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ABSTRACT In light of the advancement of the technologies used in industrial control systems, securing their
operation has become crucial, primarily since their activity is consistently associated with integral elements
related to the environment, the safety and health of people, the economy, and many others. This work
presents a distributed, machine learning based attack detection and mitigation framework for sensor false
data injection cyber-physical attacks in industrial control systems. It is developed using the system’s standard
operational data and validated using a hybrid testbed of a reverse osmosis plant. AMATLAB/Simulink-based
simulation model of the process validated with actual data from a local plant is used. The control system is
implemented using Siemens S7-1200 programmable logic controllers with 200SP Distributed Input/Output
modules. The proposed solution can be adopted in the existing industrial control systems and demonstrated
effective performance in real-time detection and mitigation of actual cyber-physical attacks launched by
compromising the communication links between the process and the programmable logic controllers.

INDEX TERMS Attack detection, attack mitigation, industrial control system (ICS), false data injection
(FDI), support vector machine (SVM).

I. INTRODUCTION
Industrial control systems (ICSs) are automation systems
used in social and critical infrastructures, manufacturing
and industrial facilities, etc. They play essential roles in
realizing their control functions and ensuring their safety.
They consist of electrical devices, mechanical devices, and
computers. They include manual operations supervised by
humans. Additionally, several types of control systems and
instrumentation are used to control and regulate the indus-
trial process, such as programmable logic controllers (PLCs),
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distributed control systems (DCS), supervisory control and
data acquisition (SCADA) systems, process control systems
(PCS), and others.

In light of the advancement and sophistication in the
Internet of Things (IoT) technologies deployed in ICSs,
securing their operation has become increasingly critical and
disconcerting. That being indicated, several cyber-attack inci-
dents on critical infrastructures were recorded in the past
years [1], [2], [3], [4], [5], [6]. The structure and sophistica-
tion of attacks are constantly evolving as advanced means are
deployed to launch stealthy and deleterious attacks. Energy
industries and critical infrastructures are among the most vul-
nerable domains of cyber-attacks [7]. Last year, an electricity
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grid in India was compromised, resulting in a massive power
outage [8], while the Ukrainian power grid was subjected
to an unsuccessful cyber-attack by the Russians in 2022,
aiming to cause blackouts affecting about two million peo-
ple [9]. Additionally, a cyber-attack disrupted the operation
in the European oil facilities [10], and another took place
in a middle east-based petrochemical plant in 2017 [11].
The operation of ICSs is consistently associated with crucial
elements related to the environment, the safety and health of
people, the economy, and many others [12].
The research in the cybersecurity of ICSs has been evolv-

ing and ongoing towards achieving solutions to identify the
occurrence of attacks and potentially mitigate their effects
on the system. Even though extensive research has been
conducted regarding attack detection and mitigation in ICSs
and industrial IoT systems, the majority are concerned with
DoS attacks in software-defined networks (SDNs) such as
in [13], [14], [15], [16], [17], [18], [19], [20], [21], and [22]
using data-based approaches. In [23], a supervised machine
learning based intrusion detection system was proposed.
A rule-based mitigation strategy was adopted for low-rate
DoS attacks in an SDN environment emulated using Mininet,
a tool for creating virtual network topologies. Moreover,
the authors in [24] and [25] surveyed several works for
DoS attack detection and mitigation in SDNs using other
approaches such as pattern recognition, machine learning,
rule-based, fuzzy logic, etc.

The false data injection (FDI) attack was initially intro-
duced for ICSs of power systems, specifically in the smart
grid domain [26]. Generally, an attacker compromises sensor
readings to disrupt the industrial process or drive the process’s
state to instability. Due to the rapid growth of industrial
IoT systems and today’s increasingly critical cyber-world of
networked systems, FDI attacks are considered one of the
top-priority issues [27]. FDI attacks are critical in ICSs as
they control delicate processes that usually have alarming
environmental, social, and/or economic impacts.

A. PREVIOUS WORKS
Several works were developed to detect FDI attacks as sur-
veyed in [28], presenting various state-of-the-art machine
learning based FDI attack detection strategies for power
systems. Model-based approaches were extensively used to
incorporate the mitigation problem as in [29], in which an
observer-based framework was proposed and applied for
smart grid systems. In [30], joint static state and dynamic
state estimation models were used to detect FDI attacks
using weighted least squares (WLS) and extended Kalman
filter (EKF) with exponential weighting function (WEKF) to
improve the robustness.

In [31], the performance and resilience of a linear
cyber-physical control system (CPCS) with attack detec-
tion and reactive attack mitigation were investigated for
power grids. It addressed the problem of deriving an opti-
mal sequence of FDI attacks that maximizes the state
estimation error of the power system. In [32], an attack

detection and mitigation strategy for ICSs using Kalman fil-
ters (KFs) was presented for sensor FDI attacks and validated
using a simulation model of a three-tank system. In addition,
model-based FDI attack detection and mitigation approaches
using observers and KFs were proposed for power systems
in [33], [34], and [35], and simulation tools were used for
validation.

In [36], an observer-based resilient control strategy was
developed for variable-speed wind turbines against FDI
attacks. In [37], a multi-agent model-based DoS and FDI
attack detection and mitigation framework was proposed
using the physical and the cyber characteristics of the plant
for distribution of the automation system in power systems,
and in [38], state estimation was used to detect and mitigate
the same type of hybrid attacks in multi-area power systems.
The authors in [39] investigated the dynamic event-triggered
fuzzy control of DC microgrids with FDI attacks and imper-
fect premise matching. Moreover, recently, transfer learning
was applied for anomaly detection in ICSs to solve the prob-
lem of limited and/or imbalanced datasets [40].
Additionally, data-driven approaches andmachine learning

algorithms were employed to develop FDI attack detection
systems as in [41] for industrial IoT systems, in [42], and [43]
for power systems, and in [44] for a water treatment plant.
A neural network (NN)-based attack mitigation strategy was
proposed in [50] for power systems. A FDI attack detection
and mitigation approach was implemented for power systems
in [52] based on Kullback-Liebler (KL) divergence. The
detection was made based on the discrepancy between the
Gaussian distributions of the actual and expected data. Then
a self-belief value was generated to modify the distributed
control protocol accordingly using Raspberry Pi modules.
A supervised data-driven analytical method employing a
margin setting algorithm (MSA) was demonstrated in [45]
using simulation tools to detect FDI cyber-physical attacks in
microgrids. In addition, in [46], a supervised detection strat-
egywas proposed utilizing a NN-based autoencoder (AE) and
an Extra Trees (ETs) classifier for FDI attacks detection in
smart grids aiming to address the computational complexity
issue of data-driven approaches.

In [47], a NN-based distributed intrusion detection for FDI
attacks in smart grids was proposed to address the over-fitting
issue of machine learning based approaches for large-scale
systems. A supervised approachwas presented in [48] for FDI
attacks in energy management systems of smart power grids,
while in [49], a transformer and long short-term memory
(LSTM) networks-based detection framework was deployed
for the same system. Additionally, in [57], a gated recur-
rent unit (GRU) NN-based control strategy was proposed to
eliminate FDI attacks in DC microgrids. From the communi-
cation network perspective, a hidden Markov model (HMM)
was employed in [51] to develop a detection and prediction
module to monitor the IoT devices supported by a distributed
trust management module to establish trust between devices.
Finally, a bandwidth optimization problem was formulated
for trusted devices’ bandwidth allocation.
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TABLE 1. Previous studies in FDI attack detection and mitigation for ICSs.

Moreover, a combination of model-based and data-based
approaches was used to detect and mitigate FDI attacks in
power systems. For example, in [53], a hyper basis function
neural network (HBF-NN)-based observer was proposed to
detect, isolate, and mitigate FDI attacks in microgrid sys-
tems with electric vehicles (EVs) and it was validated using
simulation. The authors in [54] used a model-based param-
eter estimation model for attack detection and a NN-based
forecasting model for mitigation, and [55] employed a KF
fused with a three-layer NN-based observer. Additionally,
an extended observer-based hybrid tracking control strategy
relying on discrete-time sliding function and NNs for a net-
worked system with FDI attacks was proposed in [56].
After examining the existing works for attack detection

and mitigation in ICSs, the following observations were
noted:

• Several existing works examined the system’s status
from the network perspective, specifically against DoS
attacks, as they are common and known to be challeng-
ing to mitigate. However, addressing FDI attacks are as
crucial since their impacts on the ICS and the IoT system
are consequential and can be very costly,

• Most of the works were validated using simulation tools
(e.g., MATLAB/Simulink, virtual networks, etc.) due to
their low cost, ease of accessibility, and high flexibility
compared to other options. However, more concrete and
practical validation means are favorable for more cor-
roborated and substantiated findings,

• The model of the system or expert knowledge were
required for several of the presented approaches in the

literature. However, data-based approaches provide a
superior solution since most recent ICSs and IoT sys-
tems have a historian server for continuous data logging,

• Data-driven frameworks either required the availability
of labeled training data (i.e., supervised learning), had
poor to limited scalability, and/or suffered from high
computational overhead.

A summary is presented in TABLE 1 of the existing
research works for FDI attack detection and mitigation
in ICSs.

B. AIM AND CONTRIBUTION
We aim to tackle the limitations above by applying a con-
ventional machine learning based approach for real-time
detection and mitigation of sensor FDI attacks and validating
the proposed framework using a hardware setup of the ICS.
First, we employ machine learning algorithms to develop
a black-box model of the system under study to identify
the occurrence of a sensor FDI attack and its magnitude.
Machine learning regression algorithmswere commonly used
to model nonlinear systems for forecasting and estimating
the system behavior as in [58] and [59] using support vector
machine (SVM), in [60] using k-nearest neighbor, in [61]
using decision trees (DTrees), and in [62] and [63] usingNNs.
The black-box model is intended to provide the expected
healthy version of the system dynamics. Then, the detection
is made based on the discrepancy between the actual value
and the black-box model predicted value. Finally, mitiga-
tion is carried out by passing the corrected sensor value
to the ICS.

VOLUME 11, 2023 86979



M. Elnour et al.: Machine Learning Based Framework for Real-Time Detection

The contribution of this work is the successful application
of a machine learning based real-time attack detection and
mitigation framework for sensor FDI cyber-physical attacks
in ICSs validated on industrial-grade automation hardware
from Siemens. It is tested in real-time using a hybrid testbed
consisting of a calibrated MATLAB/Simulink model of the
process and Siemens S7-1200 PLCs with 200SP Distributed
I/O modules on which the proposed framework is imple-
mented, and the cyber-physical FDI attacks are injected.
The proposed framework has the following prominent
characteristics:

1) Development: It is a scalable and data-driven approach
that can be developed using the system’s normal oper-
ational data only and without the need for knowledge
of the system’s mathematical model.

2) Flexibility: It is a machine-learning and residual-
based framework that can be adjusted by performing
thresholds-reassignments and/or models’ refinement in
case of changes in the environment (e.g., increased
noise level) or as necessary.

3) Application: It can be easily adopted into the existing
ICSs and integrated into the plant’s control system.
It is programmed in PLCs from Siemens of a hybrid
testbed of a reverse osmosis (RO) plant, a popular
ICS. A MATLAB/Simulink-based model of the RO
plant that was calibrated and validated with operational
data from a local plant is used [64], while the control
system is realized using Siemens S7-1200 PLCs with
200SP Distributed I/O modules. The proposed frame-
work is implemented in real-time on the PLCs and
validated with actual online cyber-physical attacks that
are launched after compromising the communication
links between the plant and the PLCs [65].

The paper is organized as follows. First, in Section II,
we feature the details of the hybrid testbed used to
demonstrate and validate the work. Next, we present the
description of the proposed FDI sensor attack detection and
mitigation framework, the underlying theory of the machine
learning algorithms used, and the development details in
Section III. Then, the details of the validation phase of the
proposed solution in terms of the evaluation metrics used
and the results obtained are presented and demonstrated in
Section IV. Finally, conclusions and future work are summa-
rized in Section V.

II. DESCRIPTION OF THE HYBRID REVERSE OSMOSIS
TESTBED
The cyber-physical system under study is a two-pass RO plant
presented in [64]. As demonstrated in FIGURE 1, it is divided
into three processes as described below with the water flow
being regulated using motorized valves and pumps:

1) In the pre-treatment stage, the raw feed water is condi-
tioned before entering the RO process. Water filtration
and chemical dosing for anti-scaling and adjusting pH
levels take place to maintain the lifetime of the RO
membrane and the quality of the product water. Firstly,

TABLE 2. List of equipment used in the RO plant simulator.

the raw seawater is stored in the water intake storage
tank before passing through a DAF system to remove
total suspended solids (TSS) from the water stream and
then stored in the DAF storage tank. In the next stage,
the DAF tank’s water is divided into two streams in
preparation for the next stage. For each line, a pump is
used to force the water through the disk filter to further
filter the water before going to the next stage.

2) The RO process is used to remove the salt to produce
fresh water. The RO unit has three streams, one is the
feed water inflow stream and the other two are the
outflow streams, which are the concentrated (brine or
reject) solution stream and the product (permeate or
freshwater) stream. Pumps provide water flow from
the RO storage tanks through the pressure pumps then
through the RO 1 unit and the ERD that make the
two water streams. The second stream through the
ERD aims to increase the efficiency of the RO plant
by capturing and utilizing the hydraulic energy from
the high pressure reject stream of the RO 1 unit. The
product water of the RO 1 unit is pressurized through
the RO 2 unit in which the semi-final product water is
produced.

3) In the post-treatment stage, the product water of the
RO 2 unit is stored and ready for distribution for
human use. Ideally, the process involves chemical dos-
ing of minerals, disinfection, and adjusting the pH
level. However, those processes are not realizable by
simulation means due to their complexity [64].

The plant process is realized using a simulation model
developed in MATLAB/Simulink 2018b, while the control
system is implemented using industrial-grade automation
hardware from Siemens via Siemens TIA Portal V15. The
main details of the RO plant simulator are summarized in
TABLE 2 and TABLE 3. The control system of the plant
contains twelve PID control loops controlling the level of the
tanks (x1, x2, x4, x5), the flow booster pumps’ outlet flow
rate (x10, x11, x17), and the pressure booster pumps’ outlet
pressure (x8, x9, x12, x13, x16). A total of five S7-1200 PLCs
are used for implementing the control system. ET 200SP
Distributed I/O hardware from Siemens interfaces the sensors
and actuators with the plant process in each stage. The control
system hardware is networked in a PROFINET subnet. The
list of controlled and measured variables and control signals
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FIGURE 1. The hybrid RO testbed.

TABLE 3. Description of the variables of the RO plant.

TABLE 4. The list of variables and control signals of the PLCs of the
testbed.

of each PLC is presented in TABLE 4. The RO plant consists
of two types of actuation:

• Direct actuation, in which the control system directly
modulates the actuator to achieve the control objective
such as controlling the outlet pressure/flow rate of a

pump as the case with the flow pumps x10, x11, and
x17, and the pressure pumps x8, x9, x12, x13, and x16.
In these cases, a single input-single output model can be
established between the control input and the controlled
variable.

• Indirect actuation in which the control system mod-
ulates an actuator that is indirectly coupled with the
controlled variable, e.g., controlling the levels of
the tanks. That is, the controller attempts to maintain
the tank level by modulating the speed of the flow pump
as necessary. In the case of indirect actuation, a single
input-single output model between the control input and
the controlled variable cannot be established.

III. THE PROPOSED SENSOR FDI ATTACK DETECTION
AND MITIGATION FRAMEWORK
A. METHODOLOGY
The basic steps for the application of the proposed sensor FDI
attack detection and mitigation framework are as follows:

• Development phase:

1) Identification of the control loops pertinent to the
proposed framework

2) The design and formulation of the prediction mod-
els of the identified control loops

a) Identification of the inputs and outputs of each
of the prediction models

b) Collection and preprocessing of the historical
data of the identified control loops
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FIGURE 2. The FDI sensor attack detection and mitigation framework consisting of 6 prediction models.

c) Training of the machine learning based predic-
tion models

• Application phase:
1) Interpretation and expression of the machine learn-

ing models in programmable formulations
2) Incorporation of the programmable formulations

of the prediction models in the PLCs
3) Implementation of the proposed framework’s logic

in the PLCs
In this work, the proposed sensor FDI attack detection

and mitigation framework is applied to mitigate the attacks
targeting the eight direct actuation control loops implemented
in PLC 3 - PLC 5. As presented in FIGURE 2, it is composed
of six dynamical prediction models for the four pressure
pumps and the two flow pumps as described in TABLE 5.
For example, Prediction model 1 represents the dynamics of
the low-pressure pump that is used to boost the water pressure
at the inlet of the disk filters in both the HPP and ERD lines in
two control loops described by the pairs (x8,u5) and (x9,u6).
Similarly, Prediction model 2 represents the dynamics of
the flow pump used to supply water to the HPP and ERD
lines in another control loop described by the pairs (x10,u7)
and (x12,u8).
The prediction model is used to produce the prediction

x̂(t) of the sensor reading x(t) using the past control signal
u(t−1) given the past sensor reading x(t−1) and the relevant
sensor readings if exist as described in TABLE 6. The latter
is determined based on the known physical interdependently
between the system’s variables. For example, the RO 1 pres-
sure pump’s outlet pressure (x12) depends on the pump’s
inlet pressure, which depends on the level of the RO 1 tank
(x4). Finally, an attack is detected if the absolute difference
between the actual and the predicted sensor reading e(t) =∣∣x(t) − x̂(t)

∣∣ exceeds a predefined threshold. Once a sensor
FDI attack is detected, meaning the actual sensor reading has
been compromised, the predicted sensor reading is sent to the
controller to mitigate the attack effect.

B. TESTBED DATASETS
The training of the prediction models was conducted
using datasets collected from the testbed for the system’s

TABLE 5. The description of dynamical prediction models of the plant’s
pumps.

TABLE 6. The input-output details of the prediction models of the
proposed sensor FDI attack detection and mitigation framework.

normal operation at a rate of 1 sample/second. In TABLE 7,
the details of the datasets used to develop the prediction
models are presented. The size of the datasets varied for
the different models for two reasons: 1) The control loops
have different time responses, and 2) The dynamical behav-
ior of some pumps has multiple operational modes. For
example, the settling time for the RO 2 pressure pump,
whose outlet pressure is predicted using Model 5, is about
20 minutes, while the dynamics of the distribution pump,
whose outlet flow rate is predicted using Model 6, change
at an hourly rate. Additionally, the behavior of some pumps,
which are the DF pressure pumps and the RO 1 pressure
pump, is dependent on the settings of the water levels
of the preceding tanks, which have multiple operational
setpoints.

C. DEVELOPMENT OF THE MACHINE LEARNING BASED
PREDICTION MODELS
1) DESCRIPTION OF THE MACHINE LEARNING ALGORITHMS
In this section, the underlying theory of the machine learning
algorithms used is presented.
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TABLE 7. The details of the training datasets for the prediction models of
the proposed sensor FDI attack detection and mitigation framework.

A: Support Vector Machine (SVM)
SVM analysis is a commonly used machine learning
algorithm for classification and regression. It is a statistical
learning algorithm that uses the concept of decision planes
that utilize decision boundaries to optimally separate data into
the different categories [66]. Given the regression problem
Y = g(X ) where Y = [y1, y2, . . . , ym] ∈ IRm×1 and X =

[x1, x2, . . . , xm] ∈ IRm×n in whichm is the number of training
samples and n is the number of data features (attributes),
ε-SVM regression model attempts to find a function f (x) that
deviates from yi by a value no greater than ε for each training
point xi, i = 1, 2, . . . ,m, and at the same time is as flat as
possible. The SVM regression model is:

f (x) =

P∑
i=1

αiG(svi, x) + b, (1)

where P ∈ IR is the number of support vectors, svi ∈ IR1×n

for i = 1, . . . ,P is the i-th support vector, b ∈ IR is the bias
term, G(∗) is the kernel function, and αi, i = 1, . . . ,P are
the Lagrangian multipliers. The SVM problem is solved by
optimizing the following cost function:

L(α) =
1
2

m∑
i=1

m∑
j=1

αiαjG(xi, xj) + ε

m∑
i=1

αi −

m∑
i=1

yiαi,

subject to
m∑
k=1

αk = 0, ∀i : 0 ≤ αk ≤ C, (2)

where m ∈ IR is the number of training samples, C ∈ IR, and
ε ∈ IR. The hyper-parameters of a SVM regression model
are:

• Kernel function, G(xj, xk ): Kernel functions transform
the original data to a higher dimensional space where
they can be linearly separated.
1) Polynomial Kernel is G(xj, xk ) = (1 + xixTk )

p,
where p is a hyper-parameter representing the
order of the polynomial function.

2) Gaussian Kernel is G(xj, xk ) = exp(||xj − xk ||2).
• Epsilon, ε: It is half of thewidth of the epsilon-insensitive
band demonstrated in FIGURE 3.

• Box Constraint, C : It controls the penalty imposed on
observations that lie outside the epsilon margin (ε) and

FIGURE 3. Example of SVM regression. The empty circle represents two
support vectors [67].

works as a regularization parameter to help in preventing
over-fitting. It controls the trade-off between the flatness
of f (x) and the amount up towhich deviations larger than
ε are accepted.

B: K-Nearest Neighbour (KNN)
kNN regression is a non-parametric algorithm used to
approximate the association among independent variables.
The output is predicted by local interpolation of the tar-
gets associated with the nearest neighbors in the training
set. It is a memory-based algorithm and cannot be realized
by a closed-form model such that the training samples are
required at run-time, and predictions are made directly from
the sample relationships [68]. Hence, it is impractical and
computationally expensive for large and complex regression
problems. The hyper-parameters of the kNN algorithm are:

• Number of neighbors k: It is the number of samples
closest in distance to the predictors of the target point.

• Distance, d : It is the metric used to evaluate the dis-
tance between the target’s predictors and the k near-
est neighbors. Several distance metrics can be used:
Cityblock, Chebychev, Correlation, Cosine, Euclidean,
Hamming, Jaccard,Mahalanobis Seuclidean, Spearman,
or Minkowski with the exponent, E as an additional
hyper-parameter associated with this metric. The defi-
nitions of the metrics can be found in [69].

• Distance weight, wd : It is the distance weighting func-
tion which can be:
– Equal weight: Each neighbor gets equal weight.
– Inverse weight: Each neighbor gets a weight of

the reciprocal of the distance (1/d) between this
neighbor and the point being processed.

– Squared-inverse weight: Each neighbor gets a
weight of the reciprocal of squared the distance
(1/d2) between this neighbor and the point being
processed.

C: Decision Trees (DTrees)
A binary DTree is developed based on a sequential decision
process using the classification and regression tree (CART)
algorithm. Starting from the root, recursive binary splitting
is performed in which at every node of the tree, a feature
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is evaluated, and two branches are yielded until a final leaf
is reached [67]. The final leaf represents the final output.
Decision trees are simple in their dynamics and efficiency.
They can be employed to solve regression problems. The
objective at each node is to find the best feature and its split
value for partitioning the remaining data in the node into
one of two regions such that the overall error between the
actual output and the predicted output is minimized. The cost
function of a regression DTree at the ith node is expressed as:

MSEi =
1
mi

mi∑
j=1

(
yj − ŷi

)2
,

ŷi =

mi∑
j=1

yj, (3)

wheremi is the number of training samples in the ith node, y is
the actual response, and ŷ is the predicted response computed
as the average prediction of the node.

• Maximum number of splits: It represents the maxi-
mum number of decision splits (or branches) in the tree
reflecting its maximum depth.

• Minimum leaf size: It represents the minimum number
of training samples of leaf nodes.

• Number of variables to sample: It represents the num-
ber of predictors or features to select at random for each
split at the node.

D: Neural Networks (NNs)
A feed-forward NN is a directed computational structure
that connects an input layer to an output one, as demon-
strated in FIGURE 4. The hidden layers are the building
blocks of the NN composed of several nodes (or neurons),
and together they determine the complexity of the network.
Neurons have complete pairwise connections with the adja-
cent ones, and the output of one layer is the input of the
subsequent layer. Those connections are represented by a set
of parameters known as the weights W and biases b that
are to be adjusted through an iterative training procedure
using the back-propagation algorithm to minimize the cost
function [70].

The computation performed at each layer of the network
can be expressed as follows:

a[l] = f
(
W [l]a[l−1]

+ b[l]
)

, (4)

where a[l−1] and a[l] are the input and output of the lth layer,
respectively, f (∗) is the activation function,W [l]

∈ IRNl×Nl−1

is the weights matrix of layer l, b[l] ∈ IRNl is the bias, and
Ni is the number of neurons in the ith layer. For a regression
problem, the cost function is as follows:

MSE =
1
m

m∑
j=1

(
yi − ŷi

)2
, (5)

where m is the number of training samples, y is the true
output, and ŷ is the predicted output produced by the network.
The hyper-parameters of a NN are as follows:

FIGURE 4. A standard fully connected feed-forward NN with n inputs,
q outputs, and L layers.

• Number of layers, L
• Number of neurons, N
• Learning rate, α: It controls how much to change the
model in response to the estimated error each time the
model weights are updated.

• Activation functions f (∗): It enables the network to
learn and approximate complex functional mappings
between the inputs and outputs. For every node in
the layer, a transformation function is applied to the
weighted sum vector to produce the layer’s output. There
are several types of activation functions, and the most
used are:
– Sigmoid (σ ): It is expressed as:

y = f (x) = σ (x) =
1

1 + exp(−x)
. (6)

– Hyperbolic tangent (Tanh): It produces an output
with values between -1 and 1 and is expressed as:

y = f (x) = tanh(x) =
2

1 + exp(−2x)
− 1. (7)

– Rectified linear unit (ReLU): It returns 0 if the input
is negative and its mathematical form is,

y = f (x) = max(0, x). (8)

2) TRAINING OF THE MACHINE LEARNING MODELS
The prediction models were developed using machine learn-
ing regression algorithms, which are SVM, kNN, DTrees,
and NNs in which a mapping function F was learned to
make a prediction of the sensor reading x(t) given xin(t − 1)
and u(t − 1) as mentioned previously. The prediction model
is:

F = Train_MLregressor (x(t), [xin(t − 1), u(t − 1)]) , (9)

and the prediction is computed by:

x̂(t) = F (xin(t − 1), u(t − 1)) . (10)

The training of the models using the different machine
learning algorithms was conducted using MATLAB 2018b
on a PC with 64 GB RAM and 8-core AMD Ryzen 9 3800X
CPU with 3.9 GHz speed, and a 64-bit Windows 10 Pro OS.
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TABLE 8. The ranges of hyper-parameters of the machine learning
algorithms for models’ tuning using Bayesian optimization.

Data preprocessing was performed on the raw data to nor-
malize the sensor data values in the range of 0 to 1. The
optimization of the hyper-parameters was performed using a
10-fold cross-validation andBayesian optimization algorithm
for the hyper-parameters ranges presented in TABLE 8.
In Bayesian optimization, a posterior distribution of func-
tions that best describes the objective function is constructed.
The optimization algorithm keeps track of past iterations
to find better choices for the next set of hyper-parameters
to evaluate. As the number of evaluations increases, the
posterior distribution improves, and the algorithm becomes
more confident in choosing the hyper-parameters set worth
exploring [71].

The Bayesian optimization process for training and tun-
ing the prediction models is demonstrated in FIGURE 5,
while the final obtained models are presented in TABLE 9.
For FIGURES 5 (a) - (e), the x-axis represents the evaluation
iteration, and the y-axis represents the optimization objective
function, which is the 10-fold cross-validation Mean Squared
Error (MSE) between the true and the predicted values.
TABLE 10 lists the Root Mean Squared Error (RMSE) of the
optimized prediction models on the whole training dataset.
It can be noticed that the tuning processwas smooth for the six
SVM-based, kNN-based, andDTree-based predictionmodels
in which the training converged in less than ten iterations
with a maximum of RMSE of 1.3 on average per model,
as demonstrated in FIGURE 5 (g). However, for the NN-
based models, the convergence was slow, and the optimized
cross-validation error was relatively high, as demonstrated
in FIGURE 5 (h). It can be attributed to two factors: (i) the
limited data used to train the network, and (ii) the diversity
of the observations in the data that is to be realized by a
2-layer NN with a maximum of 20 neurons per layer. It is
worth noting that we limited the maximum number of layers
and the maximum number of neurons per layer to 2 and 20,
respectively, to limit the computational complexity of the
NN-based model.

IV. EVALUATION AND DISCUSSION
A. INJECTION AND DATA COLLECTION OF FDI ATTACKS
ON THE TESTBED
Sensor FDI cyber-physical attacks were launched through
the communication channels between the I/O modules and
the corresponding PLC under three main assumptions, which
are: 1) the adversary had field-level access to the plant,
2) the adversary had sufficient knowledge about the process
of the RO plant that qualified to launch the attacks, and 3) the
absence of actuator attacks. The full details of the testbed and
the sensor FDI cyber-physical attacks’ injectionmethodology
can be found in [65].
In this work, scaling sensor attacks were considered in

which the channel data X (t) under attack is scaled by a
constant factor λ > 0 of the actual data. The characteristic
feature of scaling attacks is introducing a time-varying bias to
the measurement signal. The attack magnitude builds up and
linearly scales with time based on the sensor’s measurements
under attack [72]. If not detected and eliminated at an early
stage, the impact of scaling attacks can be critical when
integral sensors of the industrial process are targeted [73],
[74], [75]. The real-time channel data X̃ (t) subjected to a
scaling attack can be expressed as:

X̃ (t) =

{
X (t) t < tsa or t ≥ tea
λX (t) tsa ≤ t < tea

, (11)

where tsa and tea are times of the start and end of the attack,
respectively. An attacks dataset was collected to evaluate
the ability of the SVM-based, kNN-based, DTree-based, and
NN-based prediction models to predict the sensors’ readings
under routine and attack scenarios and compare their per-
formance. The attack dataset contains 10498 samples, with
about 43% of attack data samples. It is worth noting that
attack mitigation was not executed during this phase. The
attacks were launched by compromising the links between
the simulated plant and the PLC I/O modules one at a time.
At each time, scaling sensor attacks were injected to all
the sensors’ measurements involved in the control loops in
the PLC under attack using a scaling factor λ in the range
of 70 - 150%, as presented in TABLE 11.

B. EVALUATION METRICS
Accuracy is the conventional metric for assessing the capa-
bility of prediction models. It is measured by the degree
of closeness between the predicted and the actual value.
However, especially for data-driven models, more broad
and representative evaluation criteria must be considered to
account for the models’ diverse characteristics in terms of
precision, efficiency, generalization ability, etc., stemming
from the various characteristics of the algorithms used to
develop them. Therefore, the following evaluation metrics
were considered:

• Mean Absolute Error (MAE): It measures the average
magnitude of the errors between the actual values xi and
the predicted values x̂i for i = 1, . . . ,m, where m is the
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FIGURE 5. The traces of the hyper-parameters tuning process of the prediction models training using Bayesian optimization for 50 iterations
for the four machine learning regression algorithms. (a) - (f) The objective function plots of prediction model 1 - prediction model 6 for the
Bayesian optimization-based hyper-parameters tuning process of the four machine learning regression models. (g) and (h) The comparison
results of the performance of the various machine learning regression algorithms for the six prediction models in terms of the
cross-validation RMSE.

TABLE 9. The details of the obtained prediction models using Bayesian optimization.

total number of observations [76]. It is expressed as:

MAE =
1
m

m∑
i=1

∣∣xi − x̂i
∣∣ . (12)

• Correlation coefficient ρ: It is a statistical measure of
the strength of the relationship between the change of
two variables [77]. It ranges between -1 to 1, such that a

correlation coefficient of 1 implies a perfect positive cor-
relation, while a correlation coefficient of -1 represents
a perfect negative correlation. A correlation coefficient
of 0 means there is no linear relationship between the
trend of the two variables. A decent prediction model
has a positive and close to 1 correlation coefficient
between the actual values x and predicted values x̂.
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TABLE 10. The training error of the finalized prediction models for the
different machine learning regression models.

TABLE 11. The list of injected attacks - the attacks dataset.

The correlation coefficient can be expressed as:

ρ =
1

m− 1

m∑
i=1

(
xi − µx

σx

) (
x̂i − µx̂

σx̂

)
, (13)

where µx , and σx are the mean and standard deviation
of x = {xi} for i = 1, . . . ,m, respectively, and µx̂ , and
σx̂ are the mean and standard deviation of x̂ = {x̂i} for
i = 1, . . . ,m, respectively.

• Computational complexity: The computational com-
plexity is determined by the number of resources
required for execution in terms of time and memory
requirements [78]. For example, the computational com-
plexity of data-driven models can be concluded from
the time required to develop the model described by the
training time (Td ), the time required to make predic-
tions on new data described by the evaluation time (Tr ),
and the memory utilization of the model (Md ).

C. COMPARISON RESULTS OF THE VARIOUS REGRESSION
ALGORITHMS
The performance of the different machine learning regression
algorithms is compared in TABLE 12 and summarized in
FIGURE 6. By conducting the evaluation using the attacks
dataset, we observed that the DTree-based, kNN-based, and
NN-based had low training time with an average of around
54 seconds. However, the models’ capability in producing
accurate predictions was poor at an averageMAE of 318. The
NN-based models scored the highest MAE of 480.9 due to
the limited training data and our constraints on the networks’
size.

FIGURE 6. A synoptic comparison among SVM-based, kNN-based,
DTree-based, and NN-based models in terms of prediction capability
and computational complexity.

Similarly, even though the training error of the
DTree-based models was low, they had the second-highest
MAE, which can be attributed to the fact that they are
known to have poor generalization ability. The kNN-based
prediction models had the highest memory requirement
and evaluation time, and the lowest correlation coefficient
between the predicted and actual sensors’ readings. They
are computationally expensive, inefficient, and sensitive to
outliers in the data.

Even though the time required to develop the SVM-based
models was the highest, they achieved the best prediction
performance with an average of 83.2% correlation between
the actual and predicted sensor readings. Furthermore, the
evaluation time was less than 2 seconds, with the minimum
value of the MAE compared to the others.

D. COMPARATIVE ANALYSIS OF PREVIOUS WORKS
Regarding previous works summarized in TABLE 1, a pre-
dominant trend was the reliance on mathematical models
in tackling the FDI attack detection problem. Specifically,
references [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39] employed model-based approaches, while [53],
[54], [55], [56] utilized hybrid approaches. Additionally, the
majority of these studies underwent testing and validation
using simulation tools.

The target system under this study has a pronounced
non-linear nature [64], rendering the application of
model-based approaches extremely arduous. It is crucial to
acknowledge the significant challenges and limitations asso-
ciated with deploying FDI attack detection and mitigation
approaches that rely on the mathematical model of the sys-
tem. That is, implementing these methods in actual hardware
poses complexity and necessitates specific considerations
that are beyond the scope of this work. In fact, the appli-
cation of such approaches in this scenario may not only be
exceedingly difficult but also unreasonable and impractical.
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TABLE 12. The evaluation results of the prediction models using the different machine learning regression algorithms using the attacks dataset.

With a targeted focus, we compared the proposed frame-
work with others developed in previous studies selectively
and purposefully. The emphasis of this comparative analy-
sis lies on frameworks that exclusively employ data-driven
methods and closely match the contextual requirements of the
system under study. A qualitative comparison of data-driven
methods of previous works is presented in TABLE 13. One
of the key remarks is that several of the existing works han-
dle attack detection as a supervised classification problem,
which requires the acquisition of representative labeled data
of both attack and normal observations, i.e., [42], [43], [45],
[46], [47], and [48]. Some approaches are more cohesive
choices for addressing the problem from the communication
and networks perspective (i.e., [51]), which falls beyond the
purview of this study. That is, conversely, this work presents
a detection and mitigation framework that does not rely
on labeled data and examines the operation of the system
using the process data. Additionally, the method proposed
in [49] was deemed unsuitable for this specific scenario
as transformer-based and LSTM-based models, which are
known to be computationally demanding, are useful for large
and complex systems [79]. For simpler problems - such as
the one presented in this work-, more straightforward and
simple algorithms, e.g., SVM, are sufficient and more effi-
cient. Furthermore, attack mitigation received scant attention,
lacking the level of focus and emphasis it deserved as it
was only addressed in [50], [51], and [52] mostly from the
communication perspective of the IoT system.

In terms of application, the control system was imple-
mented in Simulink to allow testing and comparing our

detection performance to the ones of the proposed approaches
in [41], and [44] using an AE-based detector and in [52] using
KL divergence-based detection criterion. A single-layer AE
made of an encoder going from the input layer to the bottle-
neck and the decoder from the bottleneck to the output layers
(see FIGURE 7) was trained to learn to reconstruct the sensor
measurements of interest to this study and the final network
architecture was concluded with 4 units in the bottleneck
layer. For the KL divergence-based approach, the detection
was implemented using Equation (14) assuming that the dis-
tribution of variables of interest can be approximated by a
Gaussian distribution. The statistical properties of the normal
operationmode, i.e., the reference sequence, were determined
and the observation window, i.e., the sequence length size,
was empirically set to 30 seconds. The thresholds were set
based on the normal operation/reference data that were used
to develop the AE-based and the KL divergence-based detec-
tion models.

DKL(X∥Z ) =
1
2

(
log

(
|6Z |

|6X |

)
+ tr

(
6−1
Z 6X

)
+ (µX − µZ )⊤6−1

Z (µX − µZ ) − N
)

, (14)

where µ and 6 are the mean and the covariance of the
sequence, tr{} is the trace operator, and N is the sequence
length, given thatX andZ areGaussian distributed sequences.

FIGURE 8 - FIGURE 11 demonstrate the performance
comparison results of our proposed detection framework with
the AE-based and KL divergence-based strategies. Those
figures show the following: (i) the variable’s actual value on
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FIGURE 7. The architecture of the AE.

FIGURE 8. Comparison of the attack detection performance of the
proposed framework, AE-based [41], [44], and KL divergence-based [52]
approaches under attack on the measurements of x8(t) sensor that
resulted in reducing its value from 8 to 6.4 bar (highlighted in red).
(a) The measured, actual, and predicted (by the proposed framework)
values of x8(t) sensor. (b) The input and output of the AE-based model.
(c) The attack detection evaluation for the three approaches. (d) Their
attack indicators. (e) Their binary classification performance.

the plant side depicted by the ‘‘Actual’’ plot, (ii) themeasured
value seen by the PLCs shown by the ‘‘Measured’’ plot,
(iii) the predicted value by the proposed framework, (iv) the
input and output of the AE-based detection model, (v) the
value of the detection evaluation for the three approaches, i.e.,
error, and KL divergence criteria, (vi) their attack indicators,
and (vii) their binary classification performance.

The attack indicators of the AE-based and KL divergence-
based detection approaches were flagged during the transient
phases (See FIGURE 8d and FIGURE 9d), which are the
start and end of the attack, mostly, as they solidly represent
anomalous behavior that was successfully detected. Referring
to FIGURE 8a and FIGURE 9a, when the attack was injected,
by maliciously increasing the sensor reading that was sent to

FIGURE 9. Comparison of the attack detection performance of the
proposed framework, AE-based [41], [44], and KL divergence-based [52]
approaches under attack on the measurements of x10(t) sensor that
resulted in reducing its value from 2100 to 1600 kg/s (highlighted in red).
(a) The measured, actual, and predicted (by the proposed framework)
values of x10(t) sensor. (b) The input and output of the AE-based model.
(c) The attack detection evaluation for the three approaches. (d) Their
attack indicators. (e) Their binary classification performance.

the controller, the latter was fouled into ultimately regulating
that part of the process at a lower value than desired. This
happened because the closed-loop control system continu-
ously monitors the system’s output and adjusts its inputs to
maintain the desired value/reference. It uses feedback tomake
corrective adjustments and control the system’s behavior.
Similarly, when the attack was terminated and hence the
attack component was removed, the sensor reading sent to
the controller was abruptly reduced and entered into another
transient phase where the controller worked to regulate the
process at the reference value.

However, the AE-based and KL divergence-based detec-
tion methods demonstrated unsatisfactory overall detec-
tion performance with precision of around 40% and recall
of 10% (See FIGURE 8e and FIGURE 9e). That is, in the
event of FDI sensor attacks, the controller will adjust
the inputs based on the compromised readings. Over time, the
closed-loop control effectively masks the observable effects
of the FDI attack on the process measurements, creating the
illusion of terminated or mitigated attacks (See FIGURE 8a
and FIGURE 9a). While the attack’s impact on the system
is still present, the controller inevitably obscures the FDI
attacks, preventing the measurement indicators from reflect-
ing the true consequences of the attack. As a result, the
attack remains hidden from detection, giving the impression
of normalcy despite the underlying alteration inflicted by the
intrusion.
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TABLE 13. Comparative analysis of previous studies in data-driven methods for FDI attack detection and mitigation.

Our proposed framework successfully overcame this prob-
lem in which the attack indicator remained ON for the whole
duration of the attack. The deployed SVM model evalu-
ates the expected system response under the consequential
control command due to the attack and predicts the actual
process behavior under the attack. The discrepancy between

predicted and measured readings shall reveal the hidden
attacks, as demonstrated by the error signal of the proposed
framework in FIGURE 8c and FIGURE 9c.
The AE-based and KL divergence-based detection frame-

works are more reliable for offline attack detection or for
detecting unconcealed or overt attacks, as demonstrated in
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FIGURE 10. Comparison of the attack detection performance of the proposed framework, AE-based [41], [44], and KL divergence-based [52] approaches
under covert and overt attacks on the measurements of x8(t) sensor that resulted in reducing its value from 8 bar to 6.9 bar (highlighted in red). Under
the covert attack, the true impact remained concealed and the process appeared to be operating normally. In the event of the overt attack, the attack’s
consequences became rapidly apparent, and hence likely detectable. For each evaluated scenario, the plots are: (a) - (b) The measured, actual, and
predicted (by the proposed framework) values of x8(t) sensor. (c) - (d) The input and output of the AE-based model. (e) - (f) The attack detection
evaluation for the three approaches. (g) - (h) Their attack indicators. (i) - (j) Their binary classification performance.

FIGURE 11. Comparison of the attack detection performance of the proposed framework, AE-based [41], [44], and KL divergence-based [52] approaches
in the case of operating mode changes, i.e., setpoint change. The x9(t) sensor was subjected to an attack that increased its value (highlighted in red).
The detection performance was evaluated under two operation modes, i.e., setpoints of x9(t) sensor. For each evaluated scenario, the plots are:
(a) - (b) The measured, actual, and predicted (by the proposed framework) values of x9(t) sensor. (c) - (d) The input and output of the AE-based model.
(e) - (f) The attack detection evaluation for the three approaches. (g) - (h) Their attack indicators. (i) - (j) Their binary classification performance.
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FIGURE 12. Comparison of the proposed mitigation framework and the NN-based approach in [50]. The reference healthy operation is shown in the
blue plots. The sensor’s reading mitigation results of the NN-based approach are shown in the brown plots, and the ones of the proposed framework
are shown in the green plots. The MSE was computed between measurements obtained during the reference healthy operation and those obtained
through mitigation in the event of an attack. (a) - (b) The mitigation of FDI attack in x8(t) sensor. (a) - (b) The mitigation of FDI attack in x11(t) sensor.

FIGURE 10, which shows a comparison of their performance
in the two attack scenarios against the detection performance
of our proposed framework. Under a covert attack, the true
impact remained concealed and the process appeared to be
operating normally during which the AE-based and the KL
divergence-based detection models failed. In the event of an
overt attack, the attack’s consequences became rapidly appar-
ent and hence detectable. Unlike the proposed framework,
they are unreliable in the event of concealed attacks, leading
to alarmingly poor detection performance.

Moreover, they do not depict the dynamic behavior of the
observed variables, so they are more suitable for processes
with static properties, such as for monitoring the frequency
of power lines. For the system considered in this work, they
should be revised and updated in case of operating mode
shifts such as setpoint changes, as neglecting to address this
issue could lead to an increased false alarm rate. This was
demonstrated in FIGURE 11 where x9(t) sensor was sub-
jected to an attack that increased its value. In the standard
mode of the system operation, x9(t) sensor is regulated at
a pressure of 5.2 bar, upon which the development of the
AE-based and KL divergence detection strategies was car-
ried out. Upon encountering the FDI attack, we observed a
consistent outcome akin to the previous evaluations, which
was the detection of the attack’s onset and cessation by the
AE-based and KL divergence-based models. However, they
experienced a catastrophic failure for the same attack evalu-
ated when the setpoint of x9(t) sensor was increased to 8 bar.

This exemplifies a plausible real-world scenario wherein the
operation team chooses to adjust the reference accordingly in
order to attain the desired system performance. This situation
requires updating the AE-based and KL divergence-based
approaches, unlike our proposed framework, which consis-
tently maintained exceptional detection performance in both
evaluated scenarios. The AE-based approach suffers from
poor scalability as prominent changes in the system may
mandate concrete updates on the AE model. Unlike the AE-
based method, the KL divergence offers benefits such as
quantifying dissimilarity and flexibility, but it has limitations
related to assumptions about data distribution and the lack of
contextual information.

Additionally, the NN-based mitigation model proposed
in [50] was compared with the prediction model deployed in
our proposed framework. In the previous section, it was found
that the NN-based models did not demonstrate the highest
level of accuracy in their predictions, scoring the largest
MAE of 480.9, under constrained training data and design
parameters. This shall result in suboptimal performance.
To showcase this, we compared the mitigation performance
of the NN-based model with the deployed SVM-based as
demonstrated in FIGURE 12, in which we observed a notably
high MSE between measurements obtained during the ref-
erence healthy operation and those obtained through the
NN-based mitigation method under attack. However, when
we applied the proposed mitigation framework, the MSE
error was noticeably lower. Overall, the proposed framework
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FIGURE 13. The detection and mitigation of the 85% scaling attack on
sensor x9(t) in PLC3.

FIGURE 14. The detection and mitigation of the 130% scaling attack on
sensor x10(t) in PLC3.

was superior to the ones proposed in previous works on
aspects of accuracy and reliability of detection and mitiga-
tion, scalability, and flexibility.

E. PRACTICAL DEPLOYMENT AND APPLICATION: CASE
STUDIES
For the practical application phase, the SVM-based pre-
diction models were used to implement the real-time sen-
sor FDI attack detection and mitigation framework in the
S7-1200 PLCs. Firstly, the SVM models’ parameters, sv, b,
and α, as presented in Equation (2), were extracted and stored
in the appropriate PLC, as shown in FIGURE 2a. Then in each
PLC, Equation (2) was implemented, and the PLC’s control
logic was updated to incorporate the strategy demonstrated
in FIGURE 2b.

FIGURE 15. The detection and mitigation of the 95% scaling attack on
sensor x12(t) in PLC4.

FIGURE 16. The detection and mitigation of the 140% scaling attack on
sensor x13(t) in PLC4.

We assumed the absence of attacks targeting the control
loops responsible for regulating the water levels in the tanks
(i.e., all the tanks are full and capable of supplying the
required flow). The detection thresholds were set to be about
5% of the nominal value of the sensor readings to preserve
a safe margin. Hence, the attacks are only detectable if the
sensor readings fell below 0.95% or increased above 1.05%
of their nominal values bearing in mind that the ±5% change
in the sensor readings is tolerable for the RO plant without
causing severe damage. Nevertheless, threshold reassignment
can always be performed if needed.

In addition, it was observed that the prediction error
increased rapidly during transient at startup or when the set-
points were changed. Therefore, the mitigation strategy was
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FIGURE 17. The detection and mitigation of the 120% scaling attack on
sensor x16(t) in PLC5.

FIGURE 18. The detection and mitigation of the 90% scaling attack on
sensor x17(t) in PLC5.

enabled only after passing the transient phase, and logic was
implemented in the PLCs for thresholds reassignment to 20%
of the nominal sensors values when a change in the setpoints
is detected. After a period corresponding to the settling time
of the control loop, the thresholds would be automatically
reset to the steady-state settings. The performance of the
proposed framework under sensor FDI attacks of a duration of
2 minutes is demonstrated in FIGURE 13 - FIGURE 20. The
true plot in blue represents the variable’s actual value on the
plant side. The brown dashed plot represents the measured
value seen by the PLCs. The corrected magenta dotted plot
represents the predicted value by the mitigation strategy, and
the green plot represents the sensor value sent to the PID
controller.

FIGURE 19. The detection and mitigation of the multiple attacks of 70%
scaling attack on x8(t) and x11(t) sensors in PLC3.

1) ATTACKS ON PLC 3
Sensor FDI attacks on two sensor measurements in PLC 3
are demonstrated in FIGURE 13 and FIGURE 14. At 8:59,
an 85% scaling sensor attack was injected to the sensor
measurement x9(t), which represents the outlet pressures of
the DF pressure pumps in the ERD line. Consequently, the
x9(t) sensor measurement was dropped to 4.5 bar. At 9:05,
the reading of the flow sensor x10(t) of the HPP line supply
pump was increased to 2800 kg/s due to a 130% scaling
attack. In all attack cases, the actual values of the controlled
variables were not altered because the attacks were instantly
detected online and mitigated by sending the corrected sensor
values to the PID controllers inside PLCs. The attacks were
mitigated in the sense that the control system’s response was
based on an estimate ofwhat was happening in the plant rather
than the falsified data due to the attacks. Once the attack
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FIGURE 20. The detection and mitigation of the multiple 80% scaling
attacks on x12(t) and x13(t) sensors in PLC4.

was terminated, the actual sensor measurements would be
passed to the controllers. Attacks on x8(t) and x9(t) sensors
can potentially damage the disk filters or disrupt the plant
operation in the subsequent stages, and attacks on x10(t) and
x11(t) sensors can result in underflowing or overflowing the
RO water storage tanks.

2) ATTACKS ON PLC 4 AND PLC 5
FIGURE 15 - FIGURE 18 represent sensor FDI attacks on
each sensor measurement in PLC 4 and PLC 5. At 9:17, the
reading of the pressure sensor x12(t) of the RO 1 HP pump
was subjected to a 95% scaling attack, and at 9:21, the reading
of the pressure sensor x13(t) of the RO 1 ERD pump was
increased to 85 bar. For PLC 5, the sensor reading x16(t) of
the outlet pressure of the RO 2 pressure pump was falsified
at 9:40 to appear 20% more than its actual value, and a 90%

scaling attack was injected into the distribution pump’s flow
sensor x17(t). Similarly, all attacks were instantly detected
and mitigated successfully. The plants’ processes controlled
by PLC 4 and PLC 5 are crucial and critical. For instance,
attacks on the sensors of the pressure pumps x12(t), x13(t), and
x16(t) that result in increasing the actual outlet pressure can
damage the RO units, which are very sensitive and expensive
as well as the pressure pumps. If the attacks decrease the
actual outlet pressure of the pumps, the freshwater production
process is interrupted. Similarly, attacks targeting the flow
pump sensor x17(t) can interrupt or disrupt the water distri-
bution stage.

3) SIMULTANEOUS ATTACKS
The prediction models of the attack detection and mitigation
framework are independent. Therefore, the proposed solution
was capable of detecting and mitigating simultaneous attacks
successfully, as demonstrated in FIGURE 19 for multiple
70% scaling attacks on x8(t) and x11(t) sensors in PLC 3 and
FIGURE 20 for multiple 80% scaling attacks on x12(t) and
x13(t) sensors in PLC 4.

V. CONCLUSION
This work presented a distributed, SVM-based attack detec-
tion and mitigation framework for sensor FDI cyber-physical
attacks in ICSs. It was developed using the system’s normal
operational data and can be easily adopted in the existing
ICSs. It was validated using a hybrid testbed of a RO plant
in which a validated MATLAB/Simulink-based simulation
model of the process was used, while the control system
was implemented using Siemens S7-1200 PLCs with 200SP
Distributed I/O modules. The proposed attack detection and
mitigation strategy was programmed in the PLCs and tested
with actual cyber-physical attacks injected by compromising
the communication links between the simulated environment
and the PLCs.

The proposed detection and mitigation framework is a
residual-based strategy such that when the error between the
measured and the predicted sensor value exceeds a predefined
threshold; a sensor attack is identified, and the falsified mea-
sured value is replaced with the predicted one. It showcased
exceptional superiority over existing approaches reported
in the literature. It demonstrated effective performance in
real-time detecting and mitigating single and simultaneous
scaling sensor attacks of magnitudes ranging between 70%
and 140%. It represents a compelling solution to maintain the
operation of the ICS by assisting in providing resilient control
of its sub-systems.

It is worth mentioning that, when inspecting the process
data, sensor FDI attacks may share the exact characteristics
of sensor faults (i.e., bias, drifting, etc.) [80]. However, faults
are usually assumed to be random, independent events with
a fixed failure-rate probability. On the contrary, FDI attacks
can be carefully designed by clever attackers with the intent
to cause the greatest possible damage, which may thus result
in more severe consequences [81]. Hence, the proposed mit-
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igation approach shall detect and mitigate sensor faults as
well. Additionally, ideally, we expect this framework to be
accompanied by a fault detection and diagnosis system such
that it shall only be enabled if the system is fault-free. Hence,
the catastrophic impact on the operation of these systems in
the presence of system faults is avoided. For further research,
one can study the combined fault and attack detection and
mitigation to maintain the continuity of attack detection and
mitigation even when the system shows signs of failure.

Moreover, the future work includes developing solutions
for (i) the distinction between FDI attacks and faults by
inspecting the network traffic, (ii) the detection and mitiga-
tion of the sensor FDI attacks in the indirect actuation control
loops, and (iii) the detection and mitigation of simultaneous
sensor and actuator FDI attacks. Additionally, we plan to
investigate other types of attacks.
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