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Abstract

Peach is a model for Prunus genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a
complex task. A gene coexpression network (GCN) capable of capturing stable gene–gene relationships would help researchers overcome
the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created
four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations
using an algorithm based on the ‘guilty-by-association’ principle. The GCN with the best performance was COO300, encompassing
21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes
involved in fruit flesh softening: the endopolygalacturonases PpPG21 and PpPG22. Genes coexpressing with both genes were extracted
and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results
with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion
and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate.
In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression
network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful
tool for peach and Prunus research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction
analysis are available at https://github.com/felipecobos/PeachGCN.

Introduction
The advent of omics technologies has allowed the scientific com-
munity to generate enormous amounts of biological information.

In parallel, increasingly efficient bioinformatic tools help us
transform this information into structured biological knowledge.
To date, more than seven million RNA-Seq libraries are available
at the National Center of Biotechnology Information (NCBI,
https://www.ncbi.nlm.nih.gov/), representing a great opportunity
for large-scale bioinformatics exploration and biological data
integration. Therefore, taking advantage of this valuable resource
is essential in the age of big data analysis.

In transcriptomics, representing this complex data as gene
coexpression networks (GCNs) is becoming a widespread prac-
tice. GCNs are usually represented as undirected graphs, where
nodes correspond to genes and edges correspond to correlations

in gene expression patterns. GCNs can be built across multi-
ple experimental conditions (condition-independent GCNs) or in
specific experimental conditions (condition-dependent GCNs, e.g.
tissue specific GCNs). They are based on the ‘guilt-by-association’

(GBA) principle [1], which states that genes with related functions
share similar expression patterns. Following this principle, and
using the functional annotation of the genes within a network,
GCNs can be a very powerful tool to infer gene functions and
to understand the regulation of specific metabolic pathways. For
this reason, GCNs are extremely useful in crop species, where
most of the bioinformatic and genetic tools are modest and our
understanding of gene function is still limited [2]. Several studies
have already created GCNs in the plant model Arabidopsis thaliana
( [3–6]), maize ( [7]; S. [8]), rice [9, 10], wheat [5], and grapevine
( [11–14]).

Peach [Prunus persica L. (Batsch)] has been used as a model
organism for genetics and genomics in the Rosaceae, and more
specifically in the Prunus genus, which encompasses other crops
such as sweet and tart cherry, European and Japanese plum,
apricot, and almond. However, in peach, the validation of genes
responsible for breeding traits is a complex task. Long intergen-
eration times, phenological cycles, and space constraints due
to the large size of the individuals under study are some of
the hindrances for the work of peach geneticists [15]. Moreover,
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Table 1. General topological characteristics of non-aggregated and aggregated GCNs with 100 and 300 top coexpressed genes (HRR100,
HRR300, COO100, and COO300)

GCN Number of
genes

P. persica genes included
in the GCN (%)

Range of node degree
connectivity (min-max)

Average node degree
connectivity

HRR100 17 505 65.1 649 (100–749) 161
HRR300 17 505 65.1 1490 (300–1790) 470
COO100 21 956 81.7 315 (100–415) 149
COO300 21 956 81.7 785 (300–1085) 442

there is a lack of efficient genetic transformation systems [16, 17].
As a result of these limitations, only two genes, DRO1 and TAC1,
have been biologically validated based on mutant analysis [18, 19].

Although small-scale condition-dependent GCNs have been
reported in peach and other Prunus species [20–25], these were
created ad-hoc to study specific biological processes and so cannot
be used in other experimental contexts. Therefore, a GCN capa-
ble of capturing robust gene–gene relationships across various
experimental conditions, developmental stages and tissues, is
needed. A GCN with these characteristics would help researchers
overcome the intrinsic limitations of peach genetic studies and
outline future research opportunities.

In this study, we present the first large-scale GCN in peach.
We constructed four GCNs from publicly available RNA-Seq data
and evaluated the performance of every GCN using a machine-
learning algorithm based on the GBA principle. The GCN with the
best performance was validated by predicting gene functions of
well-characterized genes. Finally, we provide the scripts and data
needed for function prediction analyses using the GCN presented
in this study. These resources can be found at https://github.com/
felipecobos/PeachGCN.

Results
Aggregated GCNs included 82% of the
protein-coding genes annotated in the peach
reference genome
Six hundred and eight public RNA-Seq libraries, belonging
to different organs and developmental stages of P. persica,
were downloaded from SRA, classified and reanalyzed to
generate different GCN types. To understand the differences
between each GCN generated, we analyzed general topolog-
ical characteristics of the four GCNs inferred in this study
(Table 1). The two aggregated GCNs (COO100 and COO300) had
21 956 genes, while the other two, built by non-aggregated
methods (HRR100 and HRR300) had 17 505 genes. From the
total number of 26 873 protein-coding genes annotated in the
peach reference genome, this represented 81.7% for aggregated
and 65.1% for non-aggregated networks. The number of genes
present in the aggregated GCNs represented 16.6% more genes
(4451) from the peach whole-genome annotation, compared to
non-aggregated GCNs.

Node degree refers to the number of connections between
nodes in a network. The different methods used not only affected
the number of genes included in the network, but also the
node degree connectivity across all nodes of the GCN. Average
node degree connectivity was higher in networks with relaxed
sparsity (442 in COO300 and 470 in HRR300) in comparison to
stringent sparsity (149 in COO100 and 161 in HRR100). The range
between minimum and maximum node degree connectivity is
wider in non-aggregated GCNs compared to aggregated GCNs

with the same sparsity threshold (comparing HRR300 with
COO300 and HRR100 with COO100). The minimum node degree
connectivity was set by the sparsity threshold in all the networks:
100 for stringent sparsity (HRR100 and COO100) and 300 for
relaxed sparsity (HRR300 and COO300). The highest node degree
connectivity was found in HRR300, with a maximum of 1790
coexpressed genes with one single gene. In addition, aggregated
GCNs showed a bimodal node degree connectivity distribu-
tion while non-aggregated GCNs had a unimodal distribution
(Figure 1).

COO300 was the GCN with the highest AUROC
value
When considering sparsity threshold, both GCNs with relaxed
sparsity (HRR300 and COO300) had AUROC values above 0.7
for all the annotated databases (Table 2). COO300 was the GCN
with the highest average AUROC value (0.746), outperforming
the other GCNs. COO300 had the highest mean AUROC in
almost all the datasets, except for Pfam and PANTHER, where
the performance of HRR300 was better than that of COO300.
HRR100 and COO100 had AUROC values under 0.7 in almost
all the functional annotation databases, except for GOcc and
PANTHER datasets. The best functional annotation performance
in all the networks was for the functional annotation GOcc with
an average AUROC value of 0.761, followed by PANTHER (0.724),
KEGG (0.718), Pfam (0.714), GObp (0.709), Mapman (0.706), and
GOmf (0.693).

The method used for network building also affected its
performance, but the effect was not consistent. Considering
the effect of the sparsity threshold, average AUROC values
for relaxed sparsity threshold were always higher (HRR300
and COO300 = 0.741) than for the stringent threshold (HRR100
and COO100 = 0.694). When comparing GCNs by aggregation
method, at relaxed sparsity (HRR300 and COO300), the average
AUROC value for the aggregated method was higher but
comparing at the stringent threshold (HRR100 and COO100),
the average AUROC value was better for the non-aggregated
method.

Finally, we evaluated the effects of adding further exper-
iments (i.e. Bioprojects) on the AUROC value of every GCN
built in this study. Figure 2 shows the correlation between the
network AUROC value and the number of Bioprojects used.
For every combination of GCN building method (aggregated or
non-aggregated), threshold (top 300 or top 100) and dataset
used (GObp, GOmf, GOcc, and MapMan) we observed similar
trends, where the AUROC value increased with the number of
Bioprojects. This trend was more pronounced for aggregated
GCNs than non-aggregated GCNs, reaching a plateau after
adding 10 to 12 bioprojects. In all cases, the standard deviation
of aggregated GCNs decreased as the number of Bioprojects
increased.
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Figure 1. Violin plot of node degree connectivity in each of the aggregated and non-aggregated networks with relaxed or stringent sparsity (COO300,
COO100, HRR300, and HRR100). Boxplots of node degree connectivity were added for each violin plot.

Table 2. AUROC values for each GCN (COO300, HRR300, COO100, HRR100) performance in the different datasets. The best performance
by dataset was highlighted with an asterisk

GCN GObp Gomf GOcc Pfam KEGG PANTHER MapMan Average

COO300 0.738∗ 0.723∗ 0.788∗ 0.736 0.750∗ 0.746 0.741∗ 0.746∗
HRR300 0.724 0.705 0.773 0.745∗ 0.728 0.749∗ 0.732 0.736
COO100 0.681 0.670 0.733 0.680 0.697 0.688 0.664 0.687
HRR100 0.692 0.673 0.748 0.695 0.695 0.712 0.686 0.700
Average 0.709 0.693 0.761 0.714 0.718 0.724 0.706 0.717
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Figure 2. Boxplots of the AUROC value for every subset of Bioprojects (from 2 to 26) and method used.

Aggregated GCNs showed a positive trend
between average node degree connectivity and
AUROC score of individual functional
annotations for GObp, GOmf, GOcc, KEGG, and
Mapman
To assess the relationship between the AUROC score of individual
functional annotations and the average node degree connectivity

of the genes sharing that annotation we used a Loess regression
(Figure 3). For example, for an individual functional annotation,
such as GOcc: cell wall, we studied if the individual AUROC score of
GOcc: cell wall was related to the average number of connections
of the genes sharing that particular GO annotation. We then
repeated the analysis for all the functional annotations within
a dataset (GOcc: apoplast, GOcc: extracellular region, etc). In the
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Figure 3. Scatter plot and Loess regression representation of average node degree connectivity by AUROC value for each of the GCNs (COO300,
HRR300, COO100 and HRR100) in all the datasets used for network annotation (CObp, GOmf, GOcc, Pfam, KEEG, PANTHER and Mapman).

case of aggregated GCNs, there was a positive trend between
average node degree connectivity and AUROC score of individual
functional annotations for GObp, GOmf, GOcc, KEGG, and Map-
man. In the case of non-aggregated GCNs, the only dataset with
a positive trend between average node degree connectivity and
AUROC score of individual functional annotations was KEGG. The
average node degree connectivity had no effect on the AUROC
score of individual functional annotations in the Pfam dataset in
any of the GCNs studied.

Case study 1: The melting flesh network
We selected two well-characterized genes responsible for fruit
flesh softening in peach, the endopolygalacturonases PpPG21 and
PpPG22, located on chromosome 4 (Table 3) [29–34]. Based on
the evidence available to date, the variability of flesh softening
and stone adhesion during fruit ripening is due to the allelic
combination of these two homologous genes. Both genes, PpPG21
or PpPG22, are associated with the development of melting, non-
melting, or non-softening fruits, while PpPG22 is also associated
with the development of freestone or clingstone fruits.

PpPG21 and PpPG22 gene-centered networks were functionally
annotated using GObp, GOmf, GOcc, Pfam, KEGG, PANTHER, and
MapMan term-classification schemes. Both networks shared
several functional annotations: ‘GOcc: extracellular region’, ‘GOcc:
cell wall’, ‘GObp: metabolic process’, ‘GObp: cell wall organization’,
‘GOmf: hydrolase activity, acting on glycosyl bounds’, ‘GOmf: poly-
galacturonase activity’, ‘Mapman: enzyme classification. hydrolases.
Glycoxylases’, and ‘Pfam: glycosyl hydrolases family 28’. PpPG22 was
in turn exclusively associated with ‘GObp: fruit ripening’ and ‘GObp:
carbohydrate metabolic process’ terms.

The PpPG21 and PpPG22 gene-centered networks were consti-
tuted by 485 and 354 genes, respectively. Despite PpPG21 and
PpPG22 were not found to be mutually coexpressed, their net-
works shared 238 genes. These shared genes were selected and
named as the melting flesh (MF) network (Figure 4A; Supple-
mentary Material S2). MF network was annotated in GObp, GOcc,
GOmf, and Mapman datasets. From the 238 genes in the MF
network, 136 genes showed significantly enriched terms in GObp,
123 in GOcc, 156 in GOmf and 116 in Mapman (Supplemen-
tary Material S2).

After MF network annotation, we performed an enrichment
analysis. MF network was enriched in 33 different terms (33 terms
were significantly over-represented in this subnetwork). Out of
these 33 terms, 12 belonged to the GOmf dataset, 9 to Mapman,
8 to GObp, and 4 to GOcc (Figure 4B; Supplementary Material S2).
Within GOmf terms, up to 26 genes were annotated as hydrolase
activity or as its child term (direct descendant), hydrolase activity,
acting on glycosyl bonds. The next term was ‘xyloglucan:xyloglucosyl

transferase activity’, with four genes annotated. With three genes
annotated, we found the terms ‘methyl indole-3-acetate esterase
activity’, ‘methyl salicylate esterase activity’, ‘methyl jasmonate esterase
activity’, ‘oxidoreductase activity, acting on paired donors, with oxidation
of a pair of donors resulting in the reduction of molecular oxygen to two
molecules of water and metal ion transmembrane transporter activity’.

Finally, with two genes annotated, we found the terms ‘inositol
hexakisphosphate binding’, ‘phosphate ion transmembrane transporter
activity’, ‘protein-disulfide reductase activity’, and ‘acid–amino acid
ligase activity’.

Using Mapman as the annotation dataset, 27 genes were anno-
tated as ‘enzyme classification’. There were eight genes annotated
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Table 3. Candidate genes selected for network validation. The gene IDs were referred to the peach reference genome version 1 and 2.0
[26, 27] and NCBI [28] while genomic coordinates and annotation were referred to the peach reference genome version 2.0 [27]

Gene ID Gene name Genomic coordinates Annotation

Prupe.4G261900 ppa006839m LOC18781156 PpPG21
PpPG2
PpPGM

Chr04: 19046344–19 049 605 (+) Involved in fruit ripening. Promotes flesh
softening.

Prupe.4G262200 ppa006857m LOC18779267 PpPG22
PpPG1
PpPGF

Chr04: 19081325–19 083 984 (+) Involved in fruit ripening. Promotes flesh
softening and stone detaching from mesocarp.

Prupe.3G163100 ppa026640m LOC18783018 PpMYB10
PpMYB10.1

Chr04: 18220455–18 222 943 (−) Involved in fruit coloration. Promotes anthocyanin
accumulation in fruit peel and flesh around the
stone.

as ‘glycosyltransferase’, a child term of ‘enzyme classification’. The
next term, with 17 genes annotated, was ‘phytohormone action’.
There were four genes annotated as ‘auxin’ or ‘auxin.conjugation
and degradation’ and three as ‘ethylene’, child terms of ‘phytohor-
mone action’. With two genes annotated, we found the terms
‘Solute transport.carrier-mediated transport.IT superfamily.phosphate
transporter (PHO)’, ‘Nutrient uptake.phosphorus assimilation.phosphate
uptake.phosphate transporter (PHO1)’ and ‘Lipid metabolism.fatty
acid biosynthesis.fatty acid desaturation.omega-3/omega-6 fatty acid
desaturase (FAD2/3/6-8)’.

Within GObp, there were 26 genes annotated as ‘oxidation–
reduction process’. Up to 11 genes were annotated as ‘metabolic
process’. There were nine genes annotated as ‘cell wall organization,’
and four as ‘cell wall biogenesis’, child terms of ‘cell wall organization
or biogenesis’. There were four genes annotated as ‘cellular glucan
metabolic process’ and its child term, ‘xyloglucan metabolic process’,
four as ’jasmonic acid metabolic process’, and three as ‘salicylic acid
metabolic process’. Using GOcc as the annotation dataset, 16 genes
were annotated as ‘extracellular region’, 7 genes as ‘apoplast’, child
term of ‘extracellular region’, and up to 13 genes were annotated as
‘cell wall’.

We further explored the expression patterns of the MF network
genes by inspecting all the SRA runs used to create the whole-
genome networks. Those runs with enough metadata to be classi-
fied in organs were kept and used to calculate normalized expres-
sion values. Most MF-genes had specific or at least preferential
expression in fruit tissues (Supplementary Figure S2).

Case study 2: The fruit color network
We selected the transcription factor PpMYB10.1, a subgroup
6 R2R3-MYB member, responsible of controlling anthocyanin
accumulation in peach fruit tissues, to create the fruit color
(FC) network ( [35–43]). PpMYB10.1 gene-centered network
was constituted by 419 genes. This FC network was function-
ally annotated using the GObp, GOcc, GOmf, and Mapman
classifications. Out of the 419 genes in the FC network, 227
genes were annotated in GObp, 207 in GOcc, 246 in GOmf
and 192 in Mapman (Supplementary Material S2). The enrich-
ment analysis of the FC network resulted in eight enriched
terms. Five belonged to Mapman dataset, two to GObp, and
one to GOcc. No enriched term belonged to GOmf dataset
(Figure 5A; Supplementary Material S2). Within Mapman, six
genes were annotated as ‘RNA biosynthesis.transcriptional reg-
ulation. transcription factor (C2H2-ZF)’. Three genes were anno-
tated with the terms ‘secondary metabolism.phenolics.f lavonoid
biosynthesis.chalcones.chalcone synthase activity.chalcone synthase
(CHS)’ and ‘cell wall organization.pectin.modification and degrada-
tion.pectate lyase’. Finally, two genes were annotated with the terms

‘photosynthesis.photophosphorylation. photosystem II.LHC-related
protein groups.three helix LHC-related protein group.protein (ELIP)’ and
‘cellular respiration.glycolysis.methylglyoxal. degradation.glutathione-
independent glyoxalase (GLY-III)’. Using GObp as the annotation
dataset, there were eight genes annotated as ‘pectin catabolic
process’ and three genes annotated as ‘polyketide biosynthetic
process’. Finally, using GOcc as annotation dataset, there were
nine genes annotated as ‘chloroplast thylakoid membrane’.

Since PpMYB10.1 is a transcription factor, we explored its
GCN with the idea to identify potential targets. The color-related
PpMYB10.1 network was compared with tissue-independent
and berry-dependent gene-centered networks of its grapevine
orthologs VviMYBA1/VviMYBA2 and VviMYBA7, responsible for
the anthocyanin pigmentation of fruits (Walker et al., 2007)
and stress-induced pigmentation of vegetative organs (Matus
et al., 2017), respectively. The comparison of both gene-centered
networks show 10% of shared co-expressed orthologs (Figure 5B),
from which many are known as direct targets of grapevine
MYBA regulators, such as the glycosyl-transferase-coding gene
VviUFGT1, the glutathione-S-transferase VviGST4 and chalcone
synthase VviCHS3, among others. VviNAC33 is known as a
regulator of Subgroup 6 MYBs in grape (D’Incà et al., 2023) and
both peach and Vitis networks show co-expression of the NAC
ortholog with PpMYB10 and VviMYBA genes, respectively. The
peach FC network shows differences in conserved coexpression
depending on the MYBA genes considered. The biggest similarity
is found with fruit-specific VviMYBA1 and VviMYBA2 genes.

Discussion
Different GCN topological features are affected by
the selected algorithms
To achieve the best results when building gene coexpression
networks (GCNs), two variables were tuned, aggregation method
and sparsity threshold. We chose these variables since they are
the ones that have the greatest influence on the subsequent
performance of the GCNs [13]. The four GCNs obtained were
evaluated, with substantial differences in the general topological
characteristics of the inferred GCNs.

When considering GCN building methods, a major difference
between aggregated and non-aggregated GCNs was the number
of genes constituting the network. Aggregated GCNs had 21 956
genes (81.7% of P. persica genes), while non-aggregated GCNs only
had 17 505 (65.1% of P. persica genes). This difference comes from
the low-expression gene filtering. In non-aggregated GCNs all the
genes with less than 0.5 FPKM in 50% of the 498 RNA-Seq libraries
were filtered, while in aggregated GCNs this filtering is inde-
pendently performed for each of the 26 Bioproject groups. This
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Figure 4. MF network analysis. (A) PpPG21 and PpPG22 GCNs and the MF network. Biological processes of interest are highlighted in the MF network.
TF: transcription factor, CYP450: cytochrome P450. (B) Gene set enrichment analysis of the MF network.

allowed the inclusion in the GCN of genes expressed in more pre-
cise conditions and therefore involved in more specific processes.
This indicates that both aggregated and non-aggregated networks
are able to capture stable gene–gene relationships expressed in
most of the RNA-Seq libraries used in the analysis, but only
aggregated GCNs are able to detect gene–gene interactions pro-
duced in specific conditions. Condition-independent gene–gene
connections could be related to basal metabolic pathways, while

condition-dependent gene–gene interactions could be associated
to specific metabolic pathways. This could explain the difference
in the distribution of node degree connectivity between aggre-
gated and non-aggregated GCNs. In scale-free topology networks
(most cases in biology-related networks), degree is not distributed
homogeneously across nodes; instead, some nodes may have a
very high degree, highlighting them as putative network hubs.
This property is what actually makes GCNs a suitable tool to
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Figure 5. FC network analysis. (A) Gene set enrichment analysis of the FC network. (B) Dual species comparison of FC network and
VviMYBA1/VviMYBA2 gene centered networks. For details see Supplementary Material S3.

precit gene function. As shown in Figure 1, aggregated GCNs had

a bimodal distribution of node degree connectivity (it had two
peaks), while non-aggregated GCNs had a unimodal distribution
(only one peak). As previously mentioned, aggregated GCNs may

be able to detect genes involved in specific and basal metabolic
processes. The two modes detected in aggregated GCNs node

degree connectivity distribution could be associated with these
two groups of genes. The group with the lower node degree

distribution could be associated with genes involved in more
specific metabolic pathways, coexpressed with a lower number of
genes. The group with the higher node degree distribution could
be associated with genes involved in basal metabolic pathways
and coexpressed with a higher number of genes. On the other
hand, non-aggregated GCNs may only detect genes involved in
basal metabolic pathways, having only one mode in their node
degree distribution.

Another factor affecting the topology of the networks was
the sparsity threshold selected. HRR300 and COO300 had a node
degree connectivity higher than HRR100 and COO100. This was an

expected result, since a higher number of ranked genes allows a
higher number of connections between genes.

Sparsity threshold and the number of bioprojects
determine network performance
According to the results, sparsity was a key factor affecting net-
work performance. The average AUROC of relaxed sparsity thresh-
old networks (HRR300 and COO300) was 0.741, while that of
stringent sparsity threshold networks (HRR100 and COO100) was
0.694. Applying relaxed sparsity threshold during network build-
ing represented an increment of 6.3% in the AUROC score in
comparison to stringent sparsity threshold.

The number of bioprojects used to build the GCN was a key
factor in the case of aggregated methods, indicating the min-
imum number of Bioprojects necessary to reach a sufficiently
high AUROC score (Figure 1). In every case, aggregated methods
had a lower AUROC value than non-aggregated methods using a
low number of Bioprojects. By increasing this number, aggregated
methods overtook non-aggregated methods, as found in other
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studies [11, 12]. For future GCNs construction, increasing the
number of Bioprojects could improve the overall performance of
the GCNs.

While studying the effect of functional annotations average
node degree on the AUROC value, we found major differences
depending on the type of used dataset. There was a positive
correlation between functional annotations average node degree
and functional annotations individual AUROC in evidence-based
datasets such as GObp, GOmf, GOcc, KEGG, and Mapman. On
the other hand, this correlation was lost with datasets based on
domain identification by sequence similarity, such as PANTHER
and Pfam. These results are in agreement with the GBA principle,
which states that coexpressed genes share function, and not
necessarily similar sequences.

COO300 validated as a powerful tool for peach
and Prunus research
In peach, fruit flesh softening has been extensively studied at
fruit ripening and postharvest due to its implication in fruit
shelf life. Fruit softening involves several cellular processes,
such as the disassembly of the cell wall and the dissolution
of the middle lamella. These modifications are the result of
hydrolytic changes in the polysaccharides that form the cell
wall, including celluloses, hemicelluloses (mainly xyloglucan)
and pectins. In case study 1, several terms found in the melting
flesh (MF) network were associated to this process, such as ‘GOcc:
cell wall’, ‘GObp: cell wall organization’, and ‘GObp: cell wall biogenesis’,
‘GOmf: hydrolase activity’, ‘GOmf: hydrolase activity, actin on glycosyl
bonds’, ‘Mapman: enzyme classification.EC_2 transferases.EC_2.4
glycosyltransferase’, and ‘GOmf: xyloglucan:xyloglucosyl transferase
activity’.

Peach flesh softening is a synergistic process triggered by
an extensive phytohormone signaling network. As a climacteric
fruit, cross talk between ethylene and auxin occurs during peach
ripening [44]. Moreover, methyl jasmonates (MeJAs) play an impor-
tant role in slowing down fruit ripening by inhibiting ethylene
production and fruit flesh softening [45, 46]. Up to seven enriched
terms were related to these phytohormones in the MF network,
such as ‘Mapman: phytohormone action’, ‘Mapman: phytohormone
action. Auxin’, ‘GObp: jasmonic acid metabolic process’, ‘Mapman: phy-
tohormone action. ethylene’, ‘GOmf: methyl indole-3-esterase activity’,
‘GOmf: methyl jasmonate esterase activity’, and ‘Mapman: phytohor-
mone action. auxin. auxin conjugation and degradation’.

We found 25 genes in the MF network that have previously
been reported as associated to ripening and softening (Supple-
mentary Material S2). Among them, we identified several genes
involved in the enzymatic machinery responsible for cell wall
disassembly, such as a pectin methylesterase (Prupe.7G192800),
a pectin methylesterase inhibitor (Prupe.1G114500), a pectate
lyase (Prupe.4G116600), a β-galactosidase (Prupe.3G050200), and
a xyloglucan endotransglycosylase hydrolase (Prupe.1G255100).
Additionally, we found an expansin, a cell wall structural protein
(Prupe.6G075100). Related to ethylene, we identified a 1-amino-
cyclopropane-1-carboxylate synthase (PpACS1, Prupe.2G176900)
and 1-amino-cyclopropane-1-carboxylate oxidase (PpACO1,
Prupe.3G209900), both genes codifying the key enzymes catalyzing
the final steps of the ethylene biosynthetic pathway [47]. In
fact, PpACS1 has been previously reported as a regulator of
PpPG21 [48]. Another gene related to ethylene production was
the ethylene receptor 2 (PpETR2, Prupe.1G034300). The implication
of this gene in the ethylene transduction signal has been verified
at the transcriptional level in the final stages of fruit ripening
in melting flesh peaches [49]. Regarding genes related to auxin

biosynthesis, we found a YUCCA-like auxin-biosynthesis gene
(PpYUC11, Prupe.6G157500) and an IAA amino acid synthase
(PpGH3, Prupe.6G226100). Both genes have been reported to have
the same expression pattern as PpACS1 at late ripening stages in
response to high auxins levels in melting flesh fruits [50].

Based on these results, we can affirm that the MF network is
mainly constituted by genes involved in cell wall organization
and biogenesis, with expression regulated by ripening-related
phytohormones, such as ethylene, auxin, and methyl jasmonate.
Moreover, we found 25 genes previously reported as involved in
softening, some taking part in key steps of these processes. These
results demonstrate that the MF network is closely related to
peach fruit softening and therefore to the function of PpPG21 and
PpPG22.

In case study 2, we prospected the fruit color (FC) network,
related to the transcriptional regulation of anthocyanin accumu-
lation in peach fruit tissues (i.e. mesocarp and exocarp). Antho-
cyanins belong to the flavonoid compounds and are water-soluble
pigments that determine the red-to-blue color of plant tissues in
many species as peach [51, 52]. Their biosynthesis starts through
the phenylpropanoid pathway in the cytosol, and then they are
modified and transported to the vacuoles, where they finally
accumulate. Anthocyanin spatial and temporal distribution is
determined by the expression pattern of structural and regulatory
genes. Furthermore, anthocyanin biosynthesis is controlled by
environmental factors, such as light incidence in fruits and tem-
perature in leaves [53–56]. One of the key genes is PpMYB10.1, that
has been proposed as a strong candidate for the red pigmentation
of the flesh around the stone and the red skin of the fruit [35–37,
39–43, 57].

The PpMYB10.1-gene centered network, called here FC net-
work, was enriched with many terms directly involved in antho-
cyanin metabolism, such as ‘Mapman: secondary metabolism. pheno-
lics. Flavonoid biosynthesis. chalcones. chalcone synthase activity. chal-
cone synthase (CHS)’ and ‘Obp: polyketide biosynthetic process’. This
and other related terms contain many genes that are orthologs of
well-known anthocyanin-related genes in grapevine (e.g. the CHS
gene Prupe.1G002900, Prupe.1G003000 and Prupe.I005800). In fact,
our Prunus-Vitis dual-species comparison allowed us to identify
putative targets of PpMYB10 that can be subject of further molec-
ular characterization. For instance, one of the CHS genes reported
here is known to be directly regulated by the MYB10.1/bHLH3
complex [39].

Among the enriched terms related with anthocyanins metabolism
we found two genes annotated as protein DJ-1 like (Prupe.3G012200
and Prupe.3G012800), highly correlated with the transporter
glutathione S-transferase 1 (PpGST1) (Prupe.3G013600) that is
essential for vacuole sequestration of anthocyanins in peach
[36, 42, 58]. Additionally, we found MYB10.3 (Prupe.3G163300),
that is an orthologous of MYB10.1, phenylalanine ammonia-
lyase (PAL) (Prupe.6G235400), 4-coumarate CoA ligase (4CL)
(Prupe.2G326300), chalcone synthase (CHS) (Prupe.1G002900 and
Prupe.1G003000), chalcone isomerase (CHI) (Prupe.2G225200), dihy-
droflavonol reductase (DFR) (Prupe.1G376400, Prupe.3G241700 and
Prupe.4G200500), anthocyanidin synthase (ANS) (Prupe.5G086700),
and UDP flavonoid 3-O-glucosyltransferase (UFGT) (Prupe.2G324700
and Prupe.8G131000). It has been reported that the overexpression
of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin
biosynthesis by up-regulating the anthocyanin biosynthetic genes
chalcone synthase (CHS), dihydroflavonol reductase (DFR), and
UDP flavonoid 3-O-glucosyltransferase (UFGT). Their expression
was validated at the transcriptional level in peach fruit [36, 41, 43,
56, 59] and tobacco leaves [41, 43].
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Among transcription factors, we found the gene transcription-
related term ‘Mapman: RNA biosynthesis. transcriptional regula-
tion. transcription factor (C2H2-ZF)’ enriched. A set of enriched
genes were annotated as ‘C2H2-type zinc finger transcription
factors zinc finger of A. thaliana (ZAT) proteins’ (Prupe.2G230800,
Prupe.5G068600, Prupe.5G201400, Prupe.6G084100, Prupe.6G249300
and Prupe.7G151500). This protein has been proposed as a regula-
tor of anthocyanin biosynthesis under stress conditions in apple
[60] and pear [61]. Additionally, a putative regulator of MYB expres-
sion was found while comparing the Prunus and Vitis networks;
Prupe.4G143600, the ortholog of a NAC TF known to bind and acti-
vate VviMYBA1’s promoter region (ViNAC33; D’Inca et al., 2023).

Additional terms were related to regulation by environmental
effects ‘Mapman: photosynthesis.photophosphorylation. photosys-
tem II.LHC-related protein groups.three helix LHC-related protein
group.protein (ELIP)’ and ‘GOcc: chloroplast thylakoid membrane’, also
shared in MYBA GCNs genes related with the thylakoid mem-
branes conforming the photosystem II in interaction with light-
harvesting complex (PSII–LHCII) acting as light-harvesting super-
complexes [62] (Prupe.1G021700, Prupe.1G021800. Prupe.6G259200,
Prupe.2G104500, Prupe.3G066500, and Prupe.6G173300). Many
of the orthologous genes found in Arabidopsis codify for the
family of light-harvesting-related proteins as Early Light-Induced
Proteins (ELIP1, AT3G22840.1; ELIP2, AT4G14690.1), LHCs (Stress
Enhanced Protein 2, SEP2, AT2G21970.1), and Hight Light-Induced
Proteins/One Helix Protein (HLIP/OHP, AT5G02120.1). Although
they could be related with the induction of anthocyanins by
light, its implication in high light- and cold-stress responses and
photooxidative protection may lead their main function in peach
fruit [63].

Finally, a set of annotated terms related to cell wall organiza-
tion was found in the FC network, probably due to the temporal
and spatial co-localization of anthocyanin biosynthesis and
pectin degradation during fruit ripening ‘Mapman: cell wall organi-
zation. pectin. modification and degradation. pectate lyase’ and ‘GObp:
pectin catabolic process’. These genes are involved in pectin modi-
fication during cell wall organization and include pectinesterase
inhibitors (PEI) (Prupe.1G131900 and Prupe.1G123800), pectate
lyase (PL) (Prupe.1G239900, Prupe.1G268500 and Prupe.1G268700), a
polygalacturonase (Prupe.2G014800), and two pectin
methylesterases (PME) (Prupe.3G003700 and Prupe.3G147000).
Anthocyanins and cell wall degradation enzymes have over-
lapping expression patterns in peach fruit at ripening stage, as
already observed at the transcriptional level in the mesocarp and
exocarp under UV-B radiation [54]. The gene pectate lyase 6 (PL6)
is in fact also co-expressed to S6-MYBs in grapevine, representing
either a potential MYB target or suggesting a common regulator
with these type of MYB genes.

Taken the results obtained in case studies 1 and 2 together, we
can affirm that COO300 is validated as an accurate and powerful
tool for gene function prediction in Prunus sp.

Gene coexpression networks as catalysts for
Prunus research
While large-scale GCNs have not been explored yet as gene
function-prediction tools in Prunus research, they have been
widely used in the model organism A. thaliana and other crop
species, such as grapevine. Depending on the needs of the
researcher, GCNs can be exploited in different ways. One of
the most common is to identify different modules (also known
as clusters or hubs) within the GCN through a clusterization
analysis. These gene modules, which represent groups of genes
highly connected between them and relatively isolated from the

rest of the GCN, are particularly useful to study uncharacterized
biological processes. For example, [9] used this approach in rice
to annotate 13 537 genes, from which 2980 had no previous
annotation.

Another approach that uses group of genes to study specific
biological processes is the gene group-guided analysis. In this case,
a list of well-characterized genes involved in a specific biological
process are selected and genes coexpressing with the list of genes
of interest are extracted from the network. In this way, the selected
genes are used as a guide to study the transcriptional regulation
of the biological process of interest. Huang et al. [7] successfully
applied this approach to study the cell wall biosynthesis in maize.
Pathway-centered network analysis has also been helpful in the
identification of members or regulators of secondary metabolic
pathways [12].

Finally, GCNs can be used to infer the function of a gene of
interest by extracting gene-centered GCNs. These can also be used
to study specific gene families, being particularly useful for study-
ing transcription factor families. For instance, [14] developed R2R3
MYB-centered GCNs to study the potential secondary metabolic
processes regulated by this family in grapevine. Gene-centered
GCNs are of special interest in peach and Prunus research, where
most trait-loci analyses lead to a list of candidate genes associated
with the trait under study. With poor or no functional information,
identifying the responsible gene from this list of candidates can
be almost impossible. Even when a high-confidence candidate
gene is identified, the lack of an efficient genetic transformation
system is still one of the main limitations for functional, mutant,
or transgenic based validation. Having a tool, such as the GCN
presented in this study, with which obtaining useful information
about the biological processes in which a gene is involved, may be
of critical importance.

Conclusions
In this study, we performed the widest overview of transcriptomic
analysis carried out to date in peach or other Prunus species.
The GCN inference methods used, aggregated or non-aggregated,
affected the topological characteristics and performance of the
GCNs created. Using three well-characterized genes in peach,
PpPG21, PpPG22, and PpMYB10, we were able to validate the
network with the best performance, COO300. The GCN tool
presented in this study will help Prunus researchers overcome
the intrinsic limitations of working with crop tree species,
prioritize research lines and outline new ones. COO300, named
as PeachGCN v1.0, and the scripts necessary to run a function
prediction analysis using it, are available at https://github.com/
felipecobos/PeachGCN.

Materials and methods
Data compilation
Forty-nine independent Sequence Read Archive (SRA) Bioprojects,
encompassing 608 RNA-Seq libraries (Supplementary Material S1)
were downloaded from the SRA database [64] in the NCBI [28].
These RNA-Seq libraries represented all the libraries available in
the NCBI to date 09/04/2020. The peach reference genome ‘Lovell’
version 2.1 [26, 27] and its functional annotation were downloaded
from Genome Database for Rosaceae (GDR) [65]. Finally, seven
functional gene annotation datasets were retrieved using the
methods described below. Gene ontology peach functional terms
for biological process (GObp), molecular function (GOmf), and
cellular component (GOcc) [66, 67] and Pfam database peach
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classification [68] were retrieved using the biomaRt R package [69].
Kyoto Encyclopedia of Genes and Genomes (KEGG) peach pathway
annotations [70] were retrieved using the KEGG API (https://www.
kegg.jp/kegg/rest/keggapi.html). PANTHER HMM peach classifica-
tions version 16 [71] and MapMan Pathways version 4.2 [72] were
downloaded from the public repositories.

Mapping and quality filtering
We performed a sequencing-quality filtering and adapter removal
using Trim Galore! version 0.6.1 (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/). Reads with terminal Ns
were trimmed, then reads with a Phred score lower than 28
or smaller than 35 nucleotides were filtered. Filtered libraries
were quality checked using FastQC version 0.11.5 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). HISAT2 version
2.1 [73] was used to map RNA sequencing libraries to the reference
peach genome ‘Lovell’ version 2.1 [26, 27] with default parameters.
Mapped Binary Alignment Map (BAM) files were filtered by
alignment quality using SAMtools version 1.9 [74, 75]. Reads
with mapping quality lower than 40 were filtered out. After this
filtering, BAM files with less than 5 000 000 reads were discarded,
leaving a total of 498 RNA-Seq libraries from 43 independent
Bioprojects for further analyses.

Aggregated and non-aggregated GCNs inference
A raw count matrix was calculated using featureCounts [76], from
Subread R package version 2.0.0 (http://subread.sourceforge.net/).
For the raw count matrix construction, we excluded chimeric
fragments and we used the coding DNA sequences as feature type
and gene IDs as attribute type. The raw count matrix was then
normalized to fragments per kilobase million (FPKM) mapped
fragments (Z. [77]), obtaining a FPKM matrix. We then applied two
different methodologies: aggregated and non-aggregated network
inference with two sparsity thresholds set at top 100 (stringent
threshold) and 300 (relaxed threshold) ranked genes (Supplemen-
tary Figure S1).

For non-aggregated analysis, genes with less than 0.5 FPKM in
50% of the RNA-Seq libraries were removed. Pearson’s correlation
coefficient (PCC) was calculated for the remaining genes and
ranked according to descending PCC, giving a PCC matrix. High
reciprocal rank networks for the top 100 (HRR100) and top 300
(HRR300) were constructed according to the formula:

HRR
(
x, y

) = [
max

(
rank

(
x, y

)
, rank

(
y, x

))]

whereby rank(x, y) is the descending sorted rank of gene y accord-
ing to the coexpression list of gene x and vice versa for rank(y, x).

For aggregated analysis, we clustered the samples into 43 dif-
ferent groups according to the Bioproject study ID. We filtered Bio-
projects with less than six RNA-Seq libraries, leaving 26 different
groups with a total of 450 RNA-Seq libraries. Genes with less than
0.5 FPKM in 50% of the libraries within each group were removed
and from each filtered FPKM matrix, a high reciprocal rank net-
work for the top 100 and top 300 was constructed. Frequency of
gene coexpression interactions in all groups was calculated and
ranked in a co-occurrence matrix. Finally, co-occurrence networks
for top 100 (COO100) and top 300 (COO300) interactions were
obtained.

Networks performance assay
Networks were evaluated for their ability to connect peach genes
sharing functional annotations. For this purpose, GBA neighbor

voting, a machine learning algorithm based on the GBA princi-
ple [78], was assessed over the GObp, GOmf, GOcc, Pfam, KEGG,
PANTHER, and MapMan datasets. Each network was scored by
the area under the receiver operator characteristic curve (AUROC)
across all functional categories annotated for the seven datasets.
Annotations were limited to groups containing 20 to 1000 genes to
ensure robustness and stable performance when using neighbor
voting. The AUROC value threshold for an acceptable network
functional annotation was set at 0.7.

We also evaluated the impact of adding individual Bioprojects
to the different networks created, HRR300, HRR100, COO300, and
COO100. For this purpose, we selected five subsets each of two
Bioprojects computing the top 100 and top 300 HRR and COO
GCNs, evaluating their AUROC using GObp, GOmf, GOcc, and
MapMan datasets. We repeated this process adding one Bioproject
to the initial subset to reach five subsets each with 26 Bioprojects,
the maximum number of Bioprojects used in this study. The final
subsets corresponded to the full HRR300, HRR100, COO300, and
COO100.

Network validation
To validate the performance of COO300 in predicting gene
functional annotations, we performed two case studies. In Case
Study 1, we selected two well-characterized genes responsible
for fruit flesh softening in peach, the endopolygalacturonases
PpPG21 and PpPG22, located on chromosome 4 (Table 3) [29–
34]. Based on the evidence available to date, the variability of
flesh softening and stone adhesion during fruit ripening is due
to the allelic combination of these two homologous genes. Both
genes, PpPG21 or PpPG22, are associated with the development
of melting, non-melting or non-softening fruits, while PpPG22
is associated with the development of freestone or clingstone
fruits.

To validate the performance of COO300 in predicting gene
functional annotations, we performed two case studies (Table 3).
As part of Case Study 1, genes coexpressed with PpPG21 and
PpPG22 were extracted. Since both genes are involved in the peach
fruit flesh softening process, we selected genes present in both
subnetworks. The selected subnetwork was named melting flesh
(MF) subnetwork.

In Case Study 2, we selected the transcription factor PpMYB10.1,
responsible of anthocyanin accumulation in peach fruit ( [35–43]).
The PpMYB10.1 network, here named as fruit color (FC) network,
was compared with VviMYBA1, VviMYBA2 and VviMYBA3 tissue
independent and berry-dependent networks. The top 1% coex-
pressed genes (420 genes) were extracted from the AggGCNs app
found in the Vitviz platform (http://vitviz.tomsbiolab.com/; [12]).
Detection of peach-grapevine orthologues was conducted with
Orthofinder (Emms & Kelly, 2019) using default parameters. As
input datasets we used the P. persica proteome fasta file found in
the Genome Database for Rosaceae (GDR, https://www.rosaceae.
org/species/prunus_persica/genome_v2.0.a1) and the VCOST.v3
Vitis vinifera proteome from the 12X.2 assembly (Canaguier et al.,
2017). Grapevine GCNs and orthology results are found in Supple-
mentary Material S3.

MF and FC networks were functionally analyzed with enrich-
ment analyses using GObp, GOmf, GOcc and Mapman classifica-
tions. Functional annotations statistically over-represented were
selected if passed the significance threshold of q-value <0.1.
Finally, we compared the enriched terms (the functional annota-
tions statistically over-represented) of MF and FC networks with
the current knowledge on the peach fruit softening process and
skin anthocyanin accumulation, respectively.
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