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Abstract

Brain-Computer interfaces (BCIs) are systems that communicate the brain with exter-

nal devices. To achieve this, electric cortical potentials go through a series of steps,

such as their extraction, processing, and classification. Motor Imagination (MI) is an

approach that induces cortical activity in the sensorimotor zone, which generates pat-

terns of (de-)synchronization in the alpha (8-12 Hz) and beta (13-30 Hz) frequency

bands during the preparation of movement. The processing of MI events entails a very

important exercise for their correct classification, that is why the number of feature ex-

traction techniques has seen a significant increase over the years.

Within this application, the O-splines, from the recently presented Discrete Taylor-

Fourier Transform, are proposed as a technique capable of separating the frequency

bands where MI events occur and extracting (de-)synchronization patterns. In ad-

dition, the O-splines allow estimations of parameters such as amplitude, phase, fre-

quency, and rate of change of frequency, which provide richer information about brain

dynamics. In this way, it is intended to use this modern technique to compare it with

traditional quantification methods such as the estimations of event-related (de-)synchronization

(ERD/ERS) patterns, as well as to describe the behavior of these events observing the

characteristics that the method delivers.

Significant differences have been found when comparing against one traditional fil-

tering technique (p > 0.05), and a higher classification accuracy was obtained against

traditional ERD/ERS quantification technique. In addition, the O-splines state estima-

vii
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tion capacity extracted features that elevate the percentages of classification between

two MI-classes to 92.31%.

Therefore, the O-splines could serve as a technique capable of extracting MI-patterns

and classify between classes for BCI applications.

Key-words: o-splines, motor imagery, signal processing, feature extraction, brain-

computer interfaces
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Chapter 1

Introduction

1.1 General Context

1.1.1 Brain-Computer Interfaces (BCI)

Brain-Computer Interfaces (BCIs) are complex systems independent from muscles and

peripheral nerves that work as communication channels between the brain and exter-

nal devices [5, 6]. The basic idea behind BCIs is to extract patterns/parameters from

cortical activity related to specific internal or external events for converting them into

control commands [7].

With this motivation, the research in BCIs has been growing exponentially since

their first mention due to its extensive number of applications and the scope of devel-

oping non-invasive daily-life wearable BCIs [8, 6]. Most review papers name medical

applications such as central nervous system assistance, rehabilitation, and mental dis-

ease detection as the most prominent applications [5, 9, 10]. Moreover, BCIs have also

been developed in other fields like the construction of exoskeletons and robots [7, 5],

environmental control from users [10, 6] and even gaming, art, or transport applica-

tions [10].

1



1.1. GENERAL CONTEXT 2

BCIs are normally composed of four important steps: (1) signal acquisition, (2) sig-

nal pre-processing, (3) feature extraction, and (4) feature classification [6]. Figure 1.1

shows graphically the whole BCI structure in which the two middle steps compose the

signal processing process.

Figure 1.1: Brain-Computer Interfaces structure.

The first step uses different tools such as functional-Magnetic Resonance Imaging

(f-MRI), Magnetoencephalogram (MEG), Positron Emission Tomography (PET), Tran-

scranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) for acquiring

cortical signals [9]. For BCI applications, there is the need and goal to develop portable

and non-invasive systems for using them in daily-life tasks and real-time activities for

people in rehabilitation [6, 5]. In this matter, EEG has become the best choice that fol-

lows these specifications due to its high time resolution, portable characteristics, and

low cost [9].

The signal processing step, where pre-processing and feature extraction are linked,

is one of the most important along the whole BCI structure. Is in this one where the

type of BCI is defined, and the one over which this work will be centered. The pre-

processing step filters out all artifact related activity from the acquired signals to extract

important features from clean data in the feature extraction step [8]. Furthermore, sev-

eral reviews have separated the BCIs according to the proposed processing paradigms

[7, 11, 12, 10], but in general, these can be differentiated between two types: evoked and

spontaneous. The first ones are more reactive, while the second ones can be passive or

active approaches. Figure 1.2 illustrates and mentions these, where the Motor Imagery
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Figure 1.2: BCI different approaches.

approach will be the one over which this work will be focused.

Finally, the classification step uses Machine Learning, Neural Networks or even sta-

tistical based algorithms for detection and separation of patterns related to different

classes [8]. Authors in [9] made an extensive review of methods for BCI applications,

and named the Support Vector Machine (SVM), Random Forests (RF), Logistic Regres-

sion (LR), Liner-Discriminant Analysis (LDA) and Naïve-Bayes (NB) as the classification

algorithms mostly used in BCI applications.

1.1.2 Motor Imagery (MI)

In [13], the author described the state of motor activity as three linked processes: ac-

tion representation, motor intention and motor execution. With this idea, two notions

could be raised: (1) the fact that exists a step before motor execution capable of visual-

izing the activity to be performed (preparation for future events), and (2) the idea that

both steps (action representation and motor execution) could be separated by an actual

intention of doing the intended action.

In 1979, authors in [14] investigated the called "rhythmic activity within the alpha

band" as it appeared to be present in numerous other studies related to movement.

There, it was described the presence of an energy desynchronization event moments

before subjects made a movement, followed by a power recovery after the movement.
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Later, in [1], both behaviors were discussed and described as event-related desyn-

chronization (ERD) and synchronization (ERS). On one hand, ERD was defined as an

attenuation of oscillations from the alpha (8-12 Hz) and beta (13-30 Hz) bands before

motor activity, indicating preparation of movement. ERS, on the other hand, has been

assumed to be related to an idle state where no activity is being processed, and was re-

ferred to a blocking state of cognitive processes or motor activity [1, 15]. Both events

are shown graphically in an example in figure 1.3.

-6      -4       -2     0         2       4        6

12

8

4

µV2

Button pressing

R

ERD

ERS

Figure 1.3: ERD and ERS events from a bipolar EEG recording (C3-Cz). The 0 second
marks the button pressing in the paradigm, and R refers to the average alpha power at
rest. Adapted from [1].

Although ERD/ERS patterns were first found when investigating motor activity, sim-

ilar behavior was encountered in studies focused on the mental representation of the

action [16]. This mental representation called motor imagery (MI) refers to the imag-

ination of motor activity without performing the action, and derives into changes on

physiological parameters such as heart and respiratory rates [17].

MI has been found to have differences in amplitude of the ERD pattern when is

compared to the preparation of movement [17]. In one study [18], authors presented

ERD patterns over the primary sensorimotor area contralateral to the hand perform-
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ing the motor imagination, while ERS appeared ipsilaterally. This is, when the MI is

done with the right hand, the ERD pattern was observed over the left hemisphere of

the brain, while the ERS pattern was on the right hemisphere. Both cases on the same

activation areas than movement preparation and mostly on both alpha and beta bands,

something that was already declared before.

An example of this is the figure 1.4, which shows the scalp distribution of one sub-

ject’s ERD/ERS pattern from the database used in this work. Note that the ERD pattern

identified in blue is present contralaterally to the MI-class.

Figure 1.4: ERD/ERS scalp distribution example. Subject 14 from database [2].
ERD/ERS were calculated using the classical power approach described in [3]. Signals
were band-pass filtered in 8-12 Hz.

In recent years, other contributions to the MI understanding have been given. For

example, authors in [19] measured connectivity of brain areas before (pre), during (para)

and after (post) the MI event, finding strong connections on the occipital cortex during

pre-MI, contralateral sensorimotor cortex on para-MI, and symmetrical connections

between occipital and sensorimotor areas during post-MI. In [20], authors found sim-

ilar connectivity during MI and motor execution, and described more connections on

right-hand than left-hand MI due to that all (elderly) subjects were right-handed in the

study. And finally, another study [21] visualized more segregation and transitivity over

the alpha band (instead of beta band) while going from the pre-MI state to the para-MI
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one, as well as more power desynchronization lateralization during the MI-event.

At the end, with all this information, the importance of developing techniques ca-

pable of extracting MI features for MI-based BCIs has grown. And, with this goal, many

works have proposed new methods for separating different number of MI classes.

1.2 Related Works

Signal processing in MI has been a topic of great focus in recent years. Different kind

of signal processing techniques have been proposed for MI feature extraction. Appli-

cations in robots and prosthesis have marked a pathway in which the best proposed

method should overcome artifacts and low signal-to-noise ratio to accomplish high

classification rates between different MI-classes.

Numerous studies have delivered new and benchmarking techniques during the

years. Table 1.1 summarizes recent works with their proposed techniques and some of

their respective results.

Table 1.1: Recent state-of-the-art techniques proposed for extracting MI features.

First part of Table 1.1.

Type Proposed Technique Year Results (best)

ERD/ERS

AM: Hilbert Transform 2020 [22] ACC= 86.11% and 83.24%.

Power 2023 [23] ACC= 86.11%, 78.74%, 74.73%.

2021 [24] ERD/ERS (%): CP2=-9.8, CP1=-

8.8, C4=-8.3 and Cz=-7.1

Lock-in Amplifier

(LIA)

2018 [25] Maximal Correlation Coeffi-

cient (MCC) = 0.86 and Time

delay = 210ms.
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Continuation of Table 1.1.

Type Proposed Technique Year Results (best)

CSP

Sub-band CSP + Se-

quential Backward

Floating Selection

2019 [26] ACC=86.5% in average.

CSP, FBCSP and FBC-

SSP

2022 [27] FBCSP=75.11%, FBCSSP=70.5%

and FBCSP=75.01% FBC-

SSP=76.3%.

Separable Common

Spatio-Spectral Pat-

terns (SCSSP)

2016 [28] Cross-validation ACC:

Exp1=62,34% and Kappa Coef.:

Exp2=42.17.

Sparse Time-

Frequency Segment

CSP

2016 [29] ACC= ∼90.4% in avg.

CSP+Neighborhood

Component Analysis

(NCA)

2020 [30] ACC=∼93% in avg.

FB Regularized-CSP

+ Mutual Informa-

tion Based Individual

Feature

2018 [31] ACC=86.23% in avg.

Improved-CSP: Bhat-

tacharyya distance

2019 [32] ACC=91.25% and 90.43%.

WT

Wavelet-based

Temporal-Spectral-

Attention Correlation

Coefficient

2023 [33] ACC in avg: Data1=81.45%,

Data2=81.78% and

Data3=83.31%.
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Continuation of Table 1.1.

Type Proposed Technique Year Results (best)

DWT+Reimannian

Graph+Regularization

2021 [34] ACC in avg: Data1=∼ 88% and

Data2=83.31%

Pearson Correla-

tion Coefficient

(PCC)+DWT

2023 [35] ACC in avg: SVM=90.88% and

kNN=90.10%.

Flexible-Analytic WT

(FAWT)

2020 [36] ACC in avg=85.26%.

Dual-Tree Complex

WT+NCA+CSP

2021 [37] ACC in avg: Data1=84.02% and

Data2=89.1%.

Harmony Search 2020 [38] ACC in avg=93.61%.

FT
Bispectrum+CSP 2020 [39] ACC in avg: Data1=83.8%,

Data2=86.3% and

Data3=77.8%.

FFT 2018 [40] ACC (2 approaches): FFT1

(8-32Hz)=58% and FFT2 (3

bands)=59%.

Others

Ensemble-EMD 2023 [41] ACC: Bagged Ensem-

bled=96.17%.

DWT+SPR+CSP 2023 [42] ACC: Data1=98.83% and

Data2=92.16%.

ICA+WT
2022 [43] SNR: Channels FPz, F3, Fz and

F4 > 20.

2021 [44] ACC in avg: kNN=98.88%,

SVM=94.33% and RF=99.44%.

From Table 1.1, it is to highlight the great use of the traditional and always func-
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tional ERD/ERS quantification method. The Common Spatial Patterns (CSP), which

has become the gold-standard in MI-BCI applications, is also worth mentioned, as well

as the popular Wavelet Transform (WT).

Regarding the first, it quantifies the amplitude variations in time from the power of

the frequency band in observation after a period of reference [3]. Moreover, two dif-

ferent approaches have been used over the years for this quantification technique: the

power variation approach [3] and the amplitude modulation one [4]. The first squares

the samples to obtain power values and the second extracts the complex envelope of a

band-pass signal for amplitude measurement. More of this last approach on the next

chapter (subsection 2.1.1).

The widely used CSP is a technique capable of separating spatially until two differ-

ent classes of events by maximizing the variance of one class from a spatial patterns’

matrix [45]. Its introduction in [46] set a precedent in the MI signal processing analysis

due to the incorporation of spatial filters into the temporal analysis. From here, diverse

variations have been trying to find the most suitable missing piece in the technique for

increasing the classification performances, as can be seen on Table 1.1.

Wavelets, on the other hand, have been a popular method in EEG analysis due to

their dynamic time-frequency resolution. Works have used the WT as a pre-processing

step [44], complex features extraction [34, 33] and even to quantify the ERD/ERS pat-

tern [25]. Its applicability in EEG signals and (especially) MI works drove the authors

in [47] to compare different bases, finding the best capacities in the rbio2.2 mother

wavelet.

Outside these normally used methods, other studies have proposed spectral based

techniques. Authors in [48] used an Auto-Regressive (AR) technique for online evalu-

ation due to its high quality of amplitude estimation in short periods of time, which is

defined by the model order normally between 3 and 20 [49]. Empirical Mode Decom-

position (EMD) has also been used widely with its own variations. For example, the
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Multivariate-EMD proposed in [50] with CSP obtained 79.19% and 79.18% in classify-

ing between two MI-classes using LDA and SVM classifiers, respectively. Besides, [51]

used Multivariate-EMD with the Hilbert Transform (HT) for calculating synchroniza-

tion between electrodes before and during the MI task.

Some works focus their analysis on the pre-processing step. In [52], authors used In-

dependent Component Analysis (ICA) for explaining relations and activation zones be-

tween motor-imagination, motor-observation, and motor-execution. In another study

[43], authors combined ICA with the WT for de-noising the signal before entering the

CSP method, having higher SNR values (> 20) than using only ICA (< 20), and relatively

high mean average accuracies with different classifiers (>75%).

Some other works look for reducing characteristics and take only the ones that are

most related to MI activity. Instead of using all EEG channels for analysis, author in

[35] proposed to use Pearson Correlation Coefficient (PCC) to find the most significant

channels to MI activity, which led to classification accuracies of 90.88% and 90.10%

using SVM and k-nearest neighborhood (k-NN) classifiers, respectively. Modhiwale and

colleagues [38] used the “harmony search” optimization algorithm for extracting only

the best spectral and temporal-spectral characteristics after the Discrete WT (DWT),

delivering 92.49% of accuracy using k-NN.

Finally, other studies combined different methods. For instance, authors in [42]

proposed to use a graphic technique to obtain energy changes from one same point,

and combined the technique with the DWT and CSP for obtaining high classification

percentages (>90%). In [37], the Dual-Tree Complex Wavelet Transform is presented

with CSP and Regularization Neighborhood Analysis (RNA), and had accuracies higher

than 80%. Also, in [39], CSP was used after obtaining the spectrum of the signal with

the Fourier Transform (FT), delivering the highest classification accuracy of 86.3%.

Certainly, most of the aforementioned methods accomplished the goal of obtaining

great classification accuracies. But this must coexist with several other considerations
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for applying into real-time BCIs approaches.

1.3 Problem Statement

Although, many techniques have proven to be efficient for characterizing MI activity in

different domains and accomplished high classification performances for identifying

different MI-classes, other characteristics and considerations are forgotten.

On one hand, to extract the best features for classification, the signal must pass

for (and, therefore, rely on) a pre-processing step. EEG signals are composed of either

endogenous (interior sources) or exogenous (exterior sources) kind of noises, normally

called artifacts [6]. They also have the characteristic of being non-stationary with small

variations in time due to cognitive activity [9]. Then, is not surprising to see the amount

of works focusing on the pre-processing step [43, 44, 37, 53] to obtain only the necessary

information from the original data.

From [9], it can be inferred that the band-pass filters (especially Butterworth filters)

are the most used in different investigations using EEG signals for extracting frequency

bands of interest. But some parameters must be set before designing these and other

type of filters.

In applications regarding Event-Related Potentials (ERPs), Widmann and colleagues

[54] proposed to use filters with stop-band attenuation gains around -54 and -60 dB.

But, in general, to attenuate major artifact activity, it is required the right tuning of

the filters. Parameters like the filter type, cut-off frequency, pass-band ripple, or roll-

off have to be defined carefully by also considering the nature of the signal. On the

contrary, bad design of filters could lead into different affectations on the signal such

as spurious oscillations, delays, loss of information or temporal blurring [55]. Thus,

several considerations have to be well thought before designing filters, which is time

consuming and could also take more execution time while analyzing signals.
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On the other hand, most of the works extract amplitude related features for clas-

sification. The first presentation of the ERD/ERS method for capturing the amplitude

power changes during MI event drove to the high utilization of these characteristics.

Consequently, proposed techniques use to work with power [23], time-frequency en-

ergy resolution [33] and even spatial amplitude changes [25], but limited number of

studies focus their investigation on other physical and temporal features.

In this matter, the phase has been accepted as relevant feature in EEG signals due

to its capacity to measure changes in synchrony [56] and having better properties than

amplitude [56, 57]. Although, works that have worked with this parameter showed reg-

ular classification rates. Authors in [58] showed accuracies of 61.7% and 61.9% when

identifying two classes of MI-activity from the same limb while using the Phase-Locking

Value (PLV) calculated from the instantaneous phase. Also, Benzy and Vinod [59] de-

livered an average accuracy (n=12) of 63.7%. These results changed when using am-

plitude and phase features together, which has been reported to rise the classification

accuracies to higher than 80% [34].

In this matter, a proposition is to use techniques that can extract, not only ampli-

tude and energy features, but also the phase and derivates of phase, in a way that they

explain the dynamics behind MI-activity and get useful values for BCI applications.

1.4 Proposed Method

After reviewing a few of the problems in MI signal processing, it was important to con-

sider tools capable of overcoming the presented limitations. With this in mind, this

work introduces the O-splines into the MI-BCI applications.

The O-splines come from the low-pass differentiators of the expansion of the Dis-

crete Fourier Transform (DFT) called the Discrete Taylor-Fourier Transform (DTFT)

[60]. In general, this method adds Taylor terms of the Taylor Series to the Fourier co-
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efficients, which expands the Fourier basis to a Taylor-Fourier one [60]. Consequently,

it overcomes the FT periodic signal assumption, and two of its most important limita-

tions: (1) spectral leakage and (2) harmonic interference [61].

This technique can be illustrated as FIR filters with maximal flat gains, which work

as ideal band-pass filters modulated to a central frequency [62]. These characteristics

result in less distortion and harmonic interference [61]. Figure 1.5 shows the impulse

and frequency responses from the 9-th order O-spline.

Figure 1.5: Graphic responses from the O-spline of order 9.

Furthermore, the low-pass differentiators from the DTFT allow state estimations

from the signal input [61]. This is, the O-splines deliver not only estimates of amplitude

and phase, but also, their consecutive derivatives, estimating other parameters such as

amplitude derivations, frequency, and the rate of change of frequency (ROCOF). This

capacity has led authors to performed analysis in different fields like power systems and

bio-signals. The table 1.2 resumes some works where the O-splines have been applied.

Essentially, the O-splines started in the power systems area by analyzing oscillating
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Table 1.2: Previous works using the O-splines technique.

Field Year Description

Power
Systems

2018 [60] Power oscillating signal analysis.
2020 [63] Synchrophasor estimations.
2020 [64] Detection of faults.
2023 [65] Inertia estimations using wide-area monitoring sys-

tems (WAMS) in power grids.

Biosignals
2013 [66] Separation of breathing and cardiac rhythms from

blood pressure signals.
2018 [67] Detection of ventricular arrhythmia in EKG.
2020 [62] Frequency-band extraction of epilepsy EEG signals.

voltage and current signals and comparing results with standard measurement equip-

ment. However, in recent years, the number of works applying the O-splines in bio-

signals has been increasing, and this work will follow this direction by applying this

technique into the MI-signal analysis.

1.4.1 Why the O-splines? (Justification)

The proposed O-splines have some characteristics worth mention for entering MI sig-

nal analysis.

In the first place, their FIR filter natural form can separate harmonics from the cen-

tral frequency in analysis. In [68], it was reported the high attenuation gains of the

O-splines while increasing its order. At the order nine, the attenuation gains went from

-47dB to -326dB, which makes it more appropriate in comparison to the gains recom-

mended in [54].

In its only EEG-signals-related study [62], the O-splines could effectively extract the

different frequency rhythms over which the brain works. Specifically in MI-EEG signals,

it has been reported and stated that the range of the frequency band of interest covers

the alpha and beta bands [18]. Therefore, with this previous knowledge, the O-splines

filtering capacity could separate the bands in question in a way that other harmonics
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do not interfere in the output signal.

Furthermore, the O-splines have the capacity to extract features due to their low-

pass differentiators. A point to highlight from this is the relevance and physical mean-

ing these features have. Other popular and majorly used techniques deliver pertinent

information from the signal, but this not normally have physical meaning. For instance,

the WT is a technique capable of filtering and giving a dynamic time-frequency resolu-

tion, but their coefficients do not have physical meaning [61], and the correct choose

of mother wavelet derives into tedious high calculus operations (as described in [9])

and even a complete research work for identifying the most suitable one for specific

applications [47].

In a comparative work, author in [69] uses CSP features, spectral features (the PSD)

and Hjorth temporal parameters. These lasts referring to signal power, frequency, and

changes in frequency. As result, the classification percentages were higher with tem-

poral features than with the gold-standard spatial ones for segregating between two

(93.6%), three (70.3 %) and four (58.3%) classes of MI. This would imply a better perfor-

mance when using temporal derivatives of the parameters, and the O-splines can give

not only amplitude and phase features, but derivatives with physical meaning [63].

Finally, other studies have used the O-splines in bio-signals, although none of them

have proposed the technique into MI-EEG signal applications. Therefore, the O-splines’

features are themselves a contribution into the field of MI-EEG signal analysis.

1.5 Research Questions

With this proposition, a few questions raised.

• Can the O-splines extract better MI patterns than traditional approaches?

• Can the O-splines filtering capacity extract only the energy of both alpha (8-12
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Hz) and lower-beta (13-14 Hz) combined (8-14 Hz)?

• Are the O-splines capable of characterize amplitude, phase, and frequency varia-

tions over the band of interest in MI events?

1.6 Hypothesis

Knowing the O-spines capacity, three hypotheses were set.

• The O-splines will filter artifact sources from the EEG signal, which will result in

a visually more defined ERD/ERS pattern against traditional approaches.

• The O-splines will extract only the energy of alpha (8-12 Hz) and low-beta (13-14

Hz) bands combined (8-14 Hz) with non-harmonic interference.

• The O-splines’ state estimation capacity will characterize changes on all features

(amplitude, phase, frequency, and ROCOF) during the MI-event.

1.7 Objectives

Finally, to answer the research questions and proof the hypotheses, the next goals were

defined.

1.7.1 Main Goal

To validate the O-splines technique as a tool capable of extracting Motor Imagery event

features from EEG signals.



1.7. OBJECTIVES 17

1.7.2 Particular Goals

1. To quantify event-related (de-)synchronization for comparison between tradi-

tional ERD/ERS method against the O-splines technique.

2. To extract alpha and lower-beta bands combined information related to the Mo-

tor Imagery ERD using the O-splines filtering capacity.

3. To use the O-splines as an estimation tool for amplitude, phase, frequency, and

ROCOF on Motor Imagery events for characterization of their responses.

Essentially, this thesis has the goal of introducing in a detailed way the work done

during the research. Its structure began in this chapter with the introduction of the MI-

BCI concept, the state-of-the-art methods for extracting MI characteristics, the prob-

lems on these methods, the proposition made for the work, hypotheses, questions, and

objectives.

It follows in Chapter 2, which contains a short review with of some of the models

mostly used in MI-EEG analysis. Characteristics and limitations of these models are

described (section 2.1), as well as the traditional approach to be compared against the

proposed technique (subsection 2.1.1). In addition, in section 2.2 the DFT is explained

as the method over which the DTFT was developed. In section 2.3 concepts behind

O-splines modeling, such as Dynamic Phasor (subsection 2.3.1), Digital Taylor-Fourier

Subspace (2.3.2) and impulse and frequency responses (2.3.3) are presented. Finally,

the designed O-spline models for this work are shown in subsection 2.3.4.

Next, the Chapter 3 explains the steps followed for extracting MI-EEG signal param-

eters such as ERD/ERS patterns and state estimations ones. In section 3.1, the MI-EEG

signals database used in this work is described. Section 3.2 resumes both tasks marked

for the present work: at subsection 3.2.1, the ERD/ERS quantification process is de-

scribed using traditional ERD/ERS: AM and the novel O-splines technique, and in sub-



1.7. OBJECTIVES 18

section 3.2.2 the state analysis using the O-splines’ estimation capacity. The statistical

tests utilized to infer data behavior are mentioned in subsection 3.2.3. And finally, sub-

section 3.2.4 describes the classification models used in an extra step to measure the

performance of the proposed technique.

In Chapter 4, the results of the tasks defined for this work are shown. The chapter

is divided in several sections: the temporal ERD/ERS analysis (section 4.1) with a com-

parison between the filters used (subsection 4.1.1), state estimations with O-splines

(4.2), and classification accuracies (4.3). Also, with the same structure, the Chapter 5

discusses the previous findings, and comments about the future directions and limita-

tions of the work. Lastly, the Chapter 6 concludes this work with a short recap of the

results.



Chapter 2

Theoretical Framework

In this chapter, it is expected to understand important points of some of the models

that have been served as basis for other state-of-the-art techniques. So, at the end, it is

understandable the choose of using the traditional ERD/ERS approach. In addition, the

O-splines’ mathematics are also described by explaining a few of the concepts behind

them, so the technique can be comprehended before using it.

2.1 Models

The previous state-of-the-art methods have one characteristic in common, that the ma-

jority of them proceed from the basis of a technique introduced before, e.g. the CSP, WT

or the FT. In table 2.1 some of the characteristics and limitations of these techniques are

described.

19
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Table 2.1: Characteristics and limitations from the basis methods.

First part of Table 2.1.

Method Characteristics Limitations

ERD/ERS

[3, 70]

• Quantifies the percentage of

change of energy from the

frequency band of study.

• Time-locked but not phase-

locked.

• Can be extracted by tem-

poral methods or time-

frequency ones.

• Limited to only the temporal

domain.

• Loss of information by aver-

aging over time.

CSP [49,

12, 71]

• Includes frequency and spa-

tial filters.

• Minimizes and maximizes

the variances between two

classes of activities.

• Performs multichannel

analysis.

• Depends on the frequency

band of analysis.

• Discards temporal informa-

tion.

• Limited to segregate be-

tween two classes of tasks.
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Continuation of Table 2.1.

Method Characteristics Limitations

WT [9, 12]

• Gives a balanced time-

frequency resolution: wide

windows on the lower fre-

quencies and narrow on the

higher ones.

• Decomposes the signal with

a series of low-pass and

high-pass filters.

• Each decomposition has its

coefficients, maintaining

the temporal information.

• Choosing the right mother

wavelet for one specific task

represents a challenge be-

fore analysis.

• Oscillations, shift variance,

aliasing and lack of direc-

tionality are considered

as other limitations of the

method [72].

FT [9, 49]

• Estimates the frequency

representation of a signal.

• Captures, in high resolution,

the different frequency com-

ponents from a signal.

• Works better with stationary

signals.

• No temporal resolution.

• Not suitable for non-

stationary signals.
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Continuation of Table 2.1.

Method Characteristics Limitations

EMD

[9, 41]

• Decomposes the signal

into Intrinsic Mode Func-

tions (IMFs) where time-

frequency information is

kept as sub-signals.

• Data-driven method.

• Suitable for non-stationary

signals.

• Does not overcome inter-

channel interference.

• Mode-mixing: information

from the same frequencies

can be found on different

IMFs.

• Might remove redundant in-

formation or eliminate per-

tinent one.

Note in the table the differences among the methods. The ERD/ERS traditional ap-

proach is limited to the analysis in the temporal domain and captures the events in

specific time lapses. In contrast, the FT captures only the spectral information of one

raw signal, although it works better for non-dynamic signals. EMD and WT combine

both informations to assure a better decomposition of the time signal inside different

frequency bands. The former adapts to the data but allows the presence of other fre-

quency information into the decomposition modes. While the last uses a set of filters

in the analysis, even though is challenging to define the best mother wavelet. Finally,

CSP uses spatial information to manage the data of the most active channels, however

the temporal information is lost.

In MI analysis, is important to extract information at the time when the event ap-

pears. Therefore, in this work the ERD/ERS: AM approach is considered as the method
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to be compared against the O-splines. This is due to its capacity to capture important

amplitude changes in the temporal domain, and because of its importance and impact

for explaining both ERD and ERS in MI.

2.1.1 ERD/ERS: AM

The ERD/ERS amplitude modulation (AM) approach involves the introduction of tradi-

tional telecommunication analysis into the ERD/ERS quantification task, as it delivers

better time resolution than the classical power approach [4]. ERD/ERS: AM starts with

the band-pass filtering of the signal (1), then a complex envelope is given to the band-

pass signal by means of the HT (2), and finally the averaging of the envelopes obtained

for all trials (3) [3].

The main operation of this approach is performed under the first two previous steps.

The signal must be filtered first to assure that the operation is performed only over the

frequency band of interest. Furthermore, filters will also generate a band-pass repre-

sentation of the signal, which is real and positioned far from the 0 frequency [73].

The HT is used in the second step, and it is defined by equation 2.1.

H [x(t )] = x̂(t ) =
1

π

∫∞

−∞

x(τ)

t −τ
dτ (2.1)

This notation indicates a shift in the phase from the original signal by −π/2, and

forms the analytic signal of the equation 2.2.

X (t ) = x(t )+ j x̂(t ), (2.2)

where x(t) is the real part of the complex signal, and the imaginary refers to its HT. With

this notation, pertinent information from the instantaneous amplitude, phase and even

frequency can be obtained [74].
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Figure 2.1: ERD/ERS: AM approach in this work. Figure based on the one in [4].

In the case of the analysis in this work, the absolute values are obtained from the

analytic signal to measure the amplitude changes in the envelope. The figure 2.1 shows

a short diagram of these steps before going through trials segmentation and trials av-

eraging. Note that the HT is defined by using the Fast Fourier Transform (FFT) spectral

transformation.

2.2 Discrete Fourier Transform

Having N consecutive samples from a signal x[n] in the range 0 ≤ n ≤ N−1 of a periodic

or an aperiodic sequence, the Discrete Fourier Transform (DFT) of a N-point is

X [k]≜
N−1∑

n=0
x[n]e− j 2π

N kn , 0 ≤ k ≤ N −1, (2.3)

where the index k corresponds to a discrete set of frequencies defined by wk = 2π
N

, k =

0,1, ..., N −1. Moreover, the DFT can be reversed by using its inverse version, the Inverse

Discrete Fourier Transform (IDFT). It allows to recover the original signal sequence from

the previous frequency coefficients [75]. For any N coefficients X[k], 0 ≤ k ≤ N −1, N

samples values are calculated using

x[n] =
1

N

N−1∑

k=0

X [k]e j 2π
N kn . (2.4)
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This pair of equations are denoted as x[n] ↔ X [k].

Normally, the exponential part of the definition of the DFT in equations 2.3 and 2.4

is defined with the well-known twiddle factor wN ,

wN = e− j 2π
N . (2.5)

So, the DFT analysis equation can be written in matrix form as

X =WN · x, X =





X [0]

X [1]
...

X [N −1]




(2.6)

and the synthesis equation as

x =
1

N
(W ∗

N ·X ), x =





x[0]

x[1]
...

x[N −1]




(2.7)

where W ∗
N is the complex conjugate of the Fourier matrix WN which has the form

WN =





1 1 1 . . . 1

1 wN w 2
N . . . w (N−1)

N

1 w 2
N w 4

N . . . w 2(N−1)
N

...
...

...
. . .

...

1 w (N−1)
N

w 2(N−1)
N

. . . w (N−1)2

N





, (2.8)

which is an important component in the DTFT.
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2.3 O-splines Modeling

The idea behind the O-splines and the DTFT was developed over the concept of the

dynamic phasor from power systems [76]. It consists of the approximation of a Taylor

polynomial to the complex envelope of a band-pass signal [76][61].

2.3.1 Dynamic Phasor

An ideal model for the dynamics of a band-pass signal is the one shown in equation 2.9,

s(t ) = a(t )cos(2π f1t +ϕ(t )), (2.9)

where a(t ) and ϕ(t ) correspond to the varying-in-time amplitude and phase, respec-

tively, being f1 the fundamental frequency of the signal. By rewriting 2.9 into a complex

function, it gets the equation 2.10,

s(t ) =R{ξ(t )e j 2π f1t }, (2.10)

which the ξ(t ) component is the complex envelope (or dynamic phasor) and can be

written in polar form as ξ(t ) = a(t )e jϕ(t ).

The inclusion of Taylor terms to the signal model expands and approximates the

signal by inserting a k-th order Taylor polynomial at t0 = 0. Although, this can only

be possible, if and only if, the dynamic phasor is given by an analytic equation. The

general form of the Taylor polynomial is given by equation 2.11, where its coefficients

are progressive derivatives at the interval center.

ξk (t ) = ξ(t0)+ξ′(t0)t +ξ′′(t0)
t 2

2!
+ ...+ξk (t0)

t k

k !
,

−T

2
≤ t ≤

T

2
. (2.11)
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2.3.2 Digital Taylor-Fourier Subspace

When the dynamic phasor concept first appeared in [76], it was implemented with a

set of third order FIR filters. In the work, the set of filters with constant, linear, and

quadratic gains, allowed a more suitable and low-error estimation of amplitude and

phase of an oscillatory signal.

Moreover, its presentation led to the addition of Taylor polynomials to the FT in

[61] for dealing with the steady-state limitation of the FFT. As result of this, the Fourier

subspace was then expanded to a Taylor-Fourier one [60]. In other words, the DTFT

spans the space up to the k-th Taylor term, while the FFT spans only the Fourier space

referred to the zero-th Taylor term.

The extension of the Taylor-Fourier subspace begins with the presentation of the

Fourier synthesis equation, which is

x =WNξ, (2.12)

where the N ×N matrix WN is the Fourier matrix, and the vector ξ contains the Fourier

coefficients of a periodic sequence. The elements of the Fourier matrix are defined by

the twiddle factor wN in equation 2.13, which has w nk
N = e j 2π

N for n,k=0,1,. . . ,N-1 as

elements, being N the samples per cycle.

WN =





1 1 1 . . . 1

1 wN w 2
N . . . w (N−1)

N

1 w 2
N w 4

N . . . w 2(N−1)
N

...
...

...
. . .

...

1 w (N−1)
N

w 2(N−1)
N

. . . w (N−1)2

N





(2.13)
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In consequence, the Fourier analysis equation is

ξ̂=W −1
N x =

1

N
W H

N x. (2.14)

Following the description in [60], by including more and more Taylor terms, the

model gets more general, resulting in the form of equation 2.15,

x =Φkξk , (2.15)

where

Φk =




1





WN

WN

...

WN




T





WN

WN

...

WN




... 1

k ! T
k





WN

WN

...

WN








and ξk =





ξN

ξ̇N

...

ξ(k)
N




,

in which 1
k ! T

k are diagonal matrices containing the successive Taylor terms and their

derivatives; Φk is (k+1)N×(k+1)N of dimensions and contains the expanded subspace

basis. Meanwhile, the subvector ξN has the k-th order Taylor-Fourier coefficients and

the rest, ξ(k)
N

for k=1,2,. . . ,k, their successive derivatives. In this matter, one can observe

the implication of the cyclic extension introduced by the order of the Taylor polynomial

expansion defined as C=k+1.

However, the addition of the Taylor terms removes the orthogonality of the vec-

tor from the Fourier model. Therefore, for orders k > 0, there is the need of a pair of

biorthonormal bases to accomplish orthogonal projection [60]. This necessity derives

in the dual form (analysis equation) of equation 2.15, which is

ξ̂=Φ
−1
k x. (2.16)
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Since base vectors in Φ are not orthogonal, the biorthogonal basis (the o-splines

and derivatives) is found in the vectors of the dual matrix Φ̂k of Φk , which is

Φ̂k =Φ
−H
k , (2.17)

such that ΦH
k
Φk = I .

Then, in terms of the dual matrix, we have

ξ̂= Φ̂
H x. (2.18)

The Fourier matrix in 2.15 can be factorized in cyclic submatrices,

Φk =ΥkΩk

Φk =





1 T1 . . . 1
k ! T

k
1

1 T2 . . . 1
k ! T

k
2

...
...

. . .
...

1 TC . . . 1
k ! T

k
C









WN 0 . . . 0

0 WN . . . 0
...

...
. . .

...

0 0 . . . WN




, (2.19)

where Ti for i=1,2,. . . ,C, are N ×N diagonal matrices with cyclic segments of the k-th

order Taylor term. The factorization separates the Taylor-Fourier component Φk into

the Taylor (Υk ) and the Fourier (Ωk ) operators with the great advantage that elements

in Υk are real and FFT can be used for modulations due to matrix Ωk .

The former factorization was proposed in the study [66] for reducing computational

cost and for simplifying the dual form into equation 2.20,

Φ̂=Υ(ΥH
Υ)−1 Ω

N
= Υ̂

Ω

N
. (2.20)

The formulation was presented in [60] with the idea of designing low-pass filters

with maximally flat low-pass differentiators in Υ̂. Thus, vectors from Φ̂ are harmonic
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modulations out of the Υ̂ vectors at the harmonic frequencies in Ωk . Proving the cor-

respondence of the baseband subset from Υ̂, with the envelopes of subset vector at the

harmonic frequencies in the DTFT.

At the end, low-pass O-splines and their derivatives are encountered in the vectors

of the Taylor operator Υ̂k of the equation 2.21,

Υ̂k =Υk (ΥH
k Υk )−1 = (Υ−1

k )T , (2.21)

which corresponds to the transpose of the inverse Taylor operator. So, at the end, equa-

tion 2.21 is

Υ̂k =
ad j (Υ)T

|Υ|
=

Co f (Υ)

|Υ|
. (2.22)

When using Taylor-Fourier operator over the analysis equation, the reduction in

computational burden is achieved. In this case, equation 2.23 is obtained,

ξ̂= Φ̂
H x =

Ω
H

N
Υ̂

H x, (2.23)

where the Υ̂
H x product has K +1 segments of N data. Every segment is formed with all

Hadamard products summation of the O-splines’ cyclic pieces, corresponding with the

pieces of the x signal. The first product contains the pieces of the O-splines, the second

their first derivative, and so on. By multiplying the former product with Ω
H

N
, the result

is the Discrete Fourier Transform (DFT) divided into N cyclic pieces.

2.3.3 Impulse Response, Frequency response and Low-pass differen-

tiators

To understand the behavior of the DTFT filters, one can observe their impulse responses,

which are the modulated versions of the low-pass filters in Υ̂k .
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Figure 2.2: O-splines of order k = 0, . . . , 9. On the top, the impulse responses of the
splines and at the bottom their frequency responses.

The Υ̂k matrix is (k +1)N × (k +1)N of dimensions with diagonal submatrices. Its

first vector corresponds to the impulse responses of the low-pass filter, which are the

O-splines; the second vector to the first low-pass differentiator (derivative); the impulse

responses from the second differentiator to the third vector and so on.

To plot the impulse responses, it is necessary to first defined the number of samples

per cycle (N ). In the next figures, the impulse responses of varying k-th order were plot

using N = 20 samples per cycle. Figure 2.2 shows the impulse and frequency responses

from the k = 0 until k = 9 order O-splines.

Note at the top plot of figure 2.2 the impulse responses start with the zero-th or-

der O-spline, which corresponds to the Fourier traditional approach, and then, the im-

pulses evolve to a cardinal sine. Consequently, in the frequency response, is interesting

to see that when the order increases, the O-splines evolve into flatter pass-bands and

stop-bands.
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Figure 2.3: Impulse (on top) and Frequency (at the bottom) responses of first differen-
tiators.

In addition, when designing the O-splines, it is important to consider the ideal or-

der. As can be observed in the figure 2.2, the even-order O-splines have some discon-

tinuities that are reflected into little sidelobes in the frequency response. On the other

hand, odd orders maintain continuity and the sidelobes are normally lower.

Low-pass differentiators came from the derivatives of the previous O-spline. This

operation results in more discontinuous impulse responses, as can be observed at the

top of the figure 2.3, where the responses of the first differentiator are shown. In the

second differentiator, the continuity is back into the model and can be observed in

figure 2.4.

Both have different gain characteristics. Meanwhile, in the first differentiator the

frequency response is H (1)
k

( f ) = ( j 2π f )1H (0)
k

( f ), in the second is H (2)
k

( f ) = ( j 2π f )2H (0)
k

( f ),

representing linear and parabolic gains in their pass-bands, respectively.
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Figure 2.4: Impulse (on top) and Frequency (at the bottom) responses of the second
differentiators.

2.3.4 O-splines Final Models

Finally, two O-splines’ models were designed for the current work. Considering that the

O-splines are Cauchy sequences that tend to a cardinal sine when the order increases,

then the O-splines were selected to be of order 9 as the Euclidean distance between two

O-splines and the estimated phasors is sufficiently small [63]. The normalized O-spline

and its derivatives are shown in figure 2.5.

Two distinct tasks are addressed in this thesis work: the database’s article [2] recre-

ation and the state estimation analysis. The samples per cycle were set as N = 46 for the

first task and N = 65 for the second. Thus, both O-splines’ band-pass filters were mod-

ulated over the central frequency 11 Hz. The former covers the 8-14 Hz frequency band,

and the last the band of 9-13 Hz (explanation in section 4.2.1). Equations 2.24 to 2.26
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Figure 2.5: Nonic O-spline and derivatives.

were followed to obtain the frequency responses of both splines and their derivatives.

h =
ϕ9

N
e j 2π

N n (2.24)

hm = f1
ϕ̇9

N
e j 2π

N n (2.25)

hmm = f 2
1
ϕ̈9

N
e j 2π

N n (2.26)

Here, ϕ9,ϕ̇9 and ϕ̈9 correspond to the impulse response of the designed O-spline

and its derivatives, while f1 the fundamental frequency. In the particular case of the

second O-spline, a constant factor of 1.4 was added into the exponential components

of the equations for the tuning operation to the desired central frequency. Figure 2.6

shows the result of modulating both O-splines to the central frequency previously men-

tioned.
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Figure 2.6: Modulated O-splines at the central frequency 11 Hz to cover 8-14 Hz band
(left) and 9-13 Hz (right).



Chapter 3

Methods

3.1 Dataset

Most of MI studies have focused on classifiers performances using the well-known BCI

competition datasets developed by Berlin BCI (https://www.bbci.de/competition/)

[77, 30, 32, 36, 78]. However, even if the number of datasets is increasing, they do not

normally follow the same procedure, or have the same number of classes or subject

recordings. As the goal of this work is to prove the O-splines’ capacity to estimate MI

patterns, larger data following the same paradigm are needed.

Therefore, analysis is made using Cho and colleagues’ database [2], published on

http://gigadb.org/dataset/100295. This is composed of 52 subjects’ (50 right-

handed and 2 both handed) recordings performing right- and left-hand movements,

as well as imaginary movement. In both cases, subjects moved and imagined moving

every single finger to their thumbs. Moreover, the former-case recordings have 20 trials

(in one run), while the last ones have 100 or 120 trials (five or six runs). Figure 3.1 re-

sumes the paradigm of each trial, which lasts 7s and is divided into 3 states: pre-event

for the first 2 seconds, para-event for 3 seconds, and post-event for the final 2 seconds

of the trial. In the first two seconds of the observation window (-2 to 0s), a black screen

36
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Figure 3.1: MI and movement paradigm from [2].

with a cross on the center indicated the preparation for the event. Then, the screen

changed to the MI class instruction and stayed for three seconds (0-3s), being this the

time of the MI-event. Finally, following the three seconds, the screen returned to the

black screen for two more seconds (3 to 5s). Inter-stimuli time was set randomly be-

tween 0.1 to 0.8s.

Biosemi ActiveTwo device was utilized to obtain the brain signals with 64 AgCL

active electrodes according to the 10/10 international system. Two extra electrodes

were positioned over the flexor digitorum profundos and extensor digitorum, from both

hands for recordings of EMG to check if actual hand movements were performed. Sam-

ple rate was set to 512 Hz for both recordings.

In addition, the database not only contains the EMG and EEG signals from all sub-

jects, but it also keeps recordings from resting state (60 seconds) and six different arti-

facts such as eye blinking, eyeball movement (up, down, left, and right) and jaw clench-

ing (twice each kind of artifact during 5 s). In all cases, the subjects were sitting in a

chair in front of a screen and the room noise level was 37-39 dB. Finally, authors added

a .xlsx file with answers from every participant to a self-made subjective psychological

and physiological questionnaire.

The datasets contain a great amount of information to manage. For this work, all
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52 subjects’ recordings were considered, and only the recordings of the five/six runs of

right (RH) and left hand (LH) MI were used. Recordings from channels C3 and C4 were

utilized, as these two electrodes showed contralateral behavior when performing RH-

and LH-MI, respectively [18].

3.2 Methodology

Signal analysis was separated into two tasks: 1) ERD/ERS quantification using ampli-

tude modulation method [4] for recreation of [2], and 2) amplitude, phase, frequency

and ROCOF estimations with O-splines. In both cases, special attention was given to

the para-event time for characterizing the MI event apparition.

3.2.1 ERD/ERS quantification

AM has proven to be an equivalent ERD/ERS estimator with better time resolution by

using only the amplitude of a complex envelope given to band-pass signals [4, 22]. In

this matter, ERD/ERS quantification performed by Cho and colleagues’ [2] is consid-

ered as the traditional estimation approach to compare against the O-splines tech-

nique. Therefore, the methodology presented in figure 3.2 was designed considering

only the ERD/ERS quantification steps from the last-mentioned study.

Figure 3.2: Methodology for ERD/ERS quantification using amplitude modulation and
O-splines.

MI-EEG signals were filtered by two filters: 4-th order Butterworth and the O-spline.
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The first one uses a high-pass filter with cut-off frequency at 0.5 Hz and a band-pass

one on the 8-14 Hz frequency band. For the second method, the band-pass filter can

be modulated at a central frequency of interest as described in chapter 2. Furthermore,

it was centered at 11 Hz and covered the same frequency band as the Butterworth one.

After this step, small Laplacian filtering [79] was performed on C3 and C4 electrodes

from both filters output. Mean information using channels C1, C5, FC3 and CP3 was

calculated and then, subtracted to the first electrode, while the mean from electrodes

C2, C6, CP4 and FC4 was used for the second. Figure 3.3 shows the electrodes used for

this operation.

Figure 3.3: Electrodes selected for small Laplacian.

The output of the Butterworth filter passed through the HT to obtain its complex

envelope. While this was not necessary in the O-splines’ output signal since it is imple-

mented as a complex FIR filter. Absolute values were taken, as only the amplitude mod-

ulation of the band-pass signals were considered in this ERD/ERS analysis approach. At

the end, both signals were segmented among all of the 100/120 trials, all of these were

averaged to obtain one response per subject, and the relative change baseline correc-

tion was applied to the averaged ERD/ERS pattern according to equation 3.1,

ERD/ERS% =
A−R

R
×100, (3.1)
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where A refers to the average MI-related trials, and R is the mean value of the infor-

mation in the time range of reference set between -500ms to 0ms. This correction

has been proposed and used for measuring energy decreases in different MI studies

[1, 3, 80, 81, 24, 82].

3.2.2 State Estimations

3.2.2.1 Spectral Region of Interest

Before starting estimation analysis, it was necessary to observe the spectral Region of

Interest (ROI) corresponding to the MI activity in all recordings. Continuous Wavelet

Transform (CWT) is a useful technique capable of capturing low- and high-frequency

segments of the EEG signal by convolution it with adaptive windows [70]. Therefore,

CWT was used to visualize the averaged ERD/ERS scalograms related to the whole database.

Figure 3.4 describes the steps for this analysis.

Figure 3.4: Methodology to obtain the ROI from the whole dataset.

One band-pass 4-th order Butterworth IIR filter was used with half power frequen-

cies from 0.5 Hz to 50 Hz with the idea of observing activity from the whole spectrum of

frequencies until the low gamma band (<50 Hz). Signals were then segmented into the

100/120 trials and the CWT was calculated for each of them using equation 3.2 [70],

X (t ,α) =CW T {(x(t )} =
∫∞

−∞

1
p
α

x(τ)ψ∗
(

1

α
(τ− t )

)
dτ, (3.2)

where α is a scaling factor, τ controls the time domain translation of position, and

ψ
( 1
α

(τ− t )
)

represents the mother wavelet, which for this analysis, Morlet wavelet from
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equation 3.3 is used.

ψ(t ) = e
−t2

2 e j 2π f t (3.3)

Here, e j 2π f t represents a sinusoid weighted by e
−t2

2 , a Gaussian kernel with no sharp

edges.

Furthermore, baseline correction by subtracting the mean value from the time ref-

erence period of -1500 ms to 0 ms was performed to each time-frequency trial map.

Finally, maps were averaged between all the 100/120 trials and then, between all 52

subjects (grand average).

3.2.2.2 State estimations with O-splines

Knowing the estimation capacity of the O-splines [60, 68], which was previously used in

bio-signals [67, 83], the final task of this work looks to augment previous insights [20, 56,

81, 84] on amplitude, phase, and frequency features using this novel technique. Figure

3.5 shows the analysis made for obtaining amplitude, phase, frequency, and ROCOF

estimations for each and all subjects.

Figure 3.5: Methodology for amplitude, phase, frequency, and ROCOF estimations us-
ing O-splines.

Once the ROI was visualized after the previous analysis, the MI-EEG signals went

through the O-spline filter described in the past chapter. Furthermore, small Laplacian

was applied over C3 and C4 electrodes in the same way that was made for the ERD/ERS

quantification task (subsection 3.2.1). Signals were segmented into trails and then, es-

timations were made for each trial using equations 3.4, 3.5 and 3.6. The math demon-
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stration is presented in appendix A, and a more detailed background can be found at

https://github.com/timmyfaraday/TaylorFourierTransform.jl/blob/master/

docs/src/math.md.

a = 2|ξ| ϕ=∠ξ (3.4)

ȧ = 2Re{ξ̇e− jϕ} ϕ̇=
2

a
Im{ξ̇e− jϕ} (3.5)

ä = 2Re{ξ̈e− jϕ}+aϕ̇2 ϕ̈=
2

a
[Im{ξ̈e− jϕ}− ȧϕ̇] (3.6)

Here, a represents the instantaneous amplitude estimation andϕ the instantaneous

phase. With them, their first and second derivatives indicated by the number of dots.

At the end, all estimations were further averaged to obtain one subject representation.

These two final steps were done in this order as it has been stated that averaging epochs

in time could result in losses of phase and frequency information relevant in MI anal-

ysis [70]. Therefore, averaging followed the estimation step and subtraction baseline

correction (-1500 to 0 ms) was made at the end. The figure 3.5 shows this procedure.

3.2.3 Statistical Analysis

To give statistical relevance to the results, some hypothesis tests were performed. First,

Shapiro-Wilks test was performed to observe normality in data. After it, paired t-test

was used in the case of normality and Kruskal-Wallis non-parametric test for data fol-

lowing any other distribution but the normal one. In both cases, these were performed

for finding significant differences between electrodes or methods.

In the cases of ERD/ERS patterns and state estimations, a mean value calculated

from the samples of para-event time (0-3000 ms) was extracted and used in the tests.

For filters comparison, a distortion rate was calculated from the PSD of each averaged

ERD/ERS pattern.



3.2. METHODOLOGY 43

3.2.4 Classification

Lastly, a classification step was done to compare the performance of the two methods

and when using the O-splines’ extracted features. In this matter, three different linear

classifiers were used: linear Support Vector Machine (L-SVM), Logistic Regression (LR)

and Linear-Discriminant Analysis (LDA).

In the same way that statistical analysis, the mean value from the samples of the

para-event time was obtained for every subject. However, input arrangements were

different according to the task. On one hand, the input array using ERD/ERS patterns

data considered both C3 and C4 electrodes and had 104 samples (52 observations x 2

electrodes) for each MI-class (RH and LH). On the other hand, the one from the state

estimations was composed of only the information from electrode C3 and had 312 sam-

ples (52 observations x 6 features) for each MI-class.

On both cases, 5-fold cross-validation was used to train the models, and 25% of the

observations (13 observations) from the 52 related to each participant were separated

for testing the models. At the end, classification accuracy (ACC) was the parameter

obtained for measuring performance.



Chapter 4

Results

For results, signal analysis was undertaken under MATLAB environment, in particular

EEGLAB [85] toolbox. This toolbox refers to an open-source software for electrophys-

iological signal analysis and was used for trials segmentation and topography plots.

Signal processing and statistical toolboxes were also used for filter design and statisti-

cal analysis, respectively. Classification Learner app in MATLAB was utilized for clas-

sification models training and testing. O-splines were programmed in MATLAB in ac-

cordance with equations and code lines presented in [63]. Finally, only Shapiro-Wilks

normality tests were programmed in Python language using SciPy library.

4.1 ERD/ERS analysis

This first analysis examined the variations in amplitude of the MI-EEG signal delivered

by the complex envelope of an analytic signal. Both methods filtered out the origi-

nal signal to extract only the information from the alpha and lower-beta bands (8-14

Hz). The HT was used to generate the analytic signal on the Butterworth-filtered signal,

while the O-spline-filtered analytic equation was obtained with the convolution opera-

tion. After segmentation of trials, averaging of all 100/120 trials and baseline correction,

44
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ERD/ERS patterns were obtained. The figure 4.1 shows the ERD/ERS quantification

map for RH- and LH- MI, using both Butterworth and HT (Bw+HT) and the O-splines.

Figure 4.1: Grand average ERD/ERS estimations using traditional method (upper row)
and the O-splines (lower row). LH-MI on the left column, and RH-MI on the right one.

The main difference between both techniques is the clarity of the ERD pattern cap-

tured in para-event state. The traditional approach maintained high frequency oscilla-

tions during the whole observation window (-1500-4500ms), while with the O-splines,

the ERD event is clearer. Although, both methods could capture the ERD pattern inside

the para-event time (0-3000 ms) around the 200 ms, as well as the ERS one after the

3000 ms event.

Moreover, the ERD pattern from the O-splines indicated decreases in both C3 and

C4 electrodes for both RH- and LH- MI. A greater decrease in the amplitude is observed
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on C4 (red) than on C3 (blue) while performing LH-MI, and vice-versa when performing

RH-MI, confirming the contralateral behavior seen in MI studies. Nevertheless, both C3

and C4 electrodes had similar and closer amplitude decrements while performing RH-

MI in all cases presented in the figure, while channel C4 estimation had 10 % larger

desynchronization when LH-MI was performed.

Regarding the activation zones during the MI-event, the figure 4.2 shows a series

of topography plots with the mean value of the para-event time samples from both

methods. From the figure, it can be observed that the ERD was present majorly over

the sensorimotor central cortex due to the MI-event being processed, as well as on the

occipital cortex because of the MI-paradigm, in which participants were observing a

monitor waiting for the signal cue.

Figure 4.2: Topography plots of the grand average ERD. On the top row, the distributions
from the Bw+HT data. At the bottom row, distributions of data from O-splines. For this
representation, Laplacian spatial filter was not performed. The rest of step had the
same configurations.
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Nevertheless, some differences between methods are evident. Firstly, the ERD quan-

tified by the Bw+HT method (upper row) seems to be more disperse over the whole cen-

tral area from the occipital (channels Ox) to the prefrontal cortex (channels Fpx) during

RH-MI. However, when performing LH-MI, the areas where the ERD is present were

reduced, and the major activation activity appeared over central (Cx and CPx), parietal

(channels Px), and occipital areas.

Turning now to the data from O-splines (lower row). The figure shows a more con-

centrated distribution over both occipital and sensorimotor areas. On LH-MI, partici-

pants had difficulties to induce the ERD, and only around -20% of desynchronization

is illustrated over central zones (Pz, CPz and Cz) and contralaterally on (P2, CP2, C2).

During RH-MI, larger percentages of desynchronization (> -20%) were found on the

central area (Pz, CPz, CP1, CP2 Cz, C2, C1, C3, C4, FCz) instead of contralaterally.

A comparison between these two methods reveals that the O-splines separated the

activation zones in a better way than the traditional method, where ERD seemed to be

present over the whole central cortex.

With these results, Shapiro-Wilks test looked for normality in data. Table 4.1 shows

the p-values for both methods. In all cases, the ERD quantification values followed a

non-normal distribution. Therefore, Kruskal-Wallis was used for significant differences

between methods in all electrodes and MI classes. Test delivered non-significant dif-

ferences among the estimation (p > 0.05).

Table 4.1: p-values from Shapiro-Wilks test of normality using mean values from para-
event MI state.

p-values

Method
RH LH

C3 C4 C3 C4
Bw+HT 0.000655 0.009459 0.000187 0.012329

O-splines 0.000297 0.002536 0.000286 0.000389
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4.1.1 Filters comparison

To evaluate the filters effect to the signal, a distortion rate (DR) feature was evaluated

using the power spectrum density (PSD) of each of the subject’s averaged ERD/ERS

pattern. This is described in equation 4.1 and refers to the rate of the amount of energy

from other frequencies (or non-desired energies, End ) inside the frequency band of in-

terest (or desired energy, Ed ). On one hand, a value close to 0 means that the band of

interest has no affectation from other non-desired frequencies. On the other hand, if

the value increases, it refers to the presence of the energy from other bands inside the

one of interest.

In this measurement, the desired energy corresponded to the 8-14 Hz band, and the

non-desired energy frequencies were all those above 14 Hz.

xDR =
End

Ed

=
∑N

n=1 x2
n∑M

m=1 x2
m

(4.1)

In equation 4.1, xn refers to the coefficients from all non-desired frequencies and

xm to the desired frequency band from the vector obtained using 212-points FFT.

Figure 4.3 shows the boxplot distribution of the 52 subjects’ DR values for C3 and

C4 electrodes on both MI tasks. Filters capacity differences became apparent when ob-

serving these values, as the signal from the O-splines had values closer to 0 and around

0.7, while the signal from Butterworth had bigger rates (> 3). This indicates the pres-

ence of higher frequencies inside the band of interest while using the last filter.

To explain this phenomenon, the PSD of the subject 14’s averaged ERD/ERS pattern

from electrode C3 is shown in figure 4.4. It is noted that the O-splines filtering capacity

had greater effect as only low frequencies and the frequency band of interest had higher

peaks (this due the averaging operation of all trials). Contrary to this, the PSD of the

signal from Butterworth showed larger harmonic presence of higher frequencies inside

the signal.
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Figure 4.3: DR distribution of the 52 subjects’ on C3 and C4 electrodes while performing
RH- and LH-MI.

Figure 4.4: PSD of the C3 electrode mean ERD/ERS pattern while performing RH-MI
from subject 14 using Butterworth (up) and O-spline (down).
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Table 4.2: p-values after Shapiro-Wilks normality test using DR values.

p-values

Filter
RH LH

C3 C4 C3 C4
Butterworth 0.000000 0.000000 0.000000 0.000000

O-splines 0.496566 0.723566 0.202217 0.141203

Table 4.3: p-values after Kruskal-Wallis and paired t-test tests over C3 and C4 channels
for each method.

p-values

Filter RH LH

Butterworth 0.049605 0.145319
O-splines 0.397168 0.599603

Statistical analysis showed a normal distribution when using data from the O-splines

(p > 0.05), and non-normal distributed data from Butterworth (p < 0.05). Table 4.2 has

the p-values for each electrode while doing both MI tasks. Moreover, significant differ-

ences between electrodes C3 and C4 and between methods were also looked. Kruskal-

Wallis was performed for differences between electrodes from the Butterworth filter

and paired t-test from the O-splines ones. Table 4.3 shows the p-values. DR values from

the O-splines channels had non-significant differences (p > 0.05), while those from But-

terworth showed significant differences during RH-MI (p < 0.05) and non-significant

differences on LH-MI (p > 0.05). When comparing both filters, paired t-test showed

significant differences (p < 0.05) in all cases.

4.2 State Estimations

4.2.1 Region of Interest (ROI)

The ROI analysis considered only C3 and C4 electrodes for both motor imagination of

RH and LH. Note in figure 4.5 that the energy is present mostly around the 8-14 Hz
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frequency band (11 Hz particularly) and that, after the cue at 0 ms, it decreases in all

four cases. Low energy is maintained until the MI-trial is finished after 3000 ms, when

it increases.

Figure 4.5: Grand average energy maps of MI-events.

After baseline correction, the desynchronization events seen in figure 4.6 occurred

on the 9-13 Hz frequency band and lasts around the same time that the energy increases

presented in figure 4.5. This indicates major presence of MI activity inside this band.

Therefore, the O-spline design (described in section 2.3.4) and the state analysis were

made using these specifications.
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Figure 4.6: ERD/ERS maps using subtraction baseline correction.

4.2.2 Amplitude, phase, frequency and ROCOF estimations

State estimations of MI-events with O-splines become another contribution from this

work to the field. Figure 4.7 shows the grand average (n = 52) state estimates of the RH-

MI events after subtraction baseline correction. On the left column of the figure, the

amplitude estimation delivered a similar behavior to the first ERD/ERS quantification

map in figure 4.1, having decreases and increases in amplitude around the same marks

of time: 700 ms and 3500 ms. First and second derivative of amplitude added oscillation

and energy information, respectively.

Similarly, grand average phase estimation and its derivatives such as Frequency and

ROCOF on the right column of the figure were captured. Firstly, C3 and C4 electrodes

had their magnitude differences, as it was captured that the phase from C3 had larger
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Figure 4.7: Grand average state estimations of RH-MI.

displacement than the one from C4 in the whole observation window. Although C3

phase estimation movement was shortly larger at the MI event than its pre-event state.

For frequency, results showed estimations around 10 Hz on electrode C3 at the moment

of the event. C4 frequency estimation followed the behavior in a lower way. Finally,

ROCOF quantified several peaks mostly present at the time of the MI-event, indicating

larger changes in frequency during this time. Particularly, one positive peak around the

500 ms event on C3 represents the change in frequency visualized in the frequency plot,

as well as the negative peak seen close to the 4000 ms event.

Now, looking into the LH-MI state estimates, the Figure 4.8 shows the results. Start-

ing with amplitude on the left, all estimations seem to be equal to those in figure 4.7, yet

they are not. In this case, C4 amplitude envelope had larger decrease than C3, which
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Figure 4.8: Grand average state estimations of LH-MI.

confirmed the contralateral behavior expected from these signals. Oscillations in the

first and second derivatives also maintained this behavior at events collected from elec-

trrode C4.

On the other hand, phase variations show larger movements at the MI-event time

for both electrodes in comparison with the time of reference. Frequency estimation

showed activity over 10 Hz on C4 channel events, while C3 ones remained close to

these, which was similar to the RH estimation in figure 4.7 but keeping the lateralization

behavior. ROCOF delivered the presence of two major positive peaks in both electrodes

around 700 ms, corresponding to the change of frequency between 10 Hz and 11 Hz.

Besides, a larger negative peak in C4 was encountered close to the 4000 ms event. And

finally, during the MI trial, several peaks were also found with no greater changes in
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Table 4.4: p-values after Shapiro-Wilks normality test for both MI tasks and electrodes
using information of MI event time.

p-values

Feature
RH LH

C3 C4 C3 C4
Amplitude 0.000000 0.040197 0.041557 0.000001

Amplitude 1st D 0.024007 0.813016 0.587947 0.015163
Amplitude 2nd D 0.197160 0.129141 0.124345 0.027546

Phase 0.000000 0.000000 0.000000 0.655283
Frequency 0.000000 0.000000 0.012445 0.004962

ROCOF 0.000000 0.000000 0.000000 0.000000

Table 4.5: p-values after one-way Kruskal-Wallis test of all six estimations from O-
splines.

p-values

Feature RH LH
Amplitude 0.860662 0.835200

Amplitude 1st D 0.764898 0.804873
Amplitude 2nd D 0.830126 0.942989

Phase 0.886270 0.799846
Frequency 0.820003 0.701297

ROCOF 0.922316 0.937817

frequency.

Normality test using Shapiro-Wilks indicated non-normality in almost all cases from

all six different features delivered by the O-splines. Table 4.4 shows the p-values for each

characteristic at both MI classes. Kruskal-Wallis test for differences between electrodes

showed non-significant differences between the estimations on each of the features.

Table 4.5 resumes this.

4.3 Classification

Finally, in an extra step for measuring the results, data from both methods’ ERD/ERS

patterns and the six different features from the state estimations task were extracted
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and introduced into three linear classification models. The tables 4.6 and 4.7 present

the summary of classification results on both tasks of the work.

Table 4.6: Classification results using data from the ERD/ERS analysis. 5-fold cross-
validation was used for validation results, and 25% percent of observations (13 obser-
vations) were used for testing.

Classification Accuracy (%)

Models
ERD/ERS

Bw+HT O-splines
Validation Testing Validation Testing

L-SVM 62.82 65.38 62.82 69.23
LR 65.38 65.38 64.10 65.38

LDA 65.38 61.54 62.82 65.38

Table 4.7: Classification results using data from the State Estimation task. 5-fold cross-
validation for validation results, and 13 observations were used for testing.

Classification Accuracy (%)

Models
State Estimations

Validation Testing
L-SVM 82.05 84.62

LR 91.03 92.31
LDA 70.51 61.54

What stands out in table 4.6 is that using the O-splines for extracting the ERD/ERS

pattern did not seem to have greater differences against results from the traditional

Bw+HT. This could be expected as the models share the same data feature (the mean

of the MI-event samples) that was introduced in the statistical analysis, where non-

significant results were found. Although, it is of acknowledgement the increase of per-

centage from 65.38% to 69.23% using SVM, and 61.54% to 65.38% using LDA. The con-

fusion matrices from both L-SVM models are illustrated on the figure 4.9, where is evi-

dent that the model had more difficulties for identifying values of LH- than RH- MI on

both the validation and testing processes.

The most striking result comes from the classification accuracies in table 4.7, as
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Figure 4.9: Confusion matrices for validation and testing step from L-SVM models. Row
(A) refers to the confusion matrices from Bw+HT data, and (B) from O-splines data.
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Figure 4.10: Confusion matrices from validation and test processes using LR model on
state estimations data.

using the O-splines’ features from the state estimation task increased the testing values

largely. In this case, the L-SVM testing result delivered 84.62%, LR had the best result

between the models with 92.31%, and LDA had the poorer performance with 61.54%.

In figure 4.10, the confusion matrices from both validation and testing steps of the LR

model are presented. In here, it is surprising to see how the model could identify all

values from LH-MI in both validation and testing steps, while had a few misses when

classifying values from RH-MI.

In this matter, it can be observed that even if the ERD/ERS pattern obtained with the

O-splines did not differ greatly from the ones by the Bw+HT method, using its features

did. This is a remarkable result due that could indicate that MI-events information

can be extracted with these physical parameters for obtaining more insights about this

cognitive process.



Chapter 5

Discussion

The main objective of this work was set to characterize the responses and patterns ob-

tained from using the novel O-splines method in MI-EEG signals. This was done by

looking into four results: the traditional ERD/ERS pattern quantification, the effect of

the filter over the signal, the state estimations using the O-splines, and classification

performance between two classes of MI.

5.1 ERD/ERS analysis

With respect to the first goal, the current investigation found that the ERD/ERS patterns

coming from the O-splines were clearer in comparison to the ones from the traditional

method. Visually, the patterns contained less higher frequency oscillations, which indi-

cates less affectation from other frequencies and a more approximate estimation. Nor-

mally, it is recommended to perform a soften operation for reduction of variations on

the ERD/ERS pattern [3]. For example, Alzahrani and Alsaleh [86] investigated the in-

fluence of soften techniques, finding the best performance in their proposed "regular-

ization" method. In this matter, considering that one of the BCIs’ aims is to actuate

with the greatest accuracy in low execution times, to add a soften operation could ex-

59
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tend this time and much of the information could be lost. The O-splines avoided the

addition of this extra step, maintaining a very approximate estimation of the patterns.

A note of caution is due here since statistical analysis showed non-significant dif-

ferences in estimations between both methods. A possible explanation for this might

be that, although patterns were visually different, both followed the same behavior. In

other words, the general amplitude variations were captured at the same time marks

where the ERD (200 ms) and the ERS (3500 ms) appeared by both methods.

One interesting finding was that with the O-splines, the grand-averaged ERD/ERS

patterns were visually similar to the two resulted in the database’s validation article [2].

The database validation process involved pre-processing steps and discarding bad tri-

als and subjects until only 36 significant subjects remained. Using the O-splines’ filter-

ing and estimation capacities allowed the inclusion of data that were discriminated

before. This permitted to use all 52 subjects instead of pre-evaluate the datasets and

eliminate important data from different subjects.

Another important finding from this activity is the previously reported contralat-

eral behavior in MI-EEG. In the four cases presented in figure 4.1, the electrode con-

tralateral to the MI tasks had larger decreases in amplitude than the ipsilateral one.

On one hand, during LH-MI, there was a 10 % difference between electrodes. On the

other hand, when performing RH-MI, differences between both electrodes seemed mi-

nor. These results would infer that subjects were able to induce the MI event and to

separate the induced activity from both electrodes zones majorly while performing LH-

MI. However, this was not greatly accomplished during RH-MI, as amplitude decreases

seemed to have similar percentages. This is something that could be observed on the

topography plots in figure 4.2, where ERD was present over a large part of the central

area during RH-MI, and on concentrated areas on LH-MI. This could be explained by

the type of MI task, as subjects from the datasets performed motor imagination of fin-

gers, and this has been described to have a bilateral effect on the mu-band (8-14 Hz)
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[87].

5.1.1 Comparison of filters

The second objective of this study sought to determine if the O-splines’ FIR filter could

extract only the sensorimotor rhythm related to MI. This by extracting information from

alpha and lower-beta bands. Previous studies evaluating the O-splines’ FIR filter capac-

ity observed consistent results on separating frequency bands information [68, 62, 64].

The findings in these studies provided further support for the hypothesis that the O-

splines could performed better than other filters.

The pre-processing step is important in any BCI approach. Therefore, the correct

design of filters required special attention before applying them into MI-EEG signals.

One main reason that the Bw+HT approach resulted in an oscillating signal could be

the low order of the high-pass and band-pass filters. In the work of [22], authors used

the amplitude modulation approach with a 10-th order Butterworth filter. In conse-

quence, ERD/ERS patterns were clearer and classification accuracies were higher than

80 % using two different datasets. This was the principal line to use the O-splines filter-

ing capacity in this analysis.

In this work, filters effect on the signal was measured with a distortion rate consider-

ing energy from desired and non-desired frequency bands. Results showed rates closer

to 0 from estimations coming from the O-splines. Otherwise, values of distortion were

larger considering patterns from Butterworth filter. These values imply significant

differences when observing spectral information instead of temporal. This was later

confirmed statistically when comparing both filters (p < 0.05).

In general, averaging all 100 (or 120) trials in time caused the propagation of the

spectral energies around the ERD/ERS patterns from different frequencies. The O-

splines had the capacity to cut off other non-desired frequencies, while Butterworth at-
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Figure 5.1: Frequency responses from each filter. While Butterworth attenuates higher
frequencies around -50 to -100 dB, O-spline does it around -350 dB at the stop-band.

tenuated them in a lower manner. In consequence, when averaging all trials, the lower

energies from non-desired frequencies affected more in the ERD/ERS pattern after But-

terworth than after the O-splines.

The significant differences between methods could be attributed to the character-

istics of both filters. In [68], the O-splines were designed of order 9, same as the one in

this work. The study remarks the high attenuation gain values of the filter: -34 dB at the

first sidelobe and -350 dB at the stop-band. In contrast, the IIR 4-th order Butterworth

filter used for comparison maintained a negative logarithmic behavior with attenua-

tion gains from -10dB (close 15 Hz) to -50dB (close to 100 Hz) on the stop-band. In

figure 5.1, the frequency responses from both filters can be observed.

In addition, differences were found not only numerically speaking, but also in the

methodology. Using the O-splines FIR filter saved one pre-processing step, as only
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band-pass filtering was performed before Laplacian. And in the same way, no other

operation (as the HT after Butterworth) was performed after. The DTFT-FIR filter ap-

proximation obtained the analytic signal from the EEG signal input, while the ideal HT

was implemented through the FFT (which is its discrete time form); therefore, several

steps were accomplished at the same time. This could represent computational savings

into the signal processing step in BCIs, something to be reported in [83].

5.2 State Estimations

This last task was set out with the aim of assessing the state estimations capacity of

the O-splines on MI events. In this matter, a few differences had to be considered with

respect to the ERD/ERS quantification task: (1) the O-spline design and (2) the nature

of the parameters to be extracted. Both points are discussed next.

5.2.1 Region of Interest

First, the frequency band of interest had to be chosen depending on the MI activity

energy (de-)synchronization induced by the subjects, instead of setting it according

to literature. Some studies have worked with the idea that the MI activity varies the

frequency band where it appears according to the subjects [50, 27, 41]. Therefore, a

grand-average ERD/ERS time-frequency map was obtained to work with a frequency

band related to MI for all datasets.

The most obvious finding to emerge from the analysis is that the desynchronization

events were found majorly inside the 9-13 Hz frequency band. This combines both

alpha and beta bands, although, most of the energy activity concentrate on the alpha

band. Even if the literature shows energy synchronization over beta [18], in both MI

cases and for both electrodes, this was not present. Thus, the task was performed, and

the O-spline design was implemented over this band.
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5.2.2 Amplitude, phase, frequency and ROCOF estimations

The second point corresponds to the characteristics of the parameters obtained with

the O-splines. State estimations provide spectral information as well as temporal-amplitude

one. Hence, it was important not to lose this information in the averaging trials oper-

ation. Having this in mind, estimations for the time-frequency ERD/ERS maps and for

states ones were made before obtaining an average representation of each subject and

then, a grand-average one for all datasets.

Essentially, the amplitude estimations showed changes in both channels at the mo-

ment when the MI exercise is being performed. Two interesting findings were that the

decreases obtained in the first amplitude estimation looked very similar to those in the

ERD/ERS quantification activity and that the second derivative of amplitude also es-

timated changes after the cue of the MI-event. Perhaps an unexpected result was the

oscillated first derivative of the amplitude estimation, were both channels C3 and C4

had similar noise-alike behavior.

By looking into the spectral estimates, phase parameter seemed to have non-greater

than one displacement. Although, little changes become apparent visually after the

start and the end of the MI-event cues at seconds zero and three. Frequency estima-

tion had a decrease from the central frequency (11 Hz) to 10 Hz. A possible explanation

to this is that the observation is over the central frequency, and changes are not ex-

pected to be large. Finally, ROCOF is a very important parameter in power systems, as

is used to assess synchrophasor measurements [63]. In this analysis, ROCOF marked

the presence of large peaks related to the changes of frequency during the MI-event

time (0-3000 ms), indicating the exact moments when the changes happened.
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5.3 Classification Results

Normally, works tend to add a classification step after the signal processing process

to measure the performance of their proposed methods in terms of classification accu-

racy. Adding this last step to the work helps visualize if the features extracted are enough

for having a classification accuracy worth testing over online BCIs. Therefore, these re-

sults were also considered to give a better perspective of the range of the O-splines by

using information from each of the features extracted (ERD/ERS pattern, amplitude,

phase, etc.).

Contrary to expectations, the first result showed regular classification accuracy of

69.23 % (using SVM) against the 65.38 % from the traditional approach, after extracting

the ERD/ERS patterns. Comparison of the findings with the ones in the database article

(67.46% was reported after using CSP and discarding two subjects) confirms that the

ERD/ERS pattern quantification from the O-splines as the best. However, even if the

accuracy from the O-splines was higher, the difference between it and the traditional

method was not greater than 5 % and can be related to that both methods captured a

similar ERD pattern (without considering the high frequency oscillations).

Another possible explanation for this could be the parameter extracted. In this work

the mean value of the samples from the para-event time was used, meanwhile in other

studies, larger classification accuracies were obtained when using six statistical param-

eters (86.11 % and 83.24 %) [22] or ERD/ERS differences between electrodes (86.11 %)

[23]. Therefore, it is possible that using other parameters from the ERD/ERS patterns

from the O-splines could perform better than using only the mean.

The most important result was the classification accuracy obtained after using the

O-splines physical features estimations, which reached to 92.31 %. In a quick compar-

ison, this result is at the level of some other previously presented works in section 1.2,

where those with higher accuracy are either combinations of techniques for reducing
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Table 5.1: Comparison of the best accuracy with O-splines against the best accuracy of
other state of the art methods.

State-of-the-art methods comparison

Method Year ACC (%)
ICA+WT 2021 [44] 99.44

DWT+SPR+CSP 2023 [42] 98.83
Ensemble-EMD 2023 [41] 96.83
Harmony Search 2020 [38] 93.61

CSP+NCA 2020 [30] ∼ 93
O-splines 2023 92.31

Improved-CSP 2019 [32] 91.25
PCC+DWT 2023 [35] 90.88
STFS-CSP 2016 [29] ∼ 90.4

DTCWT+NCA+CSP 2022 [37] 89.1

parameters or for de-noising the signal. Table 5.1 illustrates a comparison with other

nine of the reviewed methods, where the O-splines was no better than only five of all

presented before. However, these data must be interpreted with caution because most

of the proposed techniques worked with different databases. Thus, a fairer comparison

could be made by using only one database.

These findings suggest that using the O-splines did really extract important infor-

mation regarding the MI event, although it existed the limitation of some subjects in the

datasets that could not induced much of it. Therefore, using these characteristics might

be more pertinent than staying with only the traditional approaches’ features due that

these parameters could complement between each other for better characterization of

the event.

5.4 Future Work

Focusing on the first and second activities from this work, the ERD/ERS patterns from

the O-splines resulted clearer than those from the traditional method. It has been as-

sumed and further demonstrate, that the influence of the filter design has a major effect
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on the estimation. Authors in [54] suggest using among -54 dB to -60 dB stop-band at-

tenuation gains in event-related applications, which are larger than the ones marked in

the filter of this work. In future investigations, it might be better either to use a higher

order filter for extracting band information, or other pre-processing techniques as ICA,

WPD or EMD for comparing results with the ones from O-splines.

State estimations’ results were encountered using the spectral ROI between 9-13

Hz, as it was the frequency band related to the MI activity from the database record-

ings. According to literature [18, 3, 42], the frequency band between 8-30 Hz has more

representative MI ERD/ERS activity, when alpha and beta bands are combined. Other

studies obtained great classification results when using this information instead of only

information from one band [22, 42]. Hence, in future investigations, it might be possi-

ble to use a different and larger frequency band of interest that covers both alpha and

beta bands.

Contrary to the last point, O-splines have also been used as filter bank [64, 62, 83].

Therefore, a proposition is to use this technique as complement with others for ex-

tracting the best results. For example, many studies have proposed variations of the

CSP method focusing on the filtering step using band-pass filters [53, 26], EMD [50] or

wavelets [37, 53, 42]. Thus, extending CSP with O-splines would be a research work to

test how the last could support the first method.

Also, these are preliminary results in the MI-EEG analysis field using the O-splines’

state estimations. Moreover, there is abundant room for further progress in determin-

ing if these parameters could deliver pertinent information about the MI-events. A re-

duced number of studies considered using amplitude and phase parameters for MI-

tasks classification [57, 58, 34]. However, very limited studies used other kind of infor-

mation related to phase [69]. The O-splines not only gave estimations on these features,

but they also estimated frequency and changes of frequency, which have been shown

great description results in other studies [60, 68]. Thus, works that take these variables
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into account will need to be undertaken in the future with MI-BCI applicability.

5.5 Limitations

Starting with the first activity in this research, the ERD/ERS patterns obtained with

the O-splines showed clearer estimations against the traditional method. However, to

observe statistical differences, the mean information from the samples inside the MI-

event time span (0-3000 ms) was used, leading to similar results between methods. To

show differences, another parameter that could better represent the characteristics in

time from these patterns could be extracted from the MI-state.

Secondly, the comparison between methods in the first activity of this research was

restricted to follow only the ERD/ERS steps from [2]. The difference is that the results

in this work used all 52 subjects from the database. A fairer comparison could be to

consider only the trials and subjects that the original article took.

Thirdly, the state estimations with the O-splines are limited by the lack of infor-

mation on applying the different parameters into MI-BCI applications. Amplitude and

phase are more commonly used for describing MI-event state [42] and for classification

of MI classes [57]. However, derivatives from these characteristics are not normally ex-

tracted. Therefore, in this analysis, their results in time were related visually with the

previous knowledge in MI.



Chapter 6

Conclusion

The purpose of this thesis work was to examine if the O-splines could be able to char-

acterize MI-EEG patterns by extracting different parameters. This by first comparing

them with a traditional approach, such as ERD/ERS: AM, and then, using their state

estimation capacity to extract amplitude, phase, frequency, and ROCOF maps of the

MI-event.

ERD/ERS analysis via AM approach with both traditional and O-splines methods

has resulted in a clearer ERD pattern during MI-event using the last. This result con-

cludes that, generally, the filtering capacity from O-splines outperformed the one from

Butterworth. In both cases, the EEG time signal maintained some similarities, but is in

the spectral domain that the O-splines demonstrated having a greater effect than But-

terworth, as frequencies outside the frequency band of interest were totally cut off from

the signal. The evidence from this analysis, presented in Figures 4.3 and 4.4, suggests

that Butterworth keeps lower energy from other frequency bands inside the band of in-

terest. Instead, the O-splines keep only the band of interest. This difference could be

explained due to the low order the Butterworth filter. With higher order, surely its at-

tenuation capacity would be better. Nevertheless, doing so for this activity would not

allow to compare results with the ones from the database validation article.
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One of the most significant findings that emerged from the ERD/ERS analysis was

that the clearer estimations from the O-splines were captured using all of subjects in the

database, instead of only the most significant. Although, the database original article

performed a pre-processing step to identify and remove bad subjects from ERD/ERS

analysis, considering all of them could give insights about the performance of the tech-

nique presented for characterizing the pattern for all people. This last idea is strength-

ened with the results from the classification process.

This research work has also shown that the O-splines state analysis could extract

characteristics related to MI events. Amplitude estimation with O-splines delivered

an almost similar behavior encountered in ERD/ERS analysis for both electrodes C3

and C4 during RH- and LH-MI, and its derivatives gave more information from oscilla-

tions and energy of the signal. However, non-significant differences between electrodes

were found. Spectral features were also obtained with O-splines, but as well as ampli-

tude features, non-significant differences resulted between electrodes. Further analysis

could be performed with these characteristics for applying them into a MI classes clas-

sification step.

The second major result was the classification accuracies delivered by the differ-

ent classification models. In the first task, the accuracy obtained with the O-splines

was higher than the one from the traditional method, even though the difference was

no more than 5%. In the second tasks, the accuracy was higher using the six features

extracted from the O-splines. Moreover, this result was compared against nine other

state-of-the-art methods, where only five had better performances.

In general, the findings of this research provide insights for the signal processing

of MI-EEG signals using the O-splines. It was demonstrated their capacity to quan-

tify the ERD and ERS patterns related to MI-events, and that the state derivatives can

also be utilized for analysis of these types of events in a way that all subjects’ data are

considered. Instead of adapting the data, the method should adapt to the data that is
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introduced. In this matter, the O-splines have proven to be a useful technique capable

of separating MI activity for all subjects for its characterization.

In addition, future work should be addressed with this technique. Further research

might explore other O-splines configurations in MI application, such as using a longer

bandwidth or a filter bank. Besides, other traditional and popular methods could be

used to compare results with the ones from the O-splines for a more complete conclu-

sion of their capacity on MI application.
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Appendix A

State estimators

A.1 Analytic Signal

x(t ) = a(t )cosφ(t ) = ξ(t )+ξ∗(t ) (A.1)

where

ξ(t ) =
1

2
a(t )e jφ(t ) (A.2)

where 2ξ(t ) is the analytic signal. When φ(t ) =ω1t +ϕ(t ), then we have

ξ(t ) =
1

2
a(t )e jϕ(t )e jω1t =ψ(t )e jω1t (A.3)

with ψ(t ) the dynamic phasor, with

ψ(t ) = ξ(t )e− jω1t (A.4)

From these equations we have

a(t ) = |2ξ(t )| φ(t ) =∠ξ(t ) ϕ(t ) =∠ψ(t ) (A.5)
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A.2 First Derivative

ẋ(t ) = ȧ(t )cosφ(t )−a(t )φ̇(t )si nφ(t ) (A.6)

ξ̇(t ) =
1

2
[ȧ(t )+ j a(t )φ̇(t )]e jφ(t ) (A.7)

ψ̇(t ) = [ξ̇(t )− jξ(t )ω1]e− jω1t =
1

2
[ȧ(t )+ j a(t )ϕ̇(t )]e jϕ(t ) (A.8)

ȧ(t ) =ℜ{2ξ̇(t )e− jφ(t )} φ̇(t ) =ℑ{2ξ̇(t )e− jφ(t )}/a(t ) (A.9)

ȧ(t ) =ℜ{2ψ̇(t )e− jϕ(t )} ϕ̇(t ) =ℑ{2ψ̇(t )e− jϕ(t )}/a(t ) (A.10)

A.3 Second Derivative

ẍ(t ) = [ä(t )−a(t )φ̇(t )2]cosφ(t )− [2ȧ(t )φ̇(t )+a(t )φ̈(t )]si nφ(t ) (A.11)

ξ̈(t ) =
1

2
[(ä(t )−a(t )φ̇(t )2)+ j (2ȧ(t )φ̇(t )+a(t )φ̈(t ))]e jφ(t ) (A.12)

ψ̈(t ) = [(ξ̈(t )−ω2
1ξ(t ))− j 2ω1ξ̇(t )]e− jω1t (A.13)

=
1

2
[ä(t )−a(t )ϕ̇(t )2 + j (2ȧ(t )ϕ̇(t )+a(t )ϕ̈(t ))]e jϕt (A.14)

From these equations, we have in terms of the absolute phase φ(t ):

ä(t ) =ℜ{2ξ̈(t )e− jφ(t )}+a(t )φ̇(t )2

φ̈(t ) = [ℑ{2ξ̈(t )e− jφ(t )}−2ȧ(t )φ̇(t )]/a(t )
(A.15)
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or in terms of the relative phase ϕ(t ):

ä(t ) =ℜ{2ψ̈(t )e− jϕ(t )}+a(t )ϕ̇(t )2

ϕ̈(t ) = [ℑ{2ψ̇(t )e− jϕ(t )}−2ȧ(t )ϕ̇(t )]/a(t )
(A.16)


