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Abstract—Large-scale load-altering attacks (LAAs) are known
to severely disrupt power grid operations by manipulating several
internet-of-things (IoT)-enabled load devices. In this work, we
analyze power grid cascading failures induced by such attacks.
The inherent security features in power grids such as the N − 1
design philosophy dictate LAAs that can trigger cascading failures
are rare events. We overcome the challenge of efficiently sampling
critical LAAs scenarios for a wide range of attack parameters by
using the so-called “skipping sampler” algorithm. We conduct
extensive simulations using a three-area IEEE-39 bus system and
provide several novel insights into the composition of cascades
due to LAAs. Our results highlight the particular risks to modern
power systems posed by strategically designed coordinated LAAs
that exploit their structural and real-time operating characteristics.

I. INTRODUCTION

Load-altering attacks (LAAs) can cause sudden changes in
power grid demand by compromising tens of thousands of
internet-of-things (IoT) enabled high-wattage electrical appli-
ances (smart heat pumps, electric vehicle charging stations),
and can disrupt the power equilibrium and threaten system
safety [1], [2]. The growing penetration of renewable energy
resources resulting in low-inertia conditions can exacerbate the
consequences of such attacks [3].

LAAs can be broadly divided into two categories [4] – (i)
static LAAs (S-LAAs) and (ii) dynamic LAAs (D-LAAs). S-
LAAs refer to a sudden, one-time change in loads [2], whereas,
D-LAAs refer to a series of load changes over a period of time
[5]. S-LAAs can result in network frequency and/or line flows
exceeding safety limits, leading to component disconnections
[2], [6]. If an attacker changes system loads proportionally
to the frequency deviations, they can potentially destabilize
the frequency control loop, leading to cascading failures. An
analytical approach to studying the effects of static/dynamic
LAAs was proposed in [4] using the theory of second-order
dynamical systems and identifying the nodes from which an
attacker can launch the most impactful attacks.

Despite the growing literature on LAAs, existing research
lacks a framework to understand the extent of consequences,
specifically, in terms of the cascading disconnections such
large-scale attacks can cause. Reference [2] was the first
to investigate this direction. However, their analysis did not
consider power grid protection features such as N − 1 security
and load shedding. As a result, they significantly overestimated
the extent of cascades. Reference [6] analyzed LAA-induced
cascading failures considering the aforementioned security

features. However, the results presented in both [2] and [6]
correspond to only a few specific LAA scenarios (i.e., specific
load perturbations injected at a few of the victim nodes). They
do not provide a thorough understanding of the distribution of
cascades due to all possible spatial LAA scenarios over the
victim nodes.

However, identifying LAAs that lead to cascades is challeng-
ing, since N−1 design philosophies ensure that the power grid
is resilient to the destabilizing effects of such load changes [6].
Thus, LAA instances that lead to cascading failures are in fact
rare events and sampling them efficiently for a wide range of
attack parameters becomes highly nontrivial. Despite their low
likelihood, rare events are key to understanding power systems
reliability, see e.g. [7].

In the literature, simulating cascading failures involves using
complex models which require significant computational re-
sources (e.g. [8], [9]), rendering such models unsuitable for rare
event identification. Instead, we pair a fast-evaluating dynamic
model with a sampling methodology to identify network and
LAA parameters associated with cascading failures, building
on the methodology presented in [10]. Specifically, we make
use of the skipping sampler, a Markov Chain Monte Carlo
(MCMC) sampling algorithm specifically designed to efficiently
sample low-likelihood events. The core idea behind this method
is to traverse “uninteresting” regions of the parameter space
(i.e. “skip”) in a systematic way to more efficiently sample
rare but critical D-LAA characteristics.The skipping sampler
has already been successfully used in the context of power
systems security in [11] to identify S-LAAs that lead to the
activation of emergency responses and in [12] to understand
the risks of correlated frequency violations.

We significantly generalize the framework proposed in [11]
and extend it to analyse LAA-induced cascades. Specifically,
as opposed to the exclusive focus on S-LAAs considered in
[11], we instead present a framework that captures both static
and dynamic LAAs in a unified manner. We model attacks
that inject a sequence of periodic load alterations proportional
to the frequency deviation (see [5]). By varying the interval
between attacks, we can move from a static attack model
with long intervals between attacks to a dynamic one with
frequent attacks. Lastly, we consider the sequence of power grid
emergency responses, and how they cascade over the simulation
period and investigate their distributions as a function of various
attack parameters. We perform extensive simulations using a
three-area IEEE-39 bus system and provide the following novel
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insights into the composition of cascades induced by LAAs.
Specific contributions include:
• Analysis of power grid cascades as a function of the

attack parameters, namely (i) the amount of vulnerable
load accessible by the attacker, and (ii) the interval between
successive load attacks (for DLAA).

• Analysis of cascades due to LAAs under different loading
conditions and inter-area power balance.

• Identification of dominant failure modes under different
attack and power grid operational regimes.

Our results show that there are two attack regimes in which
the grid is particularly vulnerable, (i) low-magnitude attacks
with a short interval between the load changes (D-LAAs), and
(ii) very large-magnitude attacks with a long interval between
the load changes (S-LAAs). Furthermore, the network is highly
vulnerable to D-LAAs in peak demand periods and areas with
large power imbalances are particularly vulnerable to cascading
failures due to D-LAAs.

The rest of the paper is organized as follows. Section II
introduces the system model; Section III presents the rare-event
sampling algorithm; Section IV describes the simulation results
and Section V concludes.

II. SYSTEM MODEL

Using a graph theoretic formulation, the power system can
be described as S = {N ,W}, with N is the set of buses and
W is the set of transmission lines. We decompose N = G ∪L,
where G is the set of generator buses and L is the set of
load buses. The evolution of power grid dynamics is modelled
using a third-order model, which models frequency and voltage
transients following a power injection in the network, as well
as generator governor action and automatic voltage regulation.
Unde this model, for each generator i ∈ {1, . . . N}, dynamics
in voltage phase angle δi, voltage magnitude Ei and governor
action ρi are given respectively by:

M(ψ)δ̈i +Dδ̇i = ψiχ
G
i − χL

i (Ri)

− Ei

N+L∑
j=1

Bij(Ωij)Ej sin(δij)

SiĖi = ψi(Ef,i − vi)− Ei +Xi

N+L∑
j=1

Bij(Ωij)Ej cos(δij)

ρ̇i = −Aiδ̇i(1− 1W [δ̇i]).

(1a)

(1b)

(1c)

Similarly, the dynamics for δi and Ei at each load bus i ∈
{N + 1, . . . , N + L} are given by the following system of
equations:
M(ψ)δ̈i +Dδ̇i = −χL

i (Ri)− Ei

N+L∑
j=1

Bij(Ωij)Ej sin(δij)

SiĖi = ψiEf,i − Ei +Xi

N+L∑
j=1

Bij(Ωij)Ej cos(δij)

(2a)

(2b)

In equations (1) and (2), ψi, Ωij and Ri are indicator variables
for frequency protection models and reflect the disconnection
of network components- i.e.- generators, lines and loads

respectively (see Section II-B). Net power injection at nodes

TABLE I: Variables used in (1) and (2).

Symbol Meaning Units
Ai Governor’s droop response MW/rad

Bij(Ωij) Susceptance matrix p.u.
χG
i Net generation at node i p.u.

χL
i (R) Net loads at node i p.u.
D System damping %
δi Phase angle p.u
δij δi − δj p.u.
δ̇i Frequency p.u
δ̈i Rate of change of frequency (RoCoF) p.u.
Ei Voltage p.u.
Ef,i Machine i rotor field voltage p.u.
M(ψ) System angular momentum Ws2
Ωij Line disconnection indicator -
ψi Generator shed indicator -
Ri UFLS counter -
Si Machine i transient time constant s
Xi Machine i equivalent reactance ohms
W Governor’s deadband frequency range Hz

i ∈ 1, . . . , N is given by χG
i = min{Pmax

i , PG
i + ρi}, where

Pmax
i is the stated maximum power output of generator i, PG

i

is the power of the generator in equilibrium and ρi is the
power contributed by a governor unit (1c) [11]. The variable vi
represents the actions of automatic voltage regulation (see
online Appendix). The net load at node i, χL

i , includes
equilibrium loads, the dynamic LAA and a load disconnection
scheme, and is discussed in Sections II-A and II-B. The
remaining parameters are given in Table I.

A. Dynamic load-altering attack model
We denote the maximum load at each node i ∈ L by PL

i,max.
At the start of the simulation (effectively modelling different
times of the day, see Section IV), let us denote the load at
node i ∈ L by PL

i ∈ [0, PL
i,max]. A D-LAA can be modelled

as a time-dependent sequence of load changes at the vulnerable
load nodes. More specifically, we denote by λi(tk) ∈ R the
magnitude in MW of the LAA at node i occurring at time
epoch tk for k ∈ N. We assume that the time epochs are
separated by a pre-determined, constant time interval I. Each
load change is applied as an instantaneous impulse and kept
constant until the next update in the sequence. The initial
load change, λi(t0), is selected randomly by the sampling
procedure (see Section III). Subsequent load changes λi(tk)
for k ≥ 1 are deterministic, calculated using a frequency-
dependent ‘reverse governor’ model. This describes an attacker
with access to network data, intent on using the sequence of
attacks to exacerbate frequency deviations (the premise of D-
LAAs [5]). In mathematical terms, for every vulnerable load
node i and for every index k ≥ 1

λi(tk) =


Cδ̇i(tk) χL−

i − Cδ̇i(tk) ∈ [0, PL
i,max],

PL
max − χL−

i χL−
i − Cδ̇i(tk) > PL

i,max,

−χL−
i χL−

i − Cδ̇i(tk) < 0,

(3)

where λi(tk) is the kth D-LAA component at time tk = kI
for k ∈ N, δ̇i(tk) is the frequency at node i at time t = tk,
C ∈ R+ is a network variable which relates the change in



load to the frequency deviation at t = tk. The expression
χL−
i = PL

i +
∑k−1

j=0 λi(tj) refers to the total net loads at node
i just before the application of the kth load change, inclusive
of all previous load changes and load shedding.

In essence, (3) ensures that the load at node i ∈ L following
the D-LAA remains within the set [0, PL

i,max]. The framework
presented above models S- and D-LAAs in a unified manner,
specifically by varying tk. Note that tk → 0 represents a
continuous load attack (i.e., the D-LAA framework presented
in [5]), while tk → ∞ models an S-LAA (i.e., only a single
load attack over the entire simulation interval). The D-LAA
at each node can be aggregated in a straightforward manner,
giving rise to two key metrics:

1) The cumulative D-LAA (in MW), Σi(λ) :=
∑

k |λi(tk)| ∈
RL, which measures the size of the attack at node i as the
sum of the magnitudes of D-LAAs at that node over the
duration of the simulation.

2) The average network load change (in MW); µi(λ, h) :=∑h
t=1(

∑N+L
i |λi(tk)|)/h ∈ R, which is a measure of

the average size of each load change across the network.
It provides information about the average magnitude of
network loads the attacker must manipulate to trigger the
cascade observed.

B. Network emergency responses and cascading failures

Emergency responses (ER) are the systems safety mech-
anisms that safeguard sensitive network equipment from
dangerous deviations in frequency-related profiles. We provide
a list of ER employed in the following.

1) Generation shedding: we model two independent schemes
which disconnect generators from the network: (i) RoCoF-
induced generation shedding (RIGS) – generation is dis-
connected when nodal RoCoF |δ̈i| exceeds an upper
threshold; (ii) over frequency generation shedding (OFGS)
– generation is shed when nodal frequency δ̇i exceeds a
pre-set upper limit.

2) Under-frequency load shedding (UFLS): this scheme dis-
connects of 10% of equilibrium nodal loads when the
frequency δ̇i falls below a strictly decreasing sequence
of four frequency thresholds.

3) Line disconnection: If the power flowing through an inter-
connector line linking different areas in the power grid
exceeds a pre-set upper threshold, then the line gets
disconnected.

While ERs are intended to arrest large deviations in
frequency-related dynamics when coupled with the effects of
D-LAAs, multiple disconnection events may transpire on the
network even when such power grids are designed to be N − 1
secure [13]. Such cascading failures threaten network integrity
and result in significant costs to various network stakeholders.
We measure the cascade size X resulting from a D-LAA as
the cumulative power (in MW) of network components (loads
and generators) disconnected during the power grid operation
following the LAA.

III. SAMPLING METHODOLOGY FOR D-LAAS

In this work, we apply a sampling methodology to generate
various spatiotemporal instances of LAAs (i.e., across the
victim nodes and attack intervals). We apply them as inputs to
the power system model described in Section II and assess the
cascading failures that occur as a result. The detailed models
are presented next.
1) We model the D-LAA magnitudes at time t0 at all L

vulnerable nodes as independent, uniformly distributed
random variables, namely λ = (λ1(t0), . . . , λL(t0)) ∼
U [0, λ0max]

L, where λ0max denotes the attack limits. The
D-LAA magnitudes at subsequent epochs are then uniquely
determined by the dynamics described in Section II-A.
The wide support for the uniform distribution allows us
to capture also extreme scenarios in which an attacker
manipulates a large proportion of the load.

2) We model the interval between load changes using a
uniform discrete distribution, i.e. I ∼ U [1, Tmax], where
Tmax (in seconds) denotes the duration of the dynamic
simulations. Note that we do not allow subsequent attacks
to be less than 1 second apart to account for the time
an attacker may need to estimate the system frequency to
calibrate their next move.

3) We sample the scenario τ uniformly among a set of four,
each representative of the intra-day power equilibrium at a
different moment of the day (see Section IV-A).

4) We model the D-LAA-frequency response as a uniform
random variable C ∼ U [Cmin, Cmax], where Cmin and
Cmax denote practical limits for the D-LAA.

We note our sampling procedure is not constrained to the
uniform distribution and, in fact, it can be easily extended to
accommodate any underlying distribution.

The sampling assumptions for the various D-LAA features
outlined in the previous subsection result in an unconditional
product density ρ over RL+3, where each vector of attack
parameters x = (λ, I, τ, C) fully characterizes a D-LAA
attack in view of the dynamics we described in Section II-A.
Since we are interested in studying the cascading failures
triggered by D-LAAs, we need to sample attack parameters
x = (λ, I, τ, C) that results in the activation of at least one
network ER. Let A ⊂ RL+3 be the subset of such “successful”
attack parameters. We are interested in sampling D-LAA attacks
according to the density ρ but conditionally on the event
A. Let πA be such conditional distribution over RL+3, i.e.,
πA(x) := ρ(x)1A(x)/ρ(A), where ρ(A) is the probability of
the event A occurring, and 1A(x) = 1 if x ∈ A and 0 otherwise.
Due to the pre-existing network security mechanisms, however,
it is very unlikely that a D-LAA would trigger a network
ER, which means that A is a rare event with ρ(A) ≪ 1.
Any standard MCMC sampling method would then struggle
enormously at sampling from the conditional density πA.

We thus employ the skipping sampler MCMC algorithm
proposed in [14] to efficiently draw samples from πA. The
steps followed are presented in Algorithm 1. As a Metropolis-
class algorithm, the skipping sampler can be understood as a



Algorithm 1: Skipping sampler algorithm

1 Input: initial state U1;
2 for i = 1, . . . , n do

3 Generate an initial proposal Z1 distributed
according to the density q(y − Ui)dy;

4 Calculate the direction Φ = (Z1 − Ui) / ∥Z1 − Ui∥;
5 Generate a halting index K ∼ Kφ;
6 Set k = 1;
7 while Zk /∈ C and k < K do
8 Generate a distance increment R distributed

according to qr|Φ (r|Φ);
9 Set Zk+1 = Zk +ΦR;

10 k = k + 1;
11 end
12 Set Z := Zk;
13 Evaluate the acceptance probability:

α(Ui, Z) =

{
min

(
1, π(Z)

π(Ui)

)
if π(Ui) ̸= 0,

1, otherwise.
(4)

14 Generate a uniform random variable V on (0, 1);
15 if V ≤ α(Ui, Z) then
16 Ui+1 = Z;
17 else
18 Ui+1 = Ui;
19 end
20 return Ui+1.
21 end
22 Output: final sample [U1, U2, U3, . . . ]

two-step procedure consisting of a proposal step (Steps 3-12
of Algorithm 1) and an acceptance/rejection step (Steps 13-21
of Algorithm 1). We omit a detailed description of Algorithm 1
and provide an intuitive explanation of the working of the
skipping sampler next.

Fig. 1: Illustration of a skipping proposal in R2 attempting to sample
from the subset A (coloured regions). Starting at X , the initial random-
walk proposal Z1 would be rejected since Z1 ̸∈ A by a classical
MCMC method. Instead, the skipping proposal generates random
distant increments and finds new Zk’s in a linear fashion (‘skipping’)
along the original direction until Zk ∈ A or updates are halted.

In essence, the skipping sampler improves the conditional
sampling from the subset A by using a specialized proposal
step that ‘skips’ over proposals in Ac (the set of D-LAAs

parameters that do not lead to the activation of an ER) until
a point x ∈ A is sampled, or the skipping process is halted
in a randomized fashion (see Fig. 1 for an illustration). A key
advantage of the skipping sampler is its ability to efficiently
transition between potentially disconnected components of the
subset A and different modes of the conditional density πA.
This is particularly important given the nonlinear dynamics of
the network and the presence of heterogeneous ER mechanisms,
which can result in a disconnected subset A of successful
attacks. With a standard MCMC sampling strategy, exploring
multiple disconnected components of A would be challenging,
leading to incomplete exploration of the range of attack
parameters and results heavily dependent on the starting
configuration. In contrast, the skipping sampler is designed to
effortlessly navigate across different connected components of
A. In the context of D-LAA attacks, this means the skipping
sampler can generate samples with diverse attack parameters
and features, allowing for the discovery of all major network
vulnerabilities.

IV. SIMULATIONS

A. Simulation Settings

We implement the power system dynamics and D-LAAs on a
Kron-reduced version of IEEE 39-bus test network, consisting
of N = 10 generation buses (2 of which also have loads
present) and L = 17 pure load buses [15].

At t = 0−, the system equilibrium power balance is modelled
to be in one of four load-scenario states τ ∈ {1, 2, 3, 4},
corresponding to four peaks of the diurnal load cycle of a
typical European network, colloquially labelled night, morning,
afternoon and evening respectively. Equilibrium active loads
(and power) are calculated as proportional changes to the
published equilibrium power balance of the IEEE 39-bus
network [15], whose relative proportions of {0.4, 1, 0.85, 1.3}
for τ = 1, . . . , 4 respectively are based on the UK power grid’s
cycle [16]. Broadly speaking, evening and morning periods
have the highest load, whereas night-time has the lowest load
conditions. The choices of protection system parameters are
such that the network is N − 1 secure, such that the loss of a
single component (generator, load, or line) in the absence of
any other disturbance does not trigger a subsequent ER.

To generate dynamic LAAs associated with the disconnection
of network components, we utilise the skipping sampler
algorithm as follows. Starting from an initial nodal LAA load
change λ ∈ RL, we sample During each proposal step, we
sample a tuple x = (λ, I, τ, C) consisting of: the initial nodal
LAA vector λ, an interval between attacks I , a scenario τ and
a frequency response C. The sampling parameters are set to
λ0max = 1000 MW, Tmax = 60 s, Cmin = 0.5 and Cmax = 5.
We then apply the components of x as an input to the power
system model [13] at time t = 0, with frequency dynamics
simulated for 60s using MATLAB. We conduct n = 100, 000
proposals, which resulted in a final sample of S ≈ 16, 500
dynamic LAAs that activated at least one ER. This corresponds
to an acceptance rate of 16.5%, which is within the optimal
15–48% acceptance rate range [17]. From each sample, we



estimate the metrics of the cascade size X in MW and the
average magnitude of loads changed {Σi(λ)}Li=1.
B. Simulation Results

1) Overview of Cascade Sizes: The results shown in Fig. 2
indicate that cascades in the system are on average primarily
caused by load shedding and RoCoF-induced generation dis-
connections. These findings have three important implications:
(1) globally, the IEEE-39 bus system is most vulnerable to
D-LAAs which increase loads, resulting in the preponderance
of UFLS events. (2) The network exhibits greater resilience
to LAA-induced net reductions in loads, as evidenced by the
relatively small proportion of cascades associated with OFGS-
related generation disconnections. (3) Among all types of
disconnections, individual UFLS events are the most prevalent
in the sample. Although each UFLS event only sheds a small
magnitude of load in MW, they can be activated multiple times
at each node, thus the 700MW of load disconnections in fact
consists of a large number of individual UFLS events. In the
following sections, we explore how both network and LAA
parameters contribute to these results.

Fig. 2: Average cascade size by area for the IEEE 39-bus network.

Impact of the vulnerability ratio (ν) on cascade size:
The vulnerability ratio reflects the proportion of the total
load an attacker can potentially control at each node. Hy-
pothesising that ν < 30% may be possible for current and
near-future power systems, we observe that disconnections in
this regime consist of UFLS and RIGS. As per Fig. 3, the
IEEE-39 network demonstrated resilience against D-LAAs for
ν ≤ 10%, with no components disconnected in this regime
as the attacker lacks sufficient leverage to disrupt network
operations. For ν ∈ [10, 20)%, disconnections are exclusively
UFLS, reinforcing the network’s susceptibility to this form
of disconnection following a D-LAA. Further, the network
exhibits greater resilience against generation shedding, with
RIGS requiring ν ≥ 20%, and OFGS disconnections ν ≥ 30%.

A trend analysis reveals when ν ∈ [10%, 60%], there exists
a positive relationship between cascade size X and ν – as the
attacker gains more authority over loads nodes of the network,
each effective load change in the dynamic LAA sequence can
be larger in magnitude, inducing larger frequency deviations
and thus larger cascades. In this vulnerability range, the increase
in cascade size is driven primarily by the disconnection of
large generating units, mainly due to RoCoF violations, with
minor contributions from over-frequency generation shedding.

For ν ≥ 60%, we observe stagnation in the growth in
total cascade sizes. Simultaneously, the average load shed

Fig. 3: Average cascade size (in MW) by ν.
increases. This behaviour demarcates a phase transition in
the susceptibility of the network- for ν < 60%, cascades are
characterised by the growth of generation disconnections, while
for ν ≥ 60%, average generation disconnections decrease,
while load disconnections increase to eventually dominate
disconnections as the attacker gains greater leverage over
network loads.

Interval between dynamic load changes I: Fig. 4 reveals
two regimes particularly susceptible to large cascades: (a)
rapidly changing (I < 10s), smaller-magnitude (µ(λ) <
4GW ) LAAs and (b) static (I > 50s), large magnitude
(µ(λ) > 7GW ) LAAs. D-LAAs in region a result in larger
cascades with an average size of 9,000MW and are more
threatening to network integrity. Conversely, the region b is
associated with large, static attacks, resulting in an average
cascade size of 4,000MW. Thus, by deploying multiple attacks,
informed either by quasi-real-time or simulated frequency data,
an attacker can exacerbate frequency and RoCoF deviations in
an intentional and strategic manner, inducing cascades using
smaller magnitude D-LAAs when compared to S-LAAs. The

Fig. 4: Color map showing the cascade size X (in MW), with respect
to the interval between dynamic LAAs I (s) and the average size of
each LAA’s load change µλ, (GW).

efficacy of this strategy is observed in Fig. 4, where, for
example, when the interval between attacks is 50s, the attacker
must be able to manipulate at least 1,550MW of network
loads to trigger a disconnection event. In comparison, when
I = 10s, the attacker needs only manipulate µ(λ) ≥ 300MW
of loads across the network in a coordinated fashion to trigger
a disconnection event. For reference, 300MW of loads may
represent 170,000 typical space heaters or 45,000 charging
EVs, a magnitude of loads possible in modern networks. In
general, the lower boundary of Fig. 4 represents the critical
D-LAA characteristic threshold – the minimum average load



change which must be manipulated for each attack interval I
to induce a disconnection event. The positive gradient of this
boundary establishes that smaller magnitude D-LAAs require
shorter attack intervals to trigger similar-sized cascades.

2) Impact of Power Grid Operating Conditions: Last, we
consider the impact of power grid operating conditions.

Inter-Area Power Balance: Decomposing results by the
areas of the IEEE-39 network, cascade sizes X are related
to the initial (t < 0−) net generation imbalance of each area.
Area 1, with excess demand, is particularly susceptible to large
cascades, half of which are attributable to a large number of loss
of load events. This is related to the network’s susceptibility
to D-LAAs which increase loads – the excess demand profile
of Area 1 is exacerbated by such D-LAAs, triggering UFLS
events. Area 3, conversely, with near parity between generation
and demand, experiences the smallest cascade sizes on average.
Being less dependent on other areas to maintain its power
balance, it is more resilient to D-LAAs.

Fig. 5: Average cascade size (in MW) by scenario τ.

Network Load Conditions: On average, X is minimised
during nadir demand (denoted in Fig. 5 as night). In this
scenario, RIGS dominate cascades, as adversaries induce large
changes in frequency through a combination of frequent,
alternating changes in loads, or a few, large magnitude increases
in load changes, referencing the network’s susceptibility to
increases in loads. Conversely, X is maximised during periods
of peak demand. In this scenario, with most of the network’s
generating capabilities deployed to serve demand, the network
becomes more susceptible to UFLS events from relatively
small, positive D-LAA shocks. This is observed in Fig. 5,
where UFLS dominates cascades during the evening, peak
demand period. Note that, while load disconnections in MWs
will naturally be higher during peak demand, the number of
UFLS events, which is invariant to the load scenario, is also
maximised during the evening (not shown in the figure).

V. CONCLUSIONS AND FUTURE RESEARCH

In this work, we apply a rare-event sampling approach to
assess how network variables coupled with LAA parameters
influence the size of cascading failures (in MW) in the IEEE39
network. With respect to network variables, our results indicate
that the average cascade sizes are larger during peak demand
periods and the areas with significant excess demand are
particularly vulnerable to cascades. With regard to D-LAA
parameters, our results show that the network is resilient against

any disconnection event when the proportion of load vulnerable
to LAAs is less than 10% of the base load, while a greater
amount of vulnerable load leads to increasing cascade sizes.
Crucial however is the impact of varying the interval between
attacks, with results clearly highlighting that shorter intervals
between attacks enable an attacker to trigger larger cascades
while manipulating a smaller quantity of vulnerable loads,
within the range of IoT penetration in the present and near
future networks. This exposes a key attack strategy that can
be exploited by an adversary with access to network data.
Our future work includes exploring optimum strategies and
methodologies to mitigate the impact of network D-LAAs,
including the usage of battery energy storage systems, the
tuning of protection systems, and line parameters optimization.
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