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ABSTRACT
Point clouds (PCs) have attracted researchers and developers due to 
their ability to provide immersive experiences with six degrees of 
freedom (6DoF). However, there are still several open issues in un-
derstanding the Quality of Experience (QoE) and visual attention of 
end users while experiencing 6DoF volumetric videos. First, encod-
ing and decoding point clouds require a significant amount of both 
time and computational resources. Second, QoE prediction models 
for dynamic point clouds in 6DoF have not yet been developed 
due to the lack of visual quality databases. Third, visual attention 
in 6DoF is hardly explored, which impedes research into more so-
phisticated approaches for adaptive streaming of dynamic point 
clouds. In this work, we provide an open-source Compressed Point 
cloud dataset with Eye-tracking and Quality assessment in Mixed 
Reality (ComPEQ–MR). The dataset comprises four compressed 
dynamic point clouds processed by Moving Picture Experts Group 
(MPEG) reference tools (i.e., VPCC and GPCC), each with 12 distor-
tion levels. We also conducted subjective tests to assess the quality 
of the compressed point clouds with different levels of distortion. 
The rating scores are attached to ComPEQ–MR so that they can 
be used to develop QoE prediction models in the context of MR 
environments. Additionally, eye-tracking data for visual saliency is 
included in this dataset, which is necessary to predict where people 
look when watching 3D videos in MR experiences. We collected 
opinion scores and eye-tracking data from 41 participants, resulting 
in 2132 responses and 164 visual attention maps in total. The dataset 
is available at https://ftp.itec.aau.at/datasets/ComPEQ-MR/.
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1 INTRODUCTION
Recent advancements in immersive video have enabled the cre-

ation of six-degrees-of-freedom (6DoF) experiences using Extended

Reality (XR) technologies like Virtual Reality (VR), Augmented

Reality (AR), and Mixed Reality (MR). Point clouds (PCs) are a

widely adopted format for presenting immersive videos because

of their high-fidelity and viewpoint-independent nature. Dynamic

PCs (DPCs) can be used for applications in telepresence (i.e., video
conferencing [32]), medical and health (i.e., anatomic pathology [10,

16]), and autonomous driving [9].

A PC is a set of thousands or even millions of points in space

with information about 3D coordinates (i.e., 𝑥 , 𝑦, 𝑧) and/or other at-
tributes such as RGB. However, the storage and bandwidth require-

ments of PCs are significant, with a single raw PC frame potentially

reaching hundreds of megabits in size. This translates to a band-

width demand of several gigabits per second for an uncompressed

30 frames-per-second (fps) video. Thus, efficient PC compression is

crucial for storage, delivery, and rendering. However, it comes at

the cost of visual quality degradation that can negatively impact

the Quality of Experience (QoE) of end users.

Measuring the impact of PC compression on the QoE is of impor-

tance when evaluating the performance of different compression

methods and when selecting a suitable distortion level to transmit
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and render to end users under specific circumstances (e.g., cur-
rent network conditions and device’s storage capacity). Subjective

quality assessment is often selected to gain insight into these im-

pacts. Dynamic PCs (DPCs) have been subjectively evaluated under

various viewing conditions, including a 2D screen [31], a VR Head-

Mounted Display (HMD) [30], and a MR HMD [19, 20]. With VR

and AR HMDs, end users can move freely in 6DoF conditions and

their eye-tracking data can be collected to give more insight into

end users’ attention. Eye-tracking data is capable of supporting the

selection of video quality [14]. Some open datasets for eye tracking

in VR environments have been published [4, 36], but those for MR

environments where end users can watch 3D content in familiar

physical environments are still limited.

In this work, we provide a Compressed Point cloud dataset with
Eye-tracking and Quality assessment inMixed Reality (ComPEQ–
MR) that includes both eye-tracking data and quality rating scores

for DPCs under MR conditions from subjective tests. The tested

DPCs are also made publicly available for reproducibility. The con-

tributions of this paper are thus threefold:

• We provide a compressed DPC database processed by state-

of-the-art compression codecs: VPCC, GPCC Octree, and

GPCC Trisoup. This database comprises 52 sequences that

can be used to run subjective tests to consider QoE impact

factors such as quality levels, quality switches, and stall

events.

• We provide a visual saliency dataset from 41 observers while

exploring four point cloud humans in the context of telep-

resence in MR environments. The visual saliency is collected

in a task-free scenario where observers see the raw versions

of point clouds. This dataset can help develop and compare

approaches that predict where people look in DPCs.

• We conducted subjective tests to evaluate the QoE perfor-

mance of the compression codecs. The rating scores are made

publicly available to help train and validate QoE prediction

models as well as develop objective quality metrics.

We summarize some existing datasets for point clouds, quality

assessment, and visual attention in Table 1.

The remainder of the paper is organized as follows. Section 2

gives an overview of point cloud compression, eye-tracking experi-

ments, and subjective quality assessment for 3D contents. Section 3

describes our data acquisition methods (original DPCs, eye-tracking

data, and QoE scores). Section 4 presents a dataset analysis (eye-

tracking data and subjective test results), the dataset structure, and

usage scenarios. Finally, Section 5 concludes the paper.

2 RELATEDWORK
2.1 Point Cloud Compression
Point cloud compression (PCC) has received much attention in

the literature [25]. The Moving Picture Experts Group (MPEG) is

working on two technologies: (1) Geometry-based PCC (GPCC) and
(2) Video-based PCC (VPCC) [2]. GPCC directly encodes the 3D

positions of PCs to generate the compressed representation using

either the Octree or Trisoup (triangle soup) methods. The color

of the PC can be encoded by the Region Adaptive Hierarchical

Transform (RAHT) or the Predicting/Lifting (Predlift) transform.

In contrast to GPCC, VPCC adopts a more indirect approach by

projecting the 3D points onto 2D images. Subsequently, it utilizes

conventional encoders, e.g., HEVC, to compress these projected

images. This strategy enables VPCC to leverage existing efficient

coding mechanisms and simplify deployment.

2.2 Eye-tracking Data
Visual saliency has been widely used for perception-related opti-

mization algorithms. Visual saliency models are typically evaluated

based on ground truth fixations that are collected from eye-tracking

experiments [15]. Fixation is defined as the maintenance of the

gaze at a single location for a specific period [1]. A public dataset

containing both the mean opinion score (MOS) and eye-tracking

information is crucial for the research community to evolve in the

development of efficient techniques for coding, transmitting, and

rendering volumetric content. Zhang et al. [35] propose a new exper-

imental methodology to obtain reliable eye-tracking data to provide

insight into the optimal use of visual attention in image quality

assessment. David et al. [6] obtain the head and eye movements for

360
◦
videos in a free-viewing experiment; saliency maps, scanpaths,

and users’ behaviors are presented. Alexiou et al. [4] conduct an
eye-tracking experiment in VR on static PCs for saliency modeling.

Zhou et al. [36] recruited participants to watch compressed DPCs

via a VR HMD. The authors provided eye-tracking data with heat

maps to boost the saliency research. They focused on the impact of

quality distortions on the eye gaze of the viewers. The limitation of

this work is that the distorted DPCs due to the compression process

are not published. However, an eye-tracking dataset for DPCs in

AR environments has not been reported in the literature.

2.3 Subjective Quality Assessment
Many works have been focusing on subjective quality assessment

for PCs. Ak et al. [2] conducted a subjective test for static PCs

through a crowdsourcing platform. More than 1200 test sequences

(i.e., stimuli) were evaluated by more than 3000 participants. How-

ever, as the participants watch PCs on their 2D monitors, there is no

interaction between the viewers and the 3D objects. Eye-tracking

data is not included either. Subramanyam et al. [27] focused on

dynamic PCs for VR environments but the compressed PCs are not

published and the eye-tracking data is not taken into account. In

addition, GPCC is omitted.

Our previous work [19, 20] considered the impact of quality lev-

els, quality switches, viewing distance, and content characteristics

on the QoE for PCs in AR environments through a subjective study.

Subjective tests were performed with the distorted PCs compressed

by VPCC and watched on an AR HMD. However, the participants

were asked to stand still; thus, there was no interaction.

Unlike these related works, we provide opinion scores and eye-

tracking data collected in interactive subjective tests in an AR

environment. Our subjective data can benefit the validation of QoE

prediction models, objective quality metrics development, and help

researchers understand the visual attention of participants. We also

publish the quality distortions of PCs for reproducibility.
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Table 1: Existing datasets for point clouds, quality assessment, and visual attention.

Dataset Type Compression Stimuli Participants Duration Display Interaction
* Opinion

Score

Eye-Tracking

Data

Public

PCs

VsenseVVDB2 [34] Dynamic VPCC, GPCC 136 23 10 s 2D ✗ ✓ ✗ ✗

BASICS [2] Static VPCC, GPCC 1494 60 - 2D ✗ ✓ ✗ ✓

Subramanyam et al. [27] Dynamic VPCC, CWI-PCL 72 52 5 s VR ✓ ✓ ✗ ✗

QAVA-DPC [36] Dynamic

VPCC, GPCC,

CWI-PCL

50 40 10 s VR ✓ ✓ ✓ ✗

Nguyen et al. [19] Dynamic VPCC 36 32 10 s AR ✗ ✓ ✗ ✗

ComPEQ–MR (Ours) Dynamic

VPCC, GPCC

(Octree and Trisoup)

52 41 20 s AR ✓ ✓ ✓ ✓

*
Interaction here refers to being able to move around and observe the point cloud from different angles.

Figure 1: SI, TI, and CF characteristics of the UVG-VPC
dataset.

3 DATA ACQUISITION
3.1 Original Sequences
In this work, we use a state-of-the-art uncompressed point cloud

dataset and cutting-edge codecs for point cloud compression. One

of the latest voxelized 10-bit point cloud datasets is UVG-VPC [8].

This dataset comprises 12 sequences of human objects with various

content characteristics and number of points. These dynamic point

clouds are captured by 96 cameras at a frame rate of 25 fps and are

each 10 s long.

Fig. 1 shows the spatial information (SI), temporal information

(TI), and colorfulness (CF) of the UVG-VPC sequences. We select

four sequences that have large differences in these criteria to cover

wide diversity: BlueSpin, CasualSquat, FlowerDance, and Ready-

ForWinter. Table 2 describes the chosen sequences.

This dataset focuses on MPEG’s tools for point cloud compres-

sion, including GPCC and VPCC. GPCC is suitable for static and

dynamically acquired point clouds and VPCC is typically used for

dynamic point clouds. GPCC includes 3D point and color compres-

sion modes. The former includes two approaches, namely Octree

and Trisoup, and the latter comprises RAHT and Predlift. Previous

research [3, 13] found that the performance of Octree is equiva-

lent to or better than that of Trisoup, for the same color encoding

module, and that the Lifting color encoding module is marginally

Table 2: UVG-VPC sequences [8] used in this open dataset.
Red and green numbers indicate that the sequence has low
and high values, respectively, for corresponding metrics.

Name Description Snapshot

BlueSpin

A person wearing a blue t-shirt and spinning

at a consistent rate.

SI: 20.8

TI: 8.0

Colorfulness: 8.6

CasualSquat

A person wearing a striped shirt and jeans in

the performance of a squat exercise.

SI: 53.5

TI: 19.0

Colorfulness: 11.5

FlowerDance

A person in a long, flowing dress spinning

and twirling.

SI: 43.9

TI: 22.3

Colorfulness: 25.3

ReadyForWinter

A person donning a beanie and scarf.

SI: 20.6

TI: 11.5

Colorfulness: 7.8

better than the RAHT module. In this work, we use VPCC and

the combinations GPCC-Oct-Pred (Octree and Predlift modes) and

GPCC-Tri-RAHT (Trisoup and RAHT modes) to process the PCs.

We used MPEG’s reference software tools to encode the objects,

including the test model category (TMC) 2 version v.22.1
1
for VPCC

and TMC13 version v.23.0
2
for GPCC. The quality levels are based

1
https://mpeg.expert/software/MPEG/3dgh/VPCC/software/mpeGPCC-tmc2.

Accessed 18 September 2023.

2
http://mpegx.int-evry.fr/software/MPEG/PCC/TM/mpeGPCC-tmc13. Accessed 18

September 2023.
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Table 3: Encoder parameters to generate compressed dynamic
PCs.

Compression

Quality Levels

r01 r02 r03 r04 r05

VPCC

Geometry QP 36 32 28 20 16

Texture QP 47 42 37 27 22

GPCC-Oct-Pred

QP - - 40 34 28

Depth - - 0.5 0.75 0.875

GPCC-Tri-RAHT

QP 40 34 28 22 -

Level 5 4 3 2 -

Workstation Hololens 2Wi-Fi

Sequence
Configuration

Point
Cloud

Test Sequences

Rating Responses

Eye-tracking Data

Test Sequences
Generation

Rating 
Scores

Eye-tracking Data
Unity

Figure 2: Platform architecture to conduct subjective test.
The component highlighted in green color is added in this
work, compared to the original version in [33].

on Common Test Conditions (CTC) [17, 18] for each tool, which

are described in Table 3.

3.2 Subjective Tests
We upgraded our subjective test platform

3
[33], as shown in Fig. 2,

to perform two separate tasks:

• Task 1 – Eye-tracking data acquisition: The eye-tracking data

is collected while the participants watch the raw versions of

the tested DPCs.

• Task 2 – QoE scores acquisition: The scores are collected

while participants watch various quality levels of the tested

DPCs.

The participants are asked to start watching every sequence

from the same position in the real world. Then, they can freely

move around the room. The test room has gray walls with low

illumination, which is in accordance with the recommendations of

ITU-R BT.500-15 [12]. The area for the participants is a 4m × 4m

square; thus, the participant has enough space to move freely while

watching the objects.We place DPCs 2m away from the participants

at the beginning of each sequence to emulate the trigger distance to

start a conversation between two people [21], then the participants

can move freely in the room.

3.2.1 Participants. A total of 41 participants, who were recruited

from Alpen-Adria-Universität Klagenfurt, participated in the sub-

jective test, including 19 (46%) females and 22 (54%) males. 18 (45%)

were in the age group of 18 to 24 years, 14 (35%) were between 25

and 34, 7 (17.5%) between 35 and 44, and 1 (2.5%) between 55 and

64.

3
https://github.com/shivivats-aau/MR-Subjective-Testing-Platform. Accessed 20 Oc-

tober 2023.

First time
41%

Fewer than 5 times

39%

5 to 20 times

17%

More than 20 times

2%

Figure 3: Frequency of participants using AR HMDs.

Fig. 3 shows the experience of the participants with AR HMDs.

People who have never used AR HMDs are the most dominant

group with 41% of the total participants, followed by those who

have experienced AR fewer than five times.

3.2.2 Eye-tracking Data Acquisition. Before this task begins, the

in-built eye calibration
4
of the HoloLens 2 is performed for each

participant, since the eye-tracking services of the HoloLens do not

function without calibration. The actual Task 1 consists of two

subtasks: (i) error measurement and (ii) watching the PC videos.

Since the state-of-the-art tool GazeMetrics [5] is not available

for HoloLens 2, we implemented our own system to show the

calibration targets and store the user gaze data. Nine 5 cm large

spherical targets arranged in a rectangular format are shown 2m

in front of the participant. Each target is visible for 3 s, and the

participants are asked to look at them while staying stationary. The

participant’s gaze origin and gaze direction are stored 60 times per

second to match the HoloLens 2 framerate
5
.

The second subtask consists of the participant watching 20 s

long uncompressed (voxelized 10-bit format) PC sequences. The

participants are allowed to move freely in the space of the test

room (6DoF), but are required to return to the starting point before

starting the next sequence. The participant’s gaze origin and gaze

direction are stored once per DPC frame. The order of the DPCs is

randomized among the participants to avoid bias.

The subtasks are alternated until the participant has watched all

four sequences. The duration of this task is around 5min.

3.2.3 QoE Scores Acquisition. We follow the subjective methodol-

ogy Absolute Category Rating (ACR) based on ITU-T Recommen-

dation P.919 [11]. ACR is a single-stimulus methodology where the

observer sees one video at a time before spending some time to

rate that video. We do not use the double-stimulus method, where

the observer is presented with two stimuli, because these stimuli

may not be viewed from the same viewpoint under MR conditions.

As we follow the ACR method, a five-level rating scale is used as

follows:

• 5: excellent;

4
https://learn.microsoft.com/en-us/windows/mixed-reality/design/eye-tracking. Ac-

cessed 21 November 2023.

5
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/

performance/perf-getting-started?view=mrtkunity-2022-05. Accessed 30 November

2023.
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• 4: good;

• 3: fair;

• 2: poor;

• 1: bad.

Each participant watched 52 DPCs (48 compressed and four raw

sequences), each of which is 20 s long (i.e., two loops). Similar to

Task 1, the participant can move freely in the test room, and the

sequences are randomized. The total duration of this task is around

30min.

4 TEST RESULTS AND DATASET
4.1 Eye Tracking
4.1.1 Processing Error Data. Similar to GazeMetrics [5], we process

the error data and obtain the average accuracy (error) per marker for

each user using the difference between the actual gaze ray and the

projected gaze ray from the origin to the marker. For each marker,

the initial 1.5 s are discarded to account for initial movements. A

threshold of 7.5◦ is used to discard unintentional gaze. Barycentric

interpolation with the corresponding angular error as weights is

applied to the user gazes, and based on the interpolation results, a

compensatory weighted average angular error is applied to each

gaze sample.

4.1.2 Identifying Fixations. The Dispersion Threshold Identifica-

tion (I-DT) [23] method was used to identify the fixations within

angular and temporal constraints. The angular dispersion and inter-

val thresholds were set to 3
◦
and 120ms (3 frames) [36], respectively.

The average of the gaze points within a valid fixation set is consid-

ered a fixation point. Barycentric interpolation is performed again

for the fixation point, and if found to be valid, a compensatory error

is applied similar to the previous step.

4.1.3 Mapping Gaze Data to DPC Frames. The truncated-cone-

sector algorithm [4] is applied to assign weights to the DPC frames

associated with a fixation. The algorithm can identify PC points

corresponding to the fixation gazes. Points are assigned weights,

and these weights are stored for assessment.

4.1.4 Filtering Gaze Data. The DBSCAN algorithm [7, 24] is used

to filter out noisy fixation data. The minimum number of points for

DBSCAN is determined using the point size [36], and the search

distance is calculated using the k-distance graph [24]
6
.

4.1.5 Generating Fixation Maps. The weights are stored for every

frame for every user. The sum of the weights of all users viewing a

DPC frame gives us the fixation map for said frame. The heatmaps

for every frame from four points of view (front, back, left, and

right) can be found in the dataset
7
. 25 fps videos of the heatmaps

are provided with the dataset as well.

4.1.6 Analyzing Gaze Data. From the heatmaps, we can infer that

the users fixate mostly on the faces of the objects and the parts with

high degrees of motion. We can only show a selected number of

heatmap frames here due to limited space (Fig. 4 and Fig. 5). Thus,

we recommend going through the heatmap images and videos to

get a better idea of users’ viewing preferences.

6
https://nl.mathworks.com/help/radar/ref/clusterdbscan.clusterdbscan.

estimateepsilon.html. Accessed 25 January 2024.

7
https://ftp.itec.aau.at/datasets/ComPEQ-MR/. Accessed 24 January 2024.

(a) Back view (b) Front view (c) Right view (d) Left view

Figure 4: The heatmap of fixation of a BlueSpin frame in four
views.

(a) CasualSquat (b) ReadyForWinter (c) FlowerDance

Figure 5: The heatmap of fixation of the front view.

4.2 Subjective Tests
4.2.1 Opinion Scores. First, we show the raw opinion scores of the

participants for all tested DPCs in Fig. 6. Some video sequences

receive consistent scores from all participants. For example, the

18
𝑡ℎ

and 41
𝑠𝑡

videos (i.e., BlueSpin and CasualSquat encoded by

GPCC-Tri-RAHT at quality r01, respectively) have mostly all low

scores (i.e., scores 1 or 2), while the 5
𝑡ℎ

video gets high scores

(i.e., scores 4 and 5) from most of the participants. Regarding the

participants, some of them are not satisfied with the quality of the

video sequences (e.g., participants 2 and 30), while others feel the

opposite (e.g., participant 17).
We calculate the Mean Opinion Score (MOS) by following the

recommendations in ITU-R BT.500-15 [12]. No outliers are detected

in our subjective tests. We also compute 95% confidence intervals

(CIs). MOS and CIs are included in our dataset.

4.2.2 QoE Performance of the Compression Algorithms. Fig. 7 com-

pares the QoE performance of the compression algorithms used

in the dataset. We use the number of bits per point (bpp) for the

rate. It can be clearly seen that VPCC achieves the best visual qual-

ity, which validates the findings of the predecessors [2]. However,

GPCC-Oct-Pred provides worse MOS than GPCC-Tri-RAHT, which

is opposite to [2].
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Figure 6: Raw opinion scores
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Figure 7: Bits per point vs. MOS for each video. Each point
represents the MOS score computed by ITU.R BT.500 and the
error bar is the 95% CI.

4.3 Dataset
The dataset comprises three top-level folders:

• Compressed-point-cloud: This folder comprises the com-

pressed DPCs. It includes two sub-folders, namely VPCC, and
GPCC, each with DPCs processed by corresponding MPEG

tools. The GPCC folder is sequentially constituted by octree-
predlift and trisoup-raht folders.

• Eye-tracking: This folder also comprises two sub-folders:

heatmap-images and heatmap-weights. The former contains

the heatmap images for every frame and 25 fps videos gener-

ated by concatenating these images. The latter contains text

files with a fixation weight for every point of the PC frames.

• Rating-score: This folder contains a Comma Separated

Value (CSV) file that stores all rating scores of participants

for every DPC, and another CSV file storing MOS and the

95% CI.

4.4 Applications and Usage Scenarios
Our open dataset can benefit diverse research directions that ex-

plore the perceptual interaction and QoE of end-users in immersive

environments. This includes, but is not limited to, the following

applications:

• The compressed DPCs can be used to conduct further subjec-

tive tests with various impact factors to the QoE of the user

such as quality levels, quality switches, and stall duration,

in the context of HTTP Adaptive Streaming (HAS) [26, 29].

• The rating scores collected from participants with a wide

variety of backgrounds (i.e., age, gender, and previous expe-

rience with AR HMDs) can be used to train and validate QoE

prediction models for DPCs in XR environments.

• The dataset is also useful for the development and evaluation

of novel objective quality metrics.

• Our visual saliency database from 41 observers while watch-

ing humans in the format of DPCs can be used to develop

and compare foveated rendering approaches [22] in the con-

text of telepresence in MR environments. These approaches

are necessary for dynamic streaming on the client side to

provide higher quality of the focus areas where the end user

is looking and lower quality for the others to optimize the

delivered data [28].

5 CONCLUSIONS
In this paper, we propose an open dataset of dynamic PCs with

compressed PCs, rating scores, and eye-tracking data for an MR

experience. The compressed PCs include 12 quality levels of four

dynamic PCs processed by three different compression algorithms

(i.e., VPCC, GPCC-Oct-Pred, GPCC-Tri-RAHT). We collect rating

scores and eye-tracking data from 41 participants covering various

age groups and experience in using AR HMDs. Our dataset can

be utilized for a wide range of purposes: (i) testing XR streaming

systems and algorithms, (ii) training and validating future QoE

models, and (iii) developing and comparing approaches that predict

visual attention.

The dataset is available at:

https://ftp.itec.aau.at/datasets/ComPEQ-MR/
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