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A B S T R A C T

We prove a useful formula and new properties for the recently introduced power fractional calculus with
non-local and non-singular kernels. In particular, we prove a new version of Gronwall’s inequality involving
the power fractional integral; and we establish existence and uniqueness results for nonlinear power fractional
differential equations using fixed point techniques. Moreover, based on Lagrange polynomial interpolation, we
develop a new explicit numerical method in order to approximate the solutions of a rich class of fractional
differential equations. The approximation error of the proposed numerical scheme is analyzed. For illustrative
purposes, we apply our method to a fractional differential equation for which the exact solution is computed,
as well as to a nonlinear problem for which no exact solution is known. The numerical simulations show that
the proposed method is very efficient, highly accurate and converges quickly.
1. Introduction

Over the last decades, fractional differential equations (FDEs) have
been used to model a large variety of physical, biological, and engineer-
ing problems [1,2]. Often, since most dynamical systems involve mem-
ory or hereditary effects, the non-locality properties of the fractional
derivatives make them more accurate in modeling when compared
with the classical local operators. That gave rise to the introduction of
different kinds of non-local fractional derivatives with non-singular ker-
nels [3–6], e.g., Caputo–Fabrizio [5], Atangana–Baleanu [4], weighted
Atangana–Baleanu [3], and Hattaf fractional derivatives [6].

In 2022, a generalized version of all the previous non-local frac-
tional derivatives with non-singular kernels was introduced: the so-
called power fractional derivative (PFD) [7]. PFDs are based on the gen-
eralized power Mittag–Leffler function, which contains a key ‘‘power’’
parameter 𝑝 that plays a very important role by enabling researchers,
engineers and scientists, to select the adequate fractional derivative
that models more accurately the real world phenomena under study.
The authors of [7] presented the basic properties of the new power
fractional derivative and integral. Moreover, they provided the Laplace
transform corresponding to the PFD, which is then applied to solve a
class of linear fractional differential equations.

The question of existence and uniqueness of nonlinear FDEs, as well
as their various applications, have been discussed by many researchers:
see, for instance, [8–12] and references cited therein. Analyzing the
literature, one may conclude that Gronwall’s inequality and its exten-
sions are one of the most fundamental tools in all such results. Indeed,
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several versions of this classical inequality, involving fractional inte-
grals with non-singular kernels, have been provided in order to develop
the quantitative and qualitative properties of the fractional differential
equations to be investigated [10,11,13]. For example, in [10], Hattaf
et al. establish a Gronwall’s inequality in the framework of general-
ized Hattaf fractional integrals, while in [11] Alzabut et al. prove a
Gronwall’s inequality via Atangana–Baleanu fractional integrals.

Motivated by the foregoing, the first main purpose of the present
work is to derive a new version of Gronwall’s inequality, as well as
to study the existence and uniqueness of solutions for nonlinear frac-
tional differential equations in the framework of more general power
fractional operators with non-local and non-singular kernels. On the
other hand, we develop an appropriate numerical method to deal with
power differential equations.

Numerical methods have been recognized as indispensable in frac-
tional calculus [14]. They provide powerful mathematical tools to solve
nonlinear ordinary differential equations and fractional differential
equations modeling complex real phenomena. Numerical methods are
generally applied to predict the behavior of dynamical systems when
all the used analytical methods fail, as it often the case. Various
numerical schemes have been developed to approximate the solutions
of different types of fractional differential equations with singular
and non-singular kernels [15–18]. For example, in [15] a numerical
scheme, that recovers the classical Euler’s method for ordinary differ-
ential equations, is proposed, in order to obtain numerical solutions of
FDEs with generalized Hattaf fractional derivatives; in [17] collocation
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and predictor–corrector methods on piece-wise polynomial spaces are
developed to solve tempered FDEs with Caputo fractional derivatives;
while in [18] a numerical approximation for FDEs with Atangana–
Baleanu fractional derivatives is investigated. However, to the best of
our knowledge, no numerical methods have yet been developed to solve
FDEs in the framework of power fractional derivatives. Consequently,
the second main purpose of our work is to develop a new numerical
scheme for approximating the solutions of such general and powerful
differential equations.

The remainder of this article is organized as follows. Section 2
states the necessary preliminaries, including the definitions of power
fractional derivative and integral in the Caputo sense. In Section 3, we
establish a new and important formula and properties for the power
fractional operators with non-local and non-singular kernels that we
will need in the sequel. Section 4 deals with a new more general version
of Gronwall’s inequality for the power fractional integral. Then we
proceed with Section 5, which is devoted to the existence and unique-
ness of solutions to FDEs involving PFDs. Section 6 introduces a new
numerical scheme with its error analysis, allowing one to investigate,
in practical terms, power FDEs. Applications and numerical simulations
of our main results are given in Section 7. We end with Section 8 of
conclusions.

2. Essential preliminaries and notations

In this section, we recall necessary definitions and results from the
literature that will be useful in the sequel. Throughout this paper,
𝑔 ∈ 𝐻1(𝑎, 𝑏) is a sufficiently smooth function on [𝑎, 𝑏], with 𝑎, 𝑏 ∈ R,
nd 𝐻1(𝑎, 𝑏) is the Sobolev space of order one. Also, 𝐴𝐶([𝑎, 𝑏]) denotes
he space of absolutely continuous functions 𝑢 on [𝑎, 𝑏] endowed with
he norm ‖𝑢‖ = sup

𝑡∈[𝑎,𝑏]
|𝑢(𝑡)|. In addition, we adopt the notations

(𝛼) ∶= 1 − 𝛼
𝑁(𝛼)

, 𝜓(𝛼) ∶= 𝛼
𝑁(𝛼)

,

here 𝛼 ∈ [0, 1) and 𝑁(𝛼) is a normalization positive function obeying
𝑁(0) = 𝑁(1−) = 1 with 𝑁(1−) = lim𝛼→1−𝑁(𝛼).

Definition 1 (See [7]). The power Mittag–Leffler function is given by

𝑝𝐸𝑘,𝑙(𝑠) =
+∞
∑

𝑛=0

(𝑠 ln 𝑝)𝑛

𝛤 (𝑘𝑛 + 𝑙)
, 𝑠 ∈ C, (1)

where 𝑘 > 0, 𝑙 > 0, 𝑝 > 0, and 𝛤 (⋅) is the Gamma function [19].

Remark 1. The term ln(𝑝) that is introduced in Definition 1 of power
Mittag-Leffler function 𝑝𝐸𝑘,𝑙(⋅) allows, by taking particular cases, to ob-
tain several important functions available in the literature, for example,
the Mittag–Leffler function of one parameter 𝑒𝐸𝑘,1(⋅) [19], the Wiman
function 𝑒𝐸𝑘,𝑙(⋅) [20], and those introduced by Prabhakar [21,22].

Definition 2 (See [7]). Let 𝛼 ∈ [0, 1), 𝛽 > 0, 𝑝 > 0, and 𝑔 ∈ 𝐻1(𝑎, 𝑏).
he power fractional derivative (PFD) of order 𝛼, in the Caputo sense,
f a function 𝑔 with respect to the weight function 𝜔, is defined by

𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 𝑔(𝑡) =

1
𝜙(𝛼)

1
𝜔(𝑡) ∫

𝑡

𝑎

𝑝𝐸𝛽,1
(

−𝜇𝛼(𝑡 − 𝑠)𝛽
)

(𝜔𝑔)′(𝑠) d𝑠, (2)

where 𝜇𝛼 ∶= 𝛼
1 − 𝛼

and 𝜔 ∈ 𝐶1([𝑎, 𝑏]) with 𝜔 > 0 on [𝑎, 𝑏].

emark 2. PFD is a fractional derivative with non-singular kernel
hile the classical Caputo fractional derivative is a fractional operator
ith singular kernel. Therefore, PFDs belong to a different family and
o not include Caputo derivatives as special cases.

emark 3. Note that the PFD (2) includes many interesting fractional
erivatives that exist in the literature, such as:
2

• if 𝑝 = 𝑒, then we retrieve the generalized Hattaf fractional
derivative [6] given by

𝑝𝐶𝐷𝛼,𝛽,𝑒
𝑎,𝑡,𝜔𝑔(𝑡) =

1
𝜙(𝛼)

1
𝜔(𝑡) ∫

𝑡

𝑎
𝐸𝛽,1

(

−𝜇𝛼(𝑡 − 𝑠)𝛽
)

(𝜔𝑔)′(𝑠) d𝑠;

• if 𝛽 = 𝛼, 𝑝 = 𝑒 and 𝜔(𝑡) ≡ 1, then we obtain the Atangana–Baleanu
fractional derivative [4] defined as

𝑝𝐶𝐷𝛼,𝛼,𝑒
𝑎,𝑡,1 𝑔(𝑡) =

1
𝜙(𝛼) ∫

𝑡

𝑎
𝐸𝛼,1

(

−𝜇𝛼(𝑡 − 𝑠)𝛼
)

𝑔′(𝑠) d𝑠;

• if 𝛽 = 1, 𝑝 = 𝑒 and 𝜔(𝑡) ≡ 1, then we get the Caputo–Fabrizio
fractional derivative [5] given by

𝑝𝐶𝐷𝛼,1,𝑒
𝑎,𝑡,1 𝑔(𝑡) =

1
𝜙(𝛼) ∫

𝑡

𝑎
exp

(

−𝜇𝛼(𝑡 − 𝑠)
)

𝑔′(𝑠) d𝑠.

The power fractional integral associated with the power fractional
erivative 𝑝𝐶𝐷𝛼,𝛽,𝑝

𝑎,𝑡,𝜔 is given in Definition 3.

efinition 3 (See [7]). The power fractional integral (PFI) of order 𝛼,
f a function 𝑔 with respect to the weight function 𝜔, is given by

𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑔(𝑡) = 𝜙(𝛼)𝑔(𝑡) + ln 𝑝 ⋅ 𝜓(𝛼)𝑅𝐿𝐼𝛽𝑎,𝜔𝑔(𝑡), (3)

here 𝑅𝐿𝐼𝛽𝑎,𝜔 denotes the standard weighted Riemann–Liouville frac-
ional integral of order 𝛽 given by

𝐿𝐼𝛽𝑎,𝜔𝑔(𝑡) =
1

𝛤 (𝛽)
1
𝜔(𝑡) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝛽−1(𝜔𝑔)(𝑠) d𝑠.

emark 4. For 𝑝 = 𝑒, the PFI (3) coincides with the generalized
ractional integral introduced in [6].

The Gronwall’s inequality in the framework of the weighted
iemann–Liouville fractional integral is given in [10].

emma 1 (See [10]). Suppose 𝛽 > 0, ℎ and 𝑢 are non-negative and locally
ntegrable functions on [𝑎, 𝑏), and 𝑣 is a non-negative, non-decreasing, and
ontinuous function on [𝑎, 𝑏) satisfying 𝑣(𝑡) ≤ 𝜆, where 𝜆 is a constant. If

(𝑡) ≤ 𝑢(𝑡) + 𝑣(𝑡)𝑅𝐿𝐼𝛽𝑎,𝜔ℎ(𝑡),

hen

(𝑡) ≤ 𝑢(𝑡) + ∫

𝑡

𝑎

+∞
∑

𝑛=1

(𝑣(𝑡))𝑛

𝛤 (𝑛𝛽)
(𝑡 − 𝑠)𝑛𝛽−1𝑢(𝑠) d𝑠.

. New properties of the power fractional operators

In this section, we establish a new important formula and properties
or the power fractional operators. They will be useful in the sequel to
chieve the main goals formulated in Section 1.

emma 2. The power Mittag–Leffler function 𝑝𝐸𝑘,𝑙(𝑠) is locally uniformly
onvergent for any 𝑠 ∈ C.

roof. The proof is similar to the proof of Theorem 1 of [7]. □

We prove a new formula for the power fractional derivative in the
form of an infinite series of the standard weighted Riemann–Liouville
fractional integral, which brings out more clearly the non-locality
properties of the fractional derivative and, for certain computational
purposes, is easier to handle than the original formula (2).

Lemma 3. The power fractional derivative 𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 can be expressed as

follows:

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 𝑔(𝑡) =

1
𝜙(𝛼)

+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡),

here the series converges locally and uniformly in 𝑡 for any 𝑎, 𝛼, 𝛽, 𝑝, 𝜔

and 𝑔 verifying the conditions laid out in Definition 2.
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Proof. The power Mittag–Leffler function 𝑝𝐸𝑘,𝑙(𝑠) is an entire function
of 𝑠. Since it is locally uniformly convergent in the whole complex plane
(see Lemma 2), then the PFD may be rewritten as follows:

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 𝑔(𝑡) =

1
𝜙(𝛼)

1
𝜔(𝑡)

+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛

𝛤 (𝛽𝑛 + 1) ∫

𝑡

𝑎
(𝑡 − 𝑥)𝛽𝑛(𝜔𝑔)′(𝑥) d𝑥

= 1
𝜙(𝛼)

+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 1
𝛤 (𝛽𝑛 + 1)

1
𝜔(𝑡) ∫

𝑡

𝑎
(𝑡 − 𝑥)𝛽𝑛(𝜔𝑔)′(𝑥) d𝑥

= 1
𝜙(𝛼)

+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡),

hich completes the proof. □

heorem 1. Let 𝛼 ∈ [0, 1), 𝛽 > 0, 𝑝 > 0, and 𝑔 ∈ 𝐻1(𝑎, 𝑏). Then,

(i) 𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔

(

𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑔
)

(𝑡) = 𝑔(𝑡) −
(𝜔𝑔)(𝑎)
𝜔(𝑡)

;

(ii) 𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔

(

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 𝑔

)

(𝑡) = 𝑔(𝑡) −
(𝜔𝑔)(𝑎)
𝜔(𝑡)

.

roof. We begin by proving (𝑖). According to Lemma 3, one has

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔

(

𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑔
)

(𝑡) = 1
𝜙(𝛼)

+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

⎛

⎜

⎜

⎜

⎝

(

𝜔
(

𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑔
))′

𝜔

⎞

⎟

⎟

⎟

⎠

(𝑡).

rom Definition 3, it follows that

𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔

(

𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑔
)

(𝑡) = 1
𝜙(𝛼)

+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛

× 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

[

𝜙(𝛼)(𝜔𝑔)′

𝜔
+

ln 𝑝 ⋅ 𝜓(𝛼)(𝜔𝑅𝐿𝐼𝛽𝑎,𝜔𝑔)′

𝜔

]

(𝑡)

=
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

+ 𝜇𝛼 ln 𝑝
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛

× 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑅𝐿𝐼𝛽𝑎,𝜔𝑔)′

𝜔

)

(𝑡).

Therefore,

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔

(

𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑔
)

(𝑡)

=
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛

[

𝑅𝐿𝐼𝛽𝑛𝑎,𝜔𝑔(𝑡) − (𝜔𝑔)(𝑎)𝑅𝐿𝐼𝛽𝑛𝑎,𝜔
( 1
𝜔

)

(𝑡)
]

−
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛+1

[

𝑅𝐿𝐼𝛽(𝑛+1)𝑎,𝜔 𝑔(𝑡) − (𝜔𝑔)(𝑎)𝑅𝐿𝐼𝛽(𝑛+1)𝑎,𝜔

( 1
𝜔

)

(𝑡)
]

=
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛

[

𝑅𝐿𝐼𝛽𝑛𝑎,𝜔𝑔(𝑡) − (𝜔𝑔)(𝑎)𝑅𝐿𝐼𝛽𝑛𝑎,𝜔
( 1
𝜔

)

(𝑡)
]

−
+∞
∑

𝑛=1

(

−𝜇𝛼 ln 𝑝
)𝑛

[

𝑅𝐿𝐼𝛽𝑛𝑎,𝜔𝑔(𝑡) − (𝜔𝑔)(𝑎)𝑅𝐿𝐼𝛽𝑛𝑎,𝜔
( 1
𝜔

)

(𝑡)
]

= 𝑅𝐿𝐼0𝑎,𝜔𝑔(𝑡) − (𝜔𝑔)(𝑎)𝑅𝐿𝐼0𝑎,𝜔
( 1
𝜔

)

(𝑡)

= 𝑔(𝑡) −
(𝜔𝑔)(𝑎)
𝜔(𝑡)

.

Now, we prove (𝑖𝑖). According to Definition 3, one has

𝑝𝐼𝛼,𝛽,𝑝
(

𝑝𝐶𝐷𝛼,𝛽,𝑝𝑔
)

(𝑡) = 𝜙(𝛼)𝑝𝐶𝐷𝛼,𝛽,𝑝𝑔(𝑡) + ln 𝑝 ⋅ 𝜓(𝛼)𝑅𝐿𝐼𝛽
(

𝑝𝐶𝐷𝛼,𝛽,𝑝𝑔
)

(𝑡).
3

𝑎,𝑡,𝜔 𝑎,𝑡,𝜔 𝑎,𝑡,𝜔 𝑎,𝜔 𝑎,𝑡,𝜔
By applying Lemma 3, we obtain that
𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔

(

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 𝑔

)

(𝑡)

=
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

+ 𝜇𝛼 ln 𝑝𝑅𝐿𝐼𝛽𝑎,𝜔

[+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

]

=
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

−
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛+1 𝑅𝐿𝐼𝛽(𝑛+1)+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

=
+∞
∑

𝑛=0

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

−
+∞
∑

𝑛=1

(

−𝜇𝛼 ln 𝑝
)𝑛 𝑅𝐿𝐼𝛽𝑛+1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

= 𝑅𝐿𝐼1𝑎,𝜔

(

(𝜔𝑔)′

𝜔

)

(𝑡)

= 1
𝜔(𝑡) ∫

𝑡

𝑎
(𝜔𝑔)′(𝑥) d𝑥

= 𝑔(𝑡) −
(𝜔𝑔)(𝑎)
𝜔(𝑡)

.

The proof is complete. □

Remark 5. Theorem 1 proves that the power fractional derivative and
integral are commutative operators.

Remark 6. If we let 𝑝 = 𝑒 in Theorem 1, then we obtain the results
presented in Theorem 3 of [23] for the generalized Hattaf fractional
operators.

As a corollary of our Theorem 1, we extend the Newton–Leibniz
formula proved in [24].

Corollary 1. The power fractional derivative and integral satisfy the
Newton–Leibniz formula
𝑝𝐶𝐷𝛼,𝛽,𝑝

𝑎,𝑡,1

(

𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,1 𝑔
)

(𝑡) = 𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,1

(

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,1 𝑔

)

(𝑡) = 𝑔(𝑡) − 𝑔(𝑎).

roof. Follows from Theorem 1 with 𝜔(𝑡) ≡ 1. □

. Grönwall’s inequality via PFI

In this section we establish a Gronwall’s inequality in the framework
f the power fractional integral. Our proof uses Lemma 1.

heorem 2. Let 𝛼 ∈ [0, 1), 𝛽 > 0, and 𝑝 > 0. Suppose ℎ and 𝑢 are non-
negative and locally integrable functions on [𝑎, 𝑏), and 𝑣 is a non-negative,
on-decreasing, and continuous function on [𝑎, 𝑏) satisfying 𝑣(𝑡) ≤ 𝜆, where
is a constant such that 1 − 𝜙(𝛼)𝜆 > 0. If

(𝑡) ≤ 𝑢(𝑡) + 𝑣(𝑡)𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 ℎ(𝑡), (4)

hen

(𝑡) ≤ 𝑢(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

+ ∫

𝑡

𝑎

+∞
∑

𝑛=1

(ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡))𝑛𝑢(𝑠)(𝑡 − 𝑠)𝑛𝛽−1

𝛤 (𝑛𝛽)(1 − 𝜙(𝛼)𝑣(𝑡))𝑛(1 − 𝜙(𝛼)𝑣(𝑠))
d𝑠. (5)

roof. By virtue of condition (4) and the PFI formula (3), one has

(𝑡) ≤ 𝑢(𝑡) + 𝜙(𝛼)𝑣(𝑡)ℎ(𝑡) + ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡)𝑅𝐿𝐼𝛽𝑎,𝜔ℎ(𝑡),

hich leads to

(𝑡) ≤ 𝑢(𝑡)
+

ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡)𝑅𝐿𝐼𝛽 ℎ(𝑡).

1 − 𝜙(𝛼)𝑣(𝑡) 1 − 𝜙(𝛼)𝑣(𝑡) 𝑎,𝜔
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Let 𝑉 (𝑡) =
ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

. This function is non-negative and non-

ecreasing and, by applying the result of Lemma 1 with 𝑈 (𝑡) =
𝑢(𝑡)

1 − 𝜙(𝛼)𝑣(𝑡)
, it follows that

(𝑡) ≤ 𝑈 (𝑡) + ∫

𝑡

𝑎

+∞
∑

𝑛=1

(𝑉 (𝑡))𝑛

𝛤 (𝑛𝛽)
(𝑡 − 𝑠)𝑛𝛽−1𝑈 (𝑠) d𝑠.

Hence,

ℎ(𝑡) ≤ 𝑢(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

+ ∫

𝑡

𝑎

+∞
∑

𝑛=1

(ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡))𝑛𝑢(𝑠)(𝑡 − 𝑠)𝑛𝛽−1

𝛤 (𝑛𝛽)(1 − 𝜙(𝛼)𝑣(𝑡))𝑛(1 − 𝜙(𝛼)𝑣(𝑠))
d𝑠,

and the proof is complete. □

Corollary 2. Under the hypotheses of Theorem 2, assume further that 𝑣(𝑡)
is a non-decreasing function on [𝑎, 𝑏). Then,

ℎ(𝑡) ≤ 𝑢(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

𝑝𝐸𝛼,𝛽

(

𝜓(𝛼)𝑣(𝑡)(𝑡 − 𝑎)𝛽

1 − 𝜙(𝛼)𝑣(𝑡)

)

.

Proof. By virtue of inequality (5) and the assumption that 𝑢(𝑡) is a
non-decreasing function on [𝑎, 𝑏), one may write that

ℎ(𝑡) ≤ 𝑢(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

+
𝑢(𝑡)

1 − 𝜙(𝛼)𝑣(𝑡) ∫

𝑡

𝑎

+∞
∑

𝑛=1

(ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡))𝑛(𝑡 − 𝑠)𝑛𝛽−1

𝛤 (𝑛𝛽)(1 − 𝜙(𝛼)𝑣(𝑡))𝑛
d𝑠

≤ 𝑢(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

(

1 +
+∞
∑

𝑛=1

(ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡))𝑛

𝛤 (𝑛𝛽)(1 − 𝜙(𝛼)𝑣(𝑡))𝑛 ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑛𝛽−1 d𝑠

)

≤ 𝑢(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

(

1 +
+∞
∑

𝑛=1

(ln 𝑝 ⋅ 𝜓(𝛼)𝑣(𝑡))𝑛(𝑡 − 𝑎)𝑛𝛽

𝛤 (𝑛𝛽)(1 − 𝜙(𝛼)𝑣(𝑡))𝑛

)

.

Therefore,

ℎ(𝑡) ≤ 𝑢(𝑡)
1 − 𝜙(𝛼)𝑣(𝑡)

𝑝𝐸𝛼,𝛽

(

𝜓(𝛼)𝑣(𝑡)(𝑡 − 𝑎)𝛽

1 − 𝜙(𝛼)𝑣(𝑡)

)

,

which completes the proof. □

Remark 7. Our Gronwall’s inequality for the power fractional integral,
as given in Corollary 2, includes, as particular cases, most of existing
Gronwall’s inequalities found in the literature that involve integrals
with non-local and non-singular kernels, such us

• Gronwall’s inequality in the framework of the Atangana–Baleanu
integral [11], obtained when 𝑝 = 𝑒, 𝜔 ≡ 1 and 𝛽 = 𝛼;

• Gronwall’s inequality in the framework of the generalized Hattaf
fractional derivative [10], obtained when 𝑝 = 𝑒.

Corollary 3. Let 𝛼 ∈ [0, 1), 𝛽 > 0, and 𝑝 > 0. Suppose that ℎ and 𝑢 are
non-negative and locally integrable functions on [𝑎, 𝑏) and 𝑣(𝑡) ≡ 𝜆 be such
that 1 − 𝜆𝜙(𝛼) > 0. If

ℎ(𝑡) ≤ 𝑢(𝑡) + 𝜆𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 ℎ(𝑡), (6)

then

ℎ(𝑡) ≤ 𝑢(𝑡)
1 − 𝜆𝜙(𝛼)

𝑝𝐸𝛼,𝛽

(

𝜆𝜓(𝛼)(𝑡 − 𝑎)𝛽

1 − 𝜆𝜙(𝛼)

)

.

. Existence and uniqueness of solutions for power FDEs

In this section we study sufficient conditions for the existence and
niqueness of solution to the power fractional initial value problem
𝐶𝐷𝛼,𝛽,𝑝

𝑎,𝑡,𝜔 𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡)), 𝑡 ∈ [𝑎, 𝑏] (7)

ith

(𝑎) = 𝑦0, (8)

here 𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 denotes the PFD of order 𝛼, defined by (2), 𝑓 ∶ [𝑎, 𝑏] ×

⟶ R is a continuous nonlinear function with 𝑓 (𝑎, 𝑦(𝑎)) = 0 and
4

0 ∈ R is the initial condition.
Lemma 4. A function 𝑦 ∈ 𝐶([𝑎, 𝑏]) is a solution of (7)–(8) if, and only
f, it satisfies the integral equation

(𝑡) =
𝜔(𝑎)
𝜔(𝑡)

𝑦0 + 𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑓 (𝑡, 𝑦(𝑡)). (9)

roof. First, suppose that 𝑦 fulfills the integral formula (9). Then,

(𝑎) = 𝑦0 + 𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑓 (𝑎, 𝑦(𝑎)).

ince 𝑓 (𝑎, 𝑦(𝑎)) = 0, we obtain that 𝑦(𝑎) = 𝑦0. Moreover, using the fact
hat 𝑦(𝑡) satisfies (9) and (𝑖) of Theorem 1, it follows that

𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 𝑦(𝑡) =

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔

(

𝜔(𝑎)
𝜔(𝑡)

𝑦0

)

−
𝜔(𝑎)𝑓 (𝑎, 𝑦(𝑎))

𝜔(𝑡)
+ 𝑓 (𝑡, 𝑦(𝑡)),

which implies that
𝑝𝐶𝐷𝛼,𝛽,𝑝

𝑎,𝑡,𝜔 𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡)).

hen 𝑦(𝑡) satisfies (7)–(8).
Now, let us suppose that 𝑦 is a solution of the Cauchy problem (7)–

8). Applying the power fractional integration operator to both sides of
7), and using formula (𝑖𝑖) of Theorem 1, we get

(𝑡) =
𝜔(𝑎)
𝜔(𝑡)

𝑦(𝑎) + 𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑓 (𝑡, 𝑦(𝑡)).

herefore, since 𝑦(𝑎) = 𝑦0, we obtain formula (9). □

Theorem 3. Let 𝑦 and 𝑧 be two solutions of system (7)–(8). Assume that
the function 𝑓 ∈ 𝐶([𝑎, 𝑏] × R,R) is Lipschitz in its second variable, that is,
there exists a constant 𝐿 > 0 such that

|𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑧)| ≤ 𝐿|𝑦 − 𝑧|, ∀𝑦, 𝑧 ∈ R and 𝑡 ∈ [𝑎, 𝑏]. (10)

If in addition 𝐿 < 1
𝜙(𝛼)

, then 𝑦 = 𝑧.

roof. Let 𝑦 and 𝑧 be two solutions of problem (7)–(8). By virtue of
emma 4, one has

(𝑡) − 𝑧(𝑡) = 𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 (𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑧(𝑡))) .

aking into account condition (10), it yields that

𝑦(𝑡) − 𝑧(𝑡)| ≤ 𝐿𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 |𝑦(𝑡) − 𝑧(𝑡)|.

y applying the result of Corollary 3, one obtains that

𝑦(𝑡) − 𝑧(𝑡)| ≤ 0
1 − 𝐿𝜙(𝛼)

𝑝𝐸𝛼,𝛽

(

𝐿𝜓(𝛼)(𝑡 − 𝑎)𝛽

1 − 𝐿𝜙(𝛼)

)

.

t follows that 𝑦 = 𝑧 for all 𝑡 ∈ [𝑎, 𝑏]. □

Theorem 4. Assume that the function 𝑓 ∈ 𝐶([𝑎, 𝑏] ×R,R) is Lipschitz in
its second variable such that condition (10) holds. If

𝐿
(

𝜙(𝛼) +
ln 𝑝 ⋅ 𝜓(𝛼)(𝑏 − 𝑎)𝛽

𝛤 (𝛽 + 1)

)

< 1, (11)

hen the Cauchy problem (7)–(8) has a unique solution.

roof. Let us define the operator 𝛬 ∶ 𝐴𝐶([𝑎, 𝑏]) ⟶ 𝐴𝐶([𝑎, 𝑏]) as
ollows:

𝛬𝑦)(𝑡) =
𝜔(𝑎)
𝜔(𝑡)

𝑦(𝑎) + 𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑓 (𝑡, 𝑦(𝑡)), 𝑡 ∈ [𝑎, 𝑏].

For all 𝑦, 𝑧 ∈ 𝐴𝐶([𝑎, 𝑏]) and 𝑡 ∈ [𝑎, 𝑏], one has

|(𝛬𝑦)(𝑡) − (𝛬𝑧)(𝑡)| = |

𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑓 (𝑡, 𝑦(𝑡)) −
𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑓 (𝑡, 𝑧(𝑡))|

≤ |𝜙(𝛼)(𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑧(𝑡)))

+ ln 𝑝 ⋅ 𝜓(𝛼)
(

𝑅𝐿𝐼𝛽𝑎,𝜔𝑓 (𝑡, 𝑦(𝑡)) −
𝑅𝐿𝐼𝛽𝑎,𝜔𝑓 (𝑡, 𝑧(𝑡))

)

|

≤ 𝜙(𝛼)|𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑧(𝑡))|
𝑅𝐿 𝛽
+ ln 𝑝 ⋅ 𝜓(𝛼) 𝐼𝑎,𝜔 |𝑓 (𝑡, 𝑦(𝑡)) − 𝑓 (𝑡, 𝑧(𝑡))| .
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Using the fact that 𝑓 satisfies the Lipschitz condition (10), we obtain
that

|(𝛬𝑦)(𝑡) − (𝛬𝑧)(𝑡)| ≤ 𝐿𝜙(𝛼)|𝑦 − 𝑧| + 𝐿 ln 𝑝 ⋅ 𝜓(𝛼)|𝑦 − 𝑧|𝑅𝐿𝐼𝛽𝑎,𝜔(1)(𝑡)

≤ 𝐿𝜙(𝛼)|𝑦 − 𝑧| + 𝐿 ln 𝑝 ⋅ 𝜓(𝛼)
(𝑡 − 𝑎)𝛽

𝛤 (𝛽 + 1)
|𝑦 − 𝑧|.

Therefore,

‖(𝛬𝑦)(𝑡) − (𝛬𝑧)(𝑡)‖ ≤ 𝐿
(

𝜙(𝛼) + ln 𝑝 ⋅ 𝜓(𝛼)
(𝑏 − 𝑎)𝛽

𝛤 (𝛽 + 1)

)

‖𝑦 − 𝑧‖.

Hence, by virtue of (11), we conclude that 𝛬 is a contraction mapping.
As a consequence of the Banach contraction principle, we conclude that
system (7) has a unique solution. □

6. Numerical analysis

Now we shall present a numerical method to approximate the
solution of the nonlinear fractional differential equation (7) subject to
(8), which is predicted by Theorem 4. Moreover, we also analyze the
approximation error obtained from the new introduced scheme. Our
main tool is the two-step Lagrange interpolation polynomial.

6.1. Numerical scheme

Consider the power nonlinear fractional differential equation

𝑝𝐶𝐷𝛼,𝛽,𝑝
𝑎,𝑡,𝜔 𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡)) (12)

subject to the given initial condition

𝑦(𝑎) = 𝑦0.

From Theorem 1, Eq. (12) can be converted into the fractional integral
equation

𝑦(𝑡) −
𝜔(𝑎)
𝜔(𝑡)

𝑦(𝑎) = 𝜙(𝛼)𝑓 (𝑡, 𝑦(𝑡)) + ln 𝑝 ⋅ 𝜓(𝛼)𝑝𝐼𝛼,𝛽,𝑝𝑎,𝑡,𝜔 𝑓 (𝑡, 𝑦(𝑡)),

which implies that

𝑦(𝑡) =
𝜔(𝑎)
𝜔(𝑡)

𝑦(𝑎) + 𝜙(𝛼)𝑓 (𝑡, 𝑦(𝑡)) +
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

× 1
𝜔(𝑡) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝛽−1𝜔(𝑠)𝑓 (𝑠, 𝑦(𝑠)) d𝑠. (13)

Let 𝑡𝑛 = 𝑎 + 𝑛ℎ with 𝑛 ∈ N and ℎ be the discretization step. One has

𝑦(𝑡𝑛+1) =
𝜔(𝑎)
𝜔(𝑡𝑛)

𝑦(𝑎) + 𝜙(𝛼)𝑓 (𝑡𝑛, 𝑦(𝑡𝑛)) +
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

× 1
𝜔(𝑡𝑛) ∫

𝑡𝑛+1

𝑎
(𝑡𝑛+1 − 𝑠)𝛽−1𝜔(𝑠)𝑓 (𝑠, 𝑦(𝑠)) d𝑠,

which yields

𝑦(𝑡𝑛+1) =
𝜔(𝑎)
𝜔(𝑡𝑛)

𝑦(𝑎) + 𝜙(𝛼)𝑓 (𝑡𝑛, 𝑦(𝑡𝑛)) +
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

× 1
𝜔(𝑡𝑛)

𝑛
∑

𝑘=0
∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1𝑔(𝑠, 𝑦(𝑠)) d𝑠 (14)

with 𝑔(𝑠, 𝑦(𝑠)) = 𝜔(𝑠)𝑓 (𝑠, 𝑦(𝑠)). Function 𝑔 may be approximated over
[𝑡𝑘−1, 𝑡𝑘], 𝑘 = 1, 2,… , 𝑛, by using the Lagrange interpolating polynomial
that passes through the points

(

𝑡𝑘−1, 𝑔(𝑡𝑘−1, 𝑦𝑘−1)
)

and
(

𝑡𝑘, 𝑔(𝑡𝑘, 𝑦𝑘)
)

, as
follows:

𝑃𝑘(𝑠) =
𝑠 − 𝑡𝑘
𝑡𝑘−1 − 𝑡𝑘

𝑔(𝑡𝑘−1, 𝑦(𝑡𝑘−1)) +
𝑠 − 𝑡𝑘−1
𝑡𝑘 − 𝑡𝑘−1

𝑔(𝑡𝑘, 𝑦(𝑡𝑘))

≈
𝑔(𝑡𝑘−1, 𝑦𝑘−1) (𝑡 − 𝑠) +

𝑔(𝑡𝑘, 𝑦𝑘) (𝑠 − 𝑡 ).
(15)
5

ℎ 𝑘 ℎ 𝑘−1
eplacing the approximation (15) in Eq. (14), we obtain that

𝑛+1 =
𝜔(𝑎)
𝜔(𝑡𝑛)

𝑦0 +
𝜙(𝛼)
𝜔(𝑡𝑛)

𝑔(𝑡𝑛, 𝑦𝑛)

+
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

1
𝜔(𝑡𝑛)

𝑛
∑

𝑘=1

[

𝑔(𝑡𝑘−1, 𝑦𝑘−1)
ℎ ∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1

× (𝑡𝑘 − 𝑠) d𝑠

+
𝑔(𝑡𝑘, 𝑦𝑘)

ℎ ∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1

(

𝑠 − 𝑡𝑘−1
)

d𝑠

]

.

(16)

oreover, we have

∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1(𝑡𝑘 − 𝑠) d𝑠 =

ℎ𝛽+1

𝛽(𝛽 + 1)
[

(𝑛 − 𝑘)𝛽 (𝑛 − 𝑘 + 1 + 𝛽)

−(𝑛 − 𝑘 + 1)𝛽+1
]

(17)

and

∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1(𝑠 − 𝑡𝑘−1) d𝑠 =

ℎ𝛽+1

𝛽(𝛽 + 1)
[

(𝑛 − 𝑘 + 1)𝛽 (𝑛 − 𝑘 + 2 + 𝛽)

−(𝑛 − 𝑘)𝛽 (𝑛 − 𝑘 + 2 + 2𝛽)
]

. (18)

The above Eqs. (17) and (18) can then be included in Eq. (16) to
produce the following numerical scheme:

𝑦𝑛+1 =
𝜔(𝑎)
𝜔(𝑡𝑛)

𝑦0 + 𝜙(𝛼)𝑓 (𝑡𝑛, 𝑦𝑛) +
ln 𝑝 ⋅ 𝜓(𝛼)ℎ𝛽

𝛤 (𝛽 + 2)𝜔(𝑡𝑛)

×
𝑛
∑

𝑘=1
𝜔(𝑡𝑘−1)𝑓 (𝑡𝑘−1, 𝑦𝑘−1)𝐴

𝛽
𝑛,𝑘 + 𝜔(𝑡𝑘)𝑓 (𝑡𝑘, 𝑦𝑘)𝐵

𝛽
𝑛,𝑘 (19)

ith
𝛽
𝑛,𝑘 = (𝑛 − 𝑘)𝛽 (𝑛 − 𝑘 + 1 + 𝛽) − (𝑛 − 𝑘 + 1)𝛽+1

nd
𝛽
𝑛,𝑘 = (𝑛 − 𝑘 + 1)𝛽 (𝑛 − 𝑘 + 2 + 𝛽) − (𝑛 − 𝑘)𝛽 (𝑛 − 𝑘 + 2 + 2𝛽).

emark 8. The techniques used in this section are similar to the ones
n [16] for the generalized Hattaf fractional derivative and in [18] for
he Atangana–Baleanu fractional derivative.

.2. Error analysis

We now examine the numerical error of our developed approxima-
ion scheme (19).

heorem 5. Let (12) be a nonlinear power fractional differential equation,
uch that 𝑔 = 𝜔𝑓 has a bounded second derivative. Then, the approximation
rror is estimated to verify

𝑅𝛼,𝛽,𝑝𝑛 ∣ ≤ ln 𝑝 ⋅ 𝜓(𝛼)ℎ𝛽+2

4𝛤 (𝛽 + 2)𝜔(𝑡𝑛)
(𝑛 + 1)(𝑛 + 4 + 2𝛽)

[

(𝑛 + 1)𝛽 − 𝛽𝑛𝛽
]

× max
𝑠∈[𝑎,𝑡𝑛+1]

∣ 𝑔(2)(𝑠, 𝑦(𝑠)) ∣ .

roof. From (13), one has

(𝑡𝑛+1) =
𝜔(𝑎)
𝜔(𝑡𝑛)

𝑦(𝑎) + 𝜙(𝛼)𝑓 (𝑡𝑛, 𝑦(𝑡𝑛)) +
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

× 1
𝜔(𝑡𝑛)

𝑛
∑

𝑘=0
∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1𝑔(𝑠, 𝑦(𝑠)) d𝑠. (20)

herefore,

(𝑡𝑛+1) =
𝜔(𝑎)
𝜔(𝑡𝑛)

𝑦(𝑎) + 𝜙(𝛼)𝑓 (𝑡𝑛, 𝑦(𝑡𝑛))

+
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

1
𝜔(𝑡𝑛)

𝑛
∑

𝑘=0
∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1

×
[

𝑃𝑘(𝑠) +
(𝑠 − 𝑡𝑘)(𝑠 − 𝑡𝑘−1) [𝑔(2)(𝑠, 𝑦(𝑠))]𝑠=𝜉

]

d𝑠,

2! 𝑠
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𝑓

w
1

|

T
w

𝐿

which implies that

𝑦(𝑡𝑛+1) =
𝜔(𝑎)
𝜔(𝑡𝑛)

𝑦(𝑎) + 𝜙(𝛼)𝑓 (𝑡𝑛, 𝑦(𝑡𝑛))

+ 𝜙(𝛼)𝑓 (𝑡𝑛, 𝑦𝑛) +
ln 𝑝 ⋅ 𝜓(𝛼)ℎ𝛽

𝛤 (𝛽 + 2)𝜔(𝑡𝑛)

𝑛
∑

𝑘=0
𝑔(𝑡𝑘−1, 𝑦𝑘−1)𝐴

𝛽
𝑛,𝑘

+ 𝑔(𝑡𝑘, 𝑦𝑘)𝐵
𝛽
𝑛,𝑘 + 𝑅

𝛼,𝛽,𝑝
𝑛

with the remainder

𝑅𝛼,𝛽,𝑝𝑛 =
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

1
𝜔(𝑡𝑛)

𝑛
∑

𝑘=0
∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1

×
(𝑠 − 𝑡𝑘)(𝑠 − 𝑡𝑘−1)

2!
[𝑔(2)(𝑠, 𝑦(𝑠))]𝑠=𝜉𝑠 d𝑠.

Using the fact that function 𝑠 ↦ (𝑠 − 𝑡𝑘−1)(𝑡𝑛+1 − 𝑠) is positive on the
interval [𝑡𝑘, 𝑡𝑘+1], it follows that there exists a 𝜉𝑘 ∈ [𝑡𝑘, 𝑡𝑘+1] such that

𝑅𝛼,𝛽,𝑝𝑛 =
ln 𝑝 ⋅ 𝜓(𝛼)
𝛤 (𝛽)

1
𝜔(𝑡𝑛)

𝑛
∑

𝑘=0
𝑔(2)(𝜉𝑘, 𝑦(𝜉𝑘))

(𝜉𝑘 − 𝑡𝑘)
2

× ∫

𝑡𝑘+1

𝑡𝑘
(𝑡𝑛+1 − 𝑠)𝛽−1(𝑠 − 𝑡𝑘−1) d𝑠.

Using (18), we obtain that

𝑅𝛼,𝛽,𝑝𝑛 =
ln 𝑝 ⋅ 𝜓(𝛼)ℎ𝛽+1

2𝛤 (𝛽 + 2)𝜔(𝑡𝑛)

𝑛
∑

𝑘=0
𝑔(2)(𝜉𝑘, 𝑦(𝜉𝑘))(𝜉𝑘 − 𝑡𝑘)𝐵

𝛽
𝑛,𝑘.

Therefore,

∣ 𝑅𝛼,𝛽,𝑝𝑛 ∣≤ ln 𝑝 ⋅ 𝜓(𝛼)ℎ𝛽+2

2𝛤 (𝛽 + 2)𝜔(𝑡𝑛)
max

𝑠∈[𝑎,𝑡𝑛+1]
∣ 𝑔(2)(𝑠, 𝑦(𝑠)) ∣ ⋅

|

|

|

|

|

𝑛
∑

𝑘=0
𝐵𝛽𝑛,𝑘

|

|

|

|

|

.

Then, from formulas

𝐵𝛽𝑛,𝑘 = (𝑛 − 𝑘 + 2 + 𝛽)
[

(𝑛 − 𝑘 + 1)𝛽 − 𝛽(𝑛 − 𝑘)𝛽
]

≤ (𝑛 − 𝑘 + 2 + 𝛽)
[

(𝑛 + 1)𝛽 − 𝛽𝑛𝛽
]

and
𝑛
∑

𝑘=0
(𝑛 − 𝑘 + 2 + 𝛽) =

(𝑛 + 1)(𝑛 + 4 + 2𝛽)
2

,

we deduce that

∣ 𝑅𝛼,𝛽,𝑝𝑛 ∣ ≤ ln 𝑝 ⋅ 𝜓(𝛼)ℎ𝛽+2

4𝛤 (𝛽 + 2)𝜔(𝑡𝑛)
(𝑛 + 1)(𝑛 + 4 + 2𝛽)

[

(𝑛 + 1)𝛽 − 𝛽𝑛𝛽
]

× max
𝑠∈[𝑎,𝑡𝑛+1]

∣ 𝑔(2)(𝑠, 𝑦(𝑠)) ∣,

which completes the proof. □

7. Examples and simulation results

In this section, we begin by illustrating the suggested numerical
method of Section 6 with a power FDE for which we can compute its
exact solution. Then, as a second example, we apply our main analytical
and numerical results to a nonlinear power FDE for which no exact
solution is known.

Example 1. Let us consider the following power fractional equation:

𝑝𝐶𝐷𝛼,𝛽,𝑝
0,𝑡,𝜔 𝑦(𝑡) = 𝑡2, 𝑡 ∈ [0, 10] (21)

subject to

𝑦(0) = 0, (22)

where 𝜔(𝑡) ≡ 1. By applying the power fractional integral to both
sides of (21) and using formula (𝑖𝑖) of Theorem 2, we obtain the exact
solution of (21)–(22), which is given by

𝑦(𝑡) = 𝜙(𝛼)𝑡2 +
2 ln 𝑝 ⋅ 𝜓(𝛼)

𝑡𝛽+2. (23)
6

𝛤 (𝛽 + 3)
Table 1
Maximum error corresponding to different values of ℎ with 𝛼 = 0.1, 𝛽 = 0.2 and
𝑝 = 1.1.

Discretization step (ℎ) Approximation error

ℎ = 0.1 2.447 × 10−1

ℎ = 0.01 2.080 × 10−2

ℎ = 0.001 6.100 × 10−3

We now apply the developed numerical scheme (19) to approximate
the solution of (21)–(22). For numerical simulations, we choose the
normalization function

𝑁(𝛼) = 1 − 𝛼 + 𝛼
𝛤 (𝛼)

.

The comparison between the exact and approximate solutions of (21)–
(22) is depicted in Figs. 1 and 2.

The maximum error of the numerical approximations is given in
Table 1, for 𝛼 = 0.1, 𝛽 = 0.2, 𝑝 = 1.1 and different values of the
discretization step ℎ.

From Figs. 1 and 2, we observe that the proposed numerical method
gives a good agreement between the exact and approximate solutions
for different value of 𝛼, 𝛽, 𝑝 and the discretization step ℎ. Table 1
shows that the convergence of the numerical approximation depends
on the step of discretization ℎ. By comparing the exact and approximate
solutions, we conclude that the new proposed numerical scheme is very
efficient and converges quickly to the exact solution.

Example 2. Consider the following nonlinear power fractional differ-
ential equation:

𝑝𝐶𝐷𝛼,1,𝑒
0,𝑡,𝜔𝑦(𝑡) =

𝑡2

15

(

cos(2𝑡)
1 + |𝑦(𝑡)|

)

, 𝑡 ∈ [0, 4] (24)

subject to

𝑦(0) =
√

𝜋. (25)

This example is a particular case of problem (7)–(8) with 𝛽 = 1, 𝑝 = 𝑒,
𝑦0 =

√

𝜋, 𝑎 = 0, 𝑏 = 4 and

(𝑡, 𝑦(𝑡)) = 𝑡2

15

(

cos(2𝑡)
1 + |𝑦(𝑡)|

)

ith 𝑓 (0, 𝑦(0)) = 0. Here, we choose the normalization function 𝑁(𝛼) =
.

For all 𝑦, 𝑧 ∈ R and 𝑡 ∈ [0, 4], one has

𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑧)| = 𝑡2

15
| cos(3𝑡2)|

(

∣ 1
1 + |𝑦|

− 1
1 + |𝑧|

∣
)

≤ 1
15

(|𝑧| − |𝑦|)

≤ 1
15

|𝑦 − 𝑧|.

hus, function 𝑓 is continuous and satisfies the Lipschitz condition (10)
ith 𝐿 = 1

15
. Moreover, for any 𝛼 ∈ [0, 1), we have 𝜙(𝛼) = 1 − 𝛼,

𝜓(𝛼) = 𝛼 and
(

𝜙(𝛼) +
ln 𝑝 ⋅ 𝜓(𝛼)(𝑏 − 𝑎)𝛽

𝛤 (𝛽 + 1)

)

= 1
15

(1 + 3𝛼) < 1.

Hence, condition (11) holds. Then, by applying Theorem 4, it follows
that problem (24)–(25) has a unique solution on [0, 4].

We now use our proposed method to solve the system (24)–(25).
For numerical simulations, we take the weight function 𝜔(𝑡) = 𝑡 + 2.

The approximate solution of (24)–(25) is displayed in Figs. 3 and 4
for different values of 𝛼, 𝛽 = 1 and 𝑝 = 𝑒, using two discretization steps:
ℎ = 0.1 and ℎ = 0.01.
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Fig. 1. Approximate and exact solutions of system (21)–(22) for 𝛼 = 0.1, 𝛽 = 0.2, 𝑝 = 1.1 and different values of the discretization step ℎ.
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Fig. 2. Approximate and exact solutions of system (21)–(22) for different values of 𝛼, 𝛽 and 𝑝, with ℎ = 0.001.
a

c
r
t
p
t
f

Fig. 3. Approximate solution of system (24)–(25) for different values of 𝛼, 𝛽 = 1, 𝑝 = 𝑒
and ℎ = 0.1.

8. Conclusion

In this paper, (i) we established a new formula for the power
fractional derivative with a non-local and non-singular kernel in the
form of an infinite series of the standard weighted Riemann–Liouville
fractional integral. This brings out more clearly the non-locality prop-
erties of the fractional derivative and makes it easier to handle certain
8

B

Fig. 4. Approximate solution of system (24)–(25) for different values of 𝛼, 𝛽 = 1, 𝑝 = 𝑒
nd ℎ = 0.01.

omputational aspects. By means of the proposed formula, we de-
ived useful properties of the power fractional operators, for example
he Newton–Leibniz formula has been rigorously extended. (ii) We
resented a new version of Gronwall’s inequality via the power frac-
ional integral, which includes many versions of Gronwall’s inequality
ound in the literature, such us the generalized Hattaf and Atangana–
aleanu fractional Gronwall’s inequalities. (iii) We proved the existence
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and uniqueness of solutions to nonlinear power fractional differential
equations using the fixed point principle; and, based on Lagrange poly-
nomial interpolation, (iv) we provided a new explicit numerical method
to approximate the solutions of power FDEs with the approximation
error being also examined. However, we only presented a bound for
the error and the proof of the convergence of the numerical scheme is
still an open problem. Numerical examples and simulation results were
discussed and show that our developed method is very efficient, highly
accurate, and converges quickly.

As future work, we aim to apply our obtained analytical and numer-
ical results to develop power fractional models describing real world
phenomena such us the world population growth and the dynamics of
an epidemic disease. This issue is currently under investigation and will
appear elsewhere.
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