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Facility Location Games with Ordinal Preferences

Hau Chan1, Minming Li2, and Chenhao Wang1

1 University of Nebraska-Lincoln, NE, USA {hchan3,cwang55}@unl.edu
2 City University of Hong Kong, HKSAR, China minming.li@cityu.edu.hk

Abstract. We consider a new setting of facility location games with ordinal pref-

erences. In such a setting, we have a set of agents and a set of facilities. Each agent

is located on a line and has an ordinal preference over the facilities. Our goal is

to design strategyproof mechanisms that elicit truthful information (preferences

and/or locations) from the agents and locate the facilities to minimize both max-

imum and total cost objectives as well as to maximize both minimum and total

utility objectives. For the four possible objectives, we consider the 2-facility set-

tings in which only preferences are private, or locations are private. For each

possible combination of the objectives and settings, we provide lower and up-

per bounds on the approximation ratios of strategyproof mechanisms, which are

asymptotically tight up to a constant. Finally, we discuss the generalization of our

results beyond two facilities and when the agents can misreport both locations and

preferences.

Keywords: Facility location · Mechanism design · Approximation.

1 Introduction

Facility location games have been widely studied in recent decades (see e.g., [7,16,17]).

In the typical setting, we have a set of agents, a set of facilities, and a set of possible lo-

cations (e.g., a bounded interval [0, 1]). Each agent is located within the set of locations,

where the agent’s location is private information. The goal is to design a strategyproof

mechanism that elicits true locations of the agents and locates the facilities to (approx-

imately) minimize the maximum distance/cost objective or total distance/cost objective

of the agents to their respective closest facilities. Under this setting, each agent is in-

different about the facilities, and, naturally, the agent’s only interest is his/her closest

facility.

When each agent has an ordinal (or a complete ranking) preference over the facili-

ties, the standard facility location games and their variants [1,21] no longer capture the

tradeoff between the agent’s ordinal preference and the agent’s distances to the facili-

ties. Namely, even if a facility is closest to the agent, the agent could prefer going to

another facility that is farther away due to the agent’s underlying ordinal preference.

In this work, our focus is to consider facility location games that incorporate agents’

ordinal preferences over the set of facilities, and design mechanisms under several ob-

jectives and truthful elicitation requirements (i.e., preferences and/or locations). Below,

we provide several motivation examples in public facility domains for the necessity of

considering ordinal preferences in facility location games.

http://arxiv.org/abs/2107.01649v1
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Motivation. As a first example, a planner wants to build two substitutable public facil-

ities (e.g., schools, libraries, and parks) on the real line (e.g., road), on which finitely

many agents locate. For instance, one can be a public library and the other can be a

specialized library (e.g., with special/unique contents or features). Both of them can

serve and accommodate any agent in the system. Some agents prefer the full range of

general books in the public library, while others prefer the specialized books and envi-

ronment in the specialized library. As a result, each agent has a preference over these

two facilities.

In the second example, the planner plans to open two public schools (e.g., kinder-

gartens) with different education systems (e.g., traditional, charter, montessori, or mag-

net) within a set of locations, where one school (e.g., magnet) pays more attention to

some specific field of study, and the other (e.g., montessori) focuses on openness and

guidance. The parents have their own perspectives on education for their children and

therefore have different preferences over the two public schools.

In both of the above examples, we must consider the tradeoff between the agent’s

ordinal preference (first choice and second choice) and the agent’s distances to the fa-

cilities.

Our Contribution. We introduce a new model of facility location games with ordinal

preferences where each agent can express his/her preference over the set of facilities

as well as his/her location (in the interval of [0,1]). This model builds upon the facility

location problems by incorporating agents’ preferences of facilities nontrivially. Such

a notion that allows the agents to express their preferences over the facilities (such as

preference over heterogeneous parks and libraries) directly. Adding such a preference

feature requires us to nontrivially derive the appropriate facility location models. We

then propose appropriate cost objective and utility objective to capture the tradeoff be-

tween an agent’s preference and the agent’s distance to the facilities. The agent’s cost

(utility) for a facility is his/her distance (one minus his/her distance) to the facility mul-

tiplied (divided) by a discount factor that depends on the ranking in the agent’s ordinal

preference. Naturally, an agent’s cost (utility) objective is defined to be the minimum

cost (maximum utility) over all facilities. The interpretation is that less preferred facili-

ties would be more costly for the agents even if they are closer to the agents.

We study the problems of designing strategyproof and (approximately) optimal

mechanisms to minimize the maximum cost objective and total cost objective as well

as to maximize the minimum utility objective and total utility objective over all of the

agents, in settings where either ordinal preference or location information is private.

Let α ≥ 1 be a constant coefficient that characterizes the different preference of agents

over the facilities, which can be viewed as a discount factor and will be formally defined

in Section 2.3 We leverage simple mechanisms to derive the upper bound (UB) results

and, to derive the lower bound (LB) results, we carefully identify and construct various

instances for the corresponding settings. Table 1 and 2 summarize our LB and UB re-

3 For example, when there are two facilities, each agent incurs a cost equal to the minimum

between the distance to the second choice multiplied by factor α, and the distance to the

first choice. As such, the role of α here is to model the tradeoff between the distances and

agent preferences (i.e., a less preferred facility will be viewed as further away from the agent

discounted by α).
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sults on the approximation ratios of strategyproof mechanisms for the 2-facility setting,

which are asymptotically tight up to a small constant. In particular, for the minimum

utility objective in Table 1 with α ≥ 2, the bounds are exactly tight, and for the total

cost objective in Table 2, the bounds are very close when α is small. In Section 5, we

discuss the generalization of our results beyond two facilities and settings where pref-

erences and locations are private. We also discuss an alternative additive model where

an agent’s cost/utility for a facility is adjusted by adding/subtracting a constant based

on the agent’s ordinal preference. All omitted proofs can be found in Appendix.

Table 1: A summary of our results with private preferences.

Objective Maximum/Minimum Total

Cost
UB: α UB: α

LB: max{1, α
2
} LB: max{1, α

4
}

Utility
UB: 1 for α ≥ 2, α for α < 2 UB: min{2, α}

LB: 1 for α ≥ 2,

min{ 2
α
, 3α+1
2α+2

} for α < 2

LB: 30α2+38α+2
30α2+37α+3

Table 2: A summary of our results with private locations.

Objective Maximum/Minimum Total

Cost
UB: 2α UB: α(n− 2)

LB: α LB:
(α+1)(n−2)

2

Utility
UB: 2 UB: 2

LB: 1.5 for α ≥ 3,

min{α+1
2

, 7
6
} for α < 3

LB: 1 + α−1
(2α+2)/t−α

, for

t = min{ 1
3α

, 1− 1
α
}

Related work. Existing preference models in facility location games consider settings

where either each agent cares about its closest/farthest facility in the set of preferred

facilities [21] or each agent cares about all of the facilities in that set [18,19]. In par-

ticular, Yuan et al. [21] consider the 2-facility setting where each agent reports his/her

willingness of going to one of the two facilities or to both facilities. The agent’s location

in their setting is public, and the agent is interested in his/her closest/farthest facility.

Such a setting does not capture the agent’s complete ordinal preference and cost/utility

of the two facilities directly. Serafino and Ventre [18,19] consider the setting where each

agent reports a subset of preferred facilities, and the cost is the total distance to all pre-

ferred facilities. Their setting does not necessarily capture agents’ ordinal preferences

and model agents’ interest in going to exactly one facility.

Another line of research on the ordinal preferences is that, every agent reports a

linear preference order on the set of candidate facilities to be opened, and a decision-

maker opens facilities on the candidates. The optimization problem is considered in

[14,20]. For the mechanism design problem, Feldman et al. [9] study approximation

mechanisms in both strategic and non-strategic settings.

There are many studies on different variants of facility location games. Feigenbaum

et al. [8] consider a 1-facility setting where each agent specifies whether he/she likes

or dislikes the facility. Fong et al. [12] consider the 2-facility setting where each agent
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reports the fractional preferences (e.g., proportions of usage) of the two facilities. Hos-

sain, Micha, and Shah [15] study the model where each agent may hold several locations

on the line with different degrees of importance to the agent, and they introduce a new

manipulation: agents may hide some of their locations. In the last decade many variants

have been studied: strategically reporting the opening costs of facilities [6], exploring

double-peaked preferences of agents [11,5], different objectives [10] and capacitated

constraint [3,2]. See an overview in [4].

2 Preliminaries

Let N = {1, 2, . . . , n} be the set of agents on a line segment normalized by the unit

interval [0, 1], and the location profile is x = (x1, x2 . . . , xn). For simplicity, assume

x1 ≤ x2 ≤ · · · ≤ xn. The planner aims to locate m facilities F1, . . . , Fm at some

locations on [0, 1]. Each i ∈ N has an ordinal preference over the m facilities. Agent

i’s ordinal preference is denoted by a ranking σi over the m facilities. Denote by σ =
(σ1, . . . ,σn) the agents’ preference profile.

A profile p = (x,σ) is a collection of the location and preference reported by all

agents. A (deterministic) mechanism is a function f which maps profile p to an output

y = 〈y1, . . . , ym〉 ∈ [0, 1]m that locates facility Fj at yj .

A mechanism is strategyproof (SP), if by reporting the information truthfully, each

agent gains at least as much as that when misreporting, regardless of what others do,

under the mechanism’s outputs. A mechanism is group strategyproof (GSP), if no group

of agents can collude to misreport their information in a way that makes every member

better off.

Multiplicative model. Let d(a, b) = |a− b| be the Euclidean distance between a and b.
Define d(x,y) = miny∈y d(x, y) for any point x and location profile y. Let 1 = α1 ≤
α2 ≤ · · · ≤ αm be constant coefficients. We use these coefficients to characterize the

different preference of agents over the facilities. Each agent incurs a cost equal to the

minimum among the distance to his k-th choice multiplied by a factor αk. With some

abuse of notations, we assume each agent i ∈ N has the preferenceσi = (σ1, . . . , σm),
which indicates that Fσj

is the j-th most preferred facility. We consider the following

objectives with respect to costs and utilities.

Cost objectives. Given the facilities’ location profile y = 〈y1, . . . , ym〉, each i ∈ N
with preference σi has a cost

ci(y) = min{α1d(xi, yσ1
), α2d(xi, yσ2

), . . . , αmd(xi, yσm
)},

where yσj
is the location of the j-th preferred facility (i.e. Fσj

) of agent i. That is,

the cost of an agent equals the minimum weighted distance among the multiplicative

weighted distances to all facilities. We wish to minimize the total cost SC(y) =∑
i∈N ci(y) or the maximum cost BC(y) = maxi∈N ci(y). We say a strategyproof

mechanism f is r-approximate with a number r ≥ 1 under the objective of minimiz-

ing the total (resp. maximum) cost, if for any (truthful) profile p, the output satisfies
SC(f(p))
OPTS(p) ≤ r (resp.

BC(f(p))
OPTB(p) ≤ r), where OPTS(p) (resp. OPTB(p)) is the optimal

objective value of the instance with p.
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Utility objectives. Given the facilities’ location profile y, each agent i ∈ N with
preference σi has a utility

ui(y) = max{
1− d(xi, yσ1

)

α1
,
1− d(xi, yσ2

)

α2
, . . . ,

1− d(xi, yσm)

αm
}.

That is, the agent’s utility is the maximum discounted utility (based on the ordinal pref-

erences) of the facilities. We wish to maximize the total utility SU(y) =
∑

i∈N ui(y)
or minimum utility BU(y) = mini∈N ui(y). The approximation ratio can be defined

similarly.

Our goal is to design (group) strategyproof mechanisms that (approximately) opti-

mize the objective values. All mechanisms considered in this paper are deterministic.

In most part of the paper (except Section 5), we consider locating two facilities, that is,

m = 2. For notation convenience, we denote the preference of each agent by the index

of his preferred facility (e.g., the preference of agent i who prefers F1 is σi = 1), and

the preference profile is σ ∈ {1, 2}n.

When there are two facilities, we write α2 simply as α, ignoring α1 = 1. Given

coefficient α, denote by Γα the mechanism design problem for optimizing a specific

system objective, and denote by Γα(p) (or simply Γ (p)) an instance of problem Γα

with the specific profile p.

For example, consider a 3-agent instance with location profile x = (0, 0.4, 1) and

α = 3. Agents 1 and 3 prefer F1, and agent 2 prefers F2. Let y = (0.2, 0.8) be the

facility locations. Then the cost of agent 1 is c1(y) = min{0.2, 0.8α} = 0.2, and

c2(y) = min{0.2α, 0.4} = 0.4, c3(y) = min{0.8, 0.2α} = 0.6.

Before presenting upper and lower bounds on the approximation ratio of strate-

gyproof mechanisms, we give the following result on the relationship between Γ 1 and

Γα. Note that Γ 1 is equivalent to the typical setting of facility location games, where

each agent is indifferent of the facilities.

Proposition 1. Under any of the four possible objectives defined above, if a mechanism

f is β-approximate for Γ 1, then it is βα-approximate for Γα.

Proof. Denote by y = 〈y1, y2〉 the output of mechanism f . Let OPTα (OPT 1) be
the optimal value for Γα (Γ 1) for the associated objective. For minimizing the cost
objectives, we have

SC(y) =
∑

i∈N

ci(y) ≤ α
∑

i∈N

d(xi,y) ≤ βα ·OPT
1 ≤ βα ·OPT

α
,

where the second inequality follows because f is β-approximate for Γ 1, and the last
inequality follows because the optimum is increasing with α. Similarly we also have
BC(y) ≤ βα ·OPTα. For maximizing the utility objectives, we have

SU(y) =
∑

i∈N

ui(y) ≥

∑
i∈N

(1− d(xi,y))

α
≥

OPT 1

βα
≥

OPTα

βα
,

and similarly BU(y) ≥ OPTα

βα .
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In Section 3, we study the case when the agents can only strategically report the pri-

vate preferences, and the locations are publicly known. In Section 4, we study the case

where the agents can only strategically report the private locations, and the preferences

are publicly known. In Section 5, we generalize our results to the setting where both

locations and preferences can be misreported, and discuss multiple facilities (m > 2).

Further, we discuss an alternative additive model where an agent’s cost/utility for a facil-

ity is adjusted by adding/subtracting a constant based on the agent’s ordinal preference.

All omitted proofs can be found in Supplementary Material.

3 Unknown Preferences

In this section, we consider the setting of unknown preferences and known locations

for m = 2. That is, the preference information of each agent is private. In Section 3.1

and 3.2, we study the objectives of minimizing the maximum cost and total cost of

agents, respectively. In Section 3.3 and 3.4, we study the objectives of maximizing the

minimum utility and total utility, respectively.

3.1 Maximum Cost

Given a location profile x ∈ R
n, let lt(x) and rt(x) be the leftmost and rightmost

location. Define cen(x) = (lt(x) + rt(x))/2. Let lb(x) = max{xi : xi ≤ cen(x), i ∈
N} be the closest location to cen(x) on its left, and rb(x) = min{xi : xi ≥ cen(x), i ∈
N} be the closest location to cen(x) on its right. Denote dist(x) = max{lb(x) −
lt(x), rt(x) − rb(x)}. We consider the following mechanism, proposed in [17]).

Mechanism 1 Locate F1 at y1 = lt(x)+lb(x)
2 , and locate F2 at y2 = rt(x)+rb(x)

2 .

Consider the problem Γ 1 with coefficient α = 1, i.e., the standard two-facility

game, in which the cost of each agent is determined by the closer facility. Procaccia and

Tennenholtz [17] prove that the optimal maximum cost is at least
dist(x)

2 , whereas the

cost of each agent induced by Mechanism 1 is at most
dist(x)

2 . Therefore, Mechanism 1

is optimal for Γ 1.

Theorem 1. For Γα with private preferences, Mechanism 1 is GSP and α-approximate

under the maximum cost objective.

Proof. Since Mechanism 1 achieves the optimal maximum cost for Γ 1, the approx-

imation ratio α for Γα is established from Proposition 1. Note that the outcome of

Mechanism 1 is independent of the preferences reported by agents. Thus, it is GSP.

Next, we provide a lower bound on the approximation ratio of SP mechanisms. We

consider an instance with two agents at 0 and ǫ who prefer F1, and two agents at 1 and

1− ǫ who prefer F2. The number ǫ is small such that the two agents on the left must be

served by facility F1. It can be shown that one of the two agents on the left has incentive

to misreport his true preference and move F1 closer.
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Theorem 2. For Γα with private preferences, no SP mechanism has an approximation

ratio less than max{1, α2 } under the maximum cost objective.

Proof. We prove the theorem by contradiction. Suppose there is an SP mechanism f
with approximation ratio r < max{1, α2 }. Consider a 4-agent instance Γ (x,σ) with

location profile x = (0, ǫ, 1 − ǫ, 1) for a sufficiently small ǫ > 0, and true/private

preference profile σ = (1, 1, 2, 2). The optimal solution is 〈 ǫ2 , 1 −
ǫ
2 〉, and the optimal

maximum cost is ǫ
2 . Let y = 〈y1, y2〉 be the output of f . Since the approximation ratio

is r and ǫ is sufficiently small, agents 1 and 2 (resp. 3 and 4) must be served by facility

F1 (resp. F2). We discuss two cases y1 ≤ ǫ
2 and y1 > ǫ

2 .

Case 1. y1 ≤ ǫ
2 . The cost of agent 2 is c2(y) ≥

ǫ
2 . Suppose agent 2 misreports his

preferred facility as F2, i.e., the preference profile becomes σ′ = (1, 2, 2, 2). Under the

new instance Γ (x,σ′), an optimal solution is 〈 αǫ
α+1 ,

1−ǫ
2 〉, and the optimal maximum

cost is αǫ
α+1 . Since the approximation ratio is r and ǫ is sufficiently small, agent 2 must

be served by facility F1 (otherwise, agents 3 and 4 need to be served by F1, and the

maximum cost among them is at least αǫ
2 ). By the approximation ratio, the cost of any

agent under mechanism f should be less than α2ǫ
2α+2 , and the distance of agent 2 to F1

is less than αǫ
2α+2 < ǫ

2 ≤ c2(y). Now we look at the original instance Γ (x,σ). By

misreporting his preference, agent 2 can decrease his distance to F1, and thus decrease

his cost, which contradicts the strategyproofness.

Case 2. y1 > ǫ
2 . The cost of agent 1 is c1(y) >

ǫ
2 . Suppose agent 1 misreports his

preferred facility as F2, i.e., the preference profile becomes σ′′ = (2, 1, 2, 2). An opti-

mal solution for the new instance Γ (x,σ′′) is 〈 ǫ
α+1 ,

1−ǫ
2 〉, and the optimal maximum

cost is αǫ
α+1 . For the same reason in Case 1, agent 1 must be served by facility F1. By the

approximation ratio, the distance of agent 1 to F1 in mechanism f should be less than
αǫ

2α+2 < ǫ
2 < c1(y). Considering the original instance Γ (x,σ), agent 1 can decrease

his cost by misreporting, which contradicts the strategyproofness.

3.2 Total Cost

We first consider the problem Γ 1 (i.e., α = 1) where each agent is indifferent of the

two facilities. To minimize the total cost in Γ 1 (e.g., the total distance of agents to

their closer facility), one can compute an optimal solution for Γ 1 in O(n2) time [17]:

for i = 2, . . . , n − 1, denote by y1i the median of x1, . . . , xi, and by y2i the median

of xi+1, . . . , xn; return the solution with smallest total cost, among the n − 1 solu-

tions 〈y1i, y2i〉. This mechanism provides an α-approximate solution for problem Γα

(Proposition 1). It is clearly GSP, since its output is based only on the agents’ locations

and ignores the reported preferences.

Theorem 3. For Γα with private preferences, there exists a GSP mechanism with ap-

proximation ratio α under the total cost objective.

Next, we prove a lower bound for SP mechanisms, via a similar analysis as in the

proof of Theorem 2.

Theorem 4. For Γα with private preferences, no SP mechanism has an approximation

ratio less than max{1, α4 } under the total cost objective.
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Proof. We prove the theorem by contradiction. Suppose there is an SP mechanism f
with approximation ratio r < max{1, α4 }. Consider a 4-agent instance Γ (x,σ) with

location profile x = (0, ǫ, 1 − ǫ, 1) for a sufficiently small ǫ > 0, and preference

profile σ = (1, 1, 2, 2). The optimal total cost is 2ǫ, attained by a solution 〈0, 1〉. Let

y = 〈y1, y2〉 be the output of f . Since the approximation ratio is r and ǫ is sufficiently

small, agents 1 and 2 (resp. 3 and 4) must be served by facility F1 (resp. F2). We discuss

two cases y1 ≤ ǫ
2 and y1 > ǫ

2 .

Case 1. y1 ≤ ǫ
2 . The cost of agent 2 is c2(y) ≥ ǫ

2 . Suppose agent 2 misreports

his preferred facility as F2, i.e., the preference profile becomes σ
′ = (1, 2, 2, 2). An

optimal solution for the new instance Γ (x,σ′) is 〈ǫ, 1〉, and the optimal total cost is 2ǫ.
Since the approximation ratio is r and ǫ is sufficiently small, agent 2 must be served by

facility F1 (otherwise, agents 3 and 4 are served by F1, and the total cost is at least αǫ,
contradicting the approximation ratio). By the approximation ratio, the cost of agent 2

under mechanism f is strictly less than αǫ
2 , and the distance of agent 2 to F1 is less

than ǫ
2 ≤ c2(y). Now we look at the original instance Γ (x,σ). By misreporting his

preference, agent 2 can decrease his distance to F1, and thus decrease his cost, which

contradicts the strategyproofness.

Case 2. y1 > ǫ
2 . The cost of agent 1 is c1(y) > ǫ

2 . Suppose agent 1 misreports

his preferred facility as F2, i.e., the preference profile becomes σ′′ = (2, 1, 2, 2). An

optimal solution for the instance Γ (x,σ′′) is 〈0, 1〉, and the optimal total cost is 2ǫ.
Also, agent 1 must be served by facility F1. By the approximation ratio, the cost of

agent 1 under mechanism f is less than αǫ
2 , and the distance of agent 1 to F1 is less than

ǫ
2 < c1(y). Considering the original instance Γ (x,σ), agent 1 can decrease his cost by

misreporting, which contradicts the strategyproofness.

3.3 Minimum Utility

In Section 3.1 we have shown that Mechanism 1 is GSP and achieves the optimal maxi-

mum cost for the problemΓ 1. It is easy to see that it also achieves the optimal minimum

utility for Γ 1. By Proposition 1, it is an α-approximate mechanism for Γα. Below, we

present the following mechanism that locates facility Fi at the midpoint of the locations

of the leftmost and rightmost agents who prefer Fi, for i = 1, 2, and obtains the optimal

minimum utility for α ≥ 2.

Mechanism 2 Let x1 = (xi)i∈N :σi=1 and x2 = (xi)i∈N :σi=2 be the location profile

of agents who prefer F1 and F2, respectively. Return the solution

〈
lt(x1) + rt(x1)

2
,
lt(x2) + rt(x2)

2
〉.

Next we analyze its performance.

Theorem 5. For Γα with private preferences, Mechanism 1 is GSP and α-approximate

under the minimum utility objective. When α ≥ 2, Mechanism 2 is an optimal SP

mechanism.

Proof. The approximation ratio of Mechanism 1 is given by Proposition 1. We only

consider the case when α ≥ 2. We first show that Mechanism 2 (denoted by f ) is SP.
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Consider agent i ∈ N , and assume w.l.o.g. that he prefers F1. Under the location profile

y = 〈y1, y2〉 induced by truthful reporting, i’s distance to F1 is d(xi, y1) ≤
1
2 , and i’s

utility is max{1 − d(xi, y1),
1−d(xi,y2)

α } = 1 − d(xi, y1) ≥ 1
2 . If agent i misreports

F2, F1 cannot be closer to i, and the only possibility of improvement is that i’s utility is

determined by F2. However, in that case, his utility is at most 1
α ≤ 1

2 . Therefore, agent

i cannot benefit by lying.

For the optimality, under the outcome of f , each agent has a utility at least 1
2 , and

does not want to be served by the less preferred facility as α ≥ 2. So the midpoint
lt(x1)+rt(x1)

2 (or
lt(x2)+rt(x2)

2 ) is the best for agents who prefer F1 (or F2), otherwise

some agent’s utility will decrease.

Mechanism 2 is no longer SP when α < 2, as the agent may have a utility deter-

mined by the less preferred facility, and yield a closer distance to it by misreporting. To

complement our result above, we derive the following lower bound.

Theorem 6. For Γα with private preferences, when 1 < α < 2, no SP mechanism has

an approximation ratio better than min{ 2
α ,

3α+1
2α+2} under the minimum utility objective.

Proof. When α < 2, suppose, for contradiction, that f is an SP mechanism with an

approximation ratio r < min{ 2
α ,

3α+1
2α+2}. Consider an instance Γ (x,σ) with x =

(0, 0, x = 1 − 1
α , 1) and σ = (1, 1, 1, 2). Set x = 1 − 1

α < 1
2 . It is easy to see

that, since the left three agents prefer F1, an optimal solution must locate F1 at y1 = x
2 ,

and has a minimum utility of 1 − x
2 . Let y = 〈y1, y2〉 be the output of f . By the ap-

proximation ratio, f induces a minimum utility at least
1−x/2

r . If one of the left three

agents has his/her utility determined by F2, then his/her utility is at most 1
α < 1−x/2

r ,

a contradiction. So the utilities of the left three agents should be determined by F1. It

indicates that y1 ≥ 1−x/2
r + x − 1, since the distance between agent 3 and F1 should

be at most 1− 1−x/2
r .

Consider another instance Γ (x,σ′) with preference profile σ = (2, 1, 1, 2). An

optimal solution 〈0, 1〉 has a minimum utility of 1
α . Mechanism f induces a minimum

utility at least 1
α·r . If the utility of agent 4 is determined by F1, then the utilities of agents

2 and 3 are determined by F2, and the minimum utility of them is at most
1−x/2

α < 1
α·r ,

a contradiction. So the utility of agent 4 is determined by F2. Let y′ = 〈y′1, y
′

2〉 be the

output of f . We discuss the following two cases with respect to the utility of agent 1

under y′.

Case 1. Agent 1’s utility is determined by F2. To guarantee the approximation ratio, F2

needs to serve agent 1, 2 and 3. Then the minimum utility of agents 2 and 3 induced by

f is at most
1−x/2

α < 1
α·r , a contradiction with the approximation ratio r.

Case 2. Agent 1’s utility is determined by F1. Agent 1’s utility is
1−y′

1

α . To satisfy
1−y′

1

α ≥ 1
α·r , it must have y′1 ≤ 1− 1

r .

Now we move back to the original instance Γ (x,σ). If agent 1 truthfully report F1

as his/her top choice, mechanism f locates F1 at y1 ≥ 1−x/2
r + x − 1. However, if

he/she misreports F2, f would locate F1 at y′1 ≤ 1− 1
r < 1−x/2

r + x− 1, reducing the

distance between agent 1 and F1. Hence, agent 1 has incentive to lie, and f is not SP.
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3.4 Total Utility

For maximizing the total utility of the agents, we present the following fixed mechanism

that always locates the two facilities at the midpoint of the interval [0,1].

Mechanism 3 Locate F1 and F2 both at 1
2 .

Theorem 7. For Γα with private preferences, Mechanism 3 is GSP and 2-approximate

under the total utility objective.

Proof. The mechanism is trivially GSP. Notice that each agent incurs a distance at most
1
2 to his preferred facility under this mechanism, and thus has a utility at least 1

2 . It

induces a total utility at least n
2 , whereas the optimal total utility is no more than n,

giving an approximation ratio 2.

Note that the optimal solutions for Γ 1 under the total cost and total utility objectives

are the same. By Proposition 1, the optimal mechanism for Γ 1 (stated in Section 3.2)

has an approximation ratio α for Γα. So we can improve Theorem 7 when α < 2.

Corollary 1. For Γα with private preferences, there exists a GSP mechanism with ap-

proximation ratio min{2, α} under the total utility objective.

Next, we derive a lower bound for the total utility setting. It is equal to 1 for α = 1
and approaches 1 when α grows.

Theorem 8. For Γα with private preferences, no SP mechanism has an approximation

ratio better than 30α2+38α+2
30α2+37α+3 under the total utility objective.

Proof. Suppose f is an SP mechanism with approximation ratio r < 30α2+38α+2
30α2+37α+3 .

Consider an instance Γ (x,σ) with x = (0, s, 2s, 3s, 1, 1) and σ = (2, 1, 1, 1, 2, 2)
where s = 1

3(α+1) . An optimal solution should locate F1 near the left four agents, and

locate F2 near the right two agents. Indeed, 〈2s, 1〉 is optimal, and has a total utility of

OPT = 5− 2s+ 1−2s
α . Let y = 〈y1, y2〉 be the output of f . We claim that y1 > 3s

2 : if

y1 ≤ 3s
2 , by an overestimation, the utility induced by f is less than 5−2s− s

2+
1
α−

3s
2α <

OPT
r , a contradiction with the approximation ratio.

For another instance Γ (x,σ′) with σ
′ = (1, 1, 1, 2, 2, 2), let y′ = 〈y′1, y

′

2〉 be the

output of f . By a symmetric analysis we have y′1 < 3s
2 .

Now, we consider instance Γ (x,σ′′) with σ
′′ = (2, 1, 1, 2, 2, 2). The optimal solu-

tion is to locate y1 ∈ [s, 2s] and y2 = 1. Let y′′ = 〈y′′1 , y
′′

2 〉 be the output of f . By the

approximation ratio, f must locate F1 close to the interval [s, 2s], and F2 close to 1.

– If y′′1 ≤ 3s
2 , then agent 4 can misreport his top choice as F1, because in that case f

locates F1 at y1 > 3s
2 . Then agent 4 becomes closer to F1 and has a larger utility.

– If y′′1 ≥ 3s
2 , then agent 1 can misreport his top choice as F1, because in that case f

locates F1 at y′1 < 3s
2 . Then agent 1 becomes closer to F1 and has a larger utility.

Hence, f cannot be SP and r-approximate for Γ (x,σ′′).
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4 Unknown Locations

In this section, we study settings where the location profile of the agents is private and

the preference profile is public. For m = 2, we study the objectives of minimizing

the total and maximum costs as well as maximizing the total and minimum utilities in

Section 4.1 and Section 4.2, respectively.

4.1 Minimizing the Maximum and Total Costs

Procaccia and Tennenholtz [17] propose the following GSP mechanism for the standard

two-facility game (i.e., Γ 1), which locates two facilities at the leftmost and rightmost

locations of agents. It has an approximation ratio 2 and (n − 2) for minimizing the

maximum cost and total cost, respectively. By Proposition 1, it has a guarantee for Γα.

Mechanism 4 Locate F1 and F2 at 〈lt(x), rt(x)〉.

Theorem 9. For Γα with private locations, Mechanism 4 is GSP and 2α-approximate

(resp. α(n− 2)-approximate) under the maximum (resp. total) cost objective.

Fotakis and Tzamos [13] prove that, for any deterministic anonymous4 SP mech-

anism f with a bounded approximation ratio for the standard 2-facility location game

Γ 1, and for any instance with all agents located at 3 locations, mechanism f places the

facilities at the two extreme locations 〈lt(x), rt(x)〉. We can show that this property

also holds for Γα, and use it to prove lower bounds.

Lemma 1. For any anonymous SP mechanism f with a bounded approximation ratio

for Γα with both objectives, and for any instance with all agents located at 3 locations,

f places the facilities at the two extreme locations 〈lt(x), rt(x)〉.

Proof. Let f be an arbitrary deterministic anonymous SP mechanism with a bounded

approximation ratio for Γ (α) under the total cost objective. Then it also has a bounded

ratio under the maximum cost objective. Let Γ (x,σ) be an arbitrary instance of Γ (α)
with n = 3 agents. Let p = (x,σ) be the profile, and f(p) = 〈y1, y2〉 be the output.

Assume w.l.o.g. x1 ≤ x2 ≤ x3. Using the same proof for Lemma 3.1 of [13], we can

prove that the rightmost facility is always located to the rightmost agent, that is, y1 = x3

if y1 ≥ y2, and y2 = x3 otherwise. Using a symmetric argument, we can show that the

leftmost facility is always located to the leftmost agent, that is, y1 = x1 if y1 ≤ y2, and

y2 = x1 otherwise. These two claims imply that f must place the facilities at the two

extreme locations.

Now we consider an instance Γ (x′,σ′) where the n ≥ 3 agents are located at 3

locations. We call it a 3-location instance. We can extend the above conclusion for 3-

agent instances to 3-location instances by restating the proofs with three coalitions of

agents instead of three agents. A mechanism is partial GSP if for any group of agents

at the same location, each individual cannot benefit if they misreport simultaneously.

Using the fact that any SP mechanism is also partial GSP (Lemma 2.1 of [16]), we

obtain that f must place the facilities at the two extreme locations.

4 A mechanism is anonymous if permuting the agents does not change the solution.
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Theorem 10. Under the maximum cost (resp. total cost) objective, no anonymous SP

mechanism for Γα with private locations has an approximation ratio less than α (resp.
(α+1)(n−2)

2 ).

Proof. Suppose that there is an anonymous SP mechanism f . Consider a 3-location

instance Γ (x,σ) with location profile x = (0, ǫ, . . . , ǫ, 1) for a small ǫ > 0, and pref-

erence profile σ = (1, . . . , 1, 2, . . . , 2) with n
2 agents preferring F1.

Under the maximum cost objective, the optimal maximum cost is at most ǫ (attained

by a solution 〈ǫ, 1〉). By Lemma 1, f places the facilities at 0 and 1, and the maximum

cost is αǫ. So f cannot have an approximation ratio less than α.

Under the total cost objective, the optimal total cost is ǫ, attained by a solution 〈ǫ, 1〉.

Mechanism f places the facilities at 0 and 1, and the total cost is
α(n−2)ǫ

2 + (n−2)ǫ
2 . So

f cannot have an approximation ratio less than
(α+1)(n−2)

2 .

For minimizing the total cost, an intuitive idea is to locate F1 and F2 at the median

of the locations of agents who prefer F1 and F2, respectively. Since any misreporting

from agent i ∈ N would not change the location of the less preferred facility or reduce

the distance to the preferred facility, this mechanism is SP. However, it cannot achieve

a bounded approximation ratio. The following example illustrates this.

Example 1. Consider the location profile x = (0, 0, 0, 1), and the preference profile

σ = (1, 2, 2, 2). The mechanism would locate both F1 and F2 at 0. The induced total

cost is 1, whereas the optimal solution 〈0, 1〉 has a total cost of 0.

4.2 Maximizing the Minimum and Total Utilities

Note that the utility of an agent is at most 1. Mechanism 3, which locates two facilities

at a fixed point 1
2 , induces a utility at least 1

2 for each agent. We have the following.

Theorem 11. For Γα with private locations, Mechanism 3 is GSP and 2-approximate

for both objectives of maximizing the total utility and the minimum utility.

Next, we provide lower bounds for both of the objectives.

Theorem 12. Under the minimum utility objective, no SP mechanism for the problem

Γα with private locations has an approximation ratio better than 1.5 when α ≥ 3.

Proof. When α ≥ 3, suppose that f is an SP mechanism with approximation ratio

r < 1.5. Consider an instance Γ (x,σ) with x = (0, 1
2 , 1) and σ = (1, 2, 1). Clearly,

the optimal minimum utility is 1
2 , with respect to the solution 〈12 ,

1
2 〉. So the minimum

utility induced by f is larger than 1
3 . Let y = 〈y1, y2〉 be the output. If y1 < 1

3 , then

the utility of agent 3 is max{y1,
y2

α } ≤ 1
3 , a contradiction. Symmetrically, it cannot be

y1 > 2
3 . Then it must be y1 ∈ (13 ,

2
3 ). Assume w.l.o.g. that y1 ∈ (13 ,

1
2 ].

Now we consider another instance Γ (x′,σ) with location profile x
′ = (y1,

1
2 , 1).

Note that the utility of an agent who is served by the less preferred facility is at most
1
α ≤ 1

3 , and thus a good solution should make each agent be served by the preferred

one. Thus, solution 〈1+y1

2 , 1
2 〉 is optimal, and has a minimum utility of 1+y1

2 . Let y′ =
〈y′1, y

′

2〉 be the output of f . By the approximation ratio, f must locate F1 at y′1 > y1
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(otherwise, the utility of agent 3 is 1 − (1 − y′1) = y′1 ≤ y1 < 1+y1

2r ). Then, if agent 1

misreports the location as 0, the mechanism receives a profile (x,σ), and would locate

F1 at y1 by the previous analysis. Hence, under instance Γ (x′,σ), agent 1 would gain

by misreporting his location as 0 (receiving a utility of 1), a contradiction.

Theorem 13. Under the minimum utility objective, no SP mechanism for Γα with pri-

vate locations has an approximation ratio better than min{α+1
2 , 7

6} when 1 ≤ α < 3.

Proof. When 1 ≤ α < 3, suppose that f is an SP mechanism with approximation

ratio r < min{α+1
2 , 7

6} ≤ α. Consider the agents’ location profile x = (0, 1
2 , 1) and

preference profile σ = (1, 1, 2). An optimal solution 〈14 , 1〉 has a minimum utility of
3
4 . Let 〈y1, y2〉 be the output. If y2 ≤ y1, it is easy to see that facility F2 cannot serve

agents 1 and 2 simultaneously, otherwise one of them has a utility at most 3
4α , violating

the approximation ratio. Also, F2 cannot serve agent 3, otherwise agent 1 would have

an unacceptably small utility. So agents 2 and 3 must be served by F1. However, for

all possible locations of F1, at least one of agents 2 and 3 has a utility at most 3
2(α+1) ,

contradicting the approximation ratio.

Next, we consider the case y1 < y2, where agent 1 is served by F1. If y1 ≥ 1
2 ,

then the utility of agent 1 is at most 1
2 , violating the approximation ratio. So it must be

y1 < 1
2 . We discuss two cases.

Case 1. y1 ≥ 1
4 . Consider the location profile x

′ = (0, y1, 1), and let 〈y′1, y
′

2〉 be the

output of f . The optimal minimum utility is 1 − y1

2 , attained by the solution 〈y1

2 , 1〉. It

cannot be y′1 = y1, otherwise the minimum utility is at most 1−y1 < (1− y1

2 )
6
7 , contra-

dicting the approximation ratio. Thus, under instance Γα(x′,σ), agent 2 can misreport
1
2 , such that the mechanism, which receives a location profile x, locates facility F1 at

his true location y1, increasing his utility to 1.

Case 2. y1 < 1
4 . Consider the location profile x

′′ = (y1,
1
2 , 1), and let 〈y′′1 , y

′′

2 〉 be the

output of f . The optimal minimum utility is 3
4 + y1

2 . Similarly, by the approximation

ratio, it cannot be y′′1 = y1. Thus, under instance Γα(x′′,σ), agent 1 can misreport

his location as 0 such that the mechanism, which receives a location profile x, locates

facility F1 at his true location y1, increasing his utility to 1.

Theorem 14. Under the total utility objective, every SP mechanism for the problem

Γα with private locations has an approximation ratio at least 1 + α−1
(2α+2)/t−α , where

t = min{ 1
3α , 1−

1
α}.

Proof. Suppose that f is an SP mechanism with approximation ratio r < 1+ α−1
(2α+2)/t−α .

Define t′ := t − ǫ < 1
3α with a sufficiently small ǫ > 0. Consider a 4-agent instance

with location profile x = (0, t′, 1 − t′, 1) and preference profile (1, 1, 1, 1). Solution

〈0, 1〉 is optimal, and has a total utility of 2− t′ + 2−t′

α . Let y = 〈y1, y2〉 be the output

of f , and assume w.l.o.g. that y1 ≤ y2. By the approximation ratio, we have y1 ≤ 2t′.
Then the utility of agent 3 is at most max{3t′, 1

α} = 1
α . Actually, the value of t′ and

the approximation ratio guarantee that, if y1 ≤ y2, the rightmost two agents are served

by F2, and vice versa.

Now consider agent 3 misreporting his location as 1, and the location profile be-

comes x
′ = (0, t′, 1, 1). The optimal total utility for this new instance is 2 + 2−t′

α ,
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attained by the solution 〈1, 0〉. Let y′ = 〈y′1, y
′

2〉 be the output of f . If y′1 ≤ y′2, then the

best possible total utility is 2−t′+ 2
α , attained by the solution 〈0, 1〉. By the approxima-

tion ratio, it is impossible, and thus it must be y′1 > y′2. Also, by the approximation ratio,

we have y′1 ≥ 1 − 2t′. Therefore, after misreporting, the utility of agent 3 (whose true

location is 1− t′) becomes at least 1− t′ > 1
α , implying that he gains by misreporting.

Therefore, the mechanism is not SP.

5 Extensions

5.1 Private Locations and Preferences

We can extend our results to the setting of both private location and preference of agents.

It is a generalization of the setting of either private locations or private preferences.

Hence, all lower bound results in Section 3 and 4 are applicable to this setting. For

the upper bound, we notice that Mechanism 4 (which locates two facilities at the two

extreme locations of agents, and is 2α-approximate and (n − 2)α-approximate for the

objectives of minimizing the maximum cost and the total cost) is still GSP, because any

misreport on preferences would not affect the output, and any misreport on locations

cannot make some agent be closer to the facilities. Mechanism 3 (which locates two

facilities both at the point 1
2 , and is 2-approximate for both objectives of maximizing

the minimum utility and the total utility) is clearly GSP, because it does not rely on any

reports and has a fixed output.

We can generalize our results to more than two facilities: suppose there are m fa-

cilities F1, . . . , Fm to be built, and each agent reports the private profile (including an

ordinal preference over m facilities) to the planner. Each agent incurs a cost equal to the

minimum among the distance to his i-th choice multiplied by a factor αi. Proposition 1

can be restated as: a mechanism is βαm-approximate, if it is β-approximate for the typ-

ical setting of m-facility-location games. Based on that, the results in Section 3 can be

generalized as: for both objectives of minimizing the maximum cost and total cost, we

have a GSP and αm-approximate mechanism when misreporting only preferences. The

utility version can be generalized similarly: Mechanism 3 is GSP and 2-approximate

for the minimum/total utility objective, even without the restriction on misreporting.

5.2 Additive Variations

Alternatively, we can also consider a setting where the cost of an agent served by a less

preferred facility is added by a factor as presented below, instead of the multiplicative

adjustment.

Cost objectives. Given the facilities’ location profile y = 〈y1, . . . , ym〉, each agent

i ∈ N with preference σi = (σ1, . . . , σn) has a cost

ci(y) = min{d(xi, yσ1
) + α1, d(xi, yσ2

) + α2,

. . . , d(xi, yσm
) + αm}

with coefficient 0 = α1 ≤ α2 ≤ · · · ≤ αm ≤ 1. We wish to minimize the total cost

SC(y) =
∑

i∈N ci(y) or the maximum cost BC(y) = maxi∈N ci(y).
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Utility objectives. Given the facilities’ location profile y, each agent i ∈ N with pref-

erence σi has a utility

ui(y) = max{1− d(xi, yσ1
)− α1, 1− d(xi, yσ2

)− α2,

. . . , 1− d(xi, yσm
)− αm}

with coefficient 0 = α1 ≤ α2 ≤ · · · ≤ αm ≤ 1. We wish to maximize the total utility

SU(y) =
∑

i∈N ui(y) or minimum utility BU(y) = mini∈N ui(y).

In contrast to the multiplicative version, Proposition 1 no longer applies, and we

cannot directly utilize the results on the standard setting. We present preliminary results

for the case of two facility under different private information.

Unknown preferences. We show that any mechanism that does not consider preference

must have unbounded approximation ratio for the social/maximum cost objective. Con-

sider an instance where all agents preferringF1 are located at 0 and all agents preferring

F2 are located at 1. The optimal social/maximum cost is 0, while a mechanism ignoring

the preferences may induce a positive social/maximum cost.

Though designing good mechanisms for the cost objectives is open, we can obtain

better results for the utility objectives. It is easy to see that, for the total/minimum

utility objective, Mechanism 3 is GSP and 2-approximate. In particular, when α2 ≥ 0.5,

Mechanism 2 is GSP and optimal.

Unknown locations. Any mechanism ignoring the preferences would also have un-

bounded approximation ratio for the cost objectives, including Mechanism 4 which

selects the two extreme locations of agents. Another intuitive approach is locating F1

at the median of agents who prefer F1, and locating F2 at the median of agents who

prefer F2. It guarantees the strategyproofness, but has a bad approximation ratio when

α is small. Under the total/minimum utility objective, Mechanism 3 is clearly GSP and

2-approximate. Mechanism 2 is no longer SP, because an agent can manipulate the lo-

cation such that the preferred facility is built on his true location.

6 Conclusion

For the facility location problem where each agent has an ordinal preference over facil-

ities, we derive upper and lower bounds on the approximation ratio of truthful mecha-

nisms under four possible objectives, which are asymptotically tight up to a constant. It

remains an interesting open problem to narrow the gaps of the bounds. Randomization

would be an attractive direction. The randomized Proportional Mechanism proposed in

[16] (which locates F1 on the location of a randomly chosen agent, and locates F2 at the

location of agent i ∈ N with probability proportional to his (weighted) distance to F1)

is SP and 4-approximate for the standard 2-facility game under the total cost objective;

but it cannot be used for our model with preferences, because it is not SP for both set-

tings of unknown preferences and unknown locations. The Random-Dictatorship-like

mechanisms can also have unbounded approximation ratios. In view of these, we be-

lieve that the lower bounds can be proved to be greater via more carefully designed

instances. Also, it would be interesting to further explore the additive variations.
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