative terms does
not propagate to ∂zϕ1 due to the lack of a coupling
among them. Finally, proper convergence of the
given data in the H1 norm imply the same in the q
norm, since H1 is bigger than q.

When we see loss of convergence in these tests we ob-
serve Cexact = 1 and since this is not the expected rate of
convergence for our numerical scheme, we consider these
tests as failed. However, it is often the case in physically
interesting simulations that the convergence order of the
solution is lower than that of the numerical scheme used
(for instance shockwave capturing or schemes that in-
clude interpolation). Here, we insist in considering these
tests as failed, because we do not have additional ele-
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FIG. 5. The exact convergence rate Cexact is shown for the IBVP, for the tests 1, 2, 3, and 4. The top row refers to the SYMH
setup, and the bottom to the WH one. The left column presents the results for test 1, the second to left for test 2, and so on.
The results of tests 1,2, and 3 are as expected by theory, that is convergence in the L2 and H1 for the SYMH case and in the
q norm for the WH one. The convergence in the q norm seen in test 4 is merely a result of the fact that H1 (26) is a bigger
norm than q (25), in the sense that it controls more derivative terms. We only monitor the ∂zϕ1 derivative term, which still
converges appropriately for the SYMH case and due to its size in comparison to the non-derivate terms, dominates the q norm.
We also see good convergence of the solution to the WH IBVP in test 4, because we ignore the derivative terms that do not
exhibit convergence. The plots for tests 3 and 4 use data from exactly the same runs.

ments in the scheme that can drop the order of con-
vergence (the data are smooth plus the artificially ex-
aggerated numerical error, no interpolations) and more
importantly we try to make contact with the continuum
energy estimates. As a final remark on this point, we
should mention that it is not clear why Cexact = 1 in these
cases. A possibility is that it relates to the bulk integrals
in the continuum analysis that prevent us from obtaining
energy estimates for the scenarios of the failed tests. Ob-
taining however a concrete answer requires more testing
and is beyond the scope of this work.

B. CIBVP

We repeat tests 1-4 for the CIBVP, monitoring the con-
vergence of the solution in the following discrete norms

||u2||2L2 =
∑
x,z

ψ2
2 hxhz +

∑
u,x=0,z

ψ2
2 huhz (27)

+ maxx
∑
u,z

(
ϕ22 + ψ2

v2

)
huhz ,

||u2||2q =
∑
x,z

ψ2
2 hxhz +

∑
u,x=0,z

ψ2
2 huhz (28)

+ maxx
∑
u,z

[
ϕ22 + ψ2

v2 + (Dzϕ2)
2
]
huhz ,

and

||u2||2H1
=

∑
x,z

[
ϕ22 + (Dxψ2)

2
+ (Dzψ2)

2
]
hxhz (29)

+
∑

u,x=−0,z

[
ψ2
2 + (Dxψ2)

2
+ (Dzψ2)

2
]
huhz

+maxx
∑
u,z

[
ϕ22 + ψ2

v2 + (Dxϕ2)
2
+ (Dxψv2)

2

+(Dzϕ2)
2
+ (Dzψv2)

2
]
huhz .

The results are qualitatively the same as for the IBVP,
and are summarized in Fig. 6. We again find the ex-
pected convergence rate in L2 and H1 for the SYMH and
in the q-norm for the WH setup. Test 4 provides appar-
ent convergence in the q norm for both setups, which is
understood exactly in the same way as in the IBVP.

C. CCE

The conclusions drawn from tests 1-4 for the IBVP and
CIBVP shape our expectations for CCE. In this setup,
convergence of the numerical solution is still examined
for the individual IBVP and CIBVP parts of the CCE
scheme. The important difference now is that part of the
IBVP solution serves as boundary data (for the right-
moving fields) for the CIBVP. When performing tests
1-4 for CCE we expect the following results:
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FIG. 6. Exact convergence rate Cexact for the CIBVP solution, for the tests 1, 2, 3, and 4. The SYMH setup is shown in top
row and the WH one in the bottom. Each column shows the results of each test, counting 1 from the left. Tests 1, 2, and 3
exhibit the expected convergence in the L2 and H1 for SYMH and in the q norm for WH. Convergence in the q norm seen in
test 4 is again a result of the fact that H1 (29) is bigger than q (28) norm, as in the IBVP. The plots for tests 3 and 4 use data
from exactly the same runs.

• CCE between a SYMH IBVP and a SYMH CIBVP:
both IBVP and CIBVP solutions converge in L2

and H1, but not in the q norm. Test 4 has the
same qualitative results as in Sec. III A, III B.

• WH-WH CCE: Both IBVP and CIBVP converge
only in q norm, but not in L2 or H1. Test 4 shows
again that both solutions converge in their q norms
for H1 given data.

• SYMH-WH CCE: The solution to the IBVP ex-
hibits the same behavior as in Sec. IIIA. The so-
lution to the CIBVP can converge properly only
in the q norm. The boundary data to the CIBVP
are part of the solution to the IBVP and so we
need a solution to the IBVP that converges prop-
erly in the H1 norm, such that the boundary data
to the CIBVP also converge properly in the q norm
(neglecting the derivatives that are in H1 but not
in q). The aforementioned setup is understood in
test 4. In addition, choosing characteristic initial
data that converge in L2 or H1 does not affect the
convergence of the CIBVP solution. The reason is
that the derivative term ∂zϕ2 dominates the char-
acteristic q norm (28). For our tests we drop the
amplitude of ϕ2(u = 0, x, z) by a factor of 8 every
time the grid spacing is halved, that is compati-
ble with H1. Test 3 cannot provide good boundary
data for the CIBVP since the IBVP does not con-
verge in the q norm.

Repeating these tests for CCE, our expectations were
verified. The third scenario is the relevant one for current
implementations of CCE in GR simulations, and there-
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FIG. 7. Cexact for tests 1, 2, 3, and 4, for the CIBVP part
of a CCE setup between a SYMH IBVP and a WH CIBVP.
As expected, only test 4 provides good convergence. In this
case, the H1 given data provide an H1 controlled solution
to the IBVP, part of which serves as boundary data for the
WH CIBVP. That control is more than enough to have q
controlled given data for the CIBVP, and hence, the solution
to the CIBVP is controlled in the q norm.

fore we present only these results in Fig. 7. The inter-
ested reader can find the rest of the convergence plots in
the supplementary material [60, 64]. We see that indeed
the solution to the WH CIBVP setup exhibits the appro-
priate convergence rate only when H1 data are given for
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the IBVP. The solution to that IBVP provides boundary
data for the CIBVP that have H1 control, which is more
than the necessary control in the q norm. This result is
compatible to that of test 4 in Sec. III B.

D. CCM

The discrete norms for which we run tests 1-4 for CCM
are

||u||2L2 =
∑
ρ,z

(
ϕ21 + ψ2

v1 + ψ2
1

)
hρhz +

∑
x,z

ψ2
2 hxhz

+
∑

t,ρ=−1,z

ψ2
1 hthz +maxx

∑
u,x,z

(
ϕ22 + ψ2

v2

)
huhz . (30)

||u||2q =
∑
ρ,z

(
ϕ21 + ψ2

v1 + ψ2
1

)
hρhz +

∑
x,z

ψ2
2 hxhz (31)

+
∑

t,ρ=−1,z

ψ2
1 hthz +maxx

∑
u,x,z

[
ϕ22 + ψ2

v2 + (Dzϕ2)
2
]
huhz ,

||u||2H1
=

∑
ρ,z

[
ϕ21 + ψ2

v1 + ψ2
1 + (Dρϕ1)

2
+ (Dρψv1)

2

+(Dρψ1)
2
+ (Dzϕ1)

2
+ (Dzψv1)

2
+ (Dzψ1)

2
]
hρhz∑

x,z

[
ψ2
2 + (Dxψ2)

2
+ (Dzψ2)

2
]
hxhz

+
∑

t,ρ=−1,z

[
ψ2
1 + (Dρψ1)

2
+ (Dzψ1)

2
]
hthz

+maxx
∑
u,x,z

[
ϕ22 + ψ2

v2 + (Dxϕ2)
2
+ (Dxψv2)

2

+(Dzϕ2)
2
+ (Dzψv2)

2
]
huhz . (32)

First, let use consider matching PDEs with the same de-
gree of hyperbolicity, that is SYMH to SYMH or WH to
WH. The convergence results of these setups are shown
in Fig. 8, with SYMH-SYMH at the top and WH-WH
the bottom row. As expected by the energy estimates of
Sec. II C, we see good convergence for SYMH-SYMH in
tests 1 and 3, that is in norms L2 (30) and H1 (32) re-
spectively, and in test 2 for the WH-WH case, i.e. norm
q (31). In test 4 we see convergence of the solution in
the q norm (31) for H1 given data, in line with the re-
sults of test 4 for the IBVP and CIBVP. The explanation
of this phenomenon is the same as earlier, that is for the
SYMH-SYMH setup we see the convergence of the ∂zϕ2
term that dominates the norm, whereas in the WH-WH
setup we ignore the rest of the derivative terms that do
not converge.

Next we consider the matching of a SYMH IBVP to
a WH CIBVP, the actual case for CCM in GR as cur-
rently performed. The convergence plots are presented
in Fig. 9. We see that the solution does not exhibit good

convergence in any norm for tests 1-3, which are the ones
that reflect numerically continuous dependence on given
data. Only test 4 shows good convergence of the solution
in the q norm for H1 given data. This test only provides
numerical support for inequality (23) rather than (2).
Comparing Fig. 7 with Fig. 9, we see the same quali-
tative behavior, namely good convergence only for test
4. The former refers to CCM and the latter the CIBVP
part of CCE, both for a SYMH IBVP and a WH CIBVP.
The difference between CCM and CCE is only the addi-
tional propagation of information between the charac-
teristic and Cauchy domain for the left-moving field for
CCM. Since we are considering only the homogeneous
case here, we see that there is no structure in the com-
posite system that couples the right-moving variables of
the characteristic domain that are responsible for weak
hyperbolicity, to the left-moving one. Consequently, the
qualitative behavior in the convergence tests for CCM
and CCE are very similar. The important difference be-
tween CCE and CCM is that test 4 can actually provide
good boundary data for the WH CIBVP in the CCE case,
because then the IBVP and CIBVP are still treated indi-
vidually regarding well-posedness. In contrast, for CCM
the whole problem has to be treated simultaneously and
so test 4 is not an indicator for well-posedness in this case.
To clarify the difference between CCE and CCM further,
we consider next the inhomogeneous setup (33)-(34).

1. An inhomogeneous example

We now consider an inhomogeneous IBVP and CIBVP,
in which sources are added in such a way that right-
and left-moving variables are coupled when CCM is per-
formed. The inhomogeneous IBVP (labeled B1) is:

∂tϕ1 = −∂ρϕ1 + ∂zψv1 + ψ1 , (33a)

∂tψv1 = −∂ρψv1 + ∂zϕ1 , (33b)

∂tψ1 = ∂ρψ1 + ∂zψ1 , (33c)

where the boxed term controls the hyperbolicity of the
system as before. The inhomogeneous CIBVP (labeled
B2) is:

∂xϕ2 = ∂zψv2 , (34a)

∂xψv2 = ∂zϕ2 , (34b)

∂uψ2 =
1

2
∂ρψ2 + ∂zψ2 + ψv2 . (34c)

When the boxed term is included the systems are SYMH,
and when omitted they are only WH. In comparison to
the earlier homogeneous case, we made an addition of
source terms that is minimal in the following sense: in
the characteristic setup, the left-moving part is affected
by the right-moving one through the sources, whereas in
the Cauchy part, the opposite is true. Notice that the
characteristic setup has still a nested structure as is de-
sirable in a model for GR. The important difference in
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FIG. 8. The exact convergence rate of the CCM solution, for SYMH-SYMH (top) and WH-WH (bottom). The first column
refers to test 1, the second to test 2, and so on. Tests 1, 2, and 3 show the expected convergence in the L2 and H1 for
SYMH-SYMH and in the q norm for WH-WH. Convergence in the q norm seen in test 4 is again a result of the fact that
H1 (32) is a bigger than q (31), as in the IBVP. The plots for tests 3 and 4 use data from exactly the same runs.
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FIG. 9. Cexact for a SYMH-WH CCM setup. Test 1 is shown
in top-left, test 2 top-right, test 3 bottom-left, test 4 bottom-
right. Tests 1-3 fail to exhibit the appropriate convergence
rate, as expected for this setup. Test 4 manifest convergence
in q norm (31), again due to the fact that H1 (32) is a bigger
norm. The fact that the behavior seen is similar to that of
the CIBVP part of CCE, in Fig. 7, is a result of treating the
homogeneous case. In Fig. 10 we see that the behavior is
different for an inhomogeneous SYMH-WH CCM setup.

comparison to the homogeneous SYMH-WH CCM case
is that now the right-moving characteristic variables that
form a non-trivial Jordan block in the angular principal
part, can affect the left-moving characteristic variable,
which then influences the solution to the SYMH IBVP.

The latter eventually provides inappropriate boundary
data for the right-moving variables of the CIBVP, en-
hancing the effect of weak hyperbolicity. This coupling
provides the aforementioned interaction loop between the
left- and right-moving variables when CCM is performed,
but not for CCE, since then boundary data for the IBVP
are not given by the solution to the CIBVP.

In Fig. 10 we present tests 1-4 for CCM performed
with the SYMH B1 IBVP and the WH B2 CIBVP. In
the top row we see the exact convergence rate Cexact, and
at the bottom the respective norms that are included in
the calculation of Cexact. In this case we do not see con-
vergence in any of the tests, which can be explained by
the fact that the respective norms increase in time, with
a growth rate that increases with resolution. Therefore,
the ratio between two norms calculated at different res-
olutions cannot be the desired constant in time. Notice
that the way these tests fail is rather different than the
way some earlier tests failed. Here we see complete loss
of convergence, or an instability–even though the simula-
tion does not stop abruptly–whereas earlier we observed
convergence at an order lower than the theoretically ex-
pected, or in a smaller norm than that of the given data.

For comparison, we perform test 3 for CCM between
SYMH B1-SYMH B2, test 2 for CCM with WH B1-WH
B2, as well as test 4 for CCE for SYMH B1-WH B2.
We chose the specific tests and combinations of PDEs,
because these provided good convergence results earlier
when monitoring derivative terms in the norms. The
results are shown in Fig. 11. More specifically, CCM
between the inhomogeneous SYMH setups exhibits the
expected convergence in the H1 norm, whereas for WH
setups we see good convergence in the q norm only for a
brief period. The latter should not be surprising, since
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FIG. 10. The convergence tests 1-4 for the CCM setup SYMH B1-WH B2. The top row shows the exact convergence rate,
whereas the bottom the norms that are used to calculate it. The y-axis for the bottom plots is log10. We clearly see that for all
tests, Cexact moves away from the theoretical value faster with increasing resolution. This is a clear sign of loss of convergence.
Furthermore, we see in the bottom row that the norms used in the calculation of Cexact grow exponentially and with increasing
rate for bigger resolution.
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FIG. 11. For comparison to the convergence of the CCM setup SYMH B1-WH B2 shown in Fig. 10, we present here the
following (from left to right): test 3 for SYMH B1-SYMH B2, test 2 for WH B1-WH B2, test 4 for the CCE setup SYMH
B1-WH B2 (plotting the CIBVP norms).

standard numerical methods as the ones utilized here
are developed having in mind PDE problems that are
strongly well-posed, such as strongly or symmetric hyper-
bolic. These results indicate that the main source of this
rapid loss of convergence is the different degree of hyper-
bolicity between the IBVP and CIBVP in CCM. In addi-
tion, we see good convergence in q norm for the CIBVP
part of CCE with SYMH B1 IBVP and WH B2 CIBVP,
in line with earlier CCE results. Based on these findings,
we deduce that having the influence of the bad part of the

WH CIBVP solution affecting the SYMH IBVP is exactly
what causes the severe loss of convergence and the rapid
growth of the respective norms. When this influence is
prevented by doing only CCE, this exponential growth
of the norms is not present. For completeness, we have
performed convergence tests for CCM with SYMH B1
IBVP and WH B2 CIBVP, with smooth given data. In
complete contrast to the random noise data, the smooth
data tests exhibit convergence in the L2 norm. Note that
these are not exact, but self convergence tests, since we
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do not know the exact solution of the tested setup. We do
not present the associated plots here, but the interested
reader can find them, along with pointwise convergence
tests, in the supplementary material [60, 64].

IV. SUMMARY AND DISCUSSION

Modeling gravitational waves at future null infinity ac-
curately is a challenge that has to be met to obtain wave-
forms of high fidelity. One possibility is to successfully
develop a CCM scheme for GR. Such a scheme would
combine the ability to capture in detail the physics of
the strong gravity regime in the Cauchy setup, with the
accurate propagation of gravitational waves due to the fo-
liation with null hypersurfaces of the characteristic setup.
CCM does not suffer from artificial boundary conditions
on the outer boundary of the Cauchy domain, as for in-
stance a CCE scheme. The characteristic setup is not
the only way to obtain accurate gravitational waveform
models at future null infinity. Alternative strategies in-
clude hyperboloidal compactification [65–72] and the use
of the conformal EFEs [73–75].

In this paper we focused on mathematical properties
of CCE and CCM schemes and their impact on nu-
merical simulations. Our motivation comes from recent
progress in understanding the mathematical structure
of Einstein’s field equations in the characteristic setup,
in which the gauge freedom of GR is typically fixed by
choosing Bondi-like coordinates which are built upon out-
going (in the case of CCE and CCM) null geodesics.
In [33], certain characteristic PDE systems of GR were
shown to be only weakly hyperbolic in some Bondi-like
coordinates, and subsequently in [34] this structure was
attributed to the choice of a Bondi-like gauge. Based
on these results, it becomes clear that current CCE and
CCM schemes of GR involve a strongly or symmetric hy-
perbolic system for the IBVP and the WH Bondi-like
one in the CIBVP. Since PDE problems based on WH
systems are generically not well-posed, it is natural to
ask whether these composite CCE and CCM setups are
well-posed, and to what extend should a solution based
on them be trusted in making accurate predictions for
gravitational waveforms.

To address this question we constructed toy models
and utilized them as models for GR CCE and CCM.
To address the effect of weak hyperbolicity we studied
weakly and symmetric hyperbolic models for both the
IBVP and the CIBVP, comparing different combinations
of IBVP and CIBVP in CCE and CCM. The weakly hy-
perbolic structure of the CIBVP mimics that of the EFE
in a Bondi-like gauge. Importantly, the WH system is
constructed in such a way that it has a weakly well-posed
IBVP and CIBVP. This assumption is the best possible
scenario for the Bondi-like CIBVP of the EFE, involving
up to second order metric derivatives. Given that there
are symmetric hyperbolic characteristic formulations of
GR in a Bondi-like gauge that include third order metric

derivatives, one might hope to show weak well-posedness
for the characteristic setups commonly used in numerical
relativity. To the best of our knowledge, such a result is
yet to be obtained.

For our toy models, we first studied well-posedness at
the continuum level, where we considered the homoge-
neous case and provided energy estimates for the IBVP,
CIBVP, CCE and CCM. We discussed energy estimates
in norms with (q and H1) and without (L2) derivative
terms, and adapted to the IBVP, CIBVP, CCE and CCM
setups. A similar analysis was performed in [33] only for
the L2 norm. As in that earlier work, we found that
CCM cannot provide a well-posed PDE problem when
matching a WH with a SYMH PDE problem. On the
contrary, CCE can be weakly well-posed if the WH prob-
lem is weakly well-posed. The essential difference is in
the communication of the solution between the Cauchy
and the characteristic domains. In terms of the energy
estimates, this is translated into a worldtube integral over
the interface between the Cauchy and the characteristic
domains, that is not controlled by the given data.

Based on the continuum analysis, we performed sev-
eral numerical convergence tests, with a second order ac-
curate implementation. Our main goal was to address
continuous dependence of the solution on the given data,
in discrete approximations to the L2, q, and H1 norms
previously constructed. Our first step was to verify the
expected norm convergence for the individual IBVP and
CIBVP. We saw the expected convergence for the SYMH
setups in the L2 and H1 norms and for the WH in the q
norm, for both the IBVP and CIBVP. An interesting sce-
nario was realized when the given data were controlled
in the H1 norm and the convergence of the solution was
tested in the q norm, which is appropriate only for the
WH setup. In this scenario, we observed second order
convergence for both the SYMH and WH cases. Our ex-
planation for this phenomenon is that the H1 norm pro-
vides more control over derivatives than q, so the given
data are appropriate for both SYMH and WH setups.
Furthermore, when monitoring only the q norm of the
solution for the WH case we ignore the derivative terms
that are responsible for the loss of convergence we see
in H1. For the SYMH case, all derivative terms converge
well. In the q norm, we only monitor the convergence of
one of them, which dominates the norm. This scenario
is crucial in understanding the reason that CCE between
a SYMH IBVP and a WH CIBVP is numerically well-
behaved. The key point is that for H1 controlled given
data, the solution to the SYMH IBVP is also controlled
in the same norm. This solution then provides bound-
ary data for the WH CIBVP with enough control over
derivatives terms and so the solution to that PDE prob-
lem converges well in the q norm.

The expected convergence was also seen for CCM be-
tween IBVP and CIBVP with the same degree of hyper-
bolicity, that is when matching SYMH to SYMH or WH
to WH. In the first case, we could obtain good conver-
gence for the solution in the L2 and H1 norms, for given
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data controlled in the same norms, respectively, whereas
in the second, the same was true in the q norm. When we
analyzed the convergence of the solution in the q norm
for H1 given data, we observed the same scenario as ear-
lier, namely second order convergence in the q norm for
both SYMH-SYMH and WH-WH setups. Our under-
standing of this behavior is exactly the same as for the in-
dividual IBVP and CIBVP, with the only difference that
in this case the various norms considered were adapted
to the composite CCM PDE problem.

When matching a SYMH IBVP to a WH CIBVP we
did not recover good second order convergence in any of
the L2, q, or H1 norms for the solution, when the given
data were controlled in the same norm. This result is
in line with our expectation from the preceding contin-
uum analysis. It is worth mentioning that as earlier, we
were able to see good second order convergence in the q
norm when the given data were controlled in the H1.
Even though this behavior is qualitatively the same as
for SYMH-WH CCE, the interpretation in terms of con-
tinuous dependence of the solution on the given data is
different. In CCM, the composite IBVP-CIBVP PDE
problem is treated as one and therefore the solution is
controlled in a smaller norm than the given data (some
derivative terms are not controlled). In CCE, this was
not an issue, because we could verify convergence of the
IBVP solution in the H1 norm, for H1 given data, and
for the CIBVP solution in the q norm for H1 given data,
where the latter include also given data controlled in the q
norm.

Our homogeneous models exhibit the same qualita-
tive behavior for SYMH-WH CCE and CCM due to the
lack of source terms. To demonstrate this, we consid-
ered an inhomogeneous example in which for the CIBVP
we added a source term such that the right-moving vari-
ables which are responsible for weak hyperbolicity affect
the left-moving variable, and in IBVP the left-moving
variable couples to the first right-moving one. In this
way, there is an interaction loop between left- and right-
moving variables that is closed only when we consider
CCM but not CCE. Our understanding is that when
this loop is closed, it allows the part of the CIBVP solu-
tion that is influenced by the WH structure to affect in
turn the IBVP solution, which consequently provides bad
boundary data to the CIBVP and drives the numerical
solution to explode. In our numerical experiments we see
severe loss of convergence for the inhomogeneous SYMH-
WH CCM setup in all norms and for all given data, even
for the combination of H1 given data and q norm of the
solution. In fact, we observe that the norms involved
in the calculation of the convergence rate grow expo-
nentially with time and faster for increasing resolution,
which is a clear sign for loss of convergence. For compari-
son, we tested the inhomogeneous case for SYMH-SYMH
and WH-WH CCM. In the first case we found good sec-
ond order convergence in the CCM L2 and H1 norms
for the solution, whereas in the second we saw second
order convergence in the q norm only for a brief initial

period, the cause of which is presently unclear to us. Fi-
nally, to assess that indeed the two-way communication
between the Cauchy and the characteristic domain is the
crucial point in this setup, we tested the inhomogeneous
SYMH-WH CCE setup for H1 given data. In this case,
we find second order convergence for the inhomogeneous
WH CIBVP, exactly as in the inhomogeneous case. We
interpret these results as support of our understanding
of the mechanism that drives this loss of convergence, as
given above.

We should highlight that we used high frequency given
data in all our tests. More specifically, we used random
noise with amplitude that dropped appropriately with
increasing resolution. This type of data is useful in de-
tecting WH in numerical experiments. In fact, we were
able to see second order convergence in the L2 norm for
our inhomogeneous SYMH-WH CCM model, for smooth
given data (see [60]). We understand that random noise
high frequency data may not be appropriate for non-
uniform grids, as for instance in spectral methods. In
that case, one has to construct different type of high
frequency given data. A possible suggestion could be
a sinusoidal of some high but resolved frequency, that
increases with increasing resolution, and an amplitude
which is dropped with increasing resolution, mimicking
the expected behavior of numerical error.

V. CONCLUSIONS

The take home message from this analysis for current
CCE setups in GR is that if the solution to the Cauchy
setup is sufficiently controlled (in terms of derivatives)
and provided that the WH CIBVP is weakly well-posed
(a strong assumption that should be firmly established)
then, depending on the discretization, the numerical so-
lution of this CCE should converge to the true solution
in the limit of infinite resolution. This is another way to
say that error estimates on such a solution can be trusted
to an arbitrary small level (given the necessary computa-
tional resources) to provide highly accurate gravitational
waveforms. Ultimately any CCE scheme is still subject
to artificial boundary conditions, for which a detailed
consideration is beyond our present scope.

Another lesson we take from this study is that CCM
for the EFE as currently performed between as SYMH
IBVP and WH CIBVP cannot be guaranteed to provide
numerical approximations that converge to the true so-
lution of the problem in the limit of infinite resolution.
We do not expect the results to be changed if symmet-
ric is replaced with strong hyperbolicity for the IBVP.
Developing a strongly, if not symmetric hyperbolic char-
acteristic formulation of the EFE seems to be necessary
to move towards an implementation of GR CCM that is
(strongly) well-posed and properly convergent.
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