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In this paper, the trajectory tracking control and the field programmable gate array (FPGA) implementation between a recurrent
neural network with time delay and a chaotic system are presented. ,e tracking error is globally asymptotically stabilized by
means of a control law generated from the Lyapunov–Krasovskii and Lur’e theory. ,e applicability of the approach is illustrated
by considering two different chaotic systems: Liu chaotic system and Genesio–Tesi chaotic system. ,e numerical results have
shown the effectiveness of obtained theoretical results. Finally, the theoretical results are implemented on an FPGA, confirming
the feasibility of the synchronization scheme and showing that it is hardware realizable.

1. Introduction

Neural networks can be considered as nonlinear mathe-
matical functions whose parameters are adjusted to describe
the behavior of a static or dynamic system [1]. According to
their structure, neural networks can be classified as static
neural networks or dynamic neural networks. ,e static
neural networks are capable of approximating any function
using static mapping [2]. Meanwhile, dynamic neural net-
works, also called recurrent neural networks, have feedback
connections that give them higher capability than static
neural networks. For example, recurrent neural networks
can reproduce the dynamic response of a dynamic system
due to their feedback connection. ,ey can also overcome
many problems related to static neural networks, such as
extreme global search, and consequently, have better ap-
proximation properties [3]. Recently, due to the richness of
dynamic behaviors from recurrent neural networks, they
have received much attention and been investigated in a
wide variety of applications in diverse fields such as in as-
sociative memory [4], neurodynamic optimization problems

[5], pattern recognition [6], image processing [7], and so on
[8, 9].

It is well known that the time-delay phenomenon is an
inherent feature of many physical processes such as nuclear
reactors, chemical processes, and biological systems. Usu-
ally, it is considered a source of oscillation and divergence,
leading to system performance degradation or even gen-
erating instability [9]. A delayed neural network can gen-
erate complicated dynamic behaviors such as boundedness,
periodicity, stability, chaos, and synchronization [10].
Synchronization is a fundamental behavior of recurrent
neural networks. Hence, many researchers devote their ef-
fort to studying the delay effect on drive-response syn-
chronization. Indeed, the drive-response synchronization of
recurrent neural networks cannot be achieved individually,
so external input signals should be considered in the neural
network response. Many efficient control approaches have
been designed to control or achieve the synchronized state in
the literature, such as linear feedback control, active control,
intermittent control, adaptive control, event-triggered
control, pinning control, and impulsive control, among
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others [11–13]. In particular, the Lyapunov–Krasovskii
approach has demonstrated to be an efficient method to deal
with the global asymptotic stability of recurrent neural
networks with time delay. In [14], the global synchronization
of multiple recurrent neural networks with time delays
under a switching topology via impulsive interaction is
given. An exponential H∞ synchronization method for an
uncertain drive and response neural networks with mixed
time delays was presented based on a Lyapunov–Krasovskii
functional and free-weighting matrices [15]. ,e synchro-
nization of delayed neural networks with hybrid couplings
by employing the Lyapunov functional method and the
Kronecker product technique is used to guarantee the global
synchronization in coupled networks [16]. In [17], the global
asymptotic synchronization for a class of delayed neural
networks is investigated. In [18], the pinning synchroniza-
tion in an array of coupled delayed neural networks with
both constant and delayed couplings is presented, showing
that the network can be pinned to a homogenous state by
applying adaptive feedback control. It is worth noting that
the Lyapunov–Krasovskii approach has been demonstrated
to be an efficient method to deal with the global asymptotic
stability of a recurrent neural network with time delay
[19, 20]. In [21], the stability of linear continuous-time
systems with time delay by employing new Lyapu-
nov–Krasovskii functionals is presented. New Lyapu-
nov–Krasovskii functionals are proposed to achieve the
synchronization behavior of delay neural networks with two
time scales for the fixed and adaptive coupling schemes [22].
Some new Lyapunov–Krasovskii functionals are developed
by nonuniformly dividing the delay interval into multiple
segments and choosing proper functionals with different
weightingmatrices corresponding to different sections in the
Lyapunov–Krasovskii functionals proposed in [23]. In [24],
the global stability of a system composed by identical
Hopfield neural networks with time-delayed connections is
presented by constructing a Lyapunov–Krasovskii
functional.

Inspired by all the above works, this paper focuses on the
problem of tracking a given reference trajectory. It proposes
a trajectory tracking scheme in which a time-delay neural
network is forced to follow a chaotic system’s reference
signal, achieving a drive-response synchronization state
between the neural network and the chaotic system. ,e
control law that guarantees the trajectory tracking problem
solution is obtained by using the Lyapunov–Krasovskii and
Lur’e approach. ,e pertinence of the approach is dem-
onstrated by considering two numerical examples. In each
example, synchronization with one chaotic oscillator is
addressed, and the derived control laws are tested via nu-
merical experimentation. ,e Genesio–Tesi and Liu systems
are considered. Although the proposed scheme could be
useful to follow other nonlinear systems, we decide to re-
strict this work using only these two chaotic systems because
their tracking can be more challenging than other tracking
problems such as the reproduction of the gait cycle in
humanoids [25] or the trajectory tracking in different me-
chanical systems [26] and complex systems [27]. In all the
former cases, the movement may be softer and periodic.

Additionally, the FPGA technology is used to implement
the proposed scheme by using a NI c-RIO-9068 device with a
Xilinx Zynq-7000 XC7Z020 FPGA. ,e hardware imple-
mentation results confirm the feasibility of the proposed
scheme. We decided to implement the entire scheme on the
same chip, i.e., the system to be tracked, the recurrent neural
network with time delay, and the derived control law are
implemented on the same FPGA chip.

,is article is organized as follows. In Section 2, the
construction of themathematical model is given.,e control
law of delayed neural network and global asymptotic sta-
bility conditions are shown in Section 3. ,e numerical
results showing the applicability of the theory are given in
Section 4. Section 5 provides experimental results based on
FPGA implementations. Finally, we conclude the paper in
the last section.

2. Preliminaries

Consider the following time-delay neural network model:

_x(t) � Ax(t) + Wϕ[x(t − τ)] + u(t), (1)

where x(t) � [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state
vector associated with the neurons;
A � diag(− λ1, − λ2, . . . , − λn) with λi with i � 1, . . . , n being
positive constants representing the rate with at which the
neural network will reset its potential to the resting state
when disconnected from the external input;
W � [wij] ∈ Rn × Rn represents the delayed connection
weight matrix; ϕ(x) � [ϕ1(x1), ϕ2(x2), . . . ,ϕn(xn)]T ∈ Rn

is the activation function; τ > 0 is the transmission delay; and
u(t) � (u1(t), u2(t), . . . , un(t))T ∈ Rn is an external input
vector.

,e following properties are assumed for the activation
function [28, 29]:

(1) ϕ(x) is bounded and monotonically nondecreasing
on R.

(2) ,e activation function ϕ(x) is Lipschitz continuous,
that is, there exists constant Lϕ > 0 such that

|ϕ(x) − ϕ(y)|≤ Lϕ|x − y|, ∀x, y ∈ R. (2)

,e system to be tracked by the recurrent neural network
with time delay (driving system) is defined as an autono-
mous n-dimensional dynamical system given by

_xr(t) � f xr(t)( 􏼁, (3)

where xr(t) � [xr1
(t), xr2

(t), . . . , xrn
(t)]T ∈ Rn is a n-di-

mensional state vector, with f(xr(t)) defining a vector field
f(xr(t)): Rn⟶ Rn. In this paper, (3) is a nonlinear
system that generates chaotic behavior.

We continue by presenting the Lyapunov–Krasovskii
approach.,is method is the natural extension of the second
Lyapunov approach associated with the stability analysis of
functional differential equations [30]. It consists of con-
sidering functionals of the form V(t; xt) that are positive
definite and decreasing along the trajectories of system
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_x(t) � f(t, x(t), xt). ,e Lyapunov–Krasovskii theorem is
expressed as follows.

Theorem 1 (see [30]). Let u, v, and w: R+⟶ R+ be
nondecreasing functions such that u(θ) and v(θ) are strictly
positive for all θ> 0. Let h ∈ R+ and β: C[− h; 0]⟶ Rn.
Assume that the vector field f(·) of _x(t) � f(t, x(t), xt) is
bounded for bounded values of its arguments. If there exists a
continuous and differentiable functional
V: R × C[− h; 0]⟶ R+ such that

(a) u(‖β(0)‖)≤V(t, β)≤ v(‖β‖)

(b) _V(t, β)≤ − w(‖β(0)‖) for all trajectories of
x(t) � f(t, x(t), xt)

V(t + θ, β(t + θ))≤V(t, β(t)), ∀θ ∈ [− h, 0], (4)

then the solution xt � 0 is uniformly stable for
_x(t) � f(t, x(t), xt).

Finally, we add two definitions that will be used to analyze
equilibrium points.

Definition 1. An equilibrium E∗ is called a saddle point of
index 1 if E∗ has one eigenvalue with nonnegative real part
(unstable).

Definition 2. An equilibrium E∗ is called a saddle point of
index 2 if E∗ has two unstable eigenvalues.

3. Trajectory Tracking for a Recurrent Neural
Network with Time Delay

While the main objective of the work is to present the
proposed tracking scheme and its hardware implementation,
the main objective of this section is to develop a control law
such that the delayed neural network (1) tracks the solution
of the dynamical system (3).

3.1. Dynamical Analysis Error. Define the tracking error as
e(t) � x(t) − xr(t), where the respective error dynamics are

_e(t) � _x(t) − _xr(t). (5)

Substituting (1) and (3) in (5), the dynamics of the error
are governed by the following equation:

_e(t) � Ax(t) + Wϕ[x(t − τ)] + u(t) − f xr(t)( 􏼁. (6)

Adding and subtracting to (6) the terms Axr(t),
Wϕ[xr(t − τ)], and α(t), we have

_e(t) � Ae(t) + W ϕ[x(t − τ)] − ϕ xr(t − τ)􏼂 􏼃( 􏼁

+(u(t)) − α(t) + Axr(t) + Wϕ xr(t − τ)􏼂 􏼃 + α(t)􏼂 􏼃

− f xr(t)( 􏼁,

(7)

where α(t) is the function to be determined. In order to
guarantee that the neural network given in (1) can track the

reference trajectory of dynamical system (3), the following
assumption has to be satisfied [31].

,ere exist functions ρ(t) and α(t) such that

_ρ(t) � Aρ(t) + Wϕ[ρ(t − τ)] + α(t),

ρ(t) � xr(t).
(8)

,erefore, from (3) and (8), we obtain that

Axr(t) + Wϕ xr(t − τ)􏼂 􏼃 + α(t) � f xr(t)( 􏼁, (9)

and then

α(t) � f xr(t)( 􏼁 − Axr(t) − Wϕ xr(t − τ)􏼂 􏼃, (10)

so that (7) becomes

_e(t) � Ae(t) + Wφϕ(t − τ) + 􏽥u(t), (11)

with Wφϕ(t − τ) � W(ϕ[x(t − τ)] − ϕ[xr(t − τ)]) and
􏽥u(t) � (u(t) − α(t)). It is clear that e(t) � 0 is an equilib-
rium point of (11) when 􏽥u(t) � 0. In this way, the tracking
problem can be expressed as a global asymptotic stabiliza-
tion problem for system (11).

3.2. Error Stabilization and Control Design. In order to es-
tablish the convergence of (11) to e(t) � 0, a Lyapu-
nov–Krasovskii functional is proposed ensuring the desired
tracking. ,e Lyapunov–Krasovskii analysis is a Lyapunov-
inspired method that consists of proposing a functional
V(t, x(t)) of the state x(t), which should be positive and
decreasing definite along the trajectories of the system. ,is
is essential for the design of a globally and asymptotically
stabilizing control law for time-delay systems [20]. In this
work, the following Lyapunov–Krasovskii functional is
proposed as in [19, 32]:

V(e) � 􏽘
n

i�1
􏽚

ei

0
φ ξ, xr( 􏼁dξ + 􏽚

t

t− τ
φT
ϕ(s)W

T
Wφϕ(s)􏼐 􏼑ds,

(12)

where the expression 􏽐
n
i�1 􏽒

ei

0 φ(ξ, xr)dξ is proposed to
analyze the stability related to error _e(t), whereas the ex-
pression 􏽒

t

t− τ(φ
T
ϕ(s)WTWφϕ(s))ds is envisioned to analyze

the effect of the delay τ; note that this term vanishes as
τ⟶ 0.

In this manner, the time derivate of (12), along the
trajectories of (11), was computed using the fundamental
theorem of calculus as follows:

_V(e) �
zV(e)

ze
_e � φ e, xr( 􏼁

T
_e + φT

ϕW
T
Wφϕ

− φT
ϕ(t − τ)W

T
Wφϕ(t − τ).

(13)

Substituting (11) in (13), we get

_V(e) � φ e, xr( 􏼁
T
Ae + φ e, xr( 􏼁

T
W ϕ[x(t − τ)](

− ϕ xr(t − τ)􏼂 􏼃􏼁 + φ e, xr( 􏼁
T

􏽥u + φT
ϕW

T
Wφϕ

− φT
ϕ(t − τ)W

T
Wφϕ(t − τ).

(14)
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Regarding φϕ(t − τ) � (ϕ[x(t − τ)] − ϕ[xr(t − τ)]),
equation (14) can be denoted as

_V(e) � − λφ e, xr( 􏼁
T
e + φ e, xr( 􏼁

T
Wφϕ(t − τ) + φ e, xr( 􏼁

T
􏽥u

+ φT
ϕW

T
Wφϕ − φT

ϕ(t − τ)W
T
Wφϕ(t − τ).

(15)

Consider the inequality [19]:

P
T
Q + Q

T
P≤P

TΛP + Q
TΛ− 1

Q, (16)

which holds for all matrices P, Q ∈ Rn×k and a positive
definite matrix Λ ∈ Rn×n. To prove the inequality (16), we
considerF ≡ PTΛP + QTΛ− 1Q − PTQ − QTP≥ 0. Denoting
v1 � Λ(1/2)Pv and v2 � Λ− (1/2)Qv, we obtain F � vT

1 v1−

vT
2 v2 − 2vT

1 v2 � ‖v1 − v2‖
2 ≥ 0.

Applying (16) with Λ � I to the term
φ(e, xr)

TWφϕ(t − τ), we get

_V(e)≤ − λφ e, xr( 􏼁
T
e +

1
2
φ e, xr( 􏼁

Tφ e, xr( 􏼁

+
1
2
φT
ϕ(t − τ)W

T
Wφϕ(t − τ) + φ e, xr( 􏼁

T
􏽥u

+ φT
ϕW

T
Wφϕ − φT

ϕ(t − τ)W
T
Wφϕ(t − τ).

(17)

Simplifying (17), the following is obtained:

_V(e)≤ − λφ e, xr( 􏼁
T
e +

1
2
φ e, xr( 􏼁

Tφ e, xr( 􏼁

−
1
2
φT
ϕ(t − τ)W

T
Wφϕ(t − τ) + φ e, xr( 􏼁

T
􏽥u

+ φT
ϕW

T
Wφϕ.

(18)

Because φ(e, xr) is a sector function with respect
to e(t), there exist positive constants k1 and k2 such
that k1‖e‖2 ≤φ(e, xr)

T ≤ k2‖e‖2, where ‖ · ‖ is used to de-
note the Euclidean norm. From φϕ(t) � (ϕ(x(t))−

ϕ(xr(t))),

φϕ(t)
�����

����� ϕ(x(t)) − ϕ xr(t)( 􏼁
����

����

≤ Lϕ x(t) − xr(t)
����

����

� Lϕ‖e(t)‖.

(19)

,en, there exists a positive constant Lϕ such that
φ(e, xr)

Tφ(e, xr)≤L2
ϕ‖e‖2. Henceforth, (18) can be written

as follows:

_V(e)≤ − λk1 −
1
2
L
2
ϕ􏼔 􏼕‖e‖

2
−
1
2
φT
ϕ(t − τ)W

T
Wφϕ(t − τ)

+ φ e, xr( 􏼁
T

􏽥u + φT
ϕW

T
Wφϕ.

(20)

Simplifying (20), we have

_V(e)≤ − λk1 −
1
2
L
2
ϕ􏼔 􏼕‖e‖

2
+ φ e, xr( 􏼁

T
􏽥u + φT

ϕW
T
Wφϕ. (21)

Since φϕ is Lipschitz, we consider (20) applied to
φT
ϕWTWφϕ, obtaining

φT
ϕW

T
Wφϕ ≤ φT

ϕW
T
Wφϕ

�����

�����≤L
2
ϕ‖W‖

2
‖e‖

2
, (22)

with L2
ϕ being the Lipschitz constant of ϕ(·).

Replacing (22) in equation (21), the following expression
is obtained:

_V(e)≤ − λk1 −
1
2
L
2
ϕ􏼔 􏼕‖e‖

2
+ L

2
ϕ‖W‖

2
‖e‖

2
+ φ e, xr( 􏼁

T
􏽥u.

(23)

Now we consider the control law given as follows:

􏽥u � − 2 + 2L
2
ϕ‖W‖

2
􏼐 􏼑φ e, xr( 􏼁. (24)

,en, substituting (24) in (23), we obtain

_V(e)≤ − λ + L
2
ϕ + L

2
ϕ‖W‖

2
􏽨 􏽩‖e‖

2
. (25)

,en, _V(e)< 0 for all e≠ 0. ,is means that the proposed
control law can globally and asymptotically stabilize the
error system, thus ensuring the tracking of (1) by (3)
achieving the synchronization, which means that
limt⟶∞‖x(t) − xr(t)‖ � 0 holds; moreover, this implies
that the both systems have reached the synchrony state
(synchronization).

Finally, the control action driving the recurrent neural
network is given by

u � − 2 + 2L
2
ϕ‖W‖

2
􏼐 􏼑φ e, xr( 􏼁 + f xr( 􏼁 − Axr − Wϕ xr(t − τ)􏼂 􏼃.

(26)

We summarize the developed analysis in the following
theorem.

Theorem 2. ?e control law defined as u in (26) ensures that
the time-delay neural network established in (1) tracks the
dynamical behavior generated by the reference system (cha-
otic system) (3).

4. Numerical Simulations

In this section, computer simulations are presented to
confirm the applicability of the results proposed previously,
which are applied to two dynamical systems that generate
chaotic behavior.

4.1. Synchronization between Delayed Neural Network and
Genesio–Tesi System. In 1992, Genesio and Tesi proposed a
chaotic system known as the Genesio–Tesi system [33]. It is
described by the following simple three-dimensional au-
tonomous system with only one quadratic nonlinear term:

_xr1
� xr2

,

_xr2
� xr3

,

_xr3
� − a1xr1

− a2xr2
− a3xr3

+ a4x
2
r1

,

(27)
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where xr � [xr1
, xr2

, xr3
] ∈ R3 is the vector state and ai with

(i � 1, . . . , 4) are positive real parameters. System (27) has
two equilibrium points E1(0, 0, 0) and E2(a1/a4, 0, 0). ,e
parameters and initial conditions of (27) are chosen as
a1 � 1, a2 � 1.1, a3 � 0.44, a4 � 1, and
[xr1

(0), xr2
(0), xr3

(0)]T � [0.1, 0.1, 0.1]T. ,e correspond-
ing eigenvalues of equilibria E1, E2 and their stability are
described in Table 1. ,e Lyapunov exponents for system
(27) are LE1 � 0.0818, LE2 � 0, LE3 � − 0.5227 which
according to [34] make the system chaotic. ,e algorithm

employed for determining Lyapunov exponents was pro-
posed in [35]. Its Kaplan–Yorke dimension is DKY � 2.1564,
and the phase plane of the chaotic system is displayed in
Figure 1. In addition, the bifurcation diagrams of system (27)
in terms of the parameters a1 and a3 are plotted in
Figures 2(a) and 2(b), respectively. Moreover, the bifurca-
tion diagrams are obtained by plotting the local maximal of
the state variable xr1 denoted as 􏽢x in Figures 2(a) and 2(b).

By considering the following delayed neural network
defined as in equation (1), we get

x1
.

x2
.

x3
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

− 1 0 0

0 − 1 0

0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

x2

x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

0.3
4
5

0

2
5

0.3 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

tanh x1(t − τ)( 􏼁

tanh x2(t − τ)( 􏼁

tanh x2(t − τ)( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

u1

u2

u3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (28)

where u � [u1, u2, u3]
T is the control action applied to the

recurrent neural network defined as in (24) and defined by

u1

u2

u3
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xr2

xr3

− a1xr1
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2
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tanh xr1
(t − τ)􏼐 􏼑

tanh xr2
(t − τ)􏼐 􏼑

tanh xr3
(t − τ)􏼐 􏼑
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,

(29)

where ψ is a real constant defined as follows:

ψ � 2 + 2

��������

􏽘

n

i�1
􏽘

n

j�1
w2

ij

􏽶
􏽴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

. (30)

,e initial values of the delayed neural network are taken
as (2, − 1, − 2); also, we consider a delay τ � 15 s. In Figure 3,
the results are shown.

Figure 3(a) shows the time evolution of the state vari-
ables xr (purple line) and x (olive line) that corresponds to
the chaotic system and delayed neural network, respectively,
and we observe that both solutions evolve independently
until τ � 15 s, that is, when the control law begins to activate.
In Figure 3(b), the error between the state variables xri

and xi

with i � 1, 2, 3 are given, respectively.

4.2. Synchronization between Delayed Neural Network and
Liu System. Now, in this instance, we demonstrate the
applicability of the discussed results considering the delayed
neural network (1) described as in the previous example, i.e.,
equation (28), where the reference model to be tracked is the
Liu system.

Liu et al. introduced in 2009 a three-dimensional au-
tonomous chaotic system which is based on two multipliers
and one quadratic term to introduce the nonlinearity nec-
essary for folding trajectories [36]. ,e Liu chaotic oscillator
is defined as follows:

_xr1
� − axr1

− m1x
2
r2

,

_xr2
� bxr2

− m2xr1
xr3

,

_xr3
� − cxr3

+ m3xr1
xr2

,

(31)

where a, b, c, m1, m2, m3 ∈ R. Its parameters are chosen as
a � m1 � 1, b � 2.5, c � 5, and m2 � m3 � 4. ,e equilib-
rium points, eigenvalues, and stability of the system are
represented in Table 1. By considering the following initial
conditions [xr1

(0), xr2
(0), xr3

(0)]T � [− 1, − 0.5, 0.5]T, the
Lyapunov exponents are LE1 � 0.4155, LE2 �

0, LE3 � − 3.8586, which according to [34] confirm that the
Liu system is a chaotic oscillator. ,e algorithm employed
for determining Lyapunov exponents was proposed in [35].
Its Kaplan–Yorke dimension is DKY � 2.1077. ,e phase
planes of Liu chaotic oscillator are displayed in Figure 4. In
addition, the bifurcation diagrams of system (31) with the
parameters b and c are displayed in Figures 5(a) and 5(b),
respectively. Moreover, the bifurcation diagrams are ob-
tained by plotting the local maximum of the state variable
xr1 denoted as 􏽢x in Figures 5(a) and 5(b).
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Table 1: Stability of equilibrium points from Genesio–Tesi and Liu chaotic systems.

Chaotic system Equilibria Eigenvalues Stability

Genesio–Tesi
E1 � (0, 0, 0)

λ1 � − 0.7503 Saddle point of index 2λ2,3 � 0.1551 ± 1.1440j

E2 � (1, 0, 0)
λ1 � 0.5871 Saddle point of index 1λ2,3 � − 0.5136 ± 1.1997j

Liu

E1 � (0, 0, 0)
λ1 � 2.5 Saddle pointλ2 � − 1; λ3 � − 5

E2 � (− 0.8838, − 0.9401, 0.6647)
λ1 � − 4.3878 Saddle point of index 2λ2,3 � 0.4439 ± 3.3464j

E3 � (− 0.8838, 0.9401, − 0.6647)
λ1 � − 4.3878 Saddle point of index 2λ2,3 � 0.4439 ± 3.3464j
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Figure 1: ,e Genesio–Tesi chaotic attractor in the phase plane with initial conditions [xr1
(0), xr2

(0), xr3
(0)]T � [0.1, 0.1, 0.1]T. (a) xr1

−

xr2
phase plane. (b) xr1

− xr3
phase plane. (c) xr2

− xr3
phase plane.
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Figure 2: (a) Bifurcation diagram of Genesio–Tesi system with varying parameter a1. (b) Bifurcation diagram of Genesio–Tesi system with
varying parameter a3.
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Figure 3: (a) Time evolution for the Genesio–Tesi reference states xr1
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with initial conditions (0.1, 0.1, 0.1) (purple line) and time

evolution for the neural network states x1, x2, and x3 with initial conditions (2, − 1, − 2) (green line). (b) Error between states xi − xri
with

i � 1, 2, 3.
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Figure 5: (a) Bifurcation diagram of Liu system with varying parameter b. (b) Bifurcation diagram of Liu system with varying parameter c.
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,e initial values of the delayed neural network are taken
as (0.1, 0.2, − 0.1); also, we consider a delay τ � 15 s. Sim-
ulation results are presented in Figure 6.

Here we consider the control law u defined as

u1

u2

u3
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� − ψ
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− axr1
− m1x

2
r2

bxr2
− m2xr1
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− cxr3
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tanh xr1
(t − τ)􏼐 􏼑

tanh xr2
(t − τ)􏼐 􏼑

tanh xr3
(t − τ)􏼐 􏼑
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,

(32)

where ψ is a real constant given as in (30). Furthermore,
Figure 6(a) presents the time-evolution of the delayed neural
network (28) and the chaotic system (31), where they evolve
independently until τ � 15 seconds; at that time, the pro-
posed control (32) law is incepted. Finally, in Figure 6(b), the
error between xi − xri

states is displayed.

5. FPGA-Based Implementation

,e digital implementations of chaotic systems have
attracted increasing interest in the last few years [37, 38].
,ey provide certain advantages in comparison with analog-
based systems, like accuracy and possible integration in
embedded applications, especially in data encryption and
secure communications, which exhibit various practical
difficulties like the sensitivity of components to temperature,
aging, etc. Recently, the digital-based chaotic imple-
mentations are realized considering different numerical
circuit-based integrated systems like digital signal pro-
cessors (DSPs), application specific integrated circuits
(ASIC), and FPGA. But the FPGA implementation de-
signs overcome the problems related to AISC and DSP-
based applications; this is due to the excellent trade-off
between computational power and the performance and
reliability which it provides.

In this section, the FPGA realizations for the systems
previously shown are addressed. We present two imple-
mentations: one of them implements the systems shown in
Section 4.1 and the other implements those shown in Section
4.2. Both implementations were done into a Xilinx Zynq-7000
XC7Z020 FPGA chip. ,e LabVIEW FPGA compiler soft-
ware and the National Instruments cRIO-9068 hardware were
used. cRIO-9068 has attached the FPGA chip and theNI-9264
module. ,e NI-9264 module allows each design to have six
analog outputs from 0 to 10 volts. Both designs use the states
of the neural network and the chaotic system as outputs.

5.1. Description of the Designs. All the mathematical oper-
ations were done using fixed-point (FXP) arithmetic. FXP
was chosen to reduce the hardware cost and achieve higher

speeds. We use 30 bits to represent each state of the neural
network and the chaotic system; specifically, we use 7 bits for
the integer part and 23 bits for the fractional part. In digital
systems, the chaotic behavior may be affected by time dis-
cretization or low-resolution FXP arithmetic. In our case, we
compute the maximum Lyapunov exponent (MLE) from the
FXP sequences related to the implemented Liu and Gene-
sio–Tesi systems by employing TISEAN package software
[39]. ,e obtained values were as follows: MLE� 0.0664 for
the Genesio–Tesi system and MLE� 0.0782 for the Liu
system. ,e positive value for each MLE confirms chaotic
behavior and validates the FXP resolution and the sampling
time used.

5.1.1. Top Level. ,e top-level description of each imple-
mentation is shown in Figure 7, where k represents the
sample index. In this work, the top-level description used
allows to implement the tracker and the system to be tracked
on the same chip, and is composed of the following modules:
(a) the chaotic system to be tracked, (b) the delayed neural
network, (c) the control law, and (e) the integration method.
Note that the block diagram in Figure 7 applies to both
designs.

5.1.2. Secondary Level. ,e dynamics of the chaotic system,
which are represented in the dashed block labeled as (a) in
Figure 7, are given by the time-discrete version of (27):

f1[k] � xr2
[k],

f2[k] � xr3
[k],

f3[k] � − xr1
[k] − 1.1xr2

[k] − 0.44xr3
[k] + x

2
r1

[k],

(33)

for the Genesio–Tesi case, and by the discrete version of (31):

f1[k] � − xr1
[k] − x

2
r2

[k],

f2[k] � 2.5xr2
[k] − 4xr1

[k]xr3
[k],

f3[k] � − 5xr3
[k] + 4xr1

[k]xr2
[k],

(34)

for the Liu case. In both cases, FXP multipliers and adders
were used to perform the arithmetic operations involved.

,e dynamics of the delayed neural network, which are
represented in the dashed block labeled as (b) in Figure 7, are
given by the discrete version of (1):

η1[k] � − x1[k] + 􏽘
3

i�1
w1,itanh xi[k − m]( 􏼁 + u1[k],

η2[k] � − x2[k] + 􏽘
3

i�1
w2,itanh xi[k − m]( 􏼁 + u2[k],

η3[k] � − x3[k] + 􏽘

3

i�1
w3,itanh xi[k − m]( 􏼁 + u3[k],

(35)

where the tanh(·) function was approximated by its fourth-
order Taylor series, and FIFO buffers implemented on the
block RAMof the device were used to perform the delay of m

samples in the three states. Six FIFO registers were used,
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each one with 16384 elements of 30 bits each. With this
configuration, a delay of m � 16384 samples is generated in
all the states.

,e control law u1[k], u2[k], u3[k]􏼈 􏼉 applied to the
neural network (35) is represented in the dashed block la-
beled as (c) in Figure 7. It was implemented as follows:

u1[k] � ψe1[k] + f1[k] − xr1
[k] − 􏽘

3

i�1
w1,itanh xri

[k − m]􏼐 􏼑,

u2[k] � ψe2[k] + f2[k] − xr2
[k] − 􏽘

3

i�1
w2,itanh xri

[k − m]􏼐 􏼑,

u3[k] � ψe3[k] + f3[k] − xr3
[k] − 􏽘

3

i�1
w3,itanh xri

[k − m]􏼐 􏼑,

(36)

where ej[k] � xj[k] − xrj
[k] for j � 1, 2, 3 denotes the error

sequence.
Finally, shift registers were used to perform the nu-

merical integration. In order to use an integration time of H

seconds, a mod-M counter is inferred to derive an enable
tick for all the registers each H seconds, where M � 4560
ticks. ,e Euler method is based on the definition of the
derivative operator and was selected to perform the nu-
merical integration in order to reduce the complexity of the
design due to its maximum simplicity. ,e block description
of this method is presented in the dashed block labeled as (d)
in Figure 7, which is described as

xri
[k + 1] � xri

[k] + Hfi[k],

xi[k + 1] � xi[k] + Hηi[k],
(37)

where i � 1, 2, 3.

5.2. Implementation Results. ,e resources used for each
design are presented in Table 2. ,e total amount of resources
employedwas obtained from theNI-FPGAcompiler report.,e
minimal amount of ticks M � 4560 needed to get a new valid
sample was computed using the LabVIEW FPGA tick count
function. Its value was the same for both designs addressed.,e
achieved latencies for both designs are expressed as L � 114 μs.

,e states of the chaotic system and the neural network
were scaled to six analog outputs of the NI-9264 module
within the range of 0 to 10 volts. ,ese outputs were
monitored by a Tektronix TDS5104B digital oscilloscope.
,e results for the system implementation are given in
Figures 8(a)–8(d). ,e phase portraits xr1

[k] − xr3
[k]􏽮 􏽯,

xr1
[k] − xr2

[k]􏽮 􏽯, and xr2
[k] − xr3

[k]􏽮 􏽯 are described in
Figures 8(a)–8(c). ,e time evolution of xr1

[k], xr2
[k], and

xr3
[k] is shown in Figure 8(d). Regarding the performance of

the neural network, the phase portraits xr1
[k] − x1[k]􏽮 􏽯,

xr2
[k] − x2[k]􏽮 􏽯, and xr3

[k], − x3[k]􏽮 􏽯 are shown in
Figures 9(a)–9(c). Note that each phase portrait evidences a
45° line, which is related to the correct tracking performed by
the time-delay neural network. Additional evidence of the
tracking is shown in Figure 9(d) where the time evolution of
xr1

[k] and x1[k] and its error e1[k] is described.
In addition, similar results were achieved for the Liu system.

,e results for the Liu system are shown in Figures 10 and 11 .

5.3. Comparison with Other Works. Synchronization is an
emerging behavior in neural networks. It has received ac-
ademic attention because of a wide variety of applications
[3, 8]. Schemes that consider chaotic systems and delayed
recurrent neural networks are of particular interest due to
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Figure 6: (a) Time evolution for the Liu reference states xr1
, xr2

, and xr3
with initial values (− 1, − 0.5, 0.5) (purple line) and time evolution for

the neural network states x1, x2, and x3 with initial condition (0.1, 0.2, − 0.1) (green line). (b) Error between states xi − xri
with i � 1, 2, 3.
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the high complexity depicted in their sensibility to initial
conditions, parameters, and time delays. For that reason,
synchronizing or controlling these schemes is challenging
work; even more, the practical implementation is not a

trivial task. In this section, we perform a survey to dem-
onstrate the pertinence of the proposed control method and
the digital implementation. In Table 3, some synchroniza-
tion schemes in a drive-response configuration are displayed

Hf1

Hf2

d

d

d

q

q

d q

q
xr1[k+1] xr1[k]

d q
xr2[k+1] xr2[k]

Hf3

Hη1

u1

u2

u3

Hη2

Hη3

d q
xr3[k+1]

x1[k+1] x1[k]

x2[k+1] x2[k]

x3[k+1] x3[k]

xr3[k]

(a)

(b)

(c)

(d)

Figure 7: Block diagram describing the top-level description of the proposed implementation for the Genesio–Tesi and Liu trackers, where
the dashed blocks represent (a) the chaotic system to be tracked given in (31) or (32), (b) the delayed neural network given in (33), (c) the
control law given in (34), and (d) the Euler integration method (35).

Table 2: FPGA chip resource usage for the Xilinx Zynq-7000 XC7Z020 FPGA chip (the resources used for both implementations are shown
in the table).

Genesio–Tesi Liu
Used Total Percent (%) Used Total Percent (%)

Slice registers 24372 106400 22.9 24253 106400 22.8
Slice LUT 27543 53200 51.8 28550 53200 53.7
DSP48s 173 220 78.6 201 220 91.4
Block RAMs 103 140 73.6 103 140 73.6
Clock 40MHz 40MHz
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with their respective control approaches. From the infor-
mation depicted in Table 3, reference [40] considers the
implementation of a synchronization scheme on an Arduino
chip while the rest of the references only consider numerical
results. In this paper, we implement the chaotic system (27),
the delayed recurrent neural network (28), and the control
laws (29) and (30) in an FPGA.

Table 4 presents a brief review, including some FPGA-
based implementations of chaotic systems over the last ten
years. Table 4 does not include detailed characteristics like
the chip resource usage and the achieved performance be-
cause these parameters are hardware dependent. Instead, it
includes generalized details like a brief description of the
application, the numerical representation, the integration
method, and the hardware used.

From Table 4, it can be seen that the implementation of a
single chaotic system is a common practice. However, recent
works include a chaotic node as a module of a bigger scale

system, for example, a complex network in [38], an OFDM
transmission system in [52], or a tracking scheme (this
work).

It can also be seen that fixed-point (FXP) and floating-
point (IEEE-754 FLP) implementations are equally used.
,e numerical representation selected in each work is
related to a trade-off between accuracy and resource usage.
It is evident that, in general, FXP representations require
fewer resources and achieve better time performance,
while an FLP representation has better numerical accuracy
than FXP.

,e integration method is used to implement a discrete
version of the system. In Table 4, we found a prevalence of
the following methods: fourth-order Runge–Kutta (RK4),
forward Euler, and Heun. Note that the numerical inte-
gration method is not correlated to the date of the work, as
we can see recent works using forward Euler and older works
using a more complicated RK4 algorithm. Again, as the
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Figure 8: Response of the Genesio–Tesi chaotic oscillator implemented, with initial conditions [xr1
[0], xr2

[0], xr3
[0]]T � [0.1, 0.1, 0.1]T. (a)
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phase plane. (b) xr1
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(blue line “CH2”),
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numerical representation, the integration algorithm selec-
tion is based on a trade-off between the accuracy and
complexity of the design.

,ere is a diversity of devices and software platforms
used for the FPGA fast prototyping. Some devices are dis-
played in the last column of Table 4, while some examples of

the software platforms are the Matlab HDL Coder (used in
[48]), the LabVIEW FPGA software (used in [46]), and
Xilinx design suites like ISE and Vivado (used in [49, 52]). In
this work, we use LabVIEW FPGA environment. ,is
programming environment is well suited for the system-
level design of prototypes.
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Figure 9: Synchronization of the time-delay neural network and the Genesio–Tesi oscillator, with initial conditions
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x3 phase plane. (d) Time evolution of xr1
(brown line “CH1”), x1 (blue line “CH2”), and e1 (orange line “Math1”).

12 Mathematical Problems in Engineering



Tek FastAcq

Ch1

2

1.2Y Ch2 M 4.0 s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

1

(a)

Tek FastAcq

Ch1 1.2Y Ch2
2

M 4.0s 13.0MS/s
A Ch1 / 5.54Y

40.0µs/pt1.2Y

Sample 0 Acqs

1

(b)
Tek FastAcq

Ch1 1.2Y Ch2 M 4.0 s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

1

(c)

Tek FastAcq

Ch1

2

3

5.0Y
Ch3 10.0Y

Ch2 M 40.0 ms 1.25MS/s
A Ch1 / 3.1Y

800 ns/pt10.0Y

Sample 0 Acqs

1

(d)

Figure 10: Response of the Liu chaotic oscillator implemented, with initial conditions [xr1
[0], xr2

[0], xr3
[0]]T � [0.1, 0.1, 0.1]T. (a) xr2

− xr1
phase plane. (b) xr1

− xr3
phase plane. (c) xr2

− xr3
phase plane. (d) Time evolution of xr1

(brown line “CH1”), xr2
(blue line “CH2”), and xr3

(purple line “CH3”).

Mathematical Problems in Engineering 13



Tek FastAcq

Ch1

2
1

1.2Y Ch2 M 4.0s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

(a)

Tek FastAcq

Ch1 1.2Y Ch2
1

M 4.0s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

(b)
Tek FastAcq

Ch1
1

1.2Y Ch2 M 4.0 s 13.0 MS/s
A Ch1 / 5.54Y

40.0 µs/pt1.2Y

Sample 0 Acqs

(c)

Tek Run

Ch1

M1

1

2

5.0Y
Math1 5.0Y 20.0ms

Ch2 M 20.0 ms 2.5 kS/s
A Ch1 / 2.6Y

400 µs/pt5.0Y

Sample 276 Acqs

(d)

Figure 11: Synchronization of the time-delay neural network and the Liu oscillator, with initial conditions [xr1
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Table 3: Some synchronization schemes proposed in the literature.

Reference Approach Synchronization scheme Implementation

[40] Extended Kalman filter Drive-response between Genesio–Tesi multiscroll and recurrent
neural network

Digital: Arduino uno
microcontroller

[41] Inverse optimality Drive-response between chaotic time-delay recurrent neural
networks None

[19] V-stability and Lyapunov
theory

Drive-response between a delayed recurrent neural network and
a complex dynamical network None

[42] Quantized sliding-mode
control Drive-response between delayed memristive neural networks None

[43] Adaptive intermittent control Drive-response between chaotic systems with time-varying delay None

Proposed Lyapunov–Krasovskii and
Lur’e theory

Drive-response between Liu-delayed recurrent neural network
and Genesio–Tesi and delayed recurrent neural networks

Digital: FPGA Xilinx Zynq-
7000 XC7Z020
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6. Conclusions

In this paper, the trajectory tracking for a nonlinear system
with a time-delay neural network was obtained. In particular,
neural networks are forced to follow reference signals gen-
erated by a chaotic system, thus achieving the synchronization
state. ,e control law that guarantees trajectory tracking was
obtained by considering the Lyapunov–Krasovskii and Lur’e
theory. ,e applicability of the approach was illustrated by
considering two different chaotic systems: Liu’s chaotic system
and Genesio–Tesi chaotic system. Numerical simulations and
FPGA implementations were presented to show the effec-
tiveness of obtained theoretical results. ,e results obtained
allowed us to demonstrate the successful implementation of
these trajectory tracking examples on FPGA. Moreover, we
confirm that the Lyapunov–Krasovskii theory is an efficient
method to deal with the global asymptotic stability of a
recurrent neural network with time delay. ,e synchroni-
zation of chaotic systems and the neural networks on dif-
ferent chips streamed through a physical channel could be
addressed in a future continuation of this work. It should
consider the channel and its properties, and it may be useful
in the area of secure communications, where it is common to
use the synchronization of chaotic systems as an encryption
tool.
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[50], 2019 ,e Lü–Chen 2002 chaotic system FXP 32 bits 16I16Q Heun Xilinx Virtex-6 XC6VLX75T-
3FF484

[51], 2019 A new 3D chaotic system FXP 32 bits 7I25Q Euler and RK4 Xilinx Virtex-6 XC6VLX75T-
3FF484

[52], 2019 OFDM system using chaos FXP 128 bits Euler —
Proposed A tracking scheme (master and slave) FXP 30 bits 7I23Q Euler Xilinx Zynq-7000 XC7Z020

Mathematical Problems in Engineering 15



[6] Y. Li, W. Zheng, Z. Cui, and T. Zhang, “Face recognition
based on recurrent regression neural network,” Neuro-
computing, vol. 297, pp. 50–58, 2018.

[7] C. Qinetal, “Convolutional recurrent neural networks for
dynamic MR image reconstruction,” IEEE Transactions on
Medical Imaging, vol. 38, no. 1, pp. 280–290, 2018.

[8] K. Rajagopal, A. J. M. Khalaf, F. Parastesh, I. Moroz,
A. Karthikeyan, and S. Jafari, “Dynamical behavior and
network analysis of an extended Hindmarsh-Rose neuron
model,”Nonlinear Dynamics, vol. 98, no. 1, pp. 477–487, 2019.

[9] J. Wang, F. Liu, and S. Qin, “Global exponential stability of
uncertain memristor-based recurrent neural networks with
mixed time delays,” International Journal of Machine
Learning and Cybernetics, vol. 10, no. 4, pp. 743–755, 2019.

[10] G. Chen and Y. Yang, “New sufficient conditions for finite
time stability of nonlinear time delay systems,” Asian Journal
of Control, vol. 21, no. 5, pp. 2321–2329, 2019.

[11] E. Zambrano-Serrano and A. Anzo-Hernandez, “A novel
antimonotic hyperjerk system: analysis, synchronization and
circuit design,” Physica D: Nonlinear Phenomena, vol. 424,
no. 1–8, p. 132927, 2021.

[12] A. Taher Azar, F. E. Serrano, Q. Zhu et al., “Robust stabili-
zation and synchronization of a novel chaotic system with
input saturation constraints,” Entropy, vol. 23, no. 3, p. 1110,
2021.

[13] Y. Kan, J. Lu, J. Qiu, and J. Kurths, “Exponential synchro-
nization of time-varying delayed complex-valued neural
networks under hybrid impulsive controllers,” Neural Net-
works, vol. 114, pp. 157–163, 2019.

[14] S. Yang, Z. Guo, and J. Wang, “Global synchronization of
multiple recurrent neural networks with time delays via
impulsive interactions,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 28, no. 7, pp. 1657–1667,
2016.

[15] H. R. Karimi and H. Gao, “New delay-dependent exponential
H∞ synchronization for uncertain neural networks with
mixed time delays,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 40, no. 1, pp. 173–185,
2009.

[16] B. Huang, H. Zhang, D. Gong, and J. Wang, “Synchronization
analysis for static neural networks with hybrid couplings and
time delays,” Neurocomputing, vol. 148, pp. 288–293, 2015.

[17] Z. Zhang and L. Ren, “New sufficient conditions on global
asymptotic synchronization of inertial delayed neural net-
works by using integrating inequality techniques,” Nonlinear
Dynamics, vol. 95, no. 2, pp. 905–917, 2019.

[18] Q. Song, J. Cao, and F. Liu, “Pinning synchronization of
linearly coupled delayed neural networks,” Mathematics and
Computers in Simulation, vol. 86, pp. 39–51, 2012.

[19] J. P. Perez, J. P. Padron, A. F. Hemandez, and S. Arroyo,
“Complex dynamical network control for trajectory tracking
using delayed recurrent neural networks,” Mathematical
Problems in Engineering, vol. 2014, Article ID 162610, 7 pages,
2014.

[20] X.-M. Zhang, Q.-L. Han, X. Ge, and D. Ding, “An overview of
recent developments in Lyapunov-Krasovskii functionals and
stability criteria for recurrent neural networks with time-
varying delays,” Neurocomputing, vol. 313, pp. 392–401, 2018.

[21] J. Chen, J. H. Park, and S. Xu, “Stability analysis of contin-
uous-time systems with time-varying delay using new Lya-
punov-Krasovskii functionals,” Journal of the Franklin
Institute, vol. 355, no. 13, pp. 5957–5967, 2018.

[22] W. Yang, Y.-W. Wang, Y. Shen, and L. Pan, “Cluster syn-
chronization of coupled delayed competitive neural networks

with two time scales,” Nonlinear Dynamics, vol. 90, no. 4,
pp. 2767–2782, 2017.

[23] X.-M. Qing-Long Han and Q.-L. Han, “New Lyapunov-
Krasovskii functionals for global asymptotic stability of
delayed neural networks,” IEEE Transactions on Neural
Networks, vol. 20, no. 3, pp. 533–539, 2009.

[24] A. Kundu, P. Das, and A. B. Roy, “Stability, bifurcations and
synchronization in a delayed neural network model of
n-identical neurons,” Mathematics and Computers in Simu-
lation, vol. 121, pp. 12–33, 2016.

[25] J. Perez-Padron, J. P. Perez, C. F. Mendez-Barrios, and
V. Ramı́rez-Rivera, “Trajectory tracking using adaptive
fractional PID control of biped robots with time-delay
feedback,” in Becoming Human with Humanoid from Physical
Interaction to Social Intelligence, A. Hoirul Basori, A. Leylavi
Shoushtari, and A. V. T. IntechOpen, Eds., IntechOpen,
London, UK, 2020.

[26] J. Perez-Padron and J. P. Perez-Padron, “Trajectory tracking
error between plant, reference and adaptive neural networks
using two control law for two-link robot manipulator,” in
Proceedings of the 2015 International Conference on Envi-
ronmental Science and Sustainable Development (ICESSD),
Bangkok, ,ailand, October 2015.

[27] J. Perez-Padron, J. P. Perez, C. F. Mendez Barrios, and
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