
Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9019

How auto-differentiation can improve CT
workflows: classical algorithms in a modern
framework
RICHARD SCHOONHOVEN,1,2,* ALEXANDER SKORIKOV,1,2 WILLEM
JAN PALENSTIJN,2 DANIËL M. PELT,2 ALLARD A. HENDRIKSEN,1

AND K. JOOST BATENBURG1,2

1Computational Imaging Group, Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
2Leiden Institute of Advanced Computer Science, Leiden University, 2311 EZ Leiden, The Netherlands
*richard.schoonhoven@cwi.nl

Abstract: Many of the recent successes of deep learning-based approaches have been enabled by
a framework of flexible, composable computational blocks with their parameters adjusted through
an automatic differentiation mechanism to implement various data processing tasks. In this work,
we explore how the same philosophy can be applied to existing “classical” (i.e., non-learning)
algorithms, focusing on computed tomography (CT) as application field. We apply four key
design principles of this approach for CT workflow design: end-to-end optimization, explicit
quality criteria, declarative algorithm construction by building the forward model, and use of
existing classical algorithms as computational blocks. Through four case studies, we demonstrate
that auto-differentiation is remarkably effective beyond the boundaries of neural-network training,
extending to CT workflows containing varied combinations of classical and machine learning
algorithms.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In recent years, deep learning and other data-driven machine learning approaches have become
increasingly popular in computed tomography. Deep neural networks have achieved strong
results in X-ray CT applications by improving reconstruction quality [1], reducing metal artifacts
[2], performing beam hardening correction [3], and classification [4–6]. The progress in deep
learning has shown the power of data driven end-to-end optimization using auto-differentiation
software, often in combination with hardware acceleration using graphical processing units
(GPUs).

Despite promising results, deep learning approaches suffer from interpretability and repro-
ducibility challenges. Furthermore, a serious issue is the behaviour of deep learning algorithms
when presented with new data, and potential hallucination of object features [7]. These consider-
ations have hampered the adoption of learned algorithms by experts in for example the medical
domain where doctors can be reluctant to trust black-box learned approaches.

In contrast, classical (i.e. non-learned) algorithms often excel in interpretability and robustness.
Additionally, classical algorithms often come with an intuition for their applicable input data
domain, and the results they should produce. This can lead to expert users favouring such
traditional methods over deep learning approaches. However, parameters of these algorithms
are often either kept fixed or are adjusted by the user based on manual experimentation. Since
these parameters are not learned in a data-driven way, they may not be optimally chosen for the
particular dataset and application.

In this work, we apply concepts from the philosophy that made deep learning-based methods
so successful, and transfer it to CT workflows. We create workflows of computed tomography
algorithms for various problems and show how those problems can be solved by end-to-end

#502920 https://doi.org/10.1364/OE.502920
Journal © 2024 Received 8 Aug 2023; revised 20 Dec 2023; accepted 9 Jan 2024; published 28 Feb 2024

https://orcid.org/0000-0003-3659-929X
https://orcid.org/0000-0002-3355-9551
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.502920&domain=pdf&date_stamp=2024-02-28

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9020

optimization based on auto-differentiation. By doing so, we reconcile classical algorithms with
deep learning. We perform four case studies, representative of real-world tomography problems.
To do so, we create pipelines using the following core design principles:

End-to-end learning: We implement the pipelines such that all pieces facilitate gradient
propagation, meaning that parameters at all steps of the pipeline can be optimized jointly.

Explicit quality criteria: All pipelines use explicit quality criteria as objectives for optimization,
thereby enabling automatic optimization of parameters.

Declarative algorithm construction: Each pipeline is created by building the forward model,
and we optimize its parameters using auto-differentiation and generic readily-available
algorithms.

Use existing building blocks: The pipelines re-use building blocks derived from both classical
algorithms and deep learning methods in a way that enables gradient propagation. This
allows for seamless compatibility with deep learning-based methods.

Our portfolio of case studies sketches the outline of a new generation of powerful software
toolboxes that enable users to leverage the power of auto-differentiation for advanced computational
CT pipeline construction.

This work is structured as follows. In Section 2. we explore related work in auto-differentiation
software for classical methods, and approaches for learning CT algorithms in a data-driven way.
In Section 3. we describe the methodology. In Section 4. we present our results in the form of
four case studies. In Section 5. we discuss our findings and present key potential benefits that
arise from our approach. We present our final conclusions in Section 6.

2. Related work

The idea of extending auto-differentiation techniques [8] to classical algorithms is actively
investigated across several domains. In the field of robotics, for non-linear optimization problems,
Meta AI constructed Theseus [9] which is a library for building custom non-linear optimization
layers that were shown to be useful for differentiable kinematics. In [10], robotic controllers
are auto-tuned using the DiffTune package which works with forward-mode auto-differentiation.
Furthermore, end-to-end differentiable optimization enabled the coupling of the prediction and
planning module in autonomous vehicles [11].

In the field of cosmology, JAX-Cosmo [12] is a recently developed end-to-end GPU accelerated
library for cosmological calculations. Using automatic differentiation, JAX-COSMO exposes
derivatives for certain cosmological quantities, and enables previously impractical methods
such as Hamiltonian Monte Carlo and Variational Inference. Furthermore, by embedding the
cosmological algorithms in JAX, the algorithms can be run on accelerated hardware, and can
benefit from automatic code optimizations and techniques such as just-in-time compilation.

Embedding classical operators in neural networks has been demonstrated as an effective
technique for end-to-end learning based on auto-differentiation. In [13] the tomographic
backprojection operator is embedded as an algorithm within a neural network. Here the
backprojection parameters are not trainable themselves, but rather the algorithm introduces prior
knowledge about image reconstruction in the neural network. From the field of seismic imaging,
a 3-step reflective seismic imaging method is learned end-to-end by turning the Delay-And-Sum
(DAS) operator into a network layer in [14]. Similarly, the wave-physics-formation algorithm
is placed between two neural networks in [15] to facilitate single-plane seismic wave imaging
(SFW).

Automatic differentiation techniques have already been applied to solve specific problems in
computed tomography in recent years. In [16], beam hardening correction for X-ray microscopy

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9021

of mouse bones is performed with a polynomial correction model that is optimized through a
PyTorch-based differentiable FDK algorithm. An elaborate outline of algorithmic differentiation
for phase retrieval is presented in [17]. In [18,19], automatic differentiation is used in ptychography
where the object wave function is obtained with a gradient-based method by minimizing the
ptychography loss for each pixel. In [20] the 3D reconstruction problem for objects beyond
depth-of-focus (DOF) is formulated as a minimization problem with a data fidelity and total
variation term, which is solved with a gradient descent algorithm. How automatic differentiation
techniques can be used for different imaging modalities is shown in [21], where compressive
sensing, single image super resolution (SISR), and ptychography reconstructions are covered.
For tomography, the reconstruction is obtained with a gradient based approach by minimizing a
total variation functional, and the authors show how this is beneficial for sparse and limited angle
data.

In the field of nanotomography, the auto-differentiation framework Adorym [22] for flexible
reconstruction has been developed. In Adorym, a flexible forward model allows for optimization
of experimental parameters such as probe position, object tilt, absorption/refraction relation
coefficient, and propagation distance. The authors show improved reconstruction quality for
ptychography and multi-distance holography reconstructions, by finetuning these experimental
parameters. For conventional CT, they accelerate ART with gradient descent optimizers and
acquire improved results over FBP.

Compared to the related work outlined above, the scope and focus of the present paper is
more general. We focus on the core design principles underlying CT workflows using auto-
differentiation and demonstrate the efficacy of the approach through a varied set of four case
studies.

3. Methodology

3.1. Auto-differentiation

For the case studies included in this paper, we implement the CT workflows in the auto-
differentiation framework PyTorch [23]. An auto-differentiation system breaks down a program in
a series of primitive operations for which fixed procedures are known to compute derivatives. The
series of primitive computations is collected in a computational graph. Most auto-differentiation
systems, including PyTorch, trace the computational graph implicitly during the forward
computation through the program. After the forward computation, the error or loss is computed.
Here, we use gradient-based optimization, meaning that an auto-differentiation package needs to
obtain partial derivatives of the loss with respect to the parameters.

Often each primitive function in an auto-differentiation package specifies vector-Jacobian
products. Suppose two quantities are related by a primitive function f (x) = y, and y is used further
in the computation. Denote by ȳ the derivative of a loss L with respect to y. A vector-Jacobian
product defines a way to express the derivatives of L with respect to x, and is defined as

∂L
∂xj
=

∑︂
i

∂yi

∂xj

∂L
∂yi

, x̄ = JT ȳ,

where J is the Jacobian. For a primitive operation f , the gradient of the input x̄ can be calculated
from the output gradient ȳ, the input x and the output y. For example, in the case of y = f (x) = −x
the gradient of the input can be computed as −ȳ, for y = f (x) = ex it will be y · ȳ, and in the case
of y = log(x) it will be ȳ

x . The procedure of computing gradients in reverse (starting from L̄ = 1)
is called back propagation. For gradient descent, parameters are updated by

x← x − λx̄,

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9022

for some step size λ (often called the learning rate in deep learning). Variants of gradient descent
exist such as Nesterov’s accelerated gradient descent [24]. In our experiments we will either use
(stochastic) gradient descent, or Adam [25].

A drawback of auto-differentiation frameworks can be excessive memory consumption because
copies of many intermediate outputs are stored for fast computation of the back propagation
algorithm. This problem can be addressed by several general approaches. Gradient checkpointing
stores only a subset of the intermediate outputs for gradient computation, whereas other outputs
are recomputed during the back propagation step [26]. In this manner, computational performance
can be traded for improved memory efficiency. Another approach involves just-in-time (JIT)
compilation where a compiler attempts to optimize the computational graph into a more memory
and compute efficient set of instructions. In this work, we apply PyTorch implementations of
both techniques for certain memory or computationally expensive operations. In section 4.3,
we illustrate the effectiveness of these techniques using one of the case studies and discuss the
involved trade-off between computational performance and memory efficiency.

3.2. Computed tomography

In computed tomography [27] a 3D image of an object is recovered from a series of projections
that are taken at different angles. Tomographic reconstruction can be modelled as the problem to
recover an object volume x ∈ X := RNx×Ny×Nz from the measured projection data y ∈ RNθ×Nu×Nv .
Here, Nu and Nv are the number of detector rows and columns, and Nθ is the number of projection
angles. The projection process can be approximated by a linear operator A, and can be expressed
as a matrix using the aforementioned discretization

Ax = y, (1)

where x and y are collapsed to a vector. For parallel beam tomography the object can be
reconstructed by the commonly used filtered backprojection algorithm (FBP)

xFBP = AT (h ∗ y). (2)

Here, the projection data is convolved with a 1D filter h ∈ RNv (Ram-Lak in this study), and
subsequently backprojected by applying AT . For circular cone-beam tomography, the object can
be recovered by the Feldkamp-Davis-Kress (FDK) [28] algorithm, where the projection data is
weighted in order to compensate for the diminishing intensity at distance from the detector center.
An alternative to direct methods are iterative methods that reformulate the equation system 1 as
an optimization problem of the form

x∗ = arg min
x∈X

∥Ax − y∥22 . (3)

Variational methods additionally aim to incorporate prior knowledge in the form of a regularization
term R(x) to the functional, e.g.,

x∗ = arg min
x∈X

∥Ax − y∥22 + R(x). (4)

3.3. CT workflows

The CT workflows that we consider here contain input data in the form of projection images,
contain several data processing steps of which at least one is a reconstruction step, and contain
an objective function that scores the final result. We consider potentially non-sequential
workflows, i.e., the data processing graph can contain several branches, or cyclical sections. The
computational blocks can contain parameters that we want to update in order to minimize the

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9023

Fig. 1. Example CT workflow diagram.

objective function (see Fig. 1). Those parameters must be real or complex numbers in order to
facilitate gradient-based optimization.

For the four case studies, we have implemented the computational blocks to be differentiable
with respect to the learnable parameters. Non-differentiable steps can potentially be replaced by
a differentiable approximation function. For example, to make thresholding (and segmentation)
differentiable, we implement the thresholding operation using a hyperbolic tangent

τγ(x, t) =
1
2

(︂
1 + tanh

(︂
γ

(︂x
t
− 1

)︂)︂)︂
, (5)

where the volume x, and threshold t have been scaled to [0, 1]. The parameter γ regulates the
sharpness of the clipping.

3.4. Software implementation

To compute gradients end-to-end for workflows that contain tomographic (back)projection
operators, we will make use of the matrix identity ∇Ax = AT∇x. Tomographic projection
operations are implemented in the ASTRA toolbox [29] in a computationally efficient GPU
accelerated manner. The tomosipo package [30] implements PyTorch support for ASTRA, and
contains projection operators that propagate gradients in PyTorch using the aforementioned
identity. Here, we use tomosipo projection operators in our workflows to propagate gradients
end to end. In addition to reconstruction algorithms, the workflows we construct in this work
contain other classical CT algorithms, such as Paganin’s phase retrieval, phase contrast projection,
and spectral projectors. We implemented these algorithms in PyTorch which facilitates auto-
differentiation, and makes them GPU compatible, and the code is made publicly available for all
case studies [31].

4. Case studies

4.1. Rotation axis alignment

4.1.1. Introduction

In the first case study, we consider the problem of alignment in tomographic reconstruction [32].
Various experimental factors can introduce errors in the geometric parameters that are used to
perform the reconstruction. A common occurrence of this effect in CT is a misalignment of
the rotation axis position. In the case of a rotation axis misalignment δ, for a ray parametrized
by angle ω and position vector a from scanning set Γ, the projection p of the object function
f : R3 → R is given by the Radon transform as

p(a,ω) =
∫ ∞

0
f (a + δ + tω) dt, ω ∈ S2, a ∈ Γ. (6)

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9024

This discrepancy (most prominently a lateral shift) between the assumed and the true rotation
axis position introduces severe artifacts in the resulting reconstruction, which appear differently
depending on the acquisition geometry. In cone-beam CT this leads to blurring and "doubling"
of object features, which significantly affect the sharpness of the reconstruction.

4.1.2. Experiments

Here we propose to optimize for the rotation axis position by minimizing the magnitude of
misalignment-induced artefacts as measured by an appropriate measure of reconstruction quality
[33,34]. In cone-beam CT, to account for the associated edge blurring and "doubling" artifacts,
we use a well-known image contrast measure based on the variance of voxel intensities [35]. The
intuition behind this metric is that upon blurring the intensities of neighboring voxels average
out, reducing the intensity variations throughout the reconstruction. Since variance computation
is differentiable, this provides a suitable metric for gradient-based optimization.

To enable gradient-based optimization of rotation axis position, we adjust the lateral shift
of all projection images using a differentiable bicubic interpolation-based image shift operator
implemented in PyTorch. The shifted projections are then backprojected and the quality of
this intermediate result is quantified using voxel intensity variance. Since all the pieces of
the described workflow are implemented in a differentiable manner within PyTorch, a generic
gradient-based optimization algorithm (SGD) can now be used to find the shift of the rotation
axis that maximizes the reconstruction quality. A diagram of the proposed pipeline is shown in
Fig. 3. Both experiments in this section were performed on a workstation with 64 GB RAM, an
Nvidia GeForce GTX 1070 GPU, and Intel i7-7700K CPU.

4.1.3. Simulated experiment: Shepp-Logan phantom

To test the proposed gradient-based rotation axis alignment method, we first employ simulated
data based on a 512× 512 px Shepp-Logan phantom (Fig. 2(a)) that is projected using a geometry
with a rotation axis shift of 3 px. As can be observed in Fig. 2(b), even a minor misalignment in the
axis position introduces significant blurring in the reconstruction. The proposed gradient-based
contrast optimization method successfully compensates the rotation axis shift (Fig. 2(c-e)),
converging in only about 3 iterations. The proposed method is computationally efficient as
running 6 iterations took 97 ms on our system.

4.1.4. Real-world experiment: High-resolution cone-beam CT of a walnut

Next, we evaluate the performance of the proposed rotation axis shift compensation method on
experimental data using an open dataset of high-resolution cone-beam CT of walnuts acquired
at the Flex-ray lab [36,37]. Figure 4(a) demonstrates an FDK reconstruction obtained with the
geometry parameters specified in the dataset metadata, and Fig. 4(b) shows the reconstruction
after axis alignment method has been applied. It can be observed that although there are no
obvious artifacts present in the initial reconstruction (which makes this kind of misalignment easy
to miss with manual inspection), the rotation axis position optimization significantly improves
the resolution of the reconstruction. The improved resolution brings up details that were not
visible before, such as pores in the central part of the walnut that can be seen in the zoom-in of
Fig. 4(b). The walnut slice is 550 × 550 px, with 501 projection angles, and running 6 iterations
took 295 ms on our system.

To summarize, our workflow for rotation axis position alignment, implemented in an automatic
differentiation framework, results in an intuitive formulation of the axis alignment problem. In
addition, the resulting method enjoys a quick convergence, can retrieve sub-pixel axis shifts
in a straightforward manner, and can be easily extended to multivariate optimization if other
geometry parameters, such as rotation axis tilt and the cone angle of illumination, are included in
the workflow.

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9025

Fig. 2. (a) Shepp-Logan phantom and its FDK reconstructions obtained from projection
data simulated using (b) shifted rotation axis and (c) rotation axis position compensated
by the proposed gradient-based optimization method. (d) Image variance-based contrast
measure and (e) estimated rotation axis shift during the optimization.

Fig. 3. CT workflow for self-supervised rotation axis alignment.

4.2. Phase retrieval

4.2.1. Introduction

In the second case study we apply an end-to-end optimization approach to phase contrast imaging
(PCI) [38]. PCI can reach nanometric resolution in tomographic imaging [39], and requires an
additional reconstruction step known as phase retrieval. In PCI, the image is reconstructed based
on changes to the wave front due to the material that is present along the wave path. A widely
used experimental PCI setup is phase propagation-based imaging where projections are acquired
from several different distances using a coherent beam. Next, a phase retrieval algorithm is used
to calculate phase maps.

Here, we will consider Paganin’s phase retrieval algorithm [40], which requires the material
refractive index δ, and attenuation β to be known. Paganin assumes a single material object, and
retrieves the projected thickness of the object T by

T(r⊥) = −
1
β

log
(︃
F −1

(︃
βF {I(r⊥, z = R2)}/I0

R2δ ∥k⊥∥ + β

)︃)︃
. (7)

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9026

Fig. 4. (a) FDK reconstruction of the walnut dataset. (b) FDK reconstruction after
rotation axis position was compensated by the proposed gradient-based optimization method.
(c) Image variance-based contrast measure and (d) estimated rotation axis shift during the
optimization.

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9027

Here I is the intensity function, I0 the incident intensity, r⊥ the position vector perpendicular to
the optical axis, k⊥ the wave vector, and R2 the source-detector distance. A common practice is to
divide both the numerator and the denominator inside the inverse Fourier transform of equation 7
by β. The resulting fraction δ/β is sometimes designated as α. Expert users will often pick α
manually to get a good reconstruction. However, this can be a time-consuming process, it is
subjective, and it can make it more difficult for other researchers to reproduce results. Therefore,
in this section we will show that we can optimize both β and δ in an unsupervised way for a clear
objective. We do so by constructing a pipeline of operators that propagate gradients end-to-end.
We choose to optimize β and δ separately, rather than α = δ/β, to investigate whether our
unsupervised approach can recover the original β and δ values.

4.2.2. Experiments

In the experiments, we use a pipeline that takes raw projections as input, and performs Paganin
phase retrieval to produce phase maps. A reconstruction based on the phase maps is made with
filtered backprojection (FBP), and a binary segmentation is made with an implementation of
Otsu’s method [41] that makes use of equation 5. We use binary segmentation since Paganin
assumes a single material.

After segmentation, using the same refraction and attenuation indices, projections are simulated
based on the segmentation using a wave propagation projector. Finally, the simulated projections
are scaled so that their mean and standard deviation align with the raw input. As a loss function
we take the mean-squared error loss between the scaled simulated projections and the original
input projections. A diagram of the pipeline is given in Fig. 5. Both experiments in this section
were performed on a server with 384 GB RAM, an Nvidia Titan RTX GPU, and two Intel Xeon
Gold 6130 CPUs.

Fig. 5. PCI pipeline for self-supervised optimization of β and δ.

4.2.3. Simulated experiment: Calcium carbonate cube

First, we perform a simulated experiment on a 3D phantom (1923 volume, 572 angles) of a
calcium carbonate hollow cube, with a smaller cube attached to one of its sides (see Fig. 6(d)).
Next, we simulate phase contrast images using the material parameters of calcium carbonate, and
add Poisson noise. As reference, we show the FBP reconstruction of the phase maps acquired
with Paganin with the correct β and δ in Fig. 6(a). We initialize the attenuation and refraction
indices to those of water. We use a gradient descent algorithm (Adam) optimization algorithm to
update β and δ. For a smoother optimization we optimize these parameters on an exponential
scale.

The FBP reconstructions before and after optimization, and corresponding Otsu segmented
images, are given in Fig. 6. We see that the initial FBP reconstruction using water material
indices has a halo artifact. This artifact is no longer visible after optimization. The optimization
loss and the attenuation and refraction values (logarithm) per iteration are given in Fig. 7. While

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9028

Fig. 6. (a) FBP reconstruction using correct β and δ. (b) FBP of phase projections retrieved
with the material indices for water that were used as initialization. (c) FBP of phase
projections retrieved with learned material parameters after optimization. (d) Slice through
calcium carbonate simulated phantom. (e) Otsu segmented slice of FBP reconstruction
(before). (f) Otsu segmented slice of FBP reconstruction (after).

the reconstruction quality has improved, the pipeline is not able to fully recover the original
material index values; the final values after optimization are ln(β) = −21.50 and ln(δ) = −15.69,
whereas the original values for calcium carbonate are ln(β) = −19.59, ln(δ) = −13.94. However,
the value of α = δ/β is only 17.6% off the original. Running 120 iterations of optimization on
this pipeline took 16 minutes and 48 seconds on our system.

Fig. 7. (Left) L2-loss between input phase maps and output simulated phase maps per
iteration. Attenuation β (middle), and refraction δ (right) value per iteration.

4.2.4. Real-world experiment: Hydrogen fuel cell

We perform a real-world data experiment on a hydrogen fuel cell dataset acquired at the TOMCAT
beamline of the Swiss Light Source (PaulScherrer Institut) [42]. The experiment is performed
on a central slab of the full volume of size 160 × 1001 × 1476 to reduce computation time. For
the experiment we use the same setup as for the simulated experiment, and again initialize the
attenuation and refraction indices to those of water. In Fig. 8 we show reconstructed central
slices of the fuel cell before and after optimization. We see that after optimization small-scale

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9029

features such as bubbles are visible. The zoomed images show that the initial reconstruction is
blurred, and the final reconstruction after optimization is much sharper. In Fig. 9 we display the
optimization loss and the attenuation and refraction values per iteration. Running 200 iterations
of optimization on this pipeline took 1 hour and 38 minutes on our system.

Fig. 8. Hydrogen fuel cell [42] reconstructed with FBP with default material parameters for
water (before), and after optimizing parameters end-to-end (after).

Fig. 9. (Left) L2-loss between input phase maps and output simulated phase maps per
iteration. Attenuation β (middle), and refraction δ (right) value per iteration.

Overall the experiments show that we can use a generic gradient based approach to optimize
for reconstruction quality in an self-supervised way in phase contrast imaging. We showed on
both a simulated and real-word dataset that the pipeline can be optimized for a clear objective, as
opposed to manual selecting the α = δ/β parameter. First, this reduces the work for operators
as they no longer have to tune parameters manually. Second, this makes the procedure more
reproducible for different datasets.

4.3. Beam hardening correction

4.3.1. Introduction

For the third case study, we implemented self-supervised correction of artifacts introduced by
beam hardening [43,44]. The number of materials is denoted by N, with attenuation coefficients
µn(E), and the beam spectrum has Em energy bins with intensities Ie. Furthermore, let li,j be the
intersection length of ray i (i = 1 . . .D) with voxel j (j = 1 . . . J), dj the relative density of voxel j,

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9030

and sn,j a variable that is 1 if voxel j contains material n, and 0 otherwise. Then we can denote
for a ray i and a material n the projected relative density Pi,n, and the monochromatic measured
intensity by Beer-Lambert as

Pi,n =

J∑︂
j=1

li,jdjsn,j, Imono,i = I0e−
∑︁N

n=1 µn(E0)Pi,n , (8)

for a monochromatic beam with energy E0 and intensity I0. The measured polychromatic intensity
(discrete) is given by

Ipoly,i =

Em∑︂
e=1

Iee−
∑︁N

n=1 µn,ePi,n , (9)

for a polychromatic beam with energies e and intensities Ie.
For a monochromatic X-ray, the attenuation coefficient µ is linearly related to the thickness of

the object by Beer-Lambert’s law. However, in practice X-ray beams are often polychromatic and
this relation is no longer linear as lower energy photons get absorbed more than higher energy
photons. Therefore, as a polychromatic beam travels through an object it “hardens”, i.e., the
average photon energy increases. If this effect is not taken into account by the reconstruction
algorithm, it causes streaking and cupping artifacts because the lower absorbance due to higher
average energy is mistakenly reconstructed as a lower density material.

4.3.2. Experiments

The aim of the case study is to highlight how combining an explicit forward model with a few
lines of code and generic gradient-optimization can result in sophisticated algorithm construction,
even for cases that used to require lengthy, hand-crafted implementations. In the experiments we
will perform unsupervised beam hardening correction by learning the beam spectrum, and the
energy-dependent attenuation coefficients per material. We will base the study on [45], where
three different iterative unsupervised beam hardening correction algorithms are proposed and
compared. We use the best performing algorithm in [45] as a comparison; the iterative sinogram
preprocessing (ISP) method. The ISP method is an iterative scheme with multiple steps, such as
a bruteforce segmentation step, a local optimization step, and a reconstruction update step. For a
detailed explanation of ISP we refer to [45]. ISP assumes that the number of materials is known
beforehand, but no knowledge of the beam spectrum, or attenuation coefficients is assumed.

As opposed to constructing a specialized algorithm such as ISP, we compare to a generic
gradient-based approach where beam spectrum, attenuation coefficients, and thresholds are
learned jointly. The generic approach is self-supervised using the same loss function as ISP

φ(µ, I, s, d) =
1
D

D∑︂
i=1

(︄
log

(︄
Imeas
poly,i

I0

)︄
− log

(︂
Isim
poly,i

)︂)︄2

, (10)

which is the L2-loss between the simulated polychromatic projections and the original input
projections. To initialize the thresholds we use Otsu’s method on an initial reconstruction R0
made with FBP or FDK. After the initialization we iterate as

1. Update segmentation thresholds, attenuation coefficients, and beam intensities,

sk, µk, Ik = arg mins,µ,I φ
(︁
µ, I, g(Rk−1, s), d = 1

)︁
, (11)

where g(Rk−1, s) is the differentiable thresholding function described before (equation 5),
φ is the ISP loss function, and arg min is performed with gradient descent.

2. Update the sinograms and corrected reconstruction Rk as for ISP.

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9031

A diagram of the workflow is shown in Fig. 10. By using an implementation of the spectral
projector that can propagate gradients, we can optimize the attenuation, intensity, and thresholds
jointly. This improves the complexity of the algorithm as the thresholding step in ISP is
exponential in the number of materials and computationally expensive. For our experiments, we
created a PyTorch based implementation of ISP and our generic gradient-based approach. Both
experiments in this section were performed on a workstation with 64 GB RAM, an Nvidia RTX
2070 Super GPU, and AMD Ryzen 7 3800X CPU.

Fig. 10. CT pipeline for self-supervised beam hardening correction.

4.3.3. Simulated experiment

We perform a simulated experiment based on the Barbapapa phantom [45] where we created a
simulated phantom (see Fig. 11) of polymethyl methacrylate (PMMA) filled with aluminium rods
with size 256 × 256. Next, we use a spectral projector with a simulated effective beam spectrum
to simulate beam hardening artifacts. Finally, we add 2% Gaussian noise on the projections
(see Fig. 11 for reconstruction of noisy projections). To perform beam hardening correction we
performed 40 steps of ISP. We ran the generic gradient-based approach for the same amount of
objective function evaluations. In Fig. 12 we show the FBP reconstructions of the corrected
sinograms for both algorithms, and the accompanying material segmentations. We see that both
methods reduced cupping and streaking artifacts. Furthermore, Figs. 12(d) to 12(f) show a
significant improvement in segmentation quality for both methods, which is close to the original
phantom.

Fig. 11. (Left) Barbapapa phantom consisting of PMMA filled with aluminium cylinders.
(Right) FBP reconstructions of simulated spectral projections (with added Gaussian noise).

Line profiles for each of the three reconstructions are given in Fig. 13(a). The line profiles
confirm that the cupping artifacts are significantly reduced for both the PMMA material and the
aluminium rods. In Fig. 13(b) we plot the self-supervised loss for both methods. Both methods
reach a similar optimum, but the combined gradient method shows slightly faster convergence.

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9032

Fig. 12. (Top) Barbapapa phantom reconstructed with the Filtered BackProjection (FBP)
algorithm for ISP and a generic gradient-based approach. (Bottom) Material segmentations
of corrected reconstructions.

Note that the combined gradient method also runs twice as fast, which is due to the missing
brute-force threshold selection step. This is also reflected in the runtimes; ISP ran for 16 minutes
and 15 seconds, whereas the generic gradient-based approach ran for 8 minutes and 9 seconds.

Fig. 13. (a) Three line profiles through the original, ISP corrected, and combined gradient
corrected Barbapapa reconstructions. (b) Optimization losses per φ evaluation.

4.3.4. Play-Doh foreign object X-ray CT dataset

We also evaluate both beam hardening correction methods on a real-world X-ray CT dataset
of Play-Doh objects filled with stones [46,47]. The experiment was performed on a 478 × 478
central slice. The Play-Doh objects exhibit significant cupping artifacts. In Fig. 14 we show the

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9033

FBP reconstructions of the corrected sinograms for both algorithms. We see that both methods
reduced cupping, which is also clearly visible on the line profiles shown in Fig. 15(a). In Fig. 15(b)
we plot the self-supervised loss for both methods. Both methods reach a similar optimum, but the
combined gradient method shows a more stable convergence. The jumps in the loss curve for ISP
happen when a new optimal set of thresholds is determined with brute-force calculation after the
local minimization steps. Since the combined gradient method jointly optimizes all parameters
every step, it does not suffer from such jumps. The improved computational efficiency is more
prominent due to faster convergence of the local optimization step; ISP ran for 19 minutes and 51
seconds, whereas the generic gradient-based approach ran for 4 minutes and 35 seconds.

Fig. 14. Play-Doh and stones reconstructed with the Filtered BackProjection (FBP)
algorithm for ISP and a generic gradient-based approach.

Fig. 15. (a) Three line profiles through the original, ISP corrected, and combined gradient
corrected Play-Doh reconstructions. (b) Optimization losses per φ evaluation.

Overall the experiments show that by using a generic gradient-based approach for all parameters,
we can create an algorithm that performs similarly to the specialized ISP algorithm while
demonstrating faster runtime. The construction of such an algorithm is more straightforward as
we can create the forward model and embed the workflow in an auto-differentiation framework.
This allows us to optimize end-to-end in a straight-forward manner.

4.3.5. Balancing computation speed and memory consumption

The differentiable spectral projection function used in this case study is a memory-intensive and
computationally expensive operation. This can limit its applicability to realistic sizes of data if a
naive implementation is used. In this work, we employ two optimization techniques to tackle

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9034

this problem: gradient checkpointing and just-in-time (JIT) compilation (see section 3). In this
section we analyze how both of these techniques influence the computation speed and memory
usage for different sizes of input data.

The spectral projection operation described by equation 9 is a loop over the energy bins e
that adds each term to the result to compute Ipoly. When differentiating this function via naive
back propagation, every intermediate term of size Nθ × Nu × Nv in the loop needs to be saved
for the backward pass, leading to a high memory consumption. This effect can be alleviated by
placing gradient checkpoints after every few iterations, which means that some intermediate steps
are recomputed during the backward pass instead of being stored in memory. The placing of
gradient checkpoints can be optimized depending on the desired trade-off between the memory
requirements and computational efficiency, which can be done optimally using several approaches,
for example tree decomposition [48]. In the present case study we were limited primarily by
the amount of available GPU memory, and therefore checkpoints were placed after every loop
iteration. JIT compilation can be applied to the function that computes each term in the sum,
potentially improving both memory and computational efficiency – the overhead of compilation in
this case is justified by the much longer runtime of the executed function. In our implementation
we used the TorchScript JIT compiler available in PyTorch.

Whether gradient checkpointing and JIT compilation are beneficial depends on the size of the
input data Nθ × Nu × Nv and the number of energy bins Em, since for small data sizes we are
potentially losing time on associated overheads with little memory gain. To illustrate the potential
benefits of both approaches in this profiling experiment we use a slab of Nu = 48 slices and vary
Em. In Fig. 16 we show the wall time (in seconds), and GPU memory consumption (in gigabytes)
for different Em measured for a single optimization step of our combined gradient method.

Fig. 16. (a) Wall time (in seconds) and (b) GPU memory consumption (in gigabytes) for a
single optimization step of the combined gradient method for different code optimizations
used; baseline, JIT compilation, gradient checkpointing, and JIT + gradient checkpointing.
Metrics are shown for different numbers of energy bins Em.

The metrics show that without gradient checkpointing, both the baseline and JIT-compiled
method run out of the available GPU memory (8 GB for Nvidia RTX 2070 Super used here)
when the number of energy bins is higher than 16. On the other hand, memory consumption
is constant irrespective of the number of energy bins when gradient checkpointing is used,
while the overhead of using gradient checkpointing was approximately constant at about 1 s.
Applying JIT compilation in this experiment did not reduce memory consumption, but did
improve computational efficiency, providing about 0.5 s of speedup over baseline for small
numbers of energy bins. For the larger numbers of energy bins, when using JIT compilation in
combination with gradient checkpointing, the speedup was much higher. This is likely because
the JIT compiled code is run once for every energy bin, spreading out the compilation overhead

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9035

and multiplying the computational gains over a higher number of repeated computations. In this
case study, we chose to use the combination of JIT and gradient checkpointing because it allowed
for a significantly reduced memory consumption while maintaining a comparable computational
cost to the baseline method.

The discussed profiling experiment shows that techniques such as gradient checkpointing and
JIT compilation can enable GPU-accelerated optimization based on auto-differentiation for input
data sizes that are significantly larger compared to what is possible with a naive back propagation
algorithm. However, the effectiveness and usefulness of such techniques will depend on the
details of computation and therefore needs to be analyzed on the use case basis.

4.4. Optimizing total variation reconstruction and neural networks end-to-end

4.4.1. Introduction

In the final case study we will focus on denoising CT reconstructions using convolutional neural
networks (CNNs) jointly with total variation reconstruction (TV) [49–51]. Since neural networks
are often large, black-box models that are hard to interpret, it can be desirable to let more
computation steps be performed by interpretable algorithms and use a smaller network, rather
than using simpler algorithms and a larger neural network. In the experiment we show how
embedding CT algorithms in an auto-differentiation framework allows for easy interfacing with
deep learning algorithms, and the pipeline can be trained end-to-end. This method allows us
to design a more interpretable pipeline using variational methods with similar accuracy, while
using a smaller neural network.

Total variation reconstruction is a commonly used variational method to incorporate prior
knowledge that the gradient of the image should be sparse. For TV, the regularization term in
equation 4 becomes the magnitude of the gradient

x∗ = arg min
x

{︁
∥Ax − y∥22 + λ ∥x∥TV

}︁
= arg min

x

{︁
∥Ax − y∥22 + λ ∥∇x∥1

}︁
. (12)

To minimize the functional we use an implementation based on Chambolle-Pock [52]. The
regularization parameter λ controls the trade-off between data fidelity and regularization term. A
small λ will result in a reconstruction x∗ that is close to the raw data, but potentially with high
noise. A large λ can lead to less noise and more connected components of equal value. For more
information on total variation regularization we refer to Rudin-Osher-Fatemi [53].

4.4.2. Experiments

We perform an experiment on simulated 2D foam-like phantoms of size 256 × 256. These
phantoms contain both large and small scale features (see Fig. 17(a)). We simulate parallel
beam projections from an angular range of -60◦ to 60◦, creating missing wedge artifacts, and
add Poisson noise to the projection data (see Fig. 17(b) for an example FBP reconstruction). For
TV reconstruction (Figs. 17(c) and (d)), this creates a situation where a small λ keeps smaller
features, but creates a high noise reconstruction, while a larger λ removes more noise but creates
connected components of voxels which removes smaller features. We created a training dataset
of 100 randomly generated target phantoms, and corresponding noisy limited angle projections.
In our experiments we in each case have the noisy projections as input data, and use the original
phantom as target data. Our implementation of total variation reconstruction uses PyTorch
primitives, and λ can therefore be optimized end-to-end with gradient-based approaches in
conjunction with deep learning algorithms. In total, we trained four pipelines end-to-end.

1. FBP + Small CNN: An FBP reconstruction is input for a small CNN that denoises the
image. The CNN consists of 3 layers of 3 × 3 kernels arranged in 1 × 64, 64 × 32, and
32 × 1 channels (19.393 parameters in total). Only the CNN weights are learned.

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9036

2. Single TV + Small CNN: A single TV reconstruction is input for a small CNN that
denoises the image. The CNN consists of 3 layers of 3 × 3 kernels arranged in 1 × 64,
64 × 32, and 32 × 1 channels (19.393 parameters in total). Both λ and the CNN weights
are learned jointly. λ is initialized at λ = 10−3.

3. Double TV + Small CNN: Two TV reconstructions with different λ are input for a small
CNN that uses both inputs to create a single denoised output image. The CNN consists
of 3 layers of 3 × 3 kernels arranged in 2 × 64, 64 × 32, and 32 × 1 channels (19.969
parameters in total). Both λ1, λ2, and the CNN weights are learned jointly. The λ’s are
initialized as λ1 = 10−3, and λ2 = 10−8.

4. FBP + Large CNN: An FBP reconstruction is input for a larger CNN that densoises the
image. The CNN consists of 4 layers of 3×3 kernels arranged in 1×160, 160×96, 96×64,
and 64 × 1 channels (195.873 parameters in total). Only the CNN weights are learned.

Fig. 17. (a) Foam CT binary phantom, (b) FBP reconstruction of phantom projections with
added severe noise, (c) TV reconstruction with λ = 10−8, and (d) TV reconstruction with
λ = 10−2.

A diagram of the Double TV + Small CNN pipeline is shown in Fig. 18. All 4 experiments
are run for an equal number of training iterations, and were performed on a workstation with 64
GB RAM, an Nvidia RTX 2070 Super GPU, and AMD Ryzen 7 3800X CPU. For validating the
results we generated an additional random phantom that was not in the training set. The resulting
denoised validation reconstructions are shown in Fig. 19.

Fig. 18. Pipeline for supervised denoising of CT data.

We see that all pipelines can denoise the reconstruction significantly, but struggle to remove
artifacts introduced by the missing angular information. The FBP+SmallCNN pipeline seemingly
performs worse on visual inspection of the zoomed images. Arguably, both TV pipelines perform
better than FBP+LargeCNN, even though the larger CNN had 10 times more parameters. This
suggests that the prior knowledge incorporated by total variation makes for an easier denoising

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9037

Fig. 19. (Top) From left to right; Foam phantom, output of FBP reconstruction followed by
a small CNN, output of a single total variation reconstruction followed by a CNN, output
of two total variation reconstructions followed by a CNN, output of FBP reconstruction
followed by a larger CNN. (Bottom) Zoom of top row.

problem for the CNN. It is unclear whether the addition of a second total variation operator
benefited the denoising quality. However, in validation loss the double total variation operator
performs better with 1.805 · 10−2 loss versus 1.864 · 10−2 for the single TV operator. The
validation loss for the FBP+SmallCNN pipeline is 2.322 · 10−2, and for the FBP+LargeCNN
pipeline 2.268 · 10−2.

We plot the training losses and λ values during training in Fig. 20. An interesting observation
is that single TV learned a λ with a value in between λ1 and λ2 of the double TV pipeline. We
hypothesize that the single TV pipeline had to compromise λ between leaving small features
intact, and denoising the reconstruction.

Fig. 20. (a) Mean squared error loss during training. (b) TV regularization λ values during
training.

Running total variation in a training procedure comes at large computational cost; a single
training step (100 images) took 99.6, and 198.3 seconds for single and double TV respectively
whereas FBP + large CNN took 1.82 seconds. For 3D it could therefore be infeasible to train
this pipeline. For single scan tuning of λ a surrogate TV approach can be considered during
optimization, such as [54]. Alternatively, λ could be tuned on the central slice for 3D cases.

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9038

Overall the experiment shows how embedding classical CT algorithms, such as TV recon-
struction, in GPU accelerated auto-differentiation frameworks allows for the easy prototyping
of mixed classical and deep learning pipelines. We were able to replace a large CNN with 200
thousand parameters by a stack of two TV operators to achieve better denoising accuracy, and
reduce the CNN size to 20 thousand parameters. In addition, the total variation pipelines are
more interpretable as the behaviour of TV for small or large λ is well understood. In general,
this easy interfacing of deep learning and classical methods enables end-to-end learning of
parameters, which opens up new areas of research. Additionally, the resulting pipeline may
be more interpretable since parameters of classical algorithms are often linked to physical or
mathematical concepts that are better understood.

5. Discussion

Our four use cases and the corresponding experiments demonstrate that a broad range of CT
workflows can be implemented as end-to-end optimized pipelines using auto-differentiation.
Depending on the particular use case, implementing CT workflows in an end-to-end optimizable
manner yields several benefits. When all pieces of a data processing pipeline facilitate optimization,
parameters at all steps of the pipeline can be optimized jointly for a criterion calculated at any
given step. In combination with explicit quality criteria this allowed us to design workflows
where the learnable parameters were used in the earlier stages of the pipeline, while the objective
function was more naturally defined at the end of the pipeline. For example, in both the rotation
axis alignment and beam hardening correction experiments we were able to optimize parameters
that are used in the projection domain for metrics that require volume domain computation.
Another benefit is that implementing CT workflows as end-to-end optimizable pipelines allows
for efficient automatic optimization of parameters that may otherwise be chosen manually. This
additionally improves the transferability of CT workflows when applied to new data as the
parameters can be optimized in an objective manner using the same quality criterion.

Auto-differentiation made it possible to implement workflows with a relatively low development
cost by using existing building blocks, and by defining the workflow in a declarative manner, i.e.,
implementing the forward model and then optimizing its parameters with a generic off-the-shelf
optimizer. Creating workflows in this manner is typically less time consuming to develop and
more flexible compared to specialized methods. For example, in the beam hardening experiment
we showed that a gradient descent on the forward model of the physical effect results in a quality
comparable to a specialized correction method. Using auto-differentiation allowed for seamless
compatibility between classical and deep learning-based approaches. As classical approaches
often come with an intuition of their behaviour, this combination of classical algorithms and
deep learning can lead to more robust and interpretable workflows. In the last experiment we
showed that using existing classical algorithms in conjunction with deep learning can create
workflows that perform similarly to purely deep learning based approaches while using smaller
neural networks.

Even though gradient-based end-to-end optimization has several potential benefits, it can
create certain practical challenges. First, convergence of a gradient descent optimizer is not
always guaranteed, and can potentially produce suboptimal solutions. Second, the learning rate
needs to be picked manually, which is especially challenging when the involved parameters have
significantly different magnitudes. Despite the disadvantages, this approach often represents a
well-performing heuristic solution to many mathematically complicated problems, as illustrated
by its use in the field of deep learning, which produced transformative results in many branches
of science and technology in the recent years.

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9039

6. Conclusion

We have shown how implementing classical CT algorithms in an auto-differentiation framework
can improve their transferability and interpretability, enable efficient automatic end-to-end
optimization, and allow for solving real-world problems without having to develop specialized
algorithms. We have explored four use cases experimentally: rotation axis alignment, phase
contrast imaging, beam hardening correction, and end-to-end denoising with deep learning
and total variation reconstruction, demonstrating that a wide range of CT workflows can be
implemented in such a framework. In the future, the key benefits demonstrated in this paper can
be utilized in computational toolboxes that leverage auto-differentiation for improved construction
and execution of advanced CT workflows.
Funding. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWA.1160.18.316).

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are available in [31] with code to reproduce
each experiment. Links and installation instructions to external data are provided in the notebooks; [37] used in section
4.1, [42] used in section 4.2, and [46,47] used in section 4.3.

References
1. C. McLeavy, M. Chunara, R. Gravell, A. Rauf, A. Cushnie, C. S. Talbot, and R. Hawkins, “The future of CT: deep

learning reconstruction,” Clin. Radiol. 76(2), 407–415 (2021).
2. Y. Zhang and H. Yu, “Convolutional neural network based metal artifact reduction in X-ray computed tomography,”

IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018).
3. A. Ziabari, S. Venkatakrishnan, M. Kirka, P. Brackman, R. Dehoff, P. Bingham, and V. Paquit, “Beam hardening

artifact reduction in X-ray CT reconstruction of 3D printed metal parts leveraging deep learning and CAD models,” in
ASME International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers,
2020), vol. 2B: Advanced Manufacturing.

4. K.-L. Hua, C.-H. Hsu, S. C. Hidayati, W.-H. Cheng, and Y.-J. Chen, “Computer-aided classification of lung nodules
on computed tomography images via deep learning technique,” OncoTargets Ther. 8, 2015–2022 (2015).

5. T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, “Automated detection of
COVID-19 cases using deep neural networks with X-ray images,” Comput. Biol. Med. 121, 103792 (2020).

6. J. Chen, L. Wu, J. Zhang, et al., “Deep learning-based model for detecting 2019 novel coronavirus pneumonia on
high-resolution computed tomography,” Sci. Rep. 10(1), 1–11 (2020).

7. S. Bhadra, V. A. Kelkar, F. J. Brooks, and M. A. Anastasio, “On hallucinations in tomographic image reconstruction,”
IEEE Trans. Med. Imaging 40(11), 3249–3260 (2021).

8. A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation (SIAM,
2008).

9. L. Pineda, T. Fan, M. Monge, et al., “Theseus: A library for differentiable nonlinear optimization,” Advances in
Neural Information Processing Systems 35, 3801–3818 (2022).

10. S. Cheng, M. Kim, L. Song, Z. Wu, S. Wang, and N. Hovakimyan, “Difftune: Auto-tuning through auto-differentiation,”
arXiv, arXiv:2209.10021 (2022).

11. Z. Huang, H. Liu, J. Wu, and C. Lv, “Differentiable integrated motion prediction and planning with learnable cost
function for autonomous driving,” IEEE Trans. Neural Networks Learn. Syst. (2023).

12. J.-E. Campagne, F. Lanusse, J. Zuntz, A. Boucaud, S. Casas, M. Karamanis, D. Kirkby, D. Lanzieri, Y. Li, and A. Peel,
“JAX-COSMO: An end-to-end differentiable and GPU accelerated cosmology library,” arXiv, arXiv:2302.05163
(2023).

13. A. K. Maier, C. Syben, B. Stimpel, T. Würfl, M. Hoffmann, F. Schebesch, W. Fu, L. Mill, L. Kling, and S. Christiansen,
“Learning with known operators reduces maximum error bounds,” Nat Mach Intell 1(8), 373–380 (2019).

14. G. Pilikos, L. Horchens, K. J. Batenburg, T. van Leeuwen, and F. Lucka, “Fast ultrasonic imaging using end-to-end
deep learning,” in International Ultrasonics Symposium (IEEE, 2020), pp. 1–4.

15. G. Pilikos, C. L. de Korte, T. van Leeuwen, and F. Lucka, “Single plane-wave imaging using physics-based deep
learning,” in International Ultrasonics Symposium (IEEE, 2021), pp. 1–4.

16. M. Thies, F. Wagner, Y. Huang, et al., “Calibration by differentiation–self-supervised calibration for X-ray microscopy
using a differentiable cone-beam reconstruction operator,” J. Microsc. 287, 81–92 (2022).

17. A. S. Jurling and J. R. Fienup, “Applications of algorithmic differentiation to phase retrieval algorithms,” J. Opt. Soc.
Am. A 31(7), 1348–1359 (2014).

18. Y. S. Nashed, T. Peterka, J. Deng, and C. Jacobsen, “Distributed automatic differentiation for ptychography,” Procedia
Computer Science 108, 404–414 (2017).

19. S. Kandel, S. Maddali, M. Allain, S. O. Hruszkewycz, C. Jacobsen, and Y. S. G. Nashed, “Using automatic
differentiation as a general framework for ptychographic reconstruction,” Opt. Express 27(13), 18653–18672 (2019).

https://doi.org/10.1016/j.crad.2021.01.010
https://doi.org/10.1109/TMI.2018.2823083
https://doi.org/10.2147/OTT.S80733
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1038/s41598-019-56847-4
https://doi.org/10.1109/TMI.2021.3077857
https://doi.org/10.48550/arXiv.2209.10021
https://doi.org/10.48550/arXiv.2302.05163
https://doi.org/10.1038/s42256-019-0077-5
https://doi.org/10.1111/jmi.13125
https://doi.org/10.1364/JOSAA.31.001348
https://doi.org/10.1364/JOSAA.31.001348
https://doi.org/10.1016/j.procs.2017.05.101
https://doi.org/10.1016/j.procs.2017.05.101
https://doi.org/10.1364/OE.27.018653

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9040

20. M. Du, Y. S. G. Nashed, S. Kandel, D. Gürsoy, and C. Jacobsen, “Three dimensions, two microscopes, one code:
Automatic differentiation for X-ray nanotomography beyond the depth of focus limit,” Sci. Adv. 6, 1 (2020).

21. F. Guzzi, A. Gianoncelli, F. Billé, S. Carrato, and G. Kourousias, “Automatic differentiation for inverse problems in
X-ray imaging and microscopy,” Life 13(3), 1 (2023).

22. M. Du, S. Kandel, J. Deng, X. Huang, A. Demortiere, T. T. Nguyen, R. Tucoulou, V. De Andrade, Q. Jin, and
C. Jacobsen, “Adorym: A multi-platform generic X-ray image reconstruction framework based on automatic
differentiation,” Opt. Express 29(7), 10000–10035 (2021).

23. A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance deep learning library,” Adv.
Neural Inf. Process. Syst. 32 (2019).

24. Y. E. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” in Doklady
Akademii Nauk (Russian Academy of Sciences, 1983), vol. 269, pp. 543–547.

25. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference on Learning
Representations (2014).

26. T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with sublinear memory cost,” arXiv, arXiv:1604.06174
(2016).

27. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).
28. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1(6), 612–619

(1984).
29. W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg,

and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24(22), 25129–25147
(2016).

30. A. A. Hendriksen, D. Schut, W. J. Palenstijn, N. Viganó, J. Kim, D. M. Pelt, T. Van Leeuwen, and K. J. Batenburg,
“Tomosipo: fast, flexible, and convenient 3D tomography for complex scanning geometries in Python,” Opt. Express
29(24), 40494–40513 (2021).

31. R. A. Schoonhoven, “Optimizing CT workflows with auto-differentiation 2023 paper,” Github (2023),
https://github.com/schoonhovenrichard/AutodiffCTWorkflows.

32. T. Van Leeuwen, S. Maretzke, and K. J. Batenburg, “Automatic alignment for three-dimensional tomographic
reconstruction,” Inverse Problems 34(2), 024004 (2018).

33. T. Donath, F. Beckmann, and A. Schreyer, “Automated determination of the center of rotation in tomography data,” J.
Opt. Soc. Am. A 23(5), 1048–1057 (2006).

34. D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “Tomopy: a framework for the analysis of synchrotron tomographic
data,” J. Synchrotron Radiat. 21(5), 1188–1193 (2014).

35. F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,”
Cytometry 6, 81–91 (1985).

36. S. B. Coban, F. Lucka, W. J. Palenstijn, D. Van Loo, and K. J. Batenburg, “Explorative imaging and its implementation
at the FleX-ray Laboratory,” J. Imaging 6(4), 18 (2020).

37. M. J. Lagerwerf, S. B. Coban, and K. J. Batenburg, “High-resolution cone-beam scan of twenty-one walnuts with
two dosage levels,” Zenodo (2020), https://zenodo.org/doi/10.5281/zenodo.3763411.

38. M. Endrizzi, “X-ray phase-contrast imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 878, 88–98 (2018).
39. P. J. Withers, “X-ray nanotomography,” Mater. Today 10(12), 26–34 (2007).
40. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction

from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
41. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. 9(1), 62–66

(1979).
42. F. De Carlo, D. Gürsoy, D. J. Ching, et al., “TomoBank: a tomographic data repository for computational X-ray

science,” Meas. Sci. Technol. 29(3), 034004 (2018).
43. R. A. Brooks and G. Di Chiro, “Beam hardening in X-ray reconstructive tomography,” Physics in medicine & biology

21(3), 390–398 (1976).
44. G. T. Herman, “Correction for beam hardening in computed tomography,” Physics in Medicine & Biology 24(1),

81–106 (1979).
45. G. Van Gompel, K. Van Slambrouck, M. Defrise, K. J. Batenburg, J. De Mey, J. Sijbers, and J. Nuyts, “Iterative

correction of beam hardening artifacts in CT,” Med. Phys. 38(S1), S36–S49 (2011).
46. M. T. Zeegers, T. van Leeuwen, D. M. Pelt, S. B. Coban, R. van Liere, and K. J. Batenburg, “A tomographic workflow

to enable deep learning for X-ray based foreign object detection,” Expert Systems with Applications 206, 117768
(2022).

47. M. T. Zeegers, “A collection of 131 CT datasets of pieces of modeling clay containing stones - Part 1 of 5,” Zenodo
(2022), https://zenodo.org/doi/10.5281/zenodo.5866227.

48. R. Kumar, M. Purohit, Z. Svitkina, E. Vee, and J. Wang, “Efficient rematerialization for deep networks,” Adv. Neural
Inf. Process. Syst. 32 (2019).

49. C. R. Vogel and M. E. Oman, “Iterative methods for total variation denoising,” SIAM J. Sci. Comput. 17(1), 227–238
(1996).

50. V. Panin, G. Zeng, and G. Gullberg, “Total variation regulated EM algorithm [SPECT reconstruction],” IEEE Trans.
Nucl. Sci. 46(6), 2202–2210 (1999).

https://doi.org/10.1126/sciadv.aay3700
https://doi.org/10.3390/life13030629
https://doi.org/10.1364/OE.418296
https://doi.org/10.48550/arXiv.1604.06174
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1364/OE.24.025129
https://doi.org/10.1364/OE.439909
https://github.com/schoonhovenrichard/AutodiffCTWorkflows
https://doi.org/10.1088/1361-6420/aaa0f8
https://doi.org/10.1364/JOSAA.23.001048
https://doi.org/10.1364/JOSAA.23.001048
https://doi.org/10.1107/S1600577514013939
https://doi.org/10.1002/cyto.990060202
https://doi.org/10.3390/jimaging6040018
https://zenodo.org/doi/10.5281/zenodo.3763411
https://doi.org/10.1016/j.nima.2017.07.036
https://doi.org/10.1016/S1369-7021(07)70305-X
https://doi.org/10.1046/j.1365-2818.2002.01010.x
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1088/1361-6501/aa9c19
https://doi.org/10.1088/0031-9155/21/3/004
https://doi.org/10.1088/0031-9155/24/1/008
https://doi.org/10.1118/1.3577758
https://doi.org/10.1016/j.eswa.2022.117768
https://zenodo.org/doi/10.5281/zenodo.5866227
https://doi.org/10.1137/0917016
https://doi.org/10.1109/23.819305
https://doi.org/10.1109/23.819305

Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9041

51. M. Persson, D. Bone, and H. Elmqvist, “Total variation norm for three-dimensional iterative reconstruction in limited
view angle tomography,” Phys. Med. Biol. 46(3), 853–866 (2001).

52. E. Y. Sidky, J. H. Jørgensen, and X. Pan, “Convex optimization problem prototyping for image reconstruction in
computed tomography with the Chambolle–Pock algorithm,” Phys. Med. Biol. 57(10), 3065–3091 (2012).

53. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60(1-4),
259–268 (1992).

54. M. J. Lagerwerf, W. J. Palenstijn, F. Bleichrodt, and K. J. Batenburg, “An efficient interpolation approach for
exploring the parameter space of regularized tomography algorithms,” Fundamenta Informaticae 172(2), 143–167
(2020).

https://doi.org/10.1088/0031-9155/46/3/318
https://doi.org/10.1088/0031-9155/57/10/3065
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.3233/FI-2020-1898

