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Abstract

Superresolution (SR) aims to increase the resolution of images by recovering detail. Compared to standard
interpolation, deep learning-based approaches learn features and their relationships to leverage prior knowledge of
what low-resolution patterns look like in higher resolution. Deep neural networks can also perform image cross-
calibration by learning the systematic properties of the target images. While SR for natural images aims to create
perceptually convincing results, SR of scientific data requires careful quantitative evaluation. In this work, we
demonstrate that deep learning can increase the resolution and calibrate solar imagers belonging to different
instrumental generations. We convert solar magnetic field images taken by the Michelson Doppler Imager
(resolution ∼2″ pixel−1; space based) and the Global Oscillation Network Group (resolution ∼2 5 pixel−1; ground
based) to the characteristics of the Helioseismic and Magnetic Imager (resolution ∼0 5 pixel−1; space based). We
also establish a set of performance measurements to benchmark deep-learning-based SR and calibration for
scientific applications.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); The Sun (1693); Solar physics (1476); Solar
active regions (1974)

1. Introduction

Over the last 50 yr, space- and ground-based instruments
have mapped the solar surface magnetic field (Figure 1). These
images, known as magnetograms, have significantly advanced
our understanding of solar magnetism (Hathaway 2010),
understanding of the solar corona (Linker et al. 1999), and
prediction of space weather events (Tóth et al. 2005).
Magnetograms are constructed from measurements of spectral
polarization (Borrero & Ichimoto 2011), which are compared to
models of the solar atmosphere to find an optimal fit between
an estimated local magnetic field and the observed spectral
properties.

Despite the wealth of archival data, differences in resolution,
spectral inversion techniques, instrument noise levels, or other
instrument properties prevent us from easily combining data
across instruments to study magnetic field structures over
multiple solar cycles (Figure 1) (e.g., Díaz Baso & Asensio
Ramos 2018). Compared to traditional cross-calibration
techniques such as pixel-to-pixel comparison (Liu et al.
2012), histogram equalization (Riley et al. 2014), or harmonic
scaling (Virtanen & Mursula 2019), machine learning (ML) has

previously been shown to successfully calibrate magnetograms
(Guo et al. 2021; Higgins et al. 2022).
Superresolution (SR) is an image-processing technique that

aims to increase the resolution of images by recovering
subpixel detail (Shukla et al. 2020). The information used for
recovering detail can come from subpixel shifts provided by
sequences of images (frequency domain), or by a good
understanding of the degradation processes, including blurring,
that cause the loss of detail (i.e., atmospheric seeing, point-
spread function, etc.) (Shukla et al. 2020). In the case of
applications with sufficient and representative low-resolution
(LR) and high-resolution (HR) samples, context can provide an
additional source of information (i.e., the knowledge that all
LR images belong to a specific category). Convolutional neural
networks (CNNs) are especially suited for this type of
application due to their ability to empirically map the
underlying connections between an image pixel and those
surrounding it (Yang et al. 2019). Furthermore, neural
networks can learn features and feature relationships that are
inherent to the data domain as a whole. For example, previous
work (Dahl et al. 2017) has shown that neural networks
successfully superresolve downsampled images of human
faces. Important features (i.e., a mouth, nose, and two eyes)
were reconstructed correctly and their spatial relationships were
preserved. The majority of applications of CNNs for SR
involve natural images (i.e., images with three color channels
representing red, green, and blue). These approaches use
training metrics that are tailored toward SR outcomes that are
optimal for human visual perception. In other words, their
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objective is to produce images that look right to the human
observer (Wang et al. 2020).

Deep-learning applications of SR for scientific data have
tremendous potential due to their ability to simultaneously
superresolve (recover scientifically accurate detail in images)
and cross-calibrate (correct systematic differences between
measurement instruments). However, scientific images have a
significantly larger dynamic range than natural images. For
example, pixels in magnetic field images can assume real
values spanning several orders of magnitude, while pixels in
natural images take discrete values over a fixed range. Another
important difference is the fact that magnetic fields have two
polarities that cancel out at lower resolutions, while in natural
images intensity is strictly positive. Furthermore, since the Sun
is a three-dimensional object projected onto a two-dimensional
image, solar magnetic field images suffer from projection
effects, especially close to the solar limb. Therefore, metrics in
computer vision that are tailored toward estimating the
perceptual quality of a natural image do not necessarily capture
how well superresolved magnetograms represent the physical
properties of the Sun’s magnetic field.

Our work has three main objectives: (1) to demonstrate that a
deep-learning approach can leverage the information present in
astronomical images to recover detail in LR images while
maintaining their scientific accuracy; (2) to show how super-
resolving a scientific image via deep learning homogenizes
instrument properties and adds value compared to simple
calibration at the same resolution, (3) to establish a set of
quantitative performance measurements that can be used to
benchmark the performance of different SR algorithms for
astronomical images, as well as to benchmark the performance
of future applications of SR to the physical sciences.

Previous SR approaches for solar magnetograms relied on
physics-based models to simulate HR magnetograms as the
ground truth (Díaz Baso & Asensio Ramos 2018). Other deep-
learning approaches superresolved a down-scaled version of
the same instrument, e.g., using generative adversarial net-
works (Rahman et al. 2020). The novelty in our approach is
that we use deep learning to cross-calibrate and superresolve
across different instruments. We cross-calibrate and super-
resolve line-of-sight (LOS) magnetograms from the Michelson
Doppler Imager (MDI; ∼2″ pixel−1; space-based) on board the

Solar and Heliospheric Observatory (SOHO; Scherrer et al.
1995), as well as LOS magnetograms taken by the National
Solar Observatory’s (NSO) Global Oscillation Network Group
(GONG; ∼2 5 pixel−1; ground based, Harvey et al. 1988) to
the ∼0 5 pixel−1 resolution of magnetograms taken by the
Helioseismic and Magnetic Imager (HMI; last generation,
space based, Scherrer et al. 2012) on board the Solar Dynamics
Observatory (SDO; Pesnell et al. 2012). Our results indicate
that deep learning can leverage the complex information and
context present in magnetograms. This allows us to encode the
structure of the magnetic field in a lower dimensional latent
space and then map magnetograms from one instrument to the
other. Additionally, we show that superresolved magnetograms
are better at capturing the physical properties of Space Weather
HMI Active Region Patches (SHARPs; Bobra et al. 2014) than
cross-calibration alone.

2. Data

In this work, we use solar magnetograms from NSO/GONG
(Harvey et al. 1988), SOHO/MDI (Domingo et al. 1995;
Scherrer et al. 1995), and SDO/HMI (Pesnell et al. 2012;
Scherrer et al. 2012; Schou et al. 2012). NSO/GONG and
SOHO/MDI act as our source instruments and SDO/HMI as
our target instrument. NSO/GONG is a ground-based instru-
ment currently used as the main operational magnetograph for
NOAA’s Space Weather Prediction Center. SOHO/MDI is
SDO/HMI’s predecessor featuring a lower cadence, sensitivity,
and resolution.

2.1. Data Splits

To train our SR architecture, we leverage overlapping
observation periods between MDI and HMI (2010–2011) and
between GONG and HMI (2010–2019), which provides us
with ∼9000 (∼19,000) MDI-HMI (GONG-HMI) magneto-
gram pairs. We split the data into training/validation/test sets
by randomly allocating 10 months to the training set, 1 month
to the validation set, and 1 month to the test set for each
overlapping year (see Table 1).
In the case of GONG-HMI, we only use even years (2010,

2012, 2014, 2016, and 2018) for this work to keep the data
volume manageable. The test set comprises magnetograms

Figure 1. Overview of ground (G) and space-based (S) observations of the Sun. The top panel shows the pixel size in arcseconds, and the operation time span of eight
different instruments. The bottom panel shows the variation of the mean sunspot number over the last 50 yr. To date, the HMI, on board SDO, provides the highest
resolution full-disk magnetograms. This is followed by the 512 channel magnetograph of the Kitt Peak Vacuum Telescope and the Synoptic Optical Long-term
Investigations of the Sun by the NSO, GONG, the Mount Wilson Observatory, and finally the Wilcox Solar Observatory.

2

The Astrophysical Journal Supplement Series, 271:46 (18pp), 2024 April Muñoz-Jaramillo et al.



taken at a 96 minute cadence for MDI, and a 10 minute cadence
for GONG. Across all experiments, we choose 2010 June and
2011 March as our test months.

Each full-disk magnetogram is split into small patches
(discussed below) to ensure that model training is done on
spatial scales and features that evolve over hours. This helps
break any correlations that may happen from one solar rotation
to the next. Because of this, we do not provide a time buffer
between the training, validation, and test months to ensure data
independence. For other tasks involving larger areas, or for
performing full-disk conversions, the slow evolution of the
global magnetic field could unintentionally leak into the test set
if a sufficient time buffer is not provided.

2.1.1. Data Preprocessing

The data is preprocessed according to the following three
steps:

1. Standardization of the Sun’s orientation by rotating solar
north to image north.

2. Standardization of the detector’s angular resolution and
solar angular radius. We use the reproject package11 to
ensure that the resolution of our source and target
instruments are integer multiples of each other.

3. Splitting of full-disk magnetograms into small patches,
followed by co-alignment of each source target pair.

In detail, each full-disk magnetogram is split into 1024
patches of size 32× 32 pixels for the LR input, and 128× 128
pixels for the HR target. For each LR source patch (32× 32
pixels), a search is performed within an extended target patch
window (256× 256 pixels) to find the optimal 128× 128 pixel
area that best matches the source. This helps us account for
slight displacements due to solar rotation, as well as optical
aberrations. We find that this template matching leads to
significantly better performance than when the approximate
alignment of patches is performed.

2.2. Data Augmentation

The observations used in this work cover one solar cycle,
meaning that our data set contains systematic polarity
orientations for both positive and negative fields and their
relative distributions across the solar disk. These polarity
orientations change from cycle to cycle and from hemisphere to
hemisphere, increasing the risk of our network learning
unintended structures and patterns. To avoid this, we augment
data through random polarity flips, as well as north–south, and
east–west reflections.

3. Methodology

3.1. Neural Network Architecture

The deep-learning model used in this work was adapted from
the HighRes-net model (Deudon et al. 2020)12 (see Figure 2),
as this model has shown great performance for SR of Earth
observation data. Our model input consists of two channels, a
magnetogram patch and a location channel. The location
channel captures the normalized radial distance of each pixel to
the disk center and provides the network with the necessary
information for estimating projection and foreshortening effects
at the solar limb. The data is encoded into 64 channels through
a series of convolution operations shown in the encode block of
Figure 2. In the decoding operation, the size of each encoded
patch is increased through bilinear upsampling to a target patch
size of 128× 128 pixels, before passing it through a final
convolutional layer.
We use reflection padding to retain constant dimensions as

the different convolutional layers are applied. We also
experimented with zero padding and constant padding, but
found reflection padding to result in better performance.

3.2. Loss Function and Partial Grid Search for Loss
Coefficients

Training a neural network involves the minimization of an
objective function that quantifies how well the transformation
of the input matches the target. This objective function is
typically referred to as the loss function (). As SR is an ill-
posed problem (i.e., a one-to-many operation), multiple SR
outputs can explain the same LR input. For scientifically useful
applications of SR, the model output should capture the
physical properties of the target, and cannot just be
perceptually convincing. To better respect the physical proper-
ties of the target HR magnetograms, we construct a loss
function that combines four terms, each of which aims to
capture a different aspect of what makes a magnetogram
physically plausible. Importantly, compared to recent advances
in developing physics informed neural networks (e.g., Raissi
et al. 2019), our model does not explicitly draw upon physical
laws, but instead relies on terms that are common for SR and
image processing and that also capture physical quantities of
interest for magnetograms.
The loss function used in this work is

  

  ( )
= +

+ +
w

w w , 1
l2 grad grad

hist hist ssim ssim

with the following terms:

1. l2 penalizes the mean squared error (MSE) between the
superresolved output and the target, and captures pixel-
based differences in the signed flux.

Table 1
Data Split Used for Model Training, Validation, and Testing

Training/Validation Testing

MDI → HMI 2010 April to 2011 April, excluding the test set 2010 June, 2011 March
GONG → HMI 2012, 2014, 2016, 2018, excluding the test set 2011 March, 2012 April

2014 December, 2016 February
2018 November

11 https://reproject.readthedocs.io/en/stable/ 12 https://github.com/ElementAI/HighRes-net
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2. grad penalizes the mean squared difference between
pixel gradients of the superresolved output and the target.
The gradients are approximated using a Sobel operator
(Pingle 1969). grad aims to capture the gradients
present at the boundaries between positive and negative
polarities.

3. hist penalizes an approximation of the total variation
distance between magnetic field distributions of the
output and target magnetograms. For that, we calculate
a differentiable pixel histogram using the method
described in Wang et al. (2018). Formally, if the magnetic
field of a magnetogram is divided into K bins, given a
value of the magnetic field Bi,j at pixel (i, j), we assign a
differentiable weight ψk(Bi,j) to bin k= 1,...,K, where

( ) { ∣ ∣}y
g

m= - -B Bmax 0, 1
1

,k i j
k

i j k, ,

where μk and γk are learnable parameters. Then, for each
bin k, we compute a batch differentiable count of
magnetic field values that falls within [μk− γk, μk+ γk]
as

( )
( )

å å y
= Î

B ,
n

N

i j p
k i j

1 ,
,

n

where N is the number of 128× 128 patches pn in the
batch.

4. ssim measures the structural similarity (SSIM; Wang
et al. 2004) between regions surrounding each pixel,
including similarities in contrast, unsigned flux, and
variance. Formally, given a superresolved 128× 128
patch ˆ { ˆ }=B Bn i j n, , , its target Bn= {Bi,j,n} and weights
αi,j, the structural similarity is defined as

( ˆ )
( )( )

( )( )
ˆ ˆ

ˆ ˆ

m m s
m m s s

=
+ +

+ + + +
B B

C C

C C
SSIM ,

2 2
,n n

B B BB

B B B B

1 2
2 2

1
2 2

2

where

( )
åm = w B ,B
i j

i j i j
,

, ,

( )
( )
ås m= -w B ,B
i j

i j i j B
2

,
, ,

2

and

( )( ˆ )ˆ
( )

ˆås m m= - -w B B .BB
i j

i j i j B i j B
,

, , ,

ˆmB and ˆsB are defined similarly as μB and σB. In practice,
the weights are defined by an 11× 11 circular Gaussian
weighting scheme. And the constants C1 and C2 are set to
0.0001 and 0.009, respectively.

We initialized the values of the loss coefficients w to scale
each term’s contribution to the same order of magnitude as the

Figure 2. Diagram of the deep-learning model used in this work. The input data consists of a magnetogram and a location channel, each of size 32 × 32 pixels. The
main operations of the model consist of an encoder and a decoder. Through bilinear upsampling by a factor of 4, the size of the image is increased from 32 × 32 to
128 × 128 pixels per patch. RP and DO denote whether a convolutional layer was trained with reflection padding or Monte Carlo dropout respectively.
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l2 term. We then refined the scaling factors by conducting a
partial grid search to determine which w w,grad hist, and wssim

minimize  + w2 grad grad,  + w2 hist hist, and  + w2 ssim ssim,
respectively (see Table 2). We subsequently used the values of the
weights in Table 2 to minimize the loss function included as
Equation (1). These coefficients vary by instrument because of
differences in the properties of GONG and MDI, e.g., resolution,
noise, and saturation levels.

3.3. Training Hyperparameters

Table 3 shows the values of the hyperparameters used to
train the models. All magnetic fields are normalized by 3500 to
avoid overflow issues. We use an Adam optimizer (Kingma &
Ba 2014), with a constant learning rate (10−4) without an
annealing schedule.

4. Results

4.1. Assessing Physical Properties of Superresolved
Magnetograms

As mentioned previously, compared to natural images,
which often consist of three color channels with integer pixel
values, LOS estimates of the solar magnetic field can be
positive or negative and span multiple orders of magnitude.
Additionally, given that the Sun is a three-dimensional object
projected onto a two-dimensional image, LOS measurements
show projection effects that are location dependent. More
specifically, the solar limb shows significantly larger projection
effects than areas close to the center of the Sun. This highlights
the need to consider pixel locations when evaluating the
performance of SR approaches (as discussed in more detail
later).

To measure the performance of any SR or cross-calibration
operation of solar magnetograms, it is essential to approach
them as scientific measurements rather than standard images.
We propose to use the following quantities to compare the
performances of SR/cross-calibration approaches. Note that
these quantities are post-mortem measurements that, we
believe, should be reported for any SR/cross-calibration
methods of solar magnetograms and astronomical data in
general.

We denote B̂i j n, , as the superresolved magnetic field at pixel
(i, j) and patch n; and Bi,j,n as the ground-truth target magnetic
field value for the corresponding patch and at the same
location. Each patch n, unless specified otherwise, refers to an
area of 128× 128 pixels, corresponding to 1/1024 of a full-
disk HMI magnetogram. We find that patches of 128× 128
pixels are large enough to encompass a whole active region,
while being small enough to allow fast matrix computations
and obtain an approximate flux balance (Mackay et al. 2011).

1. Correlations:We follow Liu et al. (2012) and measure
how superresolved magnetograms are cross-calibrated to
their HR counterpart by measuring the Pearson

correlation coefficient between ˆ { ˆ }=B Bi j n, , and
B= {Bi,j,n} across all pixels (i, j) and patches n:

( )( ˆ ˆ )

( ) ( ˆ ˆ )
( )

å

å å
r =

- -

- -

B B B B

B B B B
, 2

i j n
i j n i j n

i j n
i j n

i j n
i j n

, ,
, , , ,

, ,
, ,

2

, ,
, ,

2

where B and B̂ are the average ground-truth and
superresolved magnetic field across all pixels and patches
(ρ takes value between 0 and 1). The larger ρ the better is
the cross-calibration of the superresolved magnetograms
to their HR counterpart.

2. Signed fluxes:Magnetic fields are divergence-free, i.e.,
the integration of the radial magnetic field over the solar
surface sums to zero. To evaluate how an SR technique
conserves the signed flux, we calculate the signed flux of
a pixel by converting the LOS field into the radial field
and correcting for area foreshortening:

ˆ ( )f f= -E . 3i j n i j n i j n, ,
flux

, , , ,

3. Extreme values:Regions with extreme magnetic field
values occupy areas that are smaller than the area covered
by a pixel of a magnetogram. This is particularly true for
lower-resolution instruments (e.g., MDI, GONG). We
expect that the filling factor (i.e., the ratio of the area
occupied by the magnetic field to the total area) is larger
at HR than at LR. Therefore, particularly for the study of
sunspots and active regions, it is of interest to assess the
ability of an SR technique to generate extreme values that
occupy an area smaller than an LR pixel. Moreover,
extreme values of the magnetic field have low frequency.
Therefore, they may be described less confidently by an
SR technique that learns its predictions from data with a
limited number of occurrences of extreme values. To
measure the ability of an SR technique to reproduce the
tail of the magnetic field distribution, we compute the
absolute difference between the minimum/maximum
magnetic field over each 128× 128 patch n:

∣ ˆ ∣ ( )= -E B Bmax max 4n n n
max

and

∣ ˆ ∣ ( )= -E B Bmin min . 5n n n
min

4. Gradients:We expect large magnetic field values to
occupy a smaller number of pixels in HR magnetograms
than in lower-resolution magnetograms. Pixel-level
gradients of magnetic field values can quantify variations
of the magnetic field within an LR pixel. This also helps
to evaluate how an SR technique captures polarity
inversion and defines boundaries between positive and
negative regions. We compute Ei j n

g
, , as the (i, j) pixel of

the image gradient of the difference ˆ -B Bn n between the

Table 2
Values of the Loss Coefficients for MDI and GONG Resulting from a Partial

Grid Search

MSE Gradient Histogram SSIM

Optimal MDI run 1 5 1e-5 5e-4
Optimal GONG run 1 5 1e-6 5e-5

Table 3
Hyperparameters Used to Train the Best Model

Hyperparameter Value

Number of epochs 20
Learning rate 10−4

Batch size/GPU 64
Number of GPUs 8
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predicted and true magnetogram of patch n:

( ˆ )

( ) ( ) ( )
( )
( ) ( )

= -

= +

= *
= *

E g B B

g I g I g I

g I G I

g I G I

, where

, with

, and

. 6

i j n
g

n n i j

i j x i j y i j

x x

y y

, , ,

, ,
2

,
2

Here, g is the (i, j) pixel of the output image of the Sobel
operator g on image I. Gx and Gy are 3× 3 kernels13 that
convolve an image to produce the smoothed finite
difference on the x and y image dimensions, respectively.

To measure the performance of SR, we compute the signed
flux and extreme values at small spatial scales using patches of
size 4× 4, 8× 8, 16× 16, and 32× 32 pixels. In addition, we
also calculate the Pearson correlation as a function of magnetic
field strength and location on the surface of the Sun. This
allows us to understand how the performance of any SR
technique applied to the solar magnetic field depends on the
spatial scale and strength of the magnetic field.

4.2. Baseline Comparisons

To benchmark our deep-learning approach, we compare it
against a bicubic upsampling baseline. Bicubic upsampling
interpolates only the information contained in the LR image,
and does not add new information to the higher-resolution
counterpart.

We follow the method presented in Liu et al. (2012) and
apply a cross-calibration factor to MDI and GONG. We
perform a linear regression of LR magnetic fields (MDI or
GONG) against the HR magnetic field (HMI) of the form
MDI/GONG = a + b×HMI. We find that b= 1.314 for MDI
and b= 0.7 for GONG. We construct our baseline by bicubic
upsampling, and then, scaling of MDI by 1/1.3 and GONG by
1/0.7.
In addition to our baseline, we also compare our work to

results achieved with the same neural network but employing a
loss function that is only based on the MSE between the model
output and target. This allows us to highlight the need for
including physically motivated terms in the loss function when
handling scientific data.

4.3. Ablation Study—Optimization Penalty Terms

Our first trained models only contained the MSE loss (see
Section 3.2). However, it became apparent that this loss was
not sufficiently nuanced to capture important properties of the
HR magnetograms. In this section, we show the results of the
gradual addition of the loss terms described (see Section 3.2)
roughly in the order in which they were added. In total, we
added three additional terms that addressed the need for better
polarity inversion lines (grad, Grad), well-balanced positive
and negative polarities (hist, Hist), and more concentrated and
detailed magnetic field features (SSIM, SSIM). These were the
only additional loss terms that we experimented with and they
resulted in superresolved magnetograms that better match the

Figure 3. Example of the resolution differences between an input magnetogram (MDI/GONG), the deep-learning output, and the target (HMI). The insets show a
128 × 128 patch with clear resolution differences between the model inputs (MDI and GONG) and the model target (HMI). All panels show nearly simultaneous
measurements made by GONG, MDI, and HMI on 2011 March 14.

13 ⎡

⎣
⎢

⎤

⎦
⎥=

-
-
-

G
1 0 1
2 0 2
1 0 1

x and
⎡

⎣
⎢

⎤

⎦
⎥=

- - -
G

1 2 1
0 0 0

1 2 1
y .

14 Liu et al. (2012) find a value of b = 1.4, but their regression uses uniform
weight across all inputs. Instead, we bin the LR magnetic field and weight each
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weighted regression balances the impact of low and high magnetic fields.
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statistical properties of HMI. However, we cannot rule out the
possibility that there are other even better loss terms, or
combinations of them, that could further improve the results.

Figure 3 shows full-disk images of our input data (top row)
and the best results of our deep-learning SR network (bottom
row). The insets show one of the 1024 patches used for
splitting the Sun during training. These results were achieved
with a loss function that features a combination of differenti-
able physically motivated terms including the MSE, magnetic
field gradients, pixel histograms, and self-similarity penalties,
as discussed earlier. The superresolved full-disk magnetograms
of MDI and GONG have noise levels, texture, and relative
magnetic field intensity akin to those of the HMI target.
Zooming in closer, the insets show higher-resolution structures
for the model’s outputs, which better match those of the HMI
target. The improvement is especially significant for GONG,
with a striking difference in small-scale structures between the
input and output patches.

Figure 4 compares superresolved magnetograms obtained
with different loss functions to the input (MDI/GONG), the
target (HMI), and our bicubic upsampling baseline. The first
row (third row) in Figure 4 shows the same patch of the Sun
with MDI (GONG) as the input. The second and last rows
show the calculated difference between the upsampled
magnetograms and the target.

Starting with our baseline, the bicubic upsampled MDI
magnetogram still shows the salt-and-pepper-like noise struc-
ture that is present in the MDI input in the lower left corner of
the magnetogram patch. This is because simple upsampling
techniques extrapolate the magnetic field, including its noise, to
the higher-resolution image. Moreover, bicubic upsampling
cannot leverage the information present in the whole data set of
magnetograms. Bicubic upsampling of GONG increases the

sharpness of edges around active regions, but the large patch-
like features do not increase in detail.
Using our deep-learning model with a simple MSE loss

removes the noise floor of the MDI input image. In addition,
we start to recover small-scale features in and around active
regions. Adding optimization penalty terms to the MSE loss
modifies details in the HR reconstructions. It also visibly
reduces the characteristic size of the structures in the difference
images (Figure 4, second row). We see this as evidence that the
additional loss terms allow the CNN to better capture the
structure of the target magnetic field. However, a purely visual
inspection of the images is not enough to find significant
differences or distinguish which loss function is best at
recovering HR features.
Figure 5 is an ablation study that compares the effect of each

component included in the loss function on the reconstruction
of the magnetic field. We compare performances by evaluating
the post-mortem measurements introduced earlier and calculate
(a) differences in extreme magnetic field values, (b) the Pearson
correlation coefficient, (c) differences in image gradients, and
(d) differences in the signed flux of the target and deep-learning
output magnetograms. All metrics are calculated on a pixel-to-
pixel basis across our test set, which contains approximately 1
million patches for MDI and 8 million patches for GONG.
Figure 5 shows the results obtained for MDI input
magnetograms.
As mentioned above, a simple MSE loss succeeds at creating

visually pleasing magnetogram outputs that show a higher level
of detail than the input magnetograms (see Figure 4). However,
an objective function based exclusively on MSE is unable to
reconstruct extreme values of the magnetic field (i.e., the
strongest positive and negative magnetic fields in a patch)
properly as shown in Figure 5(2-a)). Looking at how well

Figure 4. Comparison of the same area of a magnetogram on 2011 March 14 for the input, target, and deep-learning output with different loss functions. The top two
rows show MDI magnetograms as input, the bottom two rows show a comparison for the conversion of GONG magnetograms. We chose this particular magnetogram
patch as an example for its interesting structure and moderate to high magnetic field strength.
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Figure 5. Quantitative comparison of the performance of different loss functions trained on MDI magnetograms. We use bicubic upsampling as a comparative
baseline (row 1). All loss functions are based on the MSE term, plus up to three additional penalty terms (rows 2–5). The shaded histograms correspond to calculations
across the test set for patches within 90% of the solar disk radius. A red vertical line indicates the ideal value for the corresponding performance metric. The two
leftmost columns (a) and (b) show calculations performed across patches of 32 × 32 pixels. The two rightmost columns (c) and (d) show calculations performed per
pixel in each patch of the test set. Columns left to right show (a) the added difference between the target and output maxima and minima per patch, (b) Pearson
correlation per patch, (c) the magnitude of the target and output gradient difference per pixel, and (d) the difference in target and output magnetic flux per pixel. To
compare MSE+Grad+Hist+SSIM with the rest, the bottom row is superimposed (nonshaded histogram) on all other rows.
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extreme values are reconstructed, we observe double peaks
centered around ±100 Gauss in the bicubic baseline
(Figure 5(1-a)), and when using an MSE loss (Figure 5(2-a)).
With MSE alone, the neural network consistently under-
estimates the magnitude of extreme values, leading to a peak
centered around +100 Gauss for the maximum magnetic field
values, and a second peak centered around −100 Gauss for the
minimum magnetic field values when comparing the target and
the deep-learning output. Additionally, the MSE loss produces
a clear asymmetry in the signed flux (Figure 5(2-d)). This is
highly problematic considering that the solar magnetic field
must be divergence-free, and thus in flux balance.

Including a gradient penalty term in the loss function
(indicated in the third row of Figure 5 as MSE + Grad)
removes the double peaks and centers the distribution around
zero (red line in Figure 5(3-a)). Taking image gradients into
account is a measure often used in computer vision to improve
edge detection and texture matching (Forsyth & Ponce 2002).
For the application to magnetograms, edge detection aids in
defining boundaries around active regions, and texture
matching helps to recover detailed features in the HR image.
Despite these improvements, maximum fields are still slightly
underestimated, as indicated by the fact that the distribution of
extreme values is asymmetrically skewed toward positive
values for an MSE + gradient loss function (Figure 5(3-a)).

On average, the sum of the magnetic field values on the
surface of the Sun is expected to be close to zero. Deviations
from zero only occur when the leading part of an active region
comes into view of the instrument, and the following
cancellation of the magnetic field cannot be viewed yet. Biases
in reconstructing positive or negative fields in the super-
resolved magnetic field would violate Gauss’ law (which states
that the magnetic field must be divergence-free). The histogram
penalty (MSE + Grad + Hist in the fourth row of Figure 5)
manages to mostly correct the skewed distribution of extreme
values (Figure 5(4-a)) while also slightly shifting the
discrepancies in image gradients (Figure 5(4-c)) closer to zero.

We further improve model performance by adding a
similarity penalty term (SSIM, see Section 3.2) that forces
the model to learn spatial structures of the solar magnetic field
(MSE + Grad + Hist + SSIM in the fifth row of Figure 5).
This combination of terms also produces the solution with
the best balance between positive and negative fluxes
(Figure 5(4-d)).

This ablation study shows that the structure of the loss
function we optimize for generates trade-offs for the physical
properties of the superresolved magnetograms. While MSE
alone achieves better performances in terms of Pearson
correlations, adding a gradient, histogram, and SSIM penalty
terms significantly improves how the model captures extreme
values of the solar magnetic field, as well as achieving the flux
balance critical to ensuring that the recovered magnetic field is
divergence-free.

4.4. Benefits of Data Homogenization

In the following, we demonstrate the value added to using
superresolved magnetograms over their LR counterparts.
Specifically, we investigate small- and large-scale structures,
homogenization properties, and temporal patterns of the
superresolved magnetic fields.

In Figure 6, the first (third) row shows a pixel-to-pixel
correlation plot between target magnetograms and SR output

for the entire test set for MDI (GONG). The test set contains
≈25 (≈125) million pixels for MDI (GONG). The orange lines
highlight regression lines between the output and target. To put
these results into perspective, Figure 6 also shows a
comparison of the correlation between the bicubic upsampling
baseline and the target magnetograms (purple graph on the
right). Correlation plots aligning with the 45° diagonal or small
residuals indicate good cross-calibration. Our deep-learning
approach centers the correlation plots more on the 45°
diagonal, thereby improving the cross-calibration between
MDI (GONG) and HMI. This is clearly visible for GONG
(Figure 6, third row) and less strongly observable for MDI
(Figure 6, first row).
Figure 6 suggests great performance of both the bicubic

baseline (purple) and our deep-learning approach (orange)
when only looking at the correlation plots as both comparisons
are strongly centered around x= y. The second and fourth rows
in Figure 6 show further quantitative visualizations of both the
cross-calibration and SR approaches, showing that deep
learning is more effective at performing SR. We measure this
improvement by investigating the relative average deviation of
the output and target across a 4× 4 pixel area compared to the
corresponding LR pixel. In the case of MDI, the deep-learning
algorithm is able to fix the well-known saturation error at
strong magnetic fields. In the case of GONG, the deep-learning
algorithm is able to overcome the large disagreement between
GONG and HMI magnetograms present around 1000 G.
These results highlight one of the main challenges of finding

suitable quantities to capture SR. When looking simply at
averages, it is easy to become overly confident and mis-
represent the quality of results. Our work encourages bench-
marking SR techniques with a quantitative assessment that
directly measures the reconstruction of small-scale structures of
the magnetic field.

4.5. Comparison of Large-scale Structures

Table 4 replicates the quantitative assessment in Tables 1
and 2 of Liu et al. (2012) and compares the Pearson correlation
coefficient between superresolved MDI and GONG magneto-
grams across different radial regions of the Sun and different
values of the magnetic field. For both MDI and GONG, the
Pearson coefficient is computed on our test set of magneto-
grams from 2011 March. Our results show that our deep-
learning approach generates magnetograms that contain
information present in HMI magnetograms, but not in their
LR counterparts. Across all radial regions and field values, the
Pearson correlation coefficient between superresolved and HMI
magnetograms increases by 5%–7% relative to the correlation
between lower-resolution and HMI magnetograms.

4.6. Comparison of Small-scale Structures

In Table 5, we compare statistics of the magnetic field
between HMI and superresolved MDI/GONG over kernels of
various pixel sizes. We benchmark our results against our
baseline approach (bicubic upsampling with linear rescaling).
Our results show that the difference in gradient between HMI
and deep-learning output over small kernels (2–4 pixels) is
30% (for MDI) and 4% (for GONG) smaller than between HMI
and the baseline outputs. Similar improvements are observed
for extreme values of the magnetic field within kernels of
different sizes. This confirms that our deep-learning SR
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captures details that are averaged out at lower resolution.
Remarkably, improvements in small-scale patterns extend to
structures of size larger than the 4× upscaling factor.

4.7. Quality Assessment of SR Using SHARPs

Finally, in this section, we show the value added of
superresolved magnetograms to study time series of unsigned
fluxes and gradients within SHARPs (Bobra et al. 2014).15 The
SHARPs data series allows us to systematically track solar
active regions at a 12 minute cadence over the lifetime of each
region, and is among the most widely used products for
connecting the evolution of individual magnetic regions and
space weather events (see Asensio Ramos et al. 2023, and the
references therein). Each region tracked through SHARPs has
an associated HMI Active Region Patch (HARP) number
(HARPNUM), and a number of associated calculated quantities

Figure 6. 2D Histogram of pixel-to-pixel comparison for test patches of the MDI → HMI (top two rows) and GONG → HMI (bottom two rows) transformation. The
following caption equally applies to the panels belonging to each instrument. In all panels, orange indicates the deep-learning output, while purple indicates the
bicubic upsampling baseline. The bold lines denote the median of the quantity and the shaded area is the 25th–75th percentile range. Top row: comparison between the
inferred (x-axis) and target magnetic field (y-axis) for all individual pixels in our test set. The y = x line is denoted with a green dotted line. Note that the bold median
lines are difficult to see because a simple correlation plot is not ideal for evaluating SR performance. Bottom row: mean relative error in each superresolved 4 × 4
pixel patch (y-axis) as a function of the magnetic field of the corresponding LR input pixel (x-axis). We propose this as a far superior quantity to visually evaluate the
performance of SR algorithms. The closer this quantity is to zero, the better.

Table 4
Comparison of MDI/Superresolved SR-MDI and GONG/Superresolved SR-

GONG with HMI

Area MDI SR-MDI GONG SR-GONG

0 � r � 1 0.89 0.93 0.77 0.88
0 � r � 2/3 0.91 0.94 0.82 0.90
0 � r � 1/3 0.90 0.94 0.80 0.88
1/3 � r � 1/2 0.91 0.94 0.82 0.90
1/2 � r � 3/4 0.91 0.94 0.83 0.90

10 G � field 0.92 0.94 0.82 0.90
600 G � field 0.97 0.98 0.94 0.97
0 � field � 600 G 0.82 0.88 0.68 0.81

Note. The radius of the Sun r is normalized to 1 at the limb. The table reports
the Pearson correlation coefficient between MDI and HMI; and GONG and
HMI. Higher values are better. To compare with HMI, MDI, and GONG
images are upsampled and multiplied by the cross-calibration factor as
described in Section 4.2. The Pearson correlation coefficient is computed as in
Equation (2). 15 http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm
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used for space weather forecasts, with the average unsigned
flux and average unsigned gradient being the only two that can
be calculated using LOS magnetograms. The main objective of
this exercise is to evaluate whether superresolving GONG and
MDI magnetograms is adding value to the resulting magneto-
grams, or whether pure calibration, i.e., adjusting for instru-
mental differences without upscaling, either using our baseline
approach or via deep learning, results in better end products.

Figure 7 focuses our analysis on HARP region 407 (NOAA
AR 11169). This region was chosen out of the 36 HARPNUM
observed during 2011 March (our test set) because it is large,
long-lived, and has relatively good time coverage by both the
MDI and GONG instruments. The top panels (Figure 7(a))
show five snapshots of the evolution of HARP region 407 as
observed by our target instrument (HMI). Figure 7(b) shows
the unsigned magnetic flux for the HMI target (red triangles),
compared to ML SR or bicubic upscaling of MDI (green/beige
dots) or of GONG (purple/light blue dots). The colored vertical
lines indicate the timestamp of the snapshots shown in
Figure 7(a). Figure 7(c) shows the ratio between the ML or
bicubic upscaling outputs and the HMI targets.

We find that the magnitude of the unsigned flux, and its
evolution as the region moves through the instrument’s field of
view, are well reproduced in the ML outputs of both MDI and
GONG. Looking at the ratio comparison with HMI, we find the
calibration to be centered around the target value of 1.0, with
two main characteristics. The first one is the underestimation of
the unsigned flux during the emerging phase of the HARP
region, which stabilizes after the region is fully developed
(Figure 7(c)). This behavior arises from the fact that the ML
algorithm denoises the magnetogram, thereby reducing the
relative amount of unsigned flux in the ML output compared to
the HMI target. As the region grows (and most unsigned
magnetic flux is in the region itself), this stops being an issue.
One of the main differences between the ML output (green
circles and purple squares) and the bicubic upsampling
baselines (tan circles and blue squares) is the ability of the
ML algorithm to address known systematic issues introduced
by projection effects due to area foreshortening close to the
solar limb. While the bicubic baselines systematically under-
estimate flux as the HARP region rotates out of view, the ML
output is generally stable through the lifetime of the HARP.

The second observable characteristic in Figure 7(c) is a clear
24 hr modulation that is a known systematic issue in HMI
measurements due to HMI’s fast orbital speed (see Figure 9).
Neither GONG, being ground based, nor MDI, having a stable
orbit at L1, suffer from this problem. Interestingly, the ML
output retains the stability of the input instruments. This likely

arises because time is not included as an input parameter, and
therefore no direct information is provided for the model to
learn temporal dependencies. While we have not explored this
further, this hints at the possibility of using GONG and MDI to
remove this outstanding systematic issue from HMI in the
future.
Figure 7(d) shows a detailed comparison of the magnetic

field and gradients calculated on the HMI target, and the MDI
and GONG outputs using bicubic upscaling and ML-based SR
at the same point in time. Each panel also contains the
numerical measurement of the average unsigned magnetic flux
and average unsigned gradient. The quantitative and qualitative
superiority of the superresolved output over the baseline
bicubic upsampling is evident.
Figure 8 further illustrates the superiority of the ML-based

SR output (ML-4X; light blue squares) over both the baseline
(purple dots) and an ML-based calibration approach (ML-1X;
green squares). The latter was obtained by training our ML
model on HMI magnetograms that have been downsampled to
the resolution of MDI/GONG. In this figure, we also show
results from all SHARPS regions and time stamps available
during our test period.
Figures 8(a)–(d) show the time evolution of the unsigned

flux and the average unsigned gradient as estimated by the
different algorithms applied to HARP region 407 as it crosses
the solar disk. Figures 8(e) and (f) show scatter plots of the
HMI target against the different outputs for all 36 regions (and
all their time stamps during 2011 March; a total of 2261
SHARPs compared). The closest match to the target HMI
measurements (for both the average unsigned flux and average
unsigned gradient) is always the SR output (ML-4X). While all
algorithms underestimate the unsigned average gradient
(Figures 8(c), (d), (g), and (h)), the improvement brought by
SR is evident. This improvement is especially remarkable for
GONG, which is currently the world’s main space weather
operations magnetograph.
In the case of average unsigned flux, we also find the best

match to be the SR outputs. Interestingly, bicubic upscaling
overestimates the unsigned flux by enhancing the contribution
of noise (Figures 8(a) and (b)). In comparison, our SR approach
not only properly calibrates the inputs to the target instrument,
but also denoises the magnetograms, ensuring an almost perfect
match with the target HMI magnetograms. Table 6 in
Appendix A.3 shows that the benefits of SR extend to all
SHARPs. Taken all together, we see this as evidence that ML-
driven SR is superior to simple upscaling by all relevant
metrics and performance quantities. Considering that this is one
of the first implementations of ML-based SR to solar

Table 5
Quantitative Comparison between MDI/Superresolved SR-MDI and HMI, and between GONG/Superresolved SR-GONG and HMI

Kernel Size Gradient Extreme Values

(Pixels) (G) (G)

MDI SR-MDI GONG SR-GONG MDI SR-MDI GONG SR-GONG

2 4.91 3.38 4.06 3.90 8.07 7.04 8.52 7.92
4 4.92 3.38 4.07 3.91 10.70 10.27 13.18 11.45
8 4.93 3.39 4.08 3.91 16.33 16.51 22.37 18.72
16 4.99 3.40 4.09 3.93 30.64 30.29 42.0 35.39
32 5.06 3.43 4.13 3.96 66.69 61.82 87.74 74.02

Note. The table reports the average over patches of size 4 × 4, 8 × 8, 16 × 16, and 32 × 32 of the extreme values and gradient metrics reported earlier. To compare
with HMI, the MDI and GONG images are upsampled and multiplied by the cross-calibration factor as described in Section 4.2.
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magnetograms, it is reasonable to assume that these algorithms
will only perform better in the future.

5. Conclusions

This work shows that deep-learning-based SR successfully
upsamples and homogenizes solar magnetic field images, while
adding detail that quantitatively improves the measurement of
space-weather-relevant quantities in these images. Referring
back to the goals set out in the introduction, our (1)
demonstrates that a deep-learning approach can leverage the
information present in astronomical images to recover detail in
LR images while maintaining their scientific accuracy; (2)
shows how superresolving a scientific image via deep learning
homogenizes instrument properties and adds value compared to
simple calibration at the same resolution, (3) establishes a set of
quantitative performance measurements that can be used to
benchmark the performance of different SR algorithms for
astronomical images, as well as to benchmark the performance
of future applications of SR to the physical sciences.

More specifically, we demonstrate the suitability of our
approach by upsampling and cross-calibrating MDI (GONG)
magnetograms to the characteristics of HMI. We show that a
careful design of the loss function of the neural network
improves the quality of the SR application, a conclusion that
may be applicable to any deep-learning SR application in the
physical sciences. Specifically, in the loss function, we include
four penalty terms (i.e., the MSE, and differences in magnetic
field value distributions, gradients, and self-similarity between
the output and target) that constrain the deep-learning output to
better match the ground truth. We further propose a set of
quantities to evaluate the quality of (1) cross-calibration, and
(2) SR of magnetograms that can also be applied across
disciplines.
An important contribution of this work is to offer a

benchmark of measurements and methods for performance
comparison of future ML-based approaches that cross-cali-
brate/superresolve solar magnetic field images in particular,
and scientific images more generally. We compare moments of
the magnetic field at various spatial scales to capture how our

Figure 7. Time evolution of HARP 407. (a) Row showing the HMI magnetogram patch associated with HARP 407 at different stages of its lifetime. The different time
stamps are indicated as vertical colored lines in the timelines of panels (b) and (c). (b) Total unsigned flux within the whole patch for the HMI target (red triangles) and
the SR output of MDI (green dots) or GONG (purple squares). The bicubic baseline is also shown for MDI (beige dots) and GONG (light blue squares). The
magnitude and evolution of the unsigned flux of the HMI target region is well reproduced in all cases. (c) Ratio of the unsigned flux between the SR output (or bicubic
baseline) and HMI. (d)Magnetograms (top row) and gradients (bottom row) obtained for the same time step and using different upscaling techniques. The center panel
is the HMI target.
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technique superresolves MDI and GONG magnetograms.
Establishing benchmarks is necessary for the development
and progress of deep-learning approaches for solar magnetic
field research. Furthermore, in order to improve transparency
and cross-comparability, we encourage reporting the same
metrics for the same test month (2011 March) for future
applications of SR and cross-calibration of solar magnetic field
images.

Future work will explore including temporal information in
the deep-learning architecture through multiframe SR (Deudon
et al. 2020). Moreover, it is essential to investigate how the
preprocessing of the solar magnetograms, including feature
alignment and reprojection in a common coordinates system
affect the performances of a deep-learning approach. Lastly,
our current deep-learning approach does not allow us to
quantify how confident the model is about its predictions,
particularly for periods where there is no ground truth. It is a
promising avenue for future research to implement a
probabilistic ML approach that would estimate the uncertainty
of its superresolved predictions, all the more as SR is an ill-
posed problem with many superresolved images being
consistent with the same LR input.

5.1. Data and Code Availability

The SDO/HMI, and SOHO/MDI data set used during the
current study are available from the Joint Science Operations
Center at http://jsoc.stanford.edu/. GONG magnetograms are
available from the NSO website at https://gong2.nso.edu/
archive/patch.pl. To prepare the original data for our deep-
learning pipeline, we follow the preprocessing steps outlined in
the Methodology section (Section 3). The code used in this work
is available at https://gitlab.com/frontierdevelopmentlab/

living-with-our-star/super-resolution-maps-of-solar-magnetic-
field. All questions regarding the code should be directed to the
corresponding author. A simplified version of the repository is
available via Muñoz-Jaramillo et al. (2021a), containing (1) the
necessarily functions to process the original data into a machine-
learning-ready format, and (2) inference-based magnetogram
converters using our best models. An example data set of our
upscaled and calibrated magnetograms is available via Muñoz-
Jaramillo et al. (2021b).
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Appendix
Supplementary Information

A.1. 24 hr Variability in HMI Data

As an extension to Figure 7, in Figure 9 we show the HMI
and SR MDI time series along with the ratio of time series, and
the radial velocity of HMI. The observed oscillations arise from
a Doppler shift in the spectral line due to the orbital variation of
the spacecraft (Couvidat et al. 2016).

A.2. Effect of Signal-to-noise Ratio

Our results indicate that the effectiveness of the neural
network to cross-calibrate and superresolve the magnetic field
is sensitive to the signal-to-noise ratio within a magnetogram.
The signal-to-noise ratio is affected by (1) the strength of the
magnetic field itself, and (2) the proximity to the solar limb.
HMI’s noise level is 15 (Hoeksema et al. 2014). Figure 10
compares the Pearson correlation metric calculated for super-
resolved MDI magnetograms as a function of patch location
and magnetic field value. The gray-shaded histograms were
calculated for patches across the full solar disk, while the blue-
shaded histograms were calculated for patches that lie within
90% of the radius of the solar disk. In addition, we compare the
Pearson correlation for all patches (left column), and those that
have an average unsigned field larger than 15 G (right column).
Looking at all magnetic field values, we can see that the
distribution of Pearson correlation coefficients shows two
peaks around 0.25 and 0.75 when patches across the entire
solar disk are considered (Figure 10, left column, gray
histogram). Discarding patches that lie outside of the central
90% of the radius of the solar disk removes the double peak
and shifts the distribution to be asymmetrically centered around
0.8 (Figure 10, left column, blue histogram).
When we also disregard patches that show magnetic field

strengths close to HMI’s noise level, we see that the
distribution of Pearson correlation coefficients becomes sub-
stantially narrower and is more symmetrically centered around
0.8. This observation supports our finding that magnetogram
patches with field strengths around the noise level are harder to
align and less reliable for the neural network to learn. In
addition, near the solar limb, the magnetic field intensity
weakens due to projection effects and a reduction of the
effective resolution of the instruments. In the post-mortem
evaluation of our results, we therefore focus on patches that lie
within 90% of the radius of the solar disk, unless otherwise
specified.
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Figure 9. Demonstration of the HMI radial velocity leaking into HMI LOS magnetic field data. The top two panels show the total unsigned magnetic field from HMI
and the SR output of MDI. The bottom two panels show the ratio of SR output compared to HMI, and the HMI radial velocity where positive values are away from the
Sun (bottom panel). In each panel, vertical gray bars are shown with a 24 hr periodicity starting on 2011 March 1. It can be seen that this periodicity leaks into the
HMI data, but is not observed for the SR output (as further discussed in the main text).
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Figure 10. Quantitative comparison of the performance of different loss functions trained on MDI magnetograms. All loss functions are based on the MSE term, plus
up to three additional penalty terms. The gray-shaded histograms correspond to calculations performed across the full solar disk, with the gray solid line showing the
distribution average. The blue histograms were calculated for patches that fall within 90% of the solar disk radius, with the blue dashed line showing the distribution
average. The first column shows the Pearson correlation calculated for all magnetic field values, while the second column shows the Pearson correlation calculated for
magnetic fields with an absolute value above 10 G. In the ideal case, the Pearson correlation is 1 (indicated by the red line).
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A.3. Overview of SHARPs for MDI and GONG

Table 6 in Appendix A.3 shows that the benefits of SR
extend to all SHARPs.

Table 6
Baseline (Base) and SR Comparison of Different HARPs for MDI and GONG

Unsigned Flux (1021 Mx) Avg. Gradient (10−8 G cm−1)

MDI GONG MDI GONG

HARPNUM Base SR Base SR Base SR Base SR

392 6.1 0.96 4 0.3 0.36 0.18 0.08 0.096
393 13 3.1 15 1 0.2 0.1 0.067 0.089
394 4.7 0.38 6.5 0.3 0.21 0.12 0.094 0.071
399 0.35 0.041 0.7 0.043 0.22 0.11 0.069 0.091
401 7.5 1.4 9.1 1.4 0.51 0.22 0.11 0.13
403 0.79 0.089 1.7 0.15 0.27 0.13 0.081 0.12
407 5.1 1.2 6.5 0.73 0.33 0.15 0.077 0.098
409 0.76 0.099 1.9 0.17 0.33 0.16 0.089 0.1
411 0.2 0.029 0.62 0.056 0.3 0.14 0.086 0.12
414 1.5 0.64 1.2 0.082 0.13 0.062 0.045 0.051
415 2.6 0.76 6.1 0.52 0.33 0.16 0.082 0.1
419 0.059 0.023 0.17 0.014 0.4 0.19 0.17 0.15
421 3.9 0.77 5.4 0.67 0.27 0.14 0.061 0.084
423 0.36 0.1 0.48 0.026 0.49 0.25 0.081 0.12
425 0.44 0.08 0.99 0.057 0.32 0.16 0.071 0.093
427 0.24 0.062 0.57 0.039 0.36 0.17 0.093 0.099
429 1.3 0.35 2 0.19 0.36 0.2 0.09 0.12
431 0.82 0.27 0.53 0.029 0.11 0.058 0.016 0.066
432 0.067 0.027 0.18 0.0054 0.19 0.13 0.16 0.13
433 0.053 0.013 0.34 0.037 0.11 0.069 0.0092 0.1
436 0.52 0.13 0.57 0.1 0.41 0.22 0.092 0.12
437 13 2.2 17 1.9 0.34 0.18 0.088 0.11
438 2.4 0.55 2.5 0.45 0.24 0.13 0.06 0.091
443 2.7 0.29 2.5 0.64 0.22 0.11 0.047 0.085
444 6 0.8 7.4 0.57 0.23 0.11 0.058 0.08
451 4.7 0.41 4.5 0.78 0.32 0.15 0.088 0.1
452 0.12 0.042 0.22 0.038 0.33 0.19 0.13 0.15
454 0.094 0.058 0.18 0.012 0.33 0.23 0.2 0.18
455 0.18 0.088 0.2 0.012 0.61 0.36 0.24 0.2
456 0.0029 0.021 0.17 0.011 0.0023 0.00062 0.0018 0.016
459 0.082 0.025 0.31 0.019 0.29 0.15 0.14 0.13
461 0.25 0.1 0.3 0.019 0.25 0.16 0.11 0.12
462 0.8 0.073 1.1 0.099 0.29 0.14 0.075 0.086
465 0.11 0.076 0.2 0.021 0.34 0.21 0.11 0.12
466 5.7 0.75 4 0.86 0.13 0.079 0.015 0.056

Note. The rms error for each HARP's average gradient and unsigned flux relative to HMI during its lifetime for all SHARPs during the month of 2011 March are
shown.
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