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Abstract
We establish a new generalized Taylor’s formula for power fractional derivatives with
nonsingular and nonlocal kernels, which includes many known Taylor’s formulas in
the literature. Moreover, as a consequence, we obtain a general version of the classical
mean value theorem. We apply our main result to approximate functions in Taylor’s
expansions at a given point. The explicit interpolation error is also obtained. The new
results are illustrated through examples and numerical simulations.

Keywords Approximation of functions · Mean value theorem · Power fractional
operators · Taylor’s formula
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1 Introduction

Taylor’s theorem is one of the central elementary tools in mathematical analysis,
e.g., in numerical methods, topology optimization and optimal control [5, 11, 13].
It provides simple arithmetic formulas, in polynomial terms, to accurately compute
values of various transcendental functions, such as trigonometric and exponential
ones. This fundamental theorem has various significant applications in Mathematics
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[19], engineering [10], and other fields of applied sciences [16, 18]. In consequence,
several versions of Taylor’s theorem, involving different types of fractional operators,
have been established. For instance, generalizations of this formula, using fractional
operators with singular kernels, such as Riemann–Liouville and Caputo derivatives,
are provided in [4, 7, 15, 20]. In [8], a Taylor’s theorem is proved for Atangana–
Baleanu fractional derivatives inCaputo sensewhile in [21] it is derived for generalized
weighted fractional operators.

Recently, a new generalized fractional derivative with nonsingular and nonlocal
kernel was introduced [14]. The power fractional derivative (PFD) is essentially char-
acterized by the presence of a key power parameter p, which allows one to choose the
appropriate fractional operator that effectively describes the phenomena under study
in a natural way, and then creating good mathematical models to represent systems
and predict their future dynamical behaviors. Furthermore, this fractional operator
generalizes and unifies most of fractional derivatives with nonsingular kernels, such
us the Caputo–Fabrizio [6], Atangana–Baleanu [2], weighted Atangana–Baleanu [1],
and weighed generalized fractional derivatives [9].

Motivated by available results, in the present paper we propose to investigate a
more general and rich version of Taylor’s formula involving the recently introduced
power fractional derivative.

The outline of the paper is as follows. In Sect. 2, we review the necessary notions
on power fractional calculus. Our main results are given in Sect. 3, where we begin
by proving important lemmas and tools about power fractional operators, and their
nth-order operators, that are necessary in the sequel. Furthermore, we establish a new
generalized Taylor’s theorem and a general version of the mean value theorem via
power fractional differentiation. Then, in Sect. 4, we apply our main result to approxi-
mate functions in Taylor’s series at a given point, where the explicit interpolation error
of the approximation of the function by its Taylor polynomial is also characterized.
We end up with Sect. 5 of conclusion and future work.

2 Preliminary definitions

Let C([a, b]) be the Banach space of all continuous real functions defined on [a, b],
where a, b ∈ R, and H1(a, b) be the Sobolev space of order one defined by

H1(a, b) = { f ∈ L2(a, b) : f ′ ∈ L2(a, b)}.

In what follows, we review some basic concepts and tools about power fractional
calculus that are used along the text.

Definition 1 (See [14]) The power Mittag–Leffler function is given by

pEk,l(τ ) =
+∞∑

n=0

(τ ln p)n

�(kn + l)
, τ ∈ C, (1)

where min(k, l) > 0, p > 0, and �(·) is the Gamma function [12].
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Remark 1 Note that theMittag–Leffler function of two parameters k and l is recovered
when p = e, while the Mittag–Leffler function of one parameter k is obtained when
p = e and l = 1 [12].

Throughout the paper, we adopt the notations

χ(α) := 1 − α

N (α)
, ϕ(α) := α

N (α)
and μα := α

1 − α
,

where α ∈ [0, 1) and N (α) is a normalization function such as N (0) = N (1−) = 1
with N (1−) = lim

α→1−N (α).

Definition 2 (See [14]) Let α ∈ [0, 1), min(β, p) > 0, and f ∈ H1(a, b). The power
fractional derivative (PFD) of order α in the Caputo sense, of a function f with respect
to the weight function ω, is defined by

pCDα,β,p
a,t,ω f (t) = 1

χ(α)

1

ω(t)

∫ t

a

pEβ,1
(−μα(t − τ)β

)
(ω f )′(τ ) dτ, (2)

where ω ∈ C1([a, b]) with ω > 0 on [a, b].
Remark 2 The PFD (2) generalizes and includes various cases of fractional derivative
operators available in the literature, such as:

• when p = e, β = 1, and ω(t) ≡ 1, we obtain the Caputo-Fabrizio fractional
derivative [6] defined by

pCDα,1,e
a,t,1 f (t) = 1

χ(α)

∫ t

a
exp (−μα(t − τ)) f ′(τ ) dτ ;

• when p = e, β = α, and ω(t) ≡ 1, we retrieve the Atangana–Baleanu fractional
derivative [2] given by

pCDα,α,e
a,t,1 f (t) = 1

χ(α)

∫ t

a
Eα (−μα(t − τ)) f ′(τ ) dτ ;

• when p = e and β = α, we obtain the weighted Atangana–Baleanu fractional
derivative [1] given by

pCDα,α,e
a,t,ω f (t) = 1

χ(α)

1

ω(t)

∫ t

a
Eα

(−μα(t − τ)α
)
(ω f )′(τ ) dτ ;

• when p = e, we get the weighted generalized fractional derivative [9] defined as
follows:

pCDα,β,e
a,t,ω f (t) = 1

χ(α)

1

ω(t)

∫ t

a
Eβ

(−μα(t − τ)β
)
(ω f )′(τ ) dτ.
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Now we provide the power fractional integral (PFI) associated with the power
fractional derivative (2).

Definition 3 (See [14]) The power fractional integral of order α, of a function f with
respect to the weight function ω, is given by

pI α,β,p
a,t,ω f (t) = χ(α) f (t) + ln p · ϕ(α)RLI β

a,ω f (t), (3)

where RLI β
a,ω is the standard weighted Riemann–Liouville fractional integral of order

β defined by

RLI β
a,ω f (t) = 1

�(β)

1

ω(t)

∫ t

a
(t − τ)β−1(ω f )(τ ) dτ.

Remark 3 If we let p = e in (3), then we retrieve the generalized fractional integral
operator given in [9]. Moreover, if we let p = e, β = α, and ω(t) ≡ 1 in (3), then we
obtain the Atangana–Baleanu fractional integral operator introduced in [2].

For the sake of simplicity, we shall denote pCDα,β,p
a,t,ω and pI α,β,p

a,t,ω by pDα,β
a,ω and

pI α,β
a,ω , respectively.

3 Taylor’s formula via power fractional derivatives

In this section, we establish a new generalized Taylor’s formula in the framework of
the power fractional derivative. We first prove some fundamental lemmas and results
about power fractional operators and their nth-order that are needed in the proof of
the main theorem.

Lemma 1 The power fractional derivative pDα,β
a,ω can be expressed as follows:

pDα,β
a,ω f (t) = 1

χ(α)

+∞∑

n=0

(−μα ln p)n RLI βn+1
a,ω

(
(ω f )′

ω

)
(t). (4)

This series converges locally and uniformly in t for any a, α, β, p, ω and f , verifying
the conditions laid out in Definition2.

Proof The power Mittag–Leffler function pEk,l(s) is an entire function of s. Since it
is locally uniformly convergent in the whole complex plane, it implies that the PFD
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may be rewritten as follows:

pDα,β
a,ω f (t) = 1

χ(α)

1

ω(t)

+∞∑

n=0

(−μα ln p)n

�(βn + 1)

∫ t

a
(t − τ)βn(ω f )′(τ ) dτ

= 1

χ(α)

+∞∑

n=0

(−μα ln p)n
1

�(βn + 1)

1

ω(t)

∫ t

a
(t − τ)βn(ω f )′(τ ) dτ

= 1

χ(α)

+∞∑

n=0

(−μα ln p)n RLI βn+1
a,ω

(
(ω f )′

ω

)
(t),

as required. ��
Remark 4 The new formula (4) of the power fractional derivative (2) is easier to handle
for certain computational purposes.

The power fractional integral and derivative satisfy the following composition prop-
erty.

Proposition 1 Let α ∈ [0, 1), p, β > 0 and f ∈ H1(a, b). Then, it holds that

pI α,β
a,ω

(pDα,β
a,ω f

)
(t) = f (t) − (ω f )(a)

ω(t)
. (5)

Proof According with Definition3, we have

pI α,β
a,ω

(pDα,β
a,ω f

)
(t) = χ(α)pDα,β

a,ω f (t) + ln p · ϕ(α)RLI β
a,ω

(pDα,β
a,ω f

)
(t).

Moreover, by virtue of Lemma1, one obtains that

pIα,β
a,ω

(
pDα,β

a,ω f
)

(t) =
+∞∑

n=0

(−μα ln p)n RLIβn+1
a,ω

(
(ω f )′

ω

)
(t)

+ μα ln pRLIβa,ω

⎡

⎣
+∞∑

n=0

(−μα ln p)n RLIβn+1
a,ω

(
(ω f )′

ω

)
(t)

⎤

⎦

=
+∞∑

n=0

(−μα ln p)n RLIβn+1
a,ω

(
(ω f )′

ω

)
(t) −

+∞∑

n=0

(−μα ln p)n+1 RLIβ(n+1)+1
a,ω

(
(ω f )′

ω

)
(t)

=
+∞∑

n=0

(−μα ln p)n RLIβn+1
a,ω

(
(ω f )′

ω

)
(t) −

+∞∑

n=1

(−μα ln p)n RLIβn+1
a,ω

(
(ω f )′

ω

)
(t)

= RLI1a,ω

(
(ω f )′

ω

)
(t)

= 1

ω(t)

∫ t

a
(ω f )′(τ ) dτ

= f (t) − (ω f )(a)

ω(t)
,

which completes the proof. ��
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Next result provides the nth-order power fractional integral formula.

Lemma 2 Let n ∈ N and f ∈ C([a, b]). Then,

pI n[α,β]
a,ω f (t) =

n∑

m=0

Cm
n χ(α)n−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
)

, (6)

where α ∈ [0, 1), p, β > 0, t ∈ [a, b] and pI n[α,β]
a,ω = pI [α,β]

a,ω · · · pI [α,β]
a,ω , n-times.

Proof For n = 0, formula (6) holds. Indeed, one has pI 0×[α,β]
a,ω f (t) = f (t) and

0∑

m=0

Cm
0 χ(α)0−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
)

= RLI 0×β
a,ω f (t) = f (t).

Now, one assumes that formula (6) is satisfied and we prove that

pI (n+1)[α,β]
a,ω f (t) =

n+1∑

m=0

Cm
n+1χ(α)n+1−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
)

holds true. Indeed, from Definition3, we have

pI (n+1)[α,β]
a,ω f (t) = χ(α)

(
pI n[α,β]
a,ω f (t)

)
+ ln p · ϕ(α)RLIβa,ω

(
pI n[α,β]
a,ω f (t)

)

= χ(α)

( n∑

m=0

Cm
n χ(α)n−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
))

+ ln p · ϕ(α)RLIβa,ω

( n∑

m=0

Cm
n χ(α)n−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
))

=
n∑

m=0

Cm
n χ(α)n+1−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
)

+
n∑

m=0

Cm
n χ(α)n−m (ln p · ϕ(α))m+1

(
RLImβ

a,ω f (t)
)

= χ(α)n+1 f (t) +
n∑

m=1

Cm
n χ(α)n+1−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
)

+
n∑

m=1

Cm−1
n χ(α)n+1−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
)

+ (ln p · ϕ(α))n+1
(
RLI (n+1)β

a,ω f (t)
)

.
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Using the fact that Cm
n+1 = Cm

n + Cm−1
n , it follows that

pI (n+1)[α,β]
a,ω f (t) =

n+1∑

m=0

Cm
n+1χ(α)n+1−m (ln p · ϕ(α))m

(
RLImβ

a,ω f (t)
)

,

which completes the proof. ��
The following result allows us to easily construct our generalized Taylor’s formula

via power fractional derivatives.

Theorem 1 Assume that pDn[α,β]
a,ω f ∈ C([a, b]) and pD(n+1)[α,β]

a,ω ∈ C([a, b]) for
α ∈ [0, 1), and p, β > 0. Then it holds that

pI n[α,β]
a,ω

pDn[α,β]
a,ω f (t) − I (n+1)[α,β]

a,ω
pD(n+1)[α,β]

a,ω f (t)

= ω(a)

ω(t)

(
pDn[α,β]

a,ω f (a)
) n∑

m=0

Cm
n χ(α)n−m (ln p · ϕ(α))m

(
(t − a)mβ

�(mβ + 1)

)
,

(7)

where t ∈ [a, b] and pDn[α,β]
a,ω = pD[α,β]

a,ω · · · pD[α,β]
a,ω , n-times.

Proof We have

pI n[α,β]
a,ω

pDn[α,β]
a,ω f (t) − pI (n+1)[α,β]

a,ω
pD(n+1)[α,β]

a,ω f (t) = pI n[α,β]
a,ω

(
pDn[α,β]

a,ω f (t) − pI [α,β]
a,ω

pD(n+1)[α,β]
a,ω f (t)

)

= pI n[α,β]
a,ω

(
pDn[α,β]

a,ω f (t) − pI [α,β]
a,ω

pD[α,β]
a,ω

(
pDn[α,β]

a,ω f (t)
))

.

Using Proposition1, one obtains that

pI n[α,β]
a,ω

pDn[α,β]
a,ω f (t) − pI (n+1)[α,β]

a,ω
pD(n+1)[α,β]

a,ω f (t) = pI n[α,β]
a,ω

(
ω(a)pDn[α,β]

a,ω f (a)

ω(t)

)

= ω(a)
(
pDn[α,β]

a,ω f (a)
)
pI n[α,β]
a,ω

(
1

ω(t)

)
.

Then, by virtue of Lemma2, it follows

pI n[α,β]
a,ω

pDn[α,β]
a,ω f (t) − pI (n+1)[α,β]

a,ω
pD(n+1)[α,β]

a,ω f (t)

= ω(a)
(
pDn[α,β]

a,ω f (a)
) n∑

m=0

Cm
n χ(α)n−m (ln p · ϕ(α))m

(
RLImβ

a,ω

(
1

ω(t)

))

= ω(a)

ω(t)

(
pDn[α,β]

a,ω f (a)
) n∑

m=0

Cm
n χ(α)n−m (ln p · ϕ(α))m

(
(t − a)mβ

�(mβ + 1)

)
.

The proof is complete. ��
Now, we are able to provide our main result.
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Theorem 2 (Taylor’s formula for power fractional derivatives) Assume that pDm[α,β]
a,ω ∈

C([a, b]) for α ∈ [0, 1), p, β > 0 and m = 0, 1, · · · , n + 1. Then,

f (t) = 1

ω(t)

[
ω(a)

n∑

l=0

pDl[α,β]
a,ω f (a)

l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

(t − a)mβ

�(mβ + 1)

+ ω(λ)pD(n+1)[α,β]
a,ω f (λ)

n+1∑

m=0

Cm
n+1χ(α)n+1−m (ln p · ϕ(α))m

(t − a)mβ

�(mβ + 1)

]
,

(8)

where t ∈ [a, b], λ ∈ [a, t], and pDl[α,β]
a,ω = pD[α,β]

a,ω · · · pD[α,β]
a,ω , l-times.

Proof By virtue of formula (7), one has

n∑

l=0

(
pI l[α,β]
a,ω

pDl[α,β]
a,ω f (t) − pI (l+1)[α,β]

a,ω
pD(l+1)[α,β]

a,ω f (t)
)

= ω(a)

ω(t)

n∑

l=0

(
pDl[α,β]

a,ω f (a)
) l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

(
(t − a)mβ

�(mβ + 1)

)
,

which implies

f (t) − pI (n+1)[α,β]
a,ω

pD(n+1)[α,β]
a,ω f (t) = ω(a)

ω(t)

n∑

l=0

(
pDn[α,β]

a,ω f (a)
)

×
l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

(
(t − a)mβ

�(mβ + 1)

)
.

Moreover, from Lemma2, one obtains

f (t) = ω(a)

ω(t)

n∑

l=0

(
pDl[α,β]

a,ω f (a)
) l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

(
(t − a)mβ

�(mβ + 1)

)

+
n+1∑

m=0

Cm
n+1χ(α)n+1−m (ln p · ϕ(α))m

(
RLImβ

a,ω
pD(n+1)[α,β]

a,ω f (t)
)

.

Then, by applying the integral mean value theorem, we deduce that

f (t) = 1

ω(t)

[
ω(a)

n∑

l=0

pDl[α,β]
a,ω f (a)

l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

(t − a)mβ

�(mβ + 1)

+ ω(λ)pD(n+1)[α,β]
a,ω f (λ)

n+1∑

m=0

Cm
n+1χ(α)n+1−m (ln p · ϕ(α))m

(t − a)mβ

�(mβ + 1)

]
,
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which completes the proof. ��
Remark 5 Our Taylor’s formula for the power fractional derivative, as stated by The-
orem2, includes most of Taylor’s formulas without singular kernels that exist in the
literature, such us

• Taylor’s formula involving the generalized weighted fractional derivative [21],
obtained when p = e;

• Taylor’s formula involving the weighted Atangana–Baleanu derivative in Caputo
sense [1, 21], obtained when p = e and β = α;

• Taylor’s formula involving the Atangana–Baleanu derivative in Caputo sense [8],
obtained when p = e, β = α, and ω(t) ≡ 1.

As a consequence of Theorem2, we obtain a mean value theorem in the framework
of power fractional derivative operators.

Corollary 1 (Mean value theorem for power fractional derivatives) Suppose that f ∈
C([a, b]) and pD[α,β]

a,ω f ∈ C([a, b]) for α ∈ [0, 1) and p, β > 0. Then,

f (t) = 1

ω(t)

[
ω(a) f (a) + ω(λ)pD[α,β]

a,ω f (λ)

(
χ(α) + ln p · ϕ(α)

(t − a)β

�(β + 1)

)]
,

(9)

where t ∈ [a, b] and λ ∈ [a, t].
Proof The proof follows directly from Theorem2 by taking n = 0. ��
Remark 6 If we let p = e, ω(t) ≡ 1 and α = β = 1 in Corollary1, we obtain the
classical mean value theorem.

4 Application: Approximation of functions

In this section, we apply the developed Taylor’s formula for power fractional deriva-
tives (8) to approximate functions at a given point. The approximation method is
described in the following result.

Theorem 3 Suppose that pDm[α,β]
a,ω ∈ C([a, b]) for α ∈ [0, 1), p, β > 0 and m =

0, 1, . . . , n + 1. If t ∈ [a, b], then

f (t) 	 pAα,β
n (t) = ω(a)

ω(t)

n∑

l=0

pDl[α,β]
a,ω f (a)

l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

(t − a)mβ

�(mβ + 1)
. (10)

In addition, the interpolation error pRα,β
N can be expressed as

pRα,β
N (t) := f (t) − pAα,β

N (t)

= ω(λ)pD(N+1)[α,β]
a,ω f (λ)

N+1∑

m=0

Cm
N+1χ(α)N+1−m (ln p · ϕ(α))m

(t − a)mβ

�(mβ + 1)
,

(11)
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where λ ∈ [a, t].
Proof The proof follows directly from Theorem2. ��

In order to handle suitably our examples, we first establish the following technical
lemma.

Lemma 3 The lth-order of the power fractional derivative pCDl[α,β]
a,t,1 can be expressed

as

pDl[α,β]
a,1 f (t) = 1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
RLI βq+1

a,1 f ′(t)
)

,

where pDl[α,β]
a,1 = pD[α,β]

a,1 · · · pD[α,β]
a,1 , l-times.

Proof From Lemma1, one has

pDl[α,β]
a,1 f (t) =

[
1

χ(α)

+∞∑

n=0

(−μα ln p)n RLI βn+1
a,ω

d

dt

]l

f (t)

= 1

χ(α)l

∑

n1,...,nl

(−μα ln p)
∑

nk RLI
β

∑
nk+1

a,ω

d

dt
f (t)

= 1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
RLI βq+1

a,1 f ′(t)
)

,

which completes the proof. ��
Now, we approximate some basic functions about the point a = 0 using the gener-

alized Taylor series given by Theorem3.

Example 1 Consider the exponential function

f (t) = exp(δt), δ > 0.

For ω(t) ≡ 1, the weighted fractional integral RLI β
a,1 coincides with the Riemman–

Liouville one RLI β
a [17] with β > 0. Therefore, by virtue of Lemma3, one has

pDl[α,β]
a,1 f (t) = 1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
δ−βq exp(δt)

)
, (12)

for α ∈ [0, 1) and β, p > 0. Then, by applying Theorem3, and taking into account
(12), it follows that

exp(δt) 	
n∑

l=0

1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
δ−βq)
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×∑l
m=0 C

m
l χ(α)l−m (ln p · ϕ(α))m

tmβ

�(mβ + 1)
,

where the remainder has the form

pRα,β
N (t) = 1

χ(α)N+1

+∞∑

q=0

CN
q+N (−μα ln p)q

(
δ−βq exp(δλ)

)

×∑N+1
m=0 C

m
N+1χ(α)N+1−m (ln p · ϕ(α))m

tmβ

�(mβ + 1)

with λ ∈ [0, t].
In contrast with Example1, we now consider a cosine function instead of an expo-

nential.

Example 2 Consider the function

f (t) = cos(δt), δ > 0.

From Lemma3, one has

pDl[α,β]
a,1 f (t) = 1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
δ−βq cos

(
δt − βq

π

2

))
, (13)

for α ∈ [0, 1) and β, p > 0. Then, using (10), (11), and (13), the function cos(δt) can
be approximated by

cos(δt) 	
n∑

l=0

1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
δ−βq cos

(
βq

π

2

))

×
l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

tmβ

�(mβ + 1)
,

where the interpolation error is given by

pRα,β
N (t) = 1

χ(α)N+1

+∞∑

q=0

CN
q+N (−μα ln p)q

(
δ−βq cos

(
δλ − βq

π

2

))

×
N+1∑

m=0

Cm
N+1χ(α)N+1−m (ln p · ϕ(α))m

tmβ

�(mβ + 1)

with λ ∈ [0, t].
Finally, we expand the sine function as a power Taylor series.
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Fig. 1 The function f (t) = sin(t) and the corresponding Taylor polynomials pAα,β
n (t) of order n = 1, 2, 3,

centered at t = 0, for α = 0.1, β = 1.5 and different values of p

Example 3 Consider the function

f (t) = sin(δt), δ > 0.

From Lemma3, we have

pDl[α,β]
a,1 f (t) = 1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
δ−βq sin

(
δt − βq

π

2

))
, (14)

for α ∈ [0, 1) and β, p > 0. Then, using Theorem3, the approximation of the function
sin(δt), in the neighborhood of a = 0, is given by

sin(δt) 	
n∑

l=0

1

χ(α)l

+∞∑

q=0

Cl−1
q+l−1 (−μα ln p)q

(
−δ−βq sin

(
βq

π

2

))
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×
l∑

m=0

Cm
l χ(α)l−m (ln p · ϕ(α))m

tmβ

�(mβ + 1)
(15)

with the remainder

pRα,β
N (t) = 1

χ(α)N+1

+∞∑

q=0

CN
q+N (−μα ln p)q

(
δ−βq sin

(
δλ − βq

π

2

))

×
N+1∑

m=0

Cm
N+1χ(α)N+1−m (ln p · ϕ(α))m

tmβ

�(mβ + 1)
,

where λ ∈ [0, t].
We plot the function f (t) = sin(δt) and its Taylor polynomials pAα,β

n (t) given by
(15) around the origin t = 0, for δ = 1, α = 0.1, β = 1.5 and different values of
the order n, over the interval [0, 1]. We also consider different values of the power
parameter p to see its effect on the function approximation. The results are summarized
in Fig. 1.

5 Conclusion

We proved a new generalized Taylor’s theorem for power fractional derivatives, which
extends those available in the literature with nonsingular kernels. The proof is based on
the establishment of new formulas for nth-order of the power fractional operators. We
also obtained a general version of the mean value theorem. As an application, we used
our main result to approximate functions at a given point, where the interpolation error
of the approximation is also given explicitly. Examples and simulations are presented.

Our developed results can be used to solve fractional differential equations with
non constant coefficients in series form. This will be addressed elsewhere.

Author Contributions The conception and design of the study, the material preparation, the manuscript
writing and analysis were performed by HZ and DFMT. Both authors commented on all versions of the
manuscript and read and approved the final form of it.

Funding Open access funding provided by FCT|FCCN (b-on).

Data Availibility Statement No data associated to the manuscript.

Declarations

Conflict of interest The authors have no conflicts or competing of interests to declare.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included



   68 Page 14 of 14 H. Zitane, D. F. M. Torres

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Al-Refai, M.: On weighted Atangana–Baleanu fractional operators, Adv. Differ. Equ. 2020, Paper
No. 3, 11 pp

2. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: Theory
and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

3. Baleanu, D.I., Fernandez, A.: On some new properties of fractional derivatives with Mittag–Leffler
kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

4. Benjemaa, M.: Taylor’s formula involving generalized fractional derivatives. Appl. Math. Comput.
335, 182–195 (2018)

5. Blaszczyk, M., Jantos, D.R., Junker, P.: Application of Taylor series combined with the weighted least
square method to thermodynamic topology optimization, Comput. Methods Appl. Mech. Engrg. 393
(2022), Paper No. 114698, 18 pp

6. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr.
Fract. Differ. Appl. 1(2), 73–85 (2015)

7. El-Ajou, A., Arqub, O.A., AL-Smadi, M.H.: A general form of the generalized Taylor’s formula with
some applications, Appl. Math. Comput. 256 (2015), 851–859

8. Fernandez, A., Baleanu, D.: The mean value theorem and Taylor’s theorem for fractional derivatives
with Mittag-Leffler kernel, Adv. Differ. Equ. 2018 (2018), Paper No. 86

9. Hattaf, K.: A new generalized definition of fractional derivative with non-singular kernel, Computation
8 (2020), no. 2, Paper No. 49

10. He, J.H.: Taylor series solution for a third order boundary value problem arising in Architectural
Engineering. Ain Shams Eng. J. 11(4), 1411–1414 (2020)

11. Heydari, M.H., Avazzadeh, Z., Cattani, C.: Taylor’s series expansion method for nonlinear variable-
order fractional 2D optimal control problems. Alex. Eng. J. 59(6), 4737–4743 (2020)

12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equa-
tions, North-Holland Mathematics Studies, 204. Elsevier Science B.V, Amsterdam (2006)

13. Laib, H., Boulmerka, A., Bellour, A., Birem, F.: Numerical solution of two-dimensional linear and
nonlinear Volterra integral equations using Taylor collocation method, J. Comput. Appl. Math. 417
(2023), Paper No. 114537, 21 pp

14. Lotfi, E.M., Zine, H., Torres, D.F.M. , Yousfi, N.: The power fractional calculus: First definitions and
properties with applications to power fractional differential equations, Mathematics 10 (2022), no. 20,
Paper No. 3594

15. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293
(2007)

16. Rani, R.U., Rajendran, L.: Taylor’s series method for solving the nonlinear reaction-diffusion equation
in the electroactive polymer film, Chemical Physics Letters 754 (2020), Paper No. 137573

17. Samko, S.G.,Kilbas,A.A.,Marichev,O.I.: Fractional integrals and derivatives: theory and applications,
Gordon & Breach (1993)

18. Shiraishi, F., Egashira, M., Iwata, M.: Highly accurate computation of dynamic sensitivities in
metabolic reaction systems by a Taylor series method. Math. Biosci. 233(1), 59–67 (2011)

19. Teso, F., Castro, D.G., Vázquez, J.L.: Estimates on translations and Taylor expansions in fractional
Sobolev spaces, Nonlinear Analysis 200 (2022), Paper No. 111995

20. Trujillo, J.J., Rivero, M., Bonilla, B.: On a Riemann–Liouville generalized Taylor’s formula. J. Math.
Anal. Appl. 231(1), 255–265 (1999)

21. Zine, H., Lotfi, E.M., Torres, D.F.M., Yousfi, N.: Taylor’s formula for generalized weighted fractional
derivatives with nonsingular kernels, Mathematics 11 (2022), no. 5, Paper No. 231

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Generalized Taylor's formula for power fractional derivatives
	Abstract
	1 Introduction
	2 Preliminary definitions
	3 Taylor's formula via power fractional derivatives
	4 Application: Approximation of functions
	5 Conclusion
	References


