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a b s t r a c t

Access to high-dimensional genomic information in many livestock species is accelerating. This has been
greatly aided not only by continual reductions in genotyping costs but also an expansion in the services
available that leverage genomic information to create a greater return-on-investment. Genomic informa-
tion on individual animals has many uses including (1) parentage verification and discovery, (2) trace-
ability, (3) karyotyping, (4) sex determination, (5) reporting and monitoring of mutations conferring
major effects or congenital defects, (6) better estimating inbreeding of individuals and coancestry among
individuals, (7) mating advice, (8) determining breed composition, (9) enabling precision management,
and (10) genomic evaluations; genomic evaluations exploit genome-wide genotype information to
improve the accuracy of predicting an animal’s (and by extension its progeny’s) genetic merit.
Genomic data also provide a huge resource for research, albeit the outcome from this research, if success-
ful, should eventually be realised through one of the ten applications already mentioned. The process for
generating a genotype all the way from sample procurement to identifying erroneous genotypes is
described, as are the steps that should be considered when developing a bespoke genotyping panel for
practical application.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Implications

Genotypes are now available on an ever-growing population of
breeding animals with the ever-reducing costs contributing also to
a greater availability of genomic information on production ani-
mals. Technology adoption is strongly influenced by the associated
return-on-investment; such return-on-investment from genotyp-
ing is a function of the information that can be generated from
the genotype and how this can be used in supporting value-
creating decisions making.

Introduction

Genomics is the study of the structure, function and intrage-
nomic interactions and editing of the genome (i.e., DNA sequence
in every cell). The first draft of the human genome was published
in 2004 (International Human Genome Sequencing Consortium,
2004) while that of the bovine, porcine, and ovine genomes were
published in 2009 (Zimin et al., 2009), 2012 (Groenen et al.,

2012) and 2014 (Jiang et al., 2014), respectively. Having a draft
genome for a species has many uses including helping determine
the location of genes and mutations of likely large effect. Knowing
which genomic markers are segregating (i.e., varying) in a popula-
tion and their location relative to genes is useful for research stud-
ies attempting to identify genomic variants causing phenotypic
differences. Accurate knowledge of genomic positions also aids in
determining co-located single nucleotide polymorphisms (SNPs)
which has implications for genomic evaluations (using haplotypes;
Calus et al., 2008) and the process of imputation which involves
predicting missing genotypes from adjacent genotype arrange-
ments (i.e., haplotypes).

Many different types of genomic markers exist but SNPs are
currently the genomic marker of choice. An SNP may be defined
as a variation (sometimes called a polymorphism) between indi-
viduals of the same species at a single location of the DNA. Other
variations to the structure of the DNA also exist including copy
number variants (Rafter et al., 2018), insertions, and deletions
(Väli et al., 2008). Nonetheless, microsatellites continue to be used
in some species and countries to undertake both parentage testing
and forensics as well as being used in some population genetic
studies. The general shift towards SNPs being the marker of choice
is attributable to their amenability for automatic calling of the
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genotypes which leads to higher throughput and thus lower cost
per SNP. Schlötterer (2004) described the other advantages of SNPs
namely their low mutation rate, high frequency within the genome
and their excellent reproducibility across genotyping platforms
and laboratories (Berry et al., 2016) making them more amenable
to sharing and inclusion in meta-analyses.

Arguably one of the most impactful developments in practical
genomics applied to livestock was the commercial availability of
what are commonly termed SNP chips, beadchips or SNP microar-
rays. SNP chips are premade microarrays which enable the estab-
lishment of the genomic variant (i.e., allele) at (hundreds of)
thousands of locations (i.e., loci) across the genome from just a sin-
gle sample and hybridisation step. While a plethora of genotype
panels now exist across livestock species, the density of panels
most common in the past two decades is 50 000 SNPs (generally
termed 50 K chips; https://assets.thermofisher.com/TFS-Assets/
GSD/brochures/axiom-genotyping-arrays-agrigenomics-brochure.
pdf; https://www.illumina.com/content/dam/illumina-marketing/
documents/applications/agrigenomics/information-sheet-array-
consortia-agrigenomics-web.pdf). The availability of these SNP
chips has enabled high-throughput, low-cost genotyping of live-
stock with many downstream practical applications.

In an attempt to lower the cost per animal genotype, efforts
were made to evaluate the potential to reduce the number of SNPs
on the genotyping panels (Judge et al., 2016; Boichard et al., 2012).
Nonetheless, the cost of the SNP chip itself represented a relatively
small percentage of the entire cost of generating a genotype for an
animal since other costs like sample acquisition, DNA extraction,
actually generating the genotypes from the DNA and running and
publishing the genomic evaluations are also part of the entire cost.
Hence, the cost savings from reducing panel density and thus the
cost of the actual genotype panel itself were diluted over all other
costs. If interested in simply generating accurate within-breed
genomic evaluations, then circa. 50 000 DNA markers are adequate
(VanRaden et al., 2011a; 2011b). Genotyping SNP chips could,
however, soon be replaced by genotype-by-sequencing based on
low-pass sequencing approaches (Li et al., 2021) although initially
clients may still elect to extract circa. 50 000 markers for routine
use but with a greater density of markers being available on
request (at a cost).

The objective of this review is to outline the steps to generate a
usable genotype on an individual followed by a description of each
of the possible practical applications a genotype can have in live-
stock breeding and management. The review concludes with steps
to consider if developing a bespoke genotype panel. Many of the
points made are agnostic to the genotyping technology used (i.e.,
SNP arrays, whole-genome sequencing, low-pass sequencing).

From sample to genotype

The word genotype, which originates from the word Gynotypus
meaning ‘‘type of genes”, is often used to refer to the genetic vari-
ant an individual possesses at a given position (i.e., locus) on its
genome or indeed across its entire genome (i.e., DNA sequence).
Several steps make up the pipeline to generate a genotype with
each step not only incurring a cost but also introducing a possible
source of error. Here, the genotyping process refers to any technol-
ogy (i.e., SNP arrays, genotype-by-sequencing) that generates a
genotype. The steps are as follows:

Sample acquisition

The quality but especially the quantity of DNA differs not only
by biological sample type but also how it was obtained,
including storage (Abraham et al., 2012). The sample type used

in domesticated species was traditionally hair follicles (cattle),
semen (artificial insemination males) or Flinders Technology Asso-
ciates filter cards (sheep); this has been replaced in many jurisdic-
tions by ear biopsies obtained when tagging an animal for
identification purposes. The cost of sample acquisition includes
the logistics of delivering the sampling tool, the cost of the mech-
anism itself in the case of a tag or the cost of the semen straw, and
finally the cost of returning the sample to a central depot for geno-
typing. Cost per sample is expected to reduce as the number of
samples increases because the cost of delivering and returning
the samples is diluted over more units. Sources of error include
the sampling of an animal different to that intended and incor-
rectly labelling the sample.

Deoxyribonucleic acid extraction

The preferred standard operating procedure (SOP) for DNA
extraction differs not only by biological sample (Edson et al.,
2021) but also among laboratories; the extraction SOP also has a
major bearing on the resulting DNA quality (Psifidi et al., 2015).
Minimum quality and quantity thresholds of DNA required are
specified for each genotyping or sequencing method. There is a cost
associated with DNA extraction especially if cleaning of the sample
or amplification of the DNA is required. The cost of DNA extraction
generally benefits from economies of scale.

In most instances when samples are sent for genotyping or
sequencing, all of the tissue sample is used when extracting DNA
and the extracted DNA is usually stored, at least for some time,
either in the laboratory of the service provider or returned to the
customer for storage. Whether every sample should be stored
indefinitely is questionable albeit having a biobank of samples of
interest should be considered such as those from influential ani-
mals, animals with defects, a pool of samples segregating for speci-
fic alleles or indeed rare breeds.

Genotyping and sequencing

The decision on which genotyping platform to use (which
includes sequencing as a strategy for genotyping) is a function of
several factors including:

� motivation for genotyping (i.e., parentage testing, candidate
gene (research), genomic evaluations, fine mapping),

� the platform(s) available,
� the available budget as a function of the cost per sample, and
� the value and role (i.e., seed stock or commercial) of the individ-
ual to be genotyped.

Parentage analysis was traditionally undertaken using
microsatellite markers but this has either already transitioned or
is in the process of transitioning to SNPs. Candidate gene studies
or genotyping just a few markers for use in selection decisions
(i.e., marker-assisted selection; Dekkers, 2004) is rapidly being
replaced by genotyping tens (or hundreds) of thousands of SNPs.
One reason for such a transition is the minimal cost differential
between genotyping a few markers versus several thousand; the
same is true for parentage testing with most now opting to simply
genotype animals for tens of thousands of SNPs which almost
always include the International Society for Animal Genetics panel
SNPs for parentage testing (McClure et al., 2018). Generating data
on tens of thousands of SNPs provides multiples more information
enabling a greater return-on-investment. Many commercially
available genotype panels now exist for a range of different species
(https://assets.thermofisher.com/TFS-Assets/GSD/brochures/axiom-
genotyping-arrays-agrigenomics-brochure.pdf; https://www.illu-
mina.com/content/dam/illumina-marketing/documents/applications/
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agrigenomics/information-sheet-array-consortia-agrigenomics-web.
pdf), with some bespoke genotype panels also in existence albeit not
always freely available (e.g., Eurogenomics, International Dairy and
Beef, Neogen). In general, the greater the number of markers being
genotyped, the greater the cost of the genotyping process although
the costs of sample procurement and DNA extraction are relatively
constant, the exception being for sequencing.

Interest is growing on the use of genotyping-by-sequencing as a
means of generating genotype information on individual animals,
especially as a means of ‘animal-side’ rapid genotyping (Lamb,
2023). This is being made possible with the rapid development of
technological solutions developed by companies like Oxford Nano-
pore (Jain et al., 2016). The usefulness of these developing tech-
nologies in the field both in relation to practical utility but also
cost relative to SNP arrays is an area of active research (Lamb,
2023). The promise of such approaches is to enable capturing rare
variation, avoiding the need to re-build SNP assays, and to ulti-
mately increase the accuracy of genomic predictions by including
putative causative variants directly into prediction models. Irre-
spective, cross-compatibility between genotyping and sequencing
platforms is paramount enabling imputation to a common set of
genomic markers. This is especially true for some sequencing
approaches whereby the SNPs that exist on most arrays are also
present in the generated sequence data.

There are three main costs to the genotyping. In the case of chip
genotyping, it is the cost of the SNP chip hardware itself, the cost of
the associated reagents, and the cost of the service; the latter
includes the return-on-capital (i.e., infrastructure, people, time)
and profit. For sequencing, the costs include the reagents and the
costs of the service. Many sequencing service providers also offer
downstream bioinformatic analyses as a service including data
transfer.

While hybridising DNA across an SNP chip is one strategy to
generate genotypes, it is also possible to generate genotypes of
individuals in-silico where genotypes are also available on their
progeny (cattle – Berry et al., 2014; sheep – Berry et al., 2018a; pigs
– See et al., 2022). In the absence of genotypes from the mate,
genotypes from >10 progeny can be used to reconstruct the geno-
type of the parent with high accuracy; this number of progeny
reduces to �7 if the mate’s genotype is also available. Such a strat-
egy is particularly useful when a biological sample of one parent is
no longer available or in cases where the budget might prohibit an
entire tier of the breeding pyramid (e.g., multiplier) from being
genotyped.

Bioinformatics

The output from most commercially available SNP chips is rel-
atively standard. It is also possible to generate such a format from
sequencing approaches based on the most likely genotype. The
basic information is the sample identification, the (customer)
SNP name and the called genotype. Additional information in the
genotype output files include quality metrics of the called geno-
types which are at an SNP level (e.g., GenTrain score for Illumina
genotypes), but also at the individual SNP-by-individual sample
level (i.e., GenCall score for Illumina and Confidence score for Ther-
moscientific). The GenTrain score of genotypes called by the Illu-
mina platform considers the quality and shape of the clusters of
called genotypes (i.e., homozygous versus heterozygous) and rela-
tive distance from each other (More et al., 2019). SNPs with poor
genotype cluster resolution indicated by a GenTrain score < 0.55
(Judge et al., 2016; Zhao et al., 2015) to <0.60 (Erbe et al., 2012)
are often discarded. The Gencall score generated by the Illumina
software is a measure of the confidence assigned to the called
genotype for each SNP on each individual and is used to filter
poor-quality calls. A Gencall score lower than 0.15 suggests failed

genotypes and is considered the default threshold in Illumina’s
Genome Studio (https://www.illumina.com/Documents/products/
technotes/technote_infinium_genotyping_data_analysis.pdf). Berry
et al. (2021) documented how the concordance rate between geno-
types called with high confidence (i.e., high Gencall score) versus
genotypes called for the same SNP in a duplicate animal eroded as
the Gencall score of duplicate genotype reduced. Nonetheless, the
impact was not very noticeable until a Gencall score of <0.55 was
achieved.

Other data fields in the genotyping output files are also avail-
able including the X and Y signal intensity for each SNP-by-
individual sample, the B allele frequency and the logarithm nor-
malised R ratios. Each intensity value per SNP represents the inten-
sity for each channel of the fluorescent dyes associated with the
two alleles of the SNP under investigation. The B allele and loga-
rithm normalised R ratios outputs can be used in the detection of
copy number variants, indels, or karyotype abnormalities. Addi-
tional output files summarise call rates per individual and mean
frequencies of different genotypes per animal but these can be
derived from the other output files themselves.

The downstream bioinformatic analysis needed is a function of
the requirements of the client. Many clients simply want the called
genotypes which are the input for already established pipelines for
actions such as parentage testing (Dodds et al., 2005) or genomic
evaluations (VanRaden, 2008). Nonetheless, for producers, these
services still incur a cost for data processing.

Genotype quality control

The genotype quality control procedures adopted depend on the
end use but also on the statistical procedures that are employed to
arrive at the end goal. Service providers sometimes impose their
own genotype quality control measures prior to sending the geno-
types to the client – these could include the omissions of some SNP
probes with poor performance or those of proprietary value. One of
the first quality control measures imposed by the customer is the
genotype call rate per individual. The call rate is the proportion
of genotypes on the SNP panel where a genotype was called (with
confidence); this is usually a measure of DNA quality or concentra-
tion unless the majority of samples have a poor call rate which may
necessitate deeper investigation. The minimum call rate threshold
per animal imposed in livestock generally varies from 85 to 95%
(Wiggans et al., 2010; Purfield et al., 2016; Croué et al., 2019)
but the end use of the data, and possibly even the relative impor-
tance of the individual, should be taken into consideration when
setting the threshold. For example, a lower call rate (e.g., 85%;
Purfield et al., 2016) could be used for routine genomic evaluations
of commercial animals while a higher call rate may be imposed
when individuals are participants in research studies. Moreover,
some apply different call rates per SNP for autosomes versus sex
chromosomes (e.g., Wiggans et al., 2010) as well as by minor allele
frequency (e.g., Wiggans et al., 2010). Irrespective, sporadically
missing genotypes remaining after the call rate edit are generally
filled in using a process of imputation (Li et al., 2009). Whereas
an individual may have a high call rate, excessive heterozygosity
in samples should also be examined; excessive heterozygosity
may be indicative of sample contamination.

Where ancestry information exists, autosomal SNPs not adher-
ing to expected Mendelian inheritance are often discarded. This
should ideally be undertaken iteratively since if, for example, 10%
parentage errors exist in a population then many SNPs may exhibit
high Mendelian errors, but also if many SNP genotypes are poorly
called and subsequently flagged as Mendelian errors then recorded
ancestral relationships may be severed. Calus et al. (2011)
described a procedure to test for Mendelian inconsistencies in
SNP genotypes between putative parent-offspring pairs. Conflicts
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between genotype-predicted and recorded parentage may warrant
further interrogation, especially where a dispute with the owner
exists. One such further evaluation could consider hemizygosity
or indeed a deletion; procedures and evidence for such have been
described by Berry et al. (2019) for sheep.

Studies often impose a restriction on the frequency of the least
common allele – this is termed the minor allele frequency (MAF).
The rational for including a minimum threshold is three-fold: (1)
like any feature in a statistical model, large sample sizes are
required to detect (small) associations in features demonstrating
very little variability, (2) algorithms can have difficulty properly
calling genotypes in the calibration process where low numbers
of heterozygotes and homozygotes for one allele exist (Anderson
et al., 2010), and (3) low MAF SNPs tend not to contain much infor-
mation for polygenic traits and thus excluding them could reduce
the computational requirements. Nonetheless, rare alleles may
contribute to genetic variability (Jang et al., 2022) so should be dis-
carded with caution. The cited minimum minor allele frequency in
studies is usually on a percentage basis but in reality, this should
be based on the actual count of the allele since for the same per-
centage allele frequency, more individuals will be carrying the
allele as the total population size increases. Examples of minimum
MAF imposed in livestock vary from 0.1% (Zhou et al., 2014) to 5%
(Chen et al., 2013). Population sub-structure is important to con-
sider when calculating MAF as is the end use of the genotypes
(e.g., breed assignment especially for rare breeds).

Most genomic studies also tend to discard SNPs where the
genotype frequencies deviate from Hardy-Weinberg equilibrium.
While deviations from Hardy-Weinberg equilibrium for reported
genotype data can occur due to genotype errors, actual deviations
from Hardy-Weinberg equilibrium can be due to the actions of
evolutionary forces, one of which is selection. Given that many
genomic studies attempt to identify loci under selection, care
therefore needs to be exercised when discarding SNPs based on
their deviation from Hardy-Weinberg. An extreme example is
lethal recessive mutations where no homozygous mutant geno-
type should be detected despite the presence of heterozygotes; this
SNP, which is arguably hugely informative, will deviate from
Hardy-Weinberg equilibrium and therefore, in some studies, may
not be included in the analysis. Relaxed thresholds are warranted
such as P < 10�6 (Panetto et al., 2017) and 10�7 (Junqueira et al.,
2017). Imposition of Hardy-Weinberg edits in collated dataset
across different populations should also be undertaken with cau-
tion – some populations may have a high frequency of homozy-
gotes for one allele while another population may have a high
frequency of homozygotes for the other allele; a combined analysis
may reveal a deviation from Hardy-Weinberg equilibrium but this
is simply due to population structure and this SNP would be very
informative for assigning animals to their respective population.

Additional quality control tests that should be considered, but
can depend on the analysis being performed, is to test for the pres-
ence of duplicate genotypes (which could be monozygotic twins).
Checking gender of the individual (discussed later) as well as the
provenance (e.g., population, breed) are also important. To reduce
computational time and resources, removing redundant SNPs may
also be undertaken. These are SNPs which are in complete linkage
disequilibrium so that the marginal information in all SNPs over
and above just one of those SNPs is zero; as the population of geno-
typed animals grow, fewer SNPs in complete linkage disequilib-
rium may exist. In such situations, the SNP with the higher call
rate may be retained.

In all, many factors in the genotyping/sequencing pipeline can
affect the actual called genotypes. The sampling procedure and
DNA extraction SOP, for example, can affect the called genotype
(e.g., call rate, heterozygosity rate). DNA quality, therefore, should
not be compromised in the pursuit of reduced genotyping costs.

While SNP arrays may be less sensitive to DNA quality,
genotype-by-sequencing technologies may not (Lamb, 2023).
Hence, all actors in the pipelines (i.e., manufacturers of sampling
apparatuses, producers who take the sample, laboratories who
extract the DNA, genotyping and sequencing service providers,
bioinformaticians) should be engaged in the process with good
communication channels and the appropriate (and timely) quality
control mechanisms and protocols in place at different stages of
the sample-to-genotype pipeline.

Practical uses of genomic information

The practical uses of genomic data in helping make more
informed breeding and management decisions are in Fig. 1.
Animal-level genomic information is also hugely informative for
scientists in designing experiments or properly accounting for
genetic structure in cross-sectional data analyses.

Parentage verification and discovery

Ensuring accurate parentage is not only important for generat-
ing accurate genetic evaluations to maximise genetic gain
(Visscher et al., 2002; Sanders et al., 2006), but is also important
for informing mating decisions and estimating the expected
coancestry (i.e., half the genetic relationships) among individuals;
the expected inbreeding of the mating of two individuals is equal
to the coancestry between the two mates.

The impact on genetic gain from parentage errors is a function
of both the heritability of the trait as well as the number of pro-
geny records contributing to the genetic evaluation (Fig. 2;
Visscher et al., 2002). Irrespective of heritability, the greater the
rate of the parentage errors the greater the impact on genetic gain.
Furthermore, the impact of parentage errors on an animal’s esti-
mate of genetic merit diminishes as the animal accumulates more
(recorded) progeny with the impact reducing faster for higher her-
itability traits (Fig. 2). Inbreeding, on average, reduces perfor-
mance, especially if between close relatives; this is termed
inbreeding depression and the effects have been well publicised
(McParland et al., 2007 and 2008; Selvaggi et al., 2010; Silió
et al., 2013).

Accurate recording of parentage negates the requirement for
genotyping (solely for parentage validation or discovery) but this
is not always possible such as in extensive production systems,
where mob mating occurs, where heterospermic inseminations
are used, or in situations of superfecundation in polyovulatory spe-
cies. Even in large well-managed herds (e.g., dairy herds in New
Zealand), it is not always possible to match calves to their dams,
and thus also their sires.

Using the knowledge that each parent transmits half its DNA to
its offspring, having a genotype on both the offspring and its par-
ents enables accurate parentage verification. If sufficient genetic
markers as used, then parentage discovery can also be successful
assuming the true parents’ genotypes are also available (Dodds
et al., 2005). Estimates of parent-to-offspring parentage errors vary
from 7.6 to 10.0% in sheep (Berry et al., 2016), from 10.00 to 13.28%
in cattle (Visscher et al., 2002; Purfield et al., 2016; Řehout et al.,
2006), and from 8.4 to 14.6% in goats (Bolormaa et al., 2008).

If appropriately chosen, the number of SNPs needed for parent-
age verification is between 300 and 400 in most livestock (Berry
et al., 2019; Van Doormaal, 2016; Strucken et al., 2017). Certainly,
using the now almost ubiquitous 50 K SNP chips is sufficient to
verify and discover parentage. Such dense genotypes can also be
useful to confirm or assign grandparents and even great-
grandparents (VanRaden et al., 2013). Importantly, however, to
maintain integrity, sample mix-up should be avoided when taking
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the biological sample. Having relatively accurate dates of birth is
also important especially for parentage discovery; because parent-
age discovery is based on the pretence that parent-offspring pairs
share half their genome, then blindly undertaking parentage dis-
covery without considering the date of birth could result in a pro-
geny being proposed as a parent.

Traceability

Traceability has uses not only for reassuring the consumer of
the ability to trace a product (e.g., steak) to an individual, but is
also useful in reconciling animals under situations where animal
hustling (i.e., stealing) may be a problem, or in research settings
by ensuring correct animal identification when biological samples
are taken from commercial abattoirs. Like for other applications of
genomic technologies, the number of SNPs required for traceability
is dependent on their informativeness (Weller et al., 2006). The
probability of two unrelated individuals carrying the same geno-
type at 10 SNPs with a minor allele frequency of 0.5 is
5.5 � 10�5 (Fig. 3). The number of SNPs on the commonly used
50 K chip is therefore well sufficient to enable accurate traceability.

Karyotyping

A karyotype is a term used to describe the appearance and num-
ber of chromosomes in a cell. Alterations to either the number of
chromosomes or their appearance is called a karyotype abnormal-
ity, with the resulting repercussion varying from no observable
external difference, to infertility or embryo death (Holečková
et al., 2021). Like any abnormality, (early) detection is important
so that the individual can enter an appropriate production cycle
(i.e., to enter the breeding herd or reared for meat production). It
is possible to identify aneuploidy, using SNP chips, by investigating
the intensity values of the SNPs on each chromosome; this is akin
to the detection of large copy number variants. An automated
approach to detecting monosomy from SNP chips has been
described in cattle (Berry et al, 2017), sheep (Berry et al, 2018b)
and humans (Prakash et al., 2014). Is it not possible to identify
all karyotype abnormalities (e.g., translocations and inversions)
using SNP chips for some species. Nonetheless, identifying some
karyotype abnormalities early in life is important in aiding man-
agement decisions since some karyotype abnormalities can result
in infertility (Romano et al., 2015; Berry et al., 2017). Being able
to identify (some) karyotype abnormalities requires the B allele

Fig. 1. Applications of genomic information in livestock breeding and management.

Fig. 2. Impact of parentage errors in any species on genetic gain for high heritability (0.30) and low heritability (0.02) traits with 5% or 10% parentage errors.
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frequency (i.e., normalised measure of the allelic intensity ratio of
two alleles), logarithm normalised R ratios, and the X and Y signal
intensity values of all called genotypes. The intensity values of each
SNP along each chromosome can then either be visually examined
or compared to the mean intensity values of the other chromo-
somes for the same individual (Berry et al., 2017; 2018b). Sufficient
SNPs exist in the 50 K SNP chips to enable these discoveries. Prac-
tical applications of karyotyping individuals have been demon-
strated for cattle (Bouwman and Mullaart, 2023).

Although not a karyotype abnormality, but considered a chro-
mosomal abnormality, uniparental disomy (Engel, 1980) is when
an individual inherits two copies of a chromosome, or even part
of a chromosome, from one parent with no copy inherited from
the other parent. Uniparental disomy can be the result of heterodi-
somy, which occurs when a pair of non-identical chromosomes are
inherited from one parent or it can be due to isodisomy, where a
single chromosome from one parent is duplicated. Most occur-
rences of uniparental disomy result in no phenotypic anomalies.
Uniparental disomy can be detected where one, or ideally both of
the parents are genotyped along with the individual itself and
the 50 K SNP chip is sufficient to undertake the analysis; the geno-
type of the individual is compared to that of the parent(s). It should
be noted that uniparental disomy and some other karyotype
abnormalities could contribute to apparent parentage conflicts.

A freemartin is a chimeric (XX/XY) female that is infertile
resulting from mixed-sex twin pregnancy in some species (e.g.,
cattle). The blood system of the two placentas is not fully disen-
gaged so the blood of both twins can flow around the other. The
presence of male Y chromosome SNP can be detected in the white
blood cells of the suspected freemartin female soon postbirth. No
evidence exists on the ability to detect freemartinism using current
SNP array genotypes generated from DNA extracted from hair fol-
licles or ear biopsies.

Sex determination

While visually determining the sex of an animal is not compli-
cated, procedures like rubber-ring castration of young animals can
make it a little more challenging in real time. Moreover, where pre-
programmed automatic drafting options linked to radio frequency

identification systems exist, drafting animals on gender, breed, and
genetic merit can be readily undertaken if the genotype informa-
tion and output are stored in the backend information systems.
Furthermore, genotype-determined gender can also be a useful
quality control measure in the genotyping pipeline process itself
(McClure et al., 2018).

It is advisable to use the genotypes from both the Y chromo-
some and non-pseudoautosomal region of the X chromosome
when determining animal sex. Because males in most livestock
species have only one X chromosome, no heterozygous genotypes
should exist in the non-pseudoautosomal region. Moreover, geno-
types should be called for SNPs on the Y chromosome in males but
not females. Relying just on the extent of homozygosity on the X
chromosome may misidentify inbred females who inherited the
same intact X chromosome from a common ancestor. If semen is
the biological sample being genotyped, and if it is female-sex
sorted, then very few Y chromosome carrying sperm may be pre-
sent and leading to faint or no genotype called on the Y chromo-
some. Karyotype abnormalities can also cause discrepancies
between genotyped-predicted gender and actual gender (e.g.,
Swyer syndrome; Berry et al., 2023).

Breed composition

Accurate knowledge of the breed composition of an individual
is important for (1) developing a mating programme to fully
exploit inter-breed non-additive genetic effects, (2) understanding
the history leading to the breed composition of the individual (e.g.
differentiating first cross vs stablised composite) which could be
useful for modelling the non-additive effects (e.g., heterosis) in
genetic evaluations models, (3) help in maintaining the integrity
of breed society records and breed conservation programmes
where a restriction is imposed on breed purity, (4) reassuring con-
sumers of the authenticity of animal products that command a
higher price based on breed origin, (5) as an adjustment factor in
multi-breed genetic evaluations, (6) as an early warning system
of errors in mislabelling during sample procurement or genotyp-
ing, and (7) experimental design where one of the factors of inter-
est is breed/crossbred (Zimmermann et al., 2021; Schiermiester
et al., 2015) differences. The expected breed composition of an

Fig. 3. Probability that two unrelated individuals of the same species will have the same genotype depending on the mean minor allele frequency (0.1–0.5) of the chosen
single nucleotide polymorphisms (SNPs) and the number of SNPs derived using the equation provided by Weller et al. (2006).
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individual is the average of its respective parents’ breed composi-
tion. The actual breed composition of an individual, however, may
deviate from the expectation where one or both parents is cross-
bred owing to the segregation of alleles during gamete formation.
Several approaches exist to estimate breed composition from geno-
mic data (O’Brien et al., 2020; Kuehn et al., 2011; Alexander et al.,
2009).

Tens of SNPs are required to assign purebred animals to individ-
ual breeds (Hulsegge et al., 2013) but several hundred SNPs are
required to estimate breed composition (O’Brien et al., 2020;
Judge et al., 2017; Strucken et al., 2017), especially in a highly
admixed population. Informative SNPs are those generally with a
high fixation index (Weir and Hill, 2002) scattered across the gen-
ome (Judge et al., 2017); the fixation index reflects the genetic dif-
ferentiation between populations.

Monitoring major genes or mutations conferring congenital or large
effects

Amajor gene may be defined as a gene with pronounced pheno-
typic expression. Casas and Kehrli (2016) provided a summary of
the detected major genes of known effect in cattle with
VanRaden et al. (2011a and 2011b) reporting additional recessive
mutations in Holsteins. Some mutations are due to single or di-
nucleotide polymorphisms (e.g., K232A in DGAT1) while others
can be due to deletions (e.g., nt821 deletion in the myostatin gene).
The mode of action of the different mutations can differ although
those conferring lethality are almost always recessive; in such sit-
uations, an individual must be carrying two copies of the mutant
variant to be affected. Some alleles exhibit dominance action in
that one allele masks or overrides the effect of the other allele at
the same locus; an example is the dominant allele conferring
polledness in cattle (Medugorac et al., 2012).

Monitoring the change in frequency of different alleles of such
large effect over time can be of interest for future proofing; for
example, a growing frequency of lethal recessives in a population
may have long-term unfavourable consequences. Some breed soci-
eties refuse to register individuals carrying alleles for particular
variants (e.g., some beef breeds do not accept animals carrying
the nt821 myostatin variant). Knowledge of the carrier status of
individual animals is also informative when deciding on matings
to produce the next generation. It is not clear if including the actual
causal mutation in genomic evaluations improves the accuracy of
genomic predictions once genome-wide SNP information is also
included (Oget et al., 2019) although the benefit, or lack thereof,
will depend on a number of factors like (1) the ability to actually
identify such variants and the allele substitution effect of the locus,
(2) the density of genotyped SNPs in the vicinity of the major locus
and their linkage disequilibrium structure, (3) whether evaluations
are being undertaken within or across breed and the linkage dise-
quilibrium structure (and haplotype phase) in that region, and (4)
the size of the reference population of phenotyped and genotyped
animals for the genome-wide markers.

The sequence flanking the mutation of interest can readily be
included as primers on SNP chips for genotyping along with all
other thousands of SNPs (e.g., https://www.icbf.com/wp-content/
uploads/2014/06/Farmer-Genetic-Disease-and-Trait-Information-
for-IDB-Genotyped-Animals-in-Ireland_9_20_16.pdf); this there-
fore requires just one biological sample and one process of geno-
typing. Some mutations are, however, royalty bearing.

Relatedness, coancestry, inbreeding and heterosis

Knowledge of the relationships among individuals, especially
how the set of relationships change over time, is important in
the pursuit of minimising the accumulation of inbreeding and its

generally unfavourable repercussions for animal performance
through inbreeding depression (McParland et al., 2007, 2008;
Selvaggi et al., 2010; Silió et al., 2013). Whereas the expected rela-
tionship among full sibs is 50%, a SD of 4% has been reported (Wang
et al., 2014; Kenny et al., 2023). This implies that for approximately
0.1% of full sibs (i.e., 1 in every 1 000), they are expected to share
<38% of their genome while for another approximately 0.1%, the
pair are expected to share >62% of their genome. The extent of this
variability in relationships between full sibs is also dependent on
the inbreeding coefficient of the parents and their relationship
(Kenny et al., 2023). The commonly used 50 K SNP chip provides
sufficient SNPs to enable accurate relationships to be quantified –
in fact, the 50 K genotypes are used to generate genomic relation-
ship matrices which form the basis of most genomic evaluations
for livestock species globally. The genomic relationship matrix
(VanRaden, 2008) represents the relationships among genotyped
animals calculated from their respective genotype and several
approaches exist to calculate the genomic relationship matrix
(e.g., VanRaden, 2008).

In the absence of genomic information, the inbreeding statistic
applied to an animal is the expected inbreeding based on the trac-
ing of (sometimes incorrect as previously discussed) ancestry to
common ancestors (if they existed). Genotype information can be
used to more accurately estimate homozygosity in the genome
(Purfield et al., 2012; Lopes et al., 2013) some of which can be
due to inbreeding. Runs of homozygosity use genomic data to form
sets of contiguous loci that are homozygous and offer the opportu-
nity to predict inbreeding in, yet unknown, key regions of the gen-
ome that lead to trait-specific inbreeding depression as opposed to
global estimates of inbreeding (Pilon et al., 2021). Nonetheless,
inbreeding metrics per animal continue to be generally expressed
based on homozygosity across the entire genome. However,
inbreeding should only cause an effect if (a) it is for loci that affect
performance, and (b) the homozygous genotype is inferior to the
other possible genotypes in which case, if known, it may be purged
from the population through selective breeding. Therefore, loci- or
runs of homozygosity-specific measures of inbreeding (or indeed
coancestry) may be more informative. Such information, though,
could become unwieldy so therefore it may be more appropriate
to integrate (expected) inbreeding depression into expected per-
formance predictions when informing potential matings. Heterosis
is simply the opposite of inbreeding. Therefore, the same principles
of loci-specific heterosis effects apply.

Mating advice

The basis underpinning mating advice tools, or decision support
systems, is to maximise genetic gain in the herd while also at the
same time attempting to correct particular features of females with
males excelling in those features and avoid the mating of (closely)
related individuals (Kinghorn, 1998; Bérodier et al., 2021). The
ability of genomic information to detect carriers of genetic markers
conferring different phenotypic attributes have already been dis-
cussed and such markers can be considered in the mating algo-
rithm. Similarly, the ability to better estimate the relationship
among candidate parents from which to estimate the expected
inbreeding of the potential offspring has been discussed. Linear
programming is sometimes used in mating programmes
(Bérodier et al., 2021; Bengtsson et al., 2022) where the goal is to
maximise an objective function (e.g., total genetic merit) under a
set of constraints such as upper threshold on coancestry among
potential mates.

For commercial producers, an additional objective may be to
minimise the expected heterogeneity of phenotypic performance
in the offspring while the opposite might be true for seed stock
breeders. Knowledge of the gametic variance of individuals can
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also help identify animals, but also matings, that minimise (or
maximise) the expected heterogeneity of the progeny. Santos
et al. (2019) described a deterministic approach to estimate the
gametic variance for individuals based on the available genotypes.
While several studies have described the potential of such an
approach to identify individuals that will create more heteroge-
neous progeny, and thus possibly create genetically extreme ani-
mals for inclusion in a breeding programme (Bijma et al., 2020),
the technique can also be used to identify animals that are likely
to create more homogeneous progeny more suited to consistent
management by producers. Knowing the gametic variance of sires
could be useful when evaluating the risk of a difficult birth ensuing
from a given mating, especially for the mating of beef bulls to dairy
females (Berry, 2021). For such beef-on-dairy matings, the dairy
farmer may choose a sire with a greater expected mean genetic
predisposition to a difficult birth of his progeny but with a lower
chance of producing very large calves requiring veterinary inter-
vention (i.e., a more homogenous group of progeny). The tool could
also be particularly useful for polyovulatory species like pigs where
minimising litter variability in birth weight and growth rates could
be extremely helpful in management.

To estimate the gametic variance of an individual, genotypes for
all SNPs included in the respective genomic evaluation should be
available. This is necessary because SNP effects estimated in the
genomic evaluation process form part of the calculation of gametic
variance (Santos et al., 2019).

Genomic evaluations

The potential for genetic markers to enable more accurate
genetic selection for complex traits, particularly those that were
sex-limited or difficult/expensive to measure, led to both market-
ing and eventual deployment of marker panels to inform marker-
assisted selection. In some species and in some countries, the
results of some of the first commercially marketed tests were
delivered to producers in the form of scores ranging from 1 to 10
or even more naively as a number of stars whereby more stars
were assumed to be genetically superior animals. These initial tests
were based on a limited number (a few to tens) of genomic mark-
ers. Although such tests were marketed, it became apparent that
the results were not robust across populations (Van Eenennaam
et al., 2007). Moreover, the results of such tests directly competed
with traditional pedigree-based estimates of genetic merit (i.e.,
estimated breeding values; EBVs) as a selection criterion thereby
only adding confusion for breeders. In other cases, limited numbers
of markers were included in genetic evaluations as fixed effects
(Fernando and Grossman, 1989). These initial marker panels
evolved to include hundreds and eventually thousands of markers
necessitating a different strategy to including DNA-based informa-
tion into genetic evaluations.

To capture value from this new form of data, entities (i.e.,
breeding companies, breed associations/societies) began to
develop their own within-breed or within-population reference
populations comprised of both genotyped and phenotyped ani-
mals. These reference sets (also called training populations) were
used to estimate the effects of individual SNPs that could then be
applied to newly genotyped selection candidates to generate geno-
mic EBV (GEBV). The methods for incorporating genomic predic-
tors into EBV were based on either (a) including the GEBV as a
correlated trait (Kachman, 2008; MacNeil et al., 2010) in a multi-
trait evaluation or (b) employing a blending, or indexing, approach
whereby the molecular and traditional estimates of genetic merit
were combined proportional to their accuracy (VanRaden, 2008).
Irrespective, these two methods were sub-optimal given SNP
effects first needed to be estimated from the reference population
and then applied to selection candidates and required combining

two pieces of information (genomic and pedigree-based EBV) that
arose from two different procedures.

The investment in genotyping to construct a representative ref-
erence population proved to be a critical first step to achieving the
realisation of genomic selection (Meuwissen et al., 2001). While
phenotyping is also costly, many of the initial reference popula-
tions exploited already existing phenotypic data. In fact, many of
the reference populations were based on progeny-tested sires
where the accuracy of the estimates of genetic merit was high thus
requiring fewer genotyped animals to achieve a high accuracy of
selection as would be needed if animals with only their own phe-
notype were considered. Retraining, or recalibration, which is the
process of re-estimating SNP effects, became a necessity as the
population of genotyped animals increased in size. The issue of
robustness of predictions across breeds arose, and the use of geno-
mic predictors trained in one breed/population could not be used
with any degree of accuracy in a closely related breed/population
(Kachman et al., 2013) unless the reference population accounted
for all potential breeds in the target population. This issue of sen-
sitivity of SNP effects to the composition of the reference popula-
tion was largely a function of differences in linkage
disequilibrium (i.e., how co-located SNPs are inherited) across
breeds/populations and even within-breed/population across
generations.

A paradigm shift in genetic evaluations occurred when statisti-
cal models were developed to enable the inclusion of genomic
information in a ‘single step’ in the calculation of EBVs, avoiding
the need for reference populations that were external to the sys-
tem and the potential for bias that such systems created. One such
approach considers genomic data as a means of quantifying kin-
ship among animals (Legarra et al., 2009). A genomic relationship
matrix (G) describing the actual relationships among genotyped
individuals could easily replace the pedigree-based (expected)
relationship matrix in genetic evaluation software, resulting in
genomic best linear unbiased predictions (VanRaden, 2008). How-
ever, the majority of livestock populations contain a mixture of
both genotyped and non-genotyped animals. Fundamentally,
single-step genomic BLUP combines the traditional pedigree-
based expected relationships among non-genotyped animals with
relationships calculated from genomic information for genotyped
animals. The combining of the pedigree-based relationship matrix
(termed the A matrix) and the genomic relationship matrix (i.e.,
the G matrix) formed an H matrix (Aguilar et al., 2010;
Christensen and Lund, 2010). As before, the matrix H can be easily
substituted into the traditional genetic evaluation software suites.

The primary benefit of relationship estimates derived from
genomic information is the ability to determine more refined esti-
mates of relationship between individuals. Classic examples
include relationships between grandparents and grand-offspring
or between full siblings. The former relationship, based on pedi-
gree and assuming no inbreeding, has an expected value of 0.25
but the range could be between 0 and 0.5 due to Mendelian sam-
pling. The latter example has an expected value of 0.5 but the range
could be between 0 and 1; the SD is 0.04 units (Wang et al., 2014;
Kenny et al., 2023). Because the G matrix can partially capture
Mendelian sampling and the recorded ancestry is often incorrect
or indeed missing, the generated genomic relationships are a more
accurate reflection of relationships thereby contributing to
improved accuracy of the EBV (Hayes et al., 2009). A competing
single-step method, single-step Bayesian regression as described
by Fernando et al. (2014), is equivalent to single-step genomic
BLUP under certain circumstances and can be thought of as a
hybrid of pedigree-based BLUP and a marker effects model that
estimates the effects of each SNP that is included (typically a few
thousand) in one unifying statistical model. Regardless of the
choice of single-step method, both hold advantages over the
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two-step approach primarily because SNP effects are estimated
internal to the system and do not rely on an external set of animals.
Consequently, both ‘single-step’ methods have demonstrated ben-
efits in increasing the accuracy of genomic breeding values and
have become the methods of choice for the majority of commercial
breeding programmes.

Precision management

Precision or personalised management is where the manage-
ment of an individual is optimised to its genotype. Access to infor-
mation on parentage, carriers of genes of major effects (including
karyotype abnormalities) as well as more accurate prediction of
genomic, and therefore phenotypic merit all contribute to more
precise management decisions. For example, being able to more
accurately estimate the genetic merit of an individual using geno-
mic technologies facilitates more bespoke management strategies
such as feeding animals differently contingent on their (estimated)
genetic merit. Such precision management is certainly not a novel
concept in livestock. For example, energy-rich diets are fed to ani-
mals with a genetic potential for rapid muscle growth. Such
genetic differentiation of animals, however, has heretofore gener-
ally been based on breed. Genomic evaluations provide more gran-
ular and precise predictions of within-breed (as well as across
breed) performance. Being able to estimate non-additive genetic
effects is particularly important when predicting phenotypic per-
formance; non-additive genetic effects are generally ignored in
breeding because not all are directly transmitted from one gener-
ation to the next. Therefore, it is likely in the future that animals
will be penned or managed (i.e., quantity and quality of feed) based
on genomic breeding value rather than breed or coat colour. Pro-
ducers might also use such predictions to inform buying/selling
decisions, such that a feedlot might pay more for animals with a
genetic predisposition for greater feed efficiency or carcass merit.
Similarly, producers may actively seek to purchase animals with
a similar genetic predisposition to some diseases; one example
could be the avoidance of animals genetically less resistant to
tuberculosis by producers farming in areas rife with tuberculosis.

As well as aiding the management of animals, more accurate
estimates of genetic merit through genomic evaluations can be
used to modify rules to invoke action within decision support sys-
tems. As an example, a cow that is predicted to be genetically pre-
disposed to an infection of the uterus or indeed more prone to
ovarian cysts may be recommended to receive an ultrasound
examination of her reproductive tract prior to the start of the
breeding season. Similarly, the threshold somatic cell count level
in the milk of a lactating animal that triggers a recommended
action may be lowered for cows predicted to be more genetically
prone to sub-clinical mastitis. This is akin to life-style recommen-
dations for humans differing in the family history of diseases such
as cancers or cardiovascular disease. Genomic predictions could
also be used to inform specific pharmaceutical regimes to max-
imise animal response to vaccines or to reduce the overall use of
pharmaceuticals. Again evidence clearly exists in humans on the
efficacy of different drugs (e.g. codeine) for people of different
genotypes.

Nonetheless, other contributors to precision management from
genomic information over and above that already described also
exist. One such example is the identification of high milk somatic
cell count individuals within a herd by comparing the genotype
of the bulk milk to those of the contributing individuals; it is not
the actual called genotype of the bulk milk that is used but instead
the frequency of the B allele in the genotype results. Such a tactic is
already commercially available (GénoCells�). The majority of
somatic cells in milk are leukocytes which are elevated in lactating
animals in response to some perturbation (e.g., infection).

Therefore, high somatic cell count in an individual’s milk can be
a reflection of that individual’s physiological and health status.
Although technologies exist to routinely measure or approximate
somatic cells or their proxies in milk (Suhren and Walte, 1998;
Fragkou et al., 2014), the gold standard measurement of somatic
cell count in milking animals is undertaken, at best, every 4 weeks.
Milk collected from all females on a farm during the milking pro-
cess is stored locally in bulk tanks; the milk in these tanks is usu-
ally collected every 1–3 days. Leveraging the DNA information
contained within the somatic cells, the count of the alleles for a
given SNP in the somatic cells of a representative bulk milk tank
sample is reflective of the contribution of the DNA of each individ-
ual to that bulk milk sample. By comparing the genotype of the
bulk milk sample to the stored genotypes of the individuals in
the herd that contributed to that milk sample, a prediction of the
somatic cell count of each individual can be generated (Blard
et al., 2012).

Interest in animal-side genotype-by-sequencing approaches for
rapid diagnostics is coming to the fore (Lamb et al., 2020). Such an
approach has already demonstrated potential for the diagnosis of
African swine fever (O’Donnell et al., 2020). Available technology
has now been demonstrated to be able to identify viruses respon-
sible for bovine respiratory disease in cattle with sufficient
sequencing reads in the first hour to be able to correctly identify
BoHV1, BRSV or BPI-3 present in their lung cultures. Being better
able to target antimicrobials where necessary depending on the
pathogen will not only reduce medicinal cost but also reduce pres-
sures on microbial resistance due to improved stewardship of
antimicrobial use. This could be complemented not only through
pathogen identification but also through the screening for
antimicrobial-resistant genes in the pathogen.

Development of genotype panels

Several studies have documented processes for developing
lower-density genotype panels (Boichard et al., 2012; Judge et al.,
2016; Corbin et al., 2014). Creating a bespoke genotyping panel
has the advantage that the content is dictated by the developer.
This can mean that the variants included are most informative
for the population of interest, although this assumes that all vari-
ants were appropriately chosen. Proprietary variants can be
included in the bespoke panel thus enabling the retention of trade
secret variants while also providing an opportunity to include
putatively interesting (research) variants for downstream interro-
gation. Flexibility also exists in the choice of not only the vendor
of the genotyping platform (e.g., ThermoScientific, Illumina) but
also the service provider; such flexibility creates opportunities
for realising the benefits of competitive financial bids from provi-
ders although may be limited by the availability of the necessary
technology in a region. Irrespective of species, high degrees of con-
cordance exist in the called genotypes between SNP arrays (Berry
et al., 2016; Wijesena et al., 2019). Moreover, there is evidence that
high concordance exists between array genotypes and those called
from imputed low-pass (�0.5�) whole-genome sequencing
(Sanglard et al., 2022a) although it is reasonable to expect that
results could differ as the relationship between the reference set
of animals and the target animals changes. It should be noted,
however, that the panel here refers to the panel of SNPs as opposed
to the technology (e.g., SNP chips) with the described approaches
also being applicable to other technologies like target-
enrichment sequencing.

Genotyping cost is dictated by, amongst others, the volume of
chips or reagents ordered – all else being equal, the greater the vol-
ume, the lower the unit price of the genotyping platform (and ser-
vice). Hence, the cost of panel construction and production could
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be high unless large volumes are ordered; it could actually make
more economic sense to use a commercially available (higher den-
sity) panel even if not fully optimised for the population where it
will be used. Many of the commercially available genotype panels
are very much up-to-date with the state of the art in informative
genomic markers – keeping up-to-date requires considerable
resources and, in some instances, trial and error where the primers
flanking the genotyping site are not straight forward. Developers of
bespoke panels, therefore, need to be up-to-date on all informative
genomic markers some of which may not even yet be in the public
domain. It is also important that the developed bespoke panels are
compatible with other available panels (i.e., suitable overlap in
content) to enable imputation so as to make use of animals previ-
ously genotyped and, as it is now relatively common in cattle and
sheep at least, to share (subsets of) genotypes.

The number and choice of genomic markers to include on a
panel is a function of the proposed use. If limited to using SNP
array genotyping panels, there is generally only a small difference
in price per sample for panels with less than 50 000 SNPs relative
to the commonly used circa. 50 000 SNP panels; this is especially
true when the full cost of genotyping (i.e., sample procurement,
DNA extraction, genotyping service and downstream bioinformatic
analyses) is considered. Cost reductions could be possible for fewer
SNPs (<circa 3 000 to 5 000 SNPs) if using a different genotyping
strategy or platform such as targeted genotype-by-sequencing.
With circa 50 000 SNPs, then specifically choosing SNPs for trace-
ability and parentage discovery is unlikely to be necessary since
sufficient information will be contained within the several thou-
sand SNPs. Nonetheless, the International Society for Animal
Genetics parentage SNPs and other SNPs used in other populations
for parentage testing should be included in any bespoke panel to
facilitate (partial) genotype exchange (even if the exchange is not
in the initial plans). Using commercially available panels with circa
50 000 SNPs, specific SNPs for determining breed composition are
also unlikely to be needed unless there is a specific interest in rare
breeds not represented in the original population to select the
informative SNPs. In such situations, individual SNP statistics like
the fixation index could be used to identify informative SNPs
where ideally the chosen SNPs are fixed for one allele in the breed
of interest and fixed (or low allele frequency) for the opposing
allele in all other breeds (i.e., fixation index of 1).

Genomic variants may also be chosen for a specific population to
aid imputation to higher density, including sequence, in that breed.
This is best achieved by selecting informative SNPs from high-
density genotypes/sequences in genetically unrelated and prominent
animals for the breed in question; having such higher-density geno-
types also enables the testing of imputation accuracy from the cho-
sen lower-density panel to a higher density as well as identifying
SNPs with a high call rate. Imputation across the genome tends to
be best when SNPs are evenly spaced across the genome with a rel-
atively high minor allele frequency in the population within which
they will be used (Judge et al., 2016; Lashmar et al., 2021;
Gualdrón Duarte et al., 2013); additional SNPs at the chromosome
ends are also required to aid imputation (Boichard et al., 2012).
Genomic regions where imputation is poor have been demonstrated
(Lashmar et al., 2021; Gualdrón Duarte et al., 2013; Ventura et al.,
2016); these regions could be co-located with recombination hot
spots or could simply be due to poor annotation in these regions
of the genome. Imputation from SNPs to microsatellites (McClure
et al., 2013) may also be important for parentage testing where his-
torical animals have been genotyped on microsatellites. Minimising
the linkage disequilibrium among the chosen SNPs on the panel will
minimise redundancy although, for imputation purposes, the SNPs
not chosen should ideally be in strong linkage disequilibrium with
co-located SNPs that did make the eventual panel.

In the end, the decision on whether or not to develop a bespoke
genotyping panel will be a function of cost versus information con-
tent (i.e., return). While the ability to add proprietary information
can be important, the information content of currently available
genotype panels for a population can be approximated by simply
genotyping several prominent individuals (possibly 200) on
already available panels and quantifying the number of usable
(i.e., called) SNPs that are segregating with a minor allele frequency
of >0.05 (i.e., are informative). It should also be noted that while
many genotype panels assay circa 50 000 SNPs, the actual number
of SNPs postediting is circa 40 000 (Berry and Kearney, 2011;
Wiggans et al., 2019; Duchemin et al., 2012; Howard et al.,
2018). In fact, circa 40 000 SNPs seem sufficient for within-breed
genomic predictions (VanRaden et al., 2011a; 2011b).

There is, nonetheless, a growing interest in genotype-by-
sequencing or low-pass sequencing approaches (Elshire et al.,
2011; Lamb, 2023). Low-pass, or skim sequencing is whole-
genome sequencing at low depth (i.e., 0.5�) and, when coupled
with imputation, can enable much denser genomic data at a frac-
tion of the cost of deeper sequence. Generating lower-density data
coupled with imputation is not new, and is akin to genotyping with
low-density assays and imputing to higher (e.g., 50 000 SNP) con-
tent. Although SNP arrays that are of sufficient density are in use at
a price point that has encouraged wide-spread genotyping
throughout many livestock species, the appeal of low-pass
sequencing solutions are two-fold: more variants including poten-
tially causative mutations, and the ability to change the set of vari-
ants actually fitted in genetic evaluations without the need to re-
design a custom assay making the process of including new vari-
ants more dynamic. However, there are also two primary short-
comings of such an approach: the need for a representative refer-
ence population and the ability to determine genotype calls for
variants of importance with greater certainty than imputation
might provide. A representative reference set of animals sequenced
at greater depth (e.g., 10�) would ideally enable high-accuracy
imputation for all animals in the target population, and thus the
reference set should initially contain contemporary high-use sires
and representative animals from any less connected sub-
populations to ensure the reference can capture the diversity of
haplotypes in the current population. The reference over time
would need to be dynamic. If imputation-mediated sequencing is
not desired, then either sequencing depths will need to increase,
increasing the cost of data generation, or a targeted capture or
genotype-by-sequencing (De Donato et al. 2013) approach would
need to be implemented to generate genotypes. Important variants
might include diagnostic markers, such as those for coat colour,
horned/polled, or those for genetic conditions. Such variants
require targeted deep sequencing approaches to ensure genotype
calls are made without error. Initial proof of concept work has
illustrated that such an approach can yield accurate genotype calls
(Snelling et al., 2020; Lamb, 2023) and some genotyping service
providers seem inclined to move in the direction of providing
genotypes through low-pass sequencing-based products. The end
goal of using imputed variants from sequence is to enable more
accurate prediction of genetic merit (Veerkamp et al., 2016;
Warburton et al., 2020). Moreover, should the desire be to generate
genomic evaluations across breeds or diverse strains, then higher-
density genotypes may be needed (de Roos et al., 2008; Erbe et al.,
2012). SNPs on SNP chips do suffer from ascertainment bias in that
those chosen for inclusion on the panel are from a sample popula-
tion and are usually chosen to be segregating in the breeds repre-
sented. Sequencing approaches, either genotype-by-sequencing
approaches or whole-genome sequencing, however, can overcome
ascertainment bias. It is also possible that such an approach could
yield novel indicators, or bio-markers, of traits related to efficiency
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by leveraging mitochondrial sequence that is generated through
(low-pass) sequencing approaches (Sanglard et al., 2022b).

The future

Genomic technology, and its application, continue to evolve as
does omics in general including epigenomics (Triantaphyllopoulos
et al., 2016). The cost, particularly the cost per genetic variant geno-
typed, will continue to decline. The density of genomic information
through the greater use of whole-genome sequencing will necessi-
tate fundamental changes to the statistical models that are in use
currently to exploit the explosion in data quantity. The use of geno-
mics will likely expand more into commercial sectors of livestock
production to enable more informed management decisions includ-
ing more individualised use of pharmaceuticals, economic valuation
of animals for sale, and to connect commercial-level phenotypes to
seed stock/nucleus breeding programmes in the absence of known
kinship. Such an expansion of genomic data into commercial sectors
will require coordination among sectors to avoid unnecessary dupli-
cation of costs and mechanisms to share in the cost/benefit. The
potential to not only identify causal genomic variants but also to
rapidly propagate them in multiple populations through the combi-
nation of technologies such as whole-genome sequencing and gene-
editing (Jenko et al., 2015) could enable more efficient selection for
disease susceptibility and fitness and reduce any undesirable effects
associated with more traditional introgression approaches. Tradi-
tionally genetic prediction has focused on evaluating animals, but
as deeper knowledge of the genome becomes available and the
potential to strategically introgress alleles becomes more prevalent,
the notion of an ‘animal’ will need to change and evaluations will be
of sets of alleles that could be in common with multiple animals
(surrogates). Developments in genotyping technologies including
affordability may also contribute to a proliferation of the sample
types being routinely genotyped including the metagenome of dif-
ferent locations like the rumen, vagina and udder teats (Ross and
Hayes, 2022) as well as different samples for epigenomic analyses.

The routine generation of millions of genotypes instead of tens
or hundreds of thousands presents practical hardware and soft-
ware computational challenges (Jiang et al., 2021). Efficient data
storage and management along with efficient data retrieval mech-
anisms, while also addressing robust data security practices, will
be a significant challenge. Integrating data from different genomic
sources (including vendors and genotyping/sequencing platforms)
with other data including those generated from other omics disci-
plines will grow in importance as will be the development of scal-
able, sophisticated computational strategies to integrate these
diverse, hierarchical and often unstructured datasets and extract
meaningful insights for understanding the complex interactions
between genomics and various phenotypes. No doubt, much of
the advancements in the near future in genomic analyses will be
achieved through integrating domain expertise across a range of
disciplines (e.g., biology, data science, breeding).

Conclusions

Genotyping, both the number of genomic markers simultane-
ously genotyped and the cost per genotype, has changed dramati-
cally in the past 15 years. This was achieved by the commercial
availability of microarray-type genotyping platforms coupled with
the ever-accelerating growth in demand for such panels thereby
reducing the costs. While genotype data from microarray technol-
ogy is relatively simple to collate and analyse, alternative technolo-
gies like genotype-by-sequencing or low-pass sequencing may
come to the fore in future, adding new challenges. Parentage deter-
mination and screening for major genes or congenital defects were

the justification for genotyping animals in the past and such geno-
typing was confined to valuable genetically elite animal at the top
of breeding pyramid. This has now been replaced by the desire for
genomic evaluations of candidate sires and dams. The future is
likely to involve the genotyping of (almost) all animals at birth
and using the wealth of information gleaned from the genotype
to deliver value-creating management and breeding decisions.
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