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Abstract: Chiari I malformation is characterized by the herniation of cerebellar tonsils below the
foramen magnum. It is often accompanied by syringomyelia and neurosurgical management is still
controversial. In fact, it is frequent that some symptomatic patients initially undergo bony decompres-
sion of the posterior fossa and need in a short time more invasive surgery with higher morbility (e.g.,
decompression of posterior fossa with dural plastic, with or without tonsillar coarctation) because of
unsatisfactory results at MRI controls. This study proposes a machine learning approach (based on
SVM classifier), applied to different morphometric indices estimated from sagittal MRI and some
information on the patient (i.e., age and symptoms at diagnosis), to recognize patients with higher
risk of syringomyelia and clinical deterioration. Our database includes 58 pediatric patients who
underwent surgery treatment. A negative outcome at 1 year from the intervention was observed
in 38% of them (accuracy of 62%). Our algorithm allows us to increase the accuracy to about 71%,
showing it to be a valid support to neurosurgeons in refining the clinical picture.

Keywords: magnetic resonance imaging; demons; non-rigid registration; active contour; machine
learning; SVM; Chiari malformation

1. Introduction

Chiari malformation (CM) is characterized by the descent of one or both cerebellar
tonsils by at least 5 mm beyond the McRae’s line at magnetic resonance imaging (MRI)
scan, that runs from the anterior (basion) to posterior (opisthion) border of the foramen
magnum [1]. A descent of less than 3 mm is considered a physiological variant, while a
herniation between 3–5 mm is borderline and needs for radiological follow-up in symp-
tomatic cases, associated with syringomyelia (defined below), a pointed tonsillar profile or
crowding of the subarachnoid space at the craniocervical junction (CVJ).

On the other hand, Chiari syndrome corresponds to the clinical findings associ-
ated with a radiologically defined CM. They include: headache, usually occipital pro-
voked/worsened by coughing or other Valsalva-like maneuvers; brainstem complaints
(nystagmus, dysphagia, sleep apnoea); cerebellar (ataxia) and/or cervical cord complaints
(muscular hypotrophy, motor and sensory deficits); and oto-neurological symptoms (dizzi-
ness, loss of balance, hearing loss and hyperacusis, nystagmus, oscillopsia). CM is often
associated with syringomyelia, which is a neurological condition characterized by the
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presence of a fluid-filled cavity within the parenchyma of the spinal cord or central canal,
due to an alteration of cerebro-spinal fluid (CSF) circulation [2–5]. CM is currently classified
according to its anatomical features.

• CM type I (CM-I): herniation of one or both cerebellar tonsils at least 5 mm below the
foramen magnum, often asymptomatic. Hydrocephalus and anterior flattening of the
midbrain, pons and medulla oblongata may occur. It is further sub-classified into CM
I-A, when associated with syringomyelia, and CM I-B, when no syringomyelic cavity
is present [6].

• CM type II (CM-II): caudal migration of the brainstem, cerebellum and fourth ventricle
through the foramen magnum together with downward displacement of the cervical
spinal cord. It is always associated with open spinal dysraphism or cystic spina bifida
(myelomeningocele or myelocele) and also with syringomyelia and hydrocephalus.

• CM type 0 (CM-0): syringomyelia with no associated tonsilla rhombencephalic hernia-
tion or minimal (less than 3 mm long).

• CM type 1.5 or “Chiari Complex” (CM 1.5): tonsillar prolapse and brainstem kinking
in the context of CVJ malformation. Although CM-I and CM 1.5 share morphological
and anatomical similarities, an accurate radiological distinction needs to be made
because patients with CM 1.5 have more probability to undergo initial decompressive
surgery failure and there is usually persistence of syringomyelia [4].

• Acquired Chiari malformation (ACM) (also referred to as acquired tonsillar ectopy):
herniation of the cerebellar tonsils secondary to posterior fossa trauma (85%) and
space-occupying lesions, such as hydrocephalus, brain tumours (meningioma, 36%)
and arachnoid cysts (32%) [2,7].

CM-I is a rare disease, but the spread of neuroimaging in the area has increased the
number of cases, often asymptomatic or paucisymptomatic: the incidental diagnosis today
is between 1% and 4% in individuals undergoing MRI of the brain and cervical spine, with
a range between 1.9 and 8.4/100,000 [6]. In the pediatric population, European studies
have estimated CM-I to be relatively common, with an incidence of 0.24–3.6%; out of them,
almost a quarter have syringomyelia at diagnosis, with a slight prevalence in females [3].

The exact etiopathogenesis of CM-I is not entirely clear. A lot of hypotheses have
been proposed. Besides the association with craniosynostosis, spinal cord disorders, CSF
hypotension, endocranial hypertension and skeletal abnormalities in CVJ [7–9], the most
accredited theory is the alteration of the paraxial mesoderm after neural tube closure.
This condition leads to underdevelopment of the occipital somites, resulting finally in
a disproportion between cerebellum and a smaller posterior fossa [2]. From a genetic
point of view, a series of mutations have been described involving gene CDX1, FLT1, and
RARG [9], especially in syndromic patients [9,10], but any specific mutation has not yet
been identified.

According to the “International Consensus Document in the Diagnosis and Treatment
of Chiari Malformation I in Children”, surgery is indicated for symptomatic patients
or asymptomatic patients with syringomyelia larger than 5-8 mm and/or progressively
enlarging. Asymptomatic pediatric patients with an incidental diagnosis of CM-I should
have periodic clinical and radiological follow-up until the end of their growth because
progression is possible despite rare [11].

The aim of the surgery for CM-I is to increase the volume of posterior fossa to restore
the CSF circulation [12]. The technique consists either in a simple bony decompression by
suboccipital craniectomy and C1 laminectomy, or duraplasty with or without arachnoidol-
ysis and resection of cerebellar tonsils by opening of the dura mater finally closed with
autologous or not-autologous graft [7].

Regarding the post-surgical outcome, bone decompression alone has a lower com-
plication rate, but a lower probability to reduce the syringomyelia; on the other hand,
duraplasty provides better reduction of syringomyelia, but has higher rate of complica-
tions [13–16]. Consequently, the first is suggested in children without syringomyelia and
without severe symptoms, taking into account a possible risk of recurrence of symptoms,
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while decompression with duraplasty is to be reserved for those patients with concomitant
syringomyelia and marked symptoms. However, no robust consensus exists about the
ideal surgical technique and there are controversies in the scientific literature on the choice
of the optimal surgical treatment [17,18].

Some studies have investigated new parameters alternative to the dimension of the
hernia which correlate with CM-I and can provide information on the optimal interven-
tion [19]. Promising parameters have been proposed based on morphometric skull analysis
from MRI [20–23]. However, manual measurements of morphometrics were usually taken,
introducing possible bias due to subjectivity and a dependence on the expertise of the
operator. In order to remove this subjectivity, automatic methods for the segmentation of
MRIs of the brain can be used [24,25]. Machine learning algorithms have recently been
applied also to diagnose CM-I [26–28]. However, manual measurements of morphometrics
have been used in [26,28]; a fully automated approach (based on deep learning) is instead
discussed in [27], but it focuses only on discriminating controls and CM-I patients.

Recent works from our group proposed fully automated methods, registering the
sagittal MRI and extracting the morphometrics of interest, among which the ratios of
the areas of brain regions accounting for possible overcrowding of posterior fossa [29,30].
Associated to a machine learning algorithm, a prediction of the optimal surgery could
be obtained [30], thus not only discriminating healthy controls and patients, but also
identifying the severity of the pathology (useful to select the optimal treatment). However,
only few patients were available to the mentioned study, so that limited performances in
discriminating their severity were achieved. Moreover, both adults and pediatric patients
were included to enlarge the database.

Hence, this study aims at deepening the previous approach proposed in [30] by
optimizing and testing a machine learning method on a larger database of pediatric patients
requiring surgery, that after one year from the intervention either improved or not. The
objective of our algorithm is to predict the outcome, by identifying the patients with
higher risk of syringomyelia, thus recommending a more aggressive surgery (i.e., bony
decompression plus duraplasty and resection of cerebellar tonsils) only for them. This
algorithm could support the surgeon in refining the clinical picture pre-intervention, in
order to choose the most efficacious treatment.

2. Methods
2.1. Database

Paediatric and adolescent patients with diagnosis of Arnold-Chiari Malformation I
(CM-I) were recruited in a retrospective double-blind study.

Data were collected and managed using REDCap (Research Electronic Data Capture)
tools hosted at Meyer Children’s Hospital. REDCap is a secure, web-based software
platform designed to support data capture for research studies, providing (1) an intuitive
interface for validated data capture; (2) audit trails for tracking data manipulation and
export procedures; (3) automated export procedures for seamless data downloads to
common statistical packages; and (4) procedures for data integration and interoperability
with external sources [31,32].

Inclusion criteria, properties of selected patients and measurements are described below.

2.1.1. Inclusion Criteria

Patients were enrolled considering the following inclusion criteria:

• CM-I patients with or without syringomyelia and undergoing posterior cranial fossa
decompression surgery;

• cerebellar tonsil ≥5 mm below McRae’s line (basion-to-opisthion) on T1-weighted
sagittal image and at least one of the following symptoms: posterior headache wors-
ened with the Valsalva manoeuvre, mixed cranial nerve disorders (dysphagia, dyspho-
nia, hiccups), cranial oto-vestibular disorders (dizziness, tinnitus), long way disorders
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(motor and sensory problems), cerebellar signs (ataxia, dysmetria, tremors), sphincter
disorders and scoliosis;

• patients undergoing osteo-ligamentous decompression surgery or posterior fossa
decompression with dural plastic with or without tonsillar coarctation;

• period of surgery between January 2010 and December 2020;
• presence of clinical and instrumental follow-up data at 1 year;
• signature of informed consent to the surgery and use of clinical data for research purposes.

Patients who developed syringomyelia before the surgery unrelated to CM-I and those
who underwent other types of surgery (e.g., filum section, endoscopic third ventriculostomy,
etc.) were not enrolled in the study.

For each patient, specific clinical parameters were evaluated, such as gender, age at
diagnosis and at the first CM-I correction surgery, the possible presence of syringomyelia at
diagnosis, the most characteristic symptoms, the number and types of surgery each patient
underwent, the occurrence of post-surgical complications (liquor fistula, hydrocephalus,
infections, etc.) and finally the follow-up at the first year.

With regard to the characterization of syringomyelia, it was classified according to the
site, extent and antero-posterior diameter of the syringomyelic cavity, expressed in mm.

Based on the site, syringomyelia has been subdivided into cervical, cervico-dorsal,
dorsal, dorso-lumbar and panmedullary, while 24 levels corresponding to the height of
the vertebral bodies along the course of the spinal canal have been defined to accurately
identify the extension. The projection of the cranial and caudal margin of the syringomyelia
on the vertebral bodies reflects the real dimensions of the cavity.

2.1.2. Clinical and Radiological Data

For each patient, electronic or paper medical records were consulted in order to estab-
lish the clinical-radiological course. Moreover, pre-surgery encephalic MRI was recorded:
the sagittal section was used to measure morphological parameters, both manually and
automatically. Specifically, manual segmentation was performed by two experienced
neurosurgeons, who delineated precisely the contours of the cerebral and cerebellar re-
gions on the patient’s sagittal MRI and approximated the borders of the posterior cranial
fossa with a pentagon (as in Figure 1). Each MRI was delineated twice and the average
values of morphometrics were considered. The accuracy of the segmentation was mea-
sured in terms of percentage common pixels included in the segmented regions: it was
96.3 ± 1.5% (mean ± std), 90.3 ± 3.8% and 95.2 ± 1.1%, for brain, posterior fossa and
cerebellum, respectively. The segmentation was also performed by the automated method
detailed below.

The following morphometric variables were chosen as potentially influential on the
clinical-radiological outcome of the selected patients [19,28,30]. They were estimated either
from the manual or the automated segmentation (except for the last three, measured
only manually).

• cerebellar tonsil descent (length of hernia—LenH);
• length of the tentorium (LenT);
• angle of the tentorium (AngT);
• ratio of cerebellum area to posterior cranial fossa area (C/PF);
• ratio of posterior cranial fossa area to brain area (PF/B);
• antero-posterior diameter of posterior fossa (DiaAntP);
• height of posterior cranial fossa (H_PF);
• length of the clivus (LenC);
• length of the foramen magnum (LenFM);
• distance between corpus callosum and foramen magnum (DCCFM—only

measured manually);
• distance between pons and foramen magnum (DPoFM—only measured manually);
• distance between fastigium and foramen magnum (DFFM—only measured manually).
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Figure 1. Manual segmentation of a sagittal MRI: brain region (yellow), posterior cranial fossa (green),
cerebellum area (blue).

2.1.3. Properties of Recruited Patients

In total, 58 patients were recruited, of whom 26 were female, representing 44.8% of the
sample, and 32 were male, constituting the remaining 55.2% of candidates. In addiction,
26 patients had already syringomyelia at diagnosis.

Syringomyelia was found in the cervical region in 13.8% of cases, in the cervico-dorsal
region in the 15.5%, in the dorsal region or in the entire length of the spinal canal in the 6.9%
and in the dorsal-lumbar region only in the 1.7% of patients. The mean antero-posterior
diameter of the cavity was 8.5 mm while the mean extension was 8 levels. The mean age at
diagnosis was 9.17 years (with 6.03 of standard deviation (std)), while the mean age at first
intervention was 9.57 years (std 6).
Considering the clinical characteristics of the patients recruited into the study, headache
was the most frequent symptom (72.4%), followed by long tract disorders (44.8%), mixed
cranial nerve disorders (31%), oto-vestibular disorders and scoliosis (19%), cerebellar signs
(13.8%) and finally sphincter disorders (5.2%).

All the patients underwent surgery, i.e., a simple osteo-dural decompression in 52 of
them (89.7%) and decompression surgery with dural plastic in 8 patients (13.8%). Finally,
13 patients (equal to 22.4% of the entire sample), even had to undergo tonsillar coarctation.
Fifteen patients were submitted to two operations in the same year (the first less invasive
and the second more invasive).

Most patients (i.e., 93.1% of the candidates) did not suffer any post-surgical complications;
one candidate (amount 1.7% of our sample) developed an infection in the post-operative
period; the remaining 3 patients (equal to 5.2%) experienced other complications.

One year after surgery, 28 patients (48.3%) had syringomyelia, while the remaining
30 candidates (51.7%) were disease-free. Whereas at the time of the diagnosis of CM-I, the
predominant site of the syringomyelic cavity was the cervico-dorsal (15.5%), after one year
the situation changed: 25% of patients showed cervical syringomyelia while the number of
subjects with cervico-dorsal syringomyelia decreased to 10.3%. The percentages of dorsal,
dorso-lumbar and panmedullary syringomyelia, on the other hand, remained unchanged.

2.1.4. Different Groups of Patients Considered

The patients were divided into four groups based on the clinical-radiological course.

• Group 0 includes symptomatic patients without syringomyelia at diagnosis who,
following surgery, had a clinical and radiological improvement within the first year,
characterized by a reduction in symptoms and tonsillar hernia (19 patients, 32.7%).
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• Group 1 is constituted by symptomatic patients with syringomyelia at diagnosis who,
following surgery, had clinical and radiological improvement within the first year,
with a reduction of the syringomyelic cavity (17 patients, 29.3%).

• Group 2 is formed by symptomatic patients with syringomyelia at diagnosis who,
after surgery, had a clinical and radiological worsening, either with an increase in the
size of the syringomyelic cavity or with persistence of symptoms (13 patients, 22.4%).

• Group 3 is the group of symptomatic patients without syringomyelia at diagnosis
who, following decompression surgery, developed syringomyelia within the first year
(9 patients, 15.6%).

Subsequently, the morphological parameters for each group were analyzed individu-
ally, in order to show whether there was a statistically significant association between them
and the clinical outcome one year after surgical treatment (Kruskal-Wallis test).

2.2. Registration

In order to identify the target regions (i.e., brain, posterior fossa and cerebellum) in
the sagittal MRIs of our database, the method described in [30,33] was used, with a few
variations. In the following, we briefly review the registration method, focusing on the
variations with respect to previous works.

2.2.1. Balanced Multi-Image Demons

Demons method is a non-parametric, non-rigid image registration that matches an
atlas image M(p) (for which target regions are known) and a test MRI F(p) (where p
indicates the pixel location). In practice, a deformable model s : p→ s(p) is pushed in the
direction normal to the MRI intensity gradient so that M ◦ s(p) fits the reference image F(p)
in terms of the minimization of their squared error [34,35]. A regularization term is also
added to stabilize the solution and a hidden variable c (of correspondences) is introduced
to improve computational efficiency [36] (accommodating possible errors in the estimation
of the transformation s), finally obtaining the following functional to be minimized with
respect to s and c

‖F(p)−M ◦ c(p)‖2

σ2
i

+
‖c(p)− s(p)‖2

σ2
x

+
‖∇s(p)‖2

σ2
T

(1)

where σi, σx and σT are parameters accounting for image noise, spatial uncertainty in the
correspondences and regularization, respectively.

This problem is solved iteratively, minimizing the sum of the first two terms with
respect to c with s fixed and then computing a Gaussian smoothing of c (with standard
deviation σT =1.5 pixels), which corresponds to minimizing the sum of the last two terms
with respect to s with c fixed. For each iteration, a local linearization of the first step was
solved, thus writing c = s ◦ (1+ u) (1 being the identify map and u a small deformation).

Moreover, two innovations have been included in [33] with respect to the standard
demons approach described above.

• Different images from the atlas and the test MRI were matched by a single op-
timal deformation, found using the following update for the linearized problem
mentioned above

u =
∑N

i=1(Fi −Mi ◦ s)JT
i

∑N
i=1‖Ji‖2 + Σ2

i

(2)

where {Mi} and {Fi} are N images obtained from the atlas and test image (as detailed
below), Ji is the Jacobian matrix of Mi and Σ2

i = σ2
i /σ2

x = |Fi −Mi ◦ s|2.
• The iterations were performed in alternation to the atlas and to the test sets of images

({Mi} and {Fi}, respectively).

Five images were included in the sets, which are the same as those considered in [30,33]
with the exception of one of them: the following procedure involving a bilateral filter [37]
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was used instead of the median filter considered in [30,33] (both filters allow smoothing,
preserving edges; preliminary tests showed that bilateral filter provided better perfor-
mances than median filter). Specifically, Gaussian kernels were used to smooth the noise
on neighbors with similar amplitude (with a geometric spread σd = 5) and to weight the
smoothing as a function of image intensity difference (photometric spread σr = 1), so that
the smoothing was reduced in case of high variations (as when an edge is present). After
a first application of the bilateral filter, a second step of image enhancement was applied
following the method proposed in [38]. Specifically, the image was decomposed with
Daubechies wavelets of order 30, separating low and high frequency components along
rows, columns and diagonals. Then, a bilateral filter was applied only to low frequency
components (with σd = 30 and σr = 100) and the high frequencies details were summed
unchanged (see an example application in Figure 2).

Figure 2. Pre-processing by bilateral filter and wavelet.

Thus, finally, the following 5 images were used in our registration algorithm (example
shown in Figure 3): original image and then the same MRI processed by adaptive histogram
equalization, smoothing procedure just detailed using bilateral filter, entropy and phase
symmetry [39].

Figure 3. The five images used for the multi-image demons registration of an example sagittal MRI.
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2.2.2. Correction by Active Contour

As noticed in [30], registration can provide only a preliminary identification of the
main brain regions of interest, but it is not able to fit the details of the contours, as the
regions in the atlas and in the test image could be even topologically different. Thus, the
boundaries of the regions estimated by the balanced multi-image algorithm were cor-
rected using an active contour (or snake) [40], i.e., a curve (with parametric representation
v(s) = [vx(s) , vy(s)], where s is the curvilinear abscissa and bold format is used to indicate
a vector) approaching iteratively the borders of interest minimizing a functional accounting
for different constraints

E(v) =
1∫

0

[
Eint(v(s)) + Eimage(v(s)) + Eext(v(s))

]
ds (3)

The three contributions on the right hand side are defined as follows.

• Eint is the internal energy, defined as

Eint(v(s)) = (α|vs(s)|2 + β|vss(s)|2)/2 (4)

where vs and vss are the first and second derivatives of v(s), respectively; α = 0.05
controls the tension and β = 0.5 is related to the rigidity of the active contour.

• Eimage is the energy due to the image and is the weighted sum of 3 terms, allowing the
snake to be attracted on dark regions, edges and termination points, respectively

Eimage = wlineEline + wedgeEedge + wtermEterm (5)

where Eline is defined by a Gaussian smoothing of the original image (with standard
deviation 3 pixels), Eedge is the norm of the image (again with Gaussian smoothing on
the derivatives) and Eterm depends on the curvature of level lines [40] and wline = 5,
wedge = 20, wterm = 10.
Then we included also the Gradient Vector Flow (GVF) [41], which is the vector field
W(x, y) = [U(x, y), V(x, y)] minimizing the energy functional

E =

1∫
0

1∫
0

µ(U2
x + U2

y + V2
x + V2

y ) + |∇ f |2|W −∇ f |2dxdy (6)

where f = −Eimage is the edge map and µ = 0.2; notice that it is close to the gradient
of f (and thus it forces the snake to go in the direction opposite to the gradient of
the MRI) when such a gradient is large, otherwise a smooth field is obtained. This
contribution allows us to help the snake to follow the borders of concave regions [41].

• Eext are external forces, pushing the snake toward low intensity edge points in the
image. It is defined as the sum of two terms: the distance transform from low intensity
points (identified by image binarization with a two-class k-means clustering, as in [30])
and the balloon force, in direction normal to the snake and allowing it to contract
when the other contributions are small [42]; the two contributions had weights 0.1 and
−0.05, respectively.

In conclusion, the method is based on the one used in [30]: the inclusion of GVF and
balloon force are the main variations. Figure 4 shows an example of application. The
deformation allowing to match the atlas and the test image is estimated; then, it is applied
on the regions delineated on the atlas to estimate the same regions of interest on the test
image; finally, active contour is applied to improve the estimation of the borders. Notice
that a region including the brainstem of the atlas is also considered (shown in Figure 4c), in
order to refine the estimation of the left portion of cerebellum (as the boundary separating
it from the brainstem is not easy to identify from MRI; see [30] for details).
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Figure 4. Example of test image registration. The atlas (a) and the test (b) images are deformed so as to
be similar. In the balanced method, both images are iteratively deformed, each by a transformation: by
composing the transformation of the atlas and the inverse of the transformation of the test image, the
total deformation of the atlas (c) needed to make it match the test image is obtained. The deformation
is then applied to the regions delineated on the atlas to estimate the corresponding regions for the
test MRI (d).

2.3. Patients’ Group Identification

The features extracted from the MRIs of the patients were used to identify if there was
an improvement related to the treatment by a machine learning technique. Specifically,
the relevance of the features for identifying the outcome of the treatment was investigated.
The accuracies of different binary classification problems (aiming at identifying those who
benefited from the treatment) were investigated: patients were either split into those with
or without syringomyelia or were kept all together; manual or automatic measurements
were considered.

2.3.1. Investigation of the Relevance of Features

Each patient was characterized by morphometric indexes (either measured or au-
tomatically estimated from the sagittal MRI), the age and a cumulative variable called
“symptoms” gathering the following clinical information:

• nuchal headache;
• mixed cranial nerve disorders (dysphagia, dysphonia, hiccups);
• disorders of the oto-vestibular cranial nerves (vertigo, tinnitus);
• motor/sensory problems;
• cerebellar signs (ataxia, dysmetria, tremors);
• sphincter disorders;
• scoliosis;
• other symptoms.

Specifically, all clinical problems, each encoded as a Boolean variable (namely, 1 if the
given symptom occurs, 0 otherwise) were grouped by patients and summed.
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Notice that the gender was not included, as it was not significantly related to the
outcome. Moreover, the area of posterior fossa and cerebellum where not considered, as
the information on the dimensions of the target regions was already included by using the
following three indexes: area of the brain, C/PF ratio and PF/B ratio.

We standardized features by removing the mean and scaling to unit variance. As fea-
tures selection technique, we exploit the so-called Least Absolute Shrinkage and Selection
Operator (LASSO) [43] or “L1-based” solution [44]. LASSO allows the both regularization
and selection of the features (as the weights of the less important features are put to zero).

As explainable technique to investigate the most important features for the different
experimental settings, we counted the occurrence of each feature among the different
Leave-One-Out (LOO) cross-validation folds (used to test the accuracy of classifiers, see
below). This means that if the given feature f1 was picked up by the LASSO selector at
LOO iteration j, the corresponding occurrence O f1 was increased by 1. Conversely, O f1 is
not increased if f1 is not picked up by the LASSO.

2.3.2. Binary Classification

To differentiate among the two classes of interest (namely patients showing improve-
ment after the surgical operation versus no improvement), we trained six different soft-
margin Support-Vector Machines (SVM) [45] on the following conditions:

1. features automatically obtained from the patients who have syringomyelia before treatment;
2. features measured automatically from the patients who did not show syringomyelia;
3. features estimated automatically, including all the patients;
4. manual measurements from patients with syringomyelia;
5. features measured manually on patients without syringomyelia;
6. manual measurements of all patients.

All the SVMs were trained in a LOO cross-validation fashion, i.e., taking out one
different patient as test set at each iteration. At each cross-validation iteration, the SVMs
were optimized on the training set (i.e., all data except one) with a grid search on the
following hyper-parameters: the regularization factor (i.e., the width of the margin), the
kernel and the corresponding coefficient. Thus, the optimal model was picked up and
exploited on the test set.

3. Results

Table 1 lists morphometrics either measured manually or estimated by our algorithm,
starting from images rigidly registered by an affine transformation fixing the positions of
nasion and inion and rescaled on 256 × 256 pixels. Many measurements are statistically
different when taken by either of the two methods; however, they are quite similar, with
errors in paired data rarely larger than 15% (consider that also manual delineation has
some uncertainty: for example, median errors in estimating brain, posterior fossa and
cerebellum were about 3%, 7% and 7% in [33]; in our database, considering the two manual
delineations, the average errors are about 5% for brain and cerebellum and 10% for the
posterior fossa). Indeed, reasonable delineation was obtained by the automatic method for
all images, as shown in the example in Figure 4.

Considering manual measurements, a better discrimination among groups was ob-
tained. In fact, statistical differences among groups were found (by Kruskal-Wallis test)
for posterior fossa area, ratio between areas of cerebellum and posterior fossa, ratio be-
tween areas of posterior fossa and brain, length of tentorium, height of posterior fossa
and length of the foramen magnum. On the other hand, statistical differences among
groups were found only for length of tentorium and length of clivus when considering
automatic measurements.
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Table 1. Morphological measurements obtained manually or automatically (mean ± std) and per-
centage difference of medians (either not paired or paired, with significance inspected respectively
with Wilcoxon rank sum and signed rank tests). Areas are measured in pixels covered by the region,
lengths in pixels and the angle in radiants. The number of processed MRIs is 58.

Measurement Manual Automatic Difference Paired Difference

Brain Area 15,990 ± 1523 15,632 ± 1251 0.4% (p = 0.27) 6.5% (p < 0.05)
PF Area 3343 ± 702 3003 ± 415 16.6% (p < 0.05) 20.7% (p < 0.05)
Cerebellum Area 2043 ± 392 1895 ± 363 7.0% (p < 0.05) 16.4% (p < 0.05)
C/PF 0.62 ± 0.11 0.63 ± 0.06 −0.7% (p = 0.92) 12.9% (p = 0.49)
PF/B 0.21 ± 0.03 0.19 ± 0.02 12.4% (p < 0.05) 16.7% (p < 0.05)
LenT 42.1 ± 15.7 40.5 ± 6.1 −0.5% (p = 0.82) 23.1% (p = 0.47)
LenC 46.6 ± 12.6 46.3 ± 8.5 0.8% (p = 0.52) 13.3% (p = 0.46)
LenFM 42.7 ± 10.4 40.7 ± 9.9 5.9% (p = 0.30) 25.5% (p = 0.18)
DiaAntP 74.8 ± 20.3 75.5 ± 6.5 7.2% (p < 0.05) 12.1% (p < 0.05)
H_PF 56.6 ± 12.4 52.3 ± 7.9 6.9% (p < 0.05) 14.1% (p < 0.05)
LenH 15.9 ± 7.7 11.8 ± 4.3 14.4% (p < 0.05) 31.9% (p < 0.05)
AngT 1.13 ± 0.23 1.08 ± 0.16 1.3% (p = 0.24) 15.1% (p = 0.18)
DPoFM 38.3 ± 6.5
DCCFM 62.3 ± 6.6
DFFM 27.9 ± 4.7

Figure 5 shows the standard scores of the features. Notice that similar behavior is
usually found (e.g., larger C/PF ratio and smaller PF/B ratio for patients showing no
improvements), but indexes measured manually allow better discrimination among groups
(and they are always in line with our expectation, whereas the automatic measurements
show sometimes opposite behavior).

Figure 6 indicates the occurrence of features in the best classifiers. Most of selected
features are those showing good linear discrimination in Figure 5, with some exceptions, as
the classifier is non-linear; moreover, the integration of information of different features
benefits of removing redundancy. Notice that some classifiers using features measured
automatically select also indexes measured only manually in this study (i.e., DCCFM
and DPoFM).

The results of classification are shown in Figure 7. Notice that the false positive rate in
our database (i.e., the patients which were treated and had negative outcome) was 32% for
patients without syringomyelia pre-treatment (comparing Group 0 and Group 3), 43% for
patients with syringomyelia at first diagnosis (comparing Group 1 and Group 2) and about
38% pooling all patients together. The overall accuracy in selecting a useful intervention
was 62% in our database (22 patients out of 58 worsened after the intervention); our
machine learning methods obtained about 71% and 82% of accuracy when using features
measured automatically and manually, respectively. Thus, our classifiers have important
improvements, indicating some potential benefit in supporting the decision of the surgeon
(discussed in the following section, together with possible biases and limitations).
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Figure 5. Boxplots of the standard scores (median, quartiles, range and outliers indicated with diamonds)
of the features grouped by the two classes of interest: patients showing improvements due to the surgical
operation vs. no improvements. Each row stems from a different group of patients: (i) patients with
syringomyelia at diagnosis, considering the automatic (a) and manual (b) delineation; (ii) patients
without syringomyelia, using automatic (c) and clinical (d) measurements; (iii) all subjects together (with
and without syringomyelia), using automatic features (e) and manual measurements (f).
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Figure 6. Bars providing the occurrence of features among the Leave-One-Out cross-validation
strategy. Each row indicates a different group of patients: (i) patients with syringomyelia at diagno-
sis, considering the automatic (a) and manual (b) delineation; (ii) patients without syringomyelia,
using automatic (c) and clinical (d) measurements; (iii) all subjects together (with and without
syringomyelia), using automatic features (e) and manual measurements (f).
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Figure 7. F1-score (a) and false positive rate (b) of SVM classifier. For both (a,b) we can observe from
left to right patients with syringomyelia, without syringomyelia and all together. The corresponding
side-by-side bars, differentiated by textures and colors, provide the two metrics respectively for the
SVM fed with features automatically obtained from our methodology (light gray, dashed bar) and
with medical-based features (dark gray, solid). The error bars provide the standard error among the
Leave-One-Out cross-validation folds. Both the metrics are “macro-weighted”, namely averaged
among the two classes.

4. Discussion

According to the preliminary results of our study, a decisional machine learning-based
algorithm may be useful to select the most efficacious surgery for patients harboring CM-I
with and without syringomyelia.

The proper selection of surgical technique for CM-I patients is very difficult since there
are not current guidelines, but only recommendations and multicentric series [1,2,5,13,46].
Good and similar surgical outcomes have been reported both by simple bony decompres-
sion of posterior fossa [13,14] and duraplasty [1,18]. However, after surgery about 35%
of patients’ clinical complaints may relapse [46]. Moreover, despite the applied type of
surgery, the development of new syringomyelia and its worsening if pre-existent may
occur [47].

Given the significant incidence of long-term patients’ deterioration, many literature
reviews and case series have tried to select the “best” surgery procedure focusing on the
opening of the dura mater with cerebellar tonsils coagulation as compared to simple bony
decompression [1,48]. Thus, developing an objective and precise method to support the
surgeon in selecting the surgery treatment of CM-I patients could be a great asset for
neurosurgeons.

Both clinical and radiological information could be useful to select the most effica-
cious surgical technique in term of lower risk of post-operative syringomyelia [19–21]. On
this basis, we proposed an automatic method to delineate important brain regions [33],
from which morphometric measurements can be extracted to predict the right surgical
approach [30]. Preliminary results have been obtained for the discrimination of healthy con-
trols and patients and for the identification of the severity of the pathology [30]. However,
only few patients (i.e., 10 mild and 8 severe) were available in our previous study. Based on
a new database of 58 pediatric patients, in this work, the processing method was optimized:
the bilateral filter was used instead of the median filter; the active contour method was
improved adding more terms in the functional to be minimized. Different classifiers were
then implemented to predict the outcome of the intervention, either considering patients
with/without syringomyelia at first diagnosis or grouping all patients together.

Both general patients properties (i.e., age and clinical symptoms) and morphometrics
were used as possible predictors. The morphometrics were measured either manually by
expert neurosurgeons or automatically by our algorithm. The single features allow a better
linear discrimination of different patient groups when measured manually (Figure 5). Two
important parameters which show quite a large difference between manual and automatic
measurement are the area of posterior fossa and the length of the hernia (Table 1). Notice
that the estimation of posterior fossa shows also the largest variability when considering
two different manual delineations. An error in a measurement can also have negative
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impact on the estimation of other parameters. For example, ratios of region areas are
affected by errors in each of the two areas involved, as even small mistakes at the nu-
merator and at the denominator could result in a large inaccuracy in the ratio (e.g., if the
numerator is estimated larger and the denominator smaller). Indeed, the ratio PF/B shows
a large difference between manual and automatic measurement and it is one of the most
discriminating manual feature (whereas it is not, when computed automatically). About
the length of the hernia, the role of active contour is mostly that of improving the estimation
of this important parameter: indeed, demons imposes a continuous transformation, which
requires preserving topology in the atlas and in the test image; thus, the hernia found in
the test image is biased by that of the atlas [30]. Moreover, the length of the hernia depends
on the correct identification of the lower border of the posterior fossa: thus, a mistake
in identifying posterior fossa has an immediate impact on the estimation of the length
of hernia.

The results of classification obtained through the manual or the automatic segmen-
tations show good predictive values through the employed classifiers, especially if some
morphological parameters of the posterior fossa are included. In particular, patients with
a high C/PF ratio and low PF/B ratio could benefit more after aggressive surgery (i.e.,
duraplasty with tonsillar resection), in line with our previous observations [29,30]. On the
other side, even symptomatic patients without these features have a good chance to im-
prove clinically with low risk of syringomyelia after less invasive surgery too (i.e., simple
bony decompression of the posterior fossa). Although the classifier using manual mea-
surements achieved a better discrimination between the different patient groups, the fully
automatic method still provides good prediction of possible negative outcomes. Moreover,
it obtained a reasonable delineation for all images, with errors in parameter estimation
rarely exceeding 15% (with some exceptions, mentioned above). This is certainly a good
result considering that even the manual delineation shows some measurement uncertainty,
especially when estimating areas of the brain, posterior fossa and cerebellum. Thus, further
improvement of the automatic delineation method is needed, in order to remove subjective
measurements, but still achieving good precision. Possibly, a multi-atlas approach or a
completely different technique (e.g., based on deep learning processing of MRIs [27]) could
allow for better estimations in the future.

The limitations of the study are mainly related to the short follow-up and to the small
and heterogeneous patients’ series limited to a single centre. The small dataset could
possibly induce some bias related to an overfitting of the limited number of cases on which
the classifier was trained. A great range of ages was considered, thus including patients
which could have different morphologies: this could obscure the selection of features that
are discriminant only in specific stages of growth. Moreover, generalization of our algorithm
to patients from other hospitals could be limited, as the considered MRIs were obtained by
the same machine, managed by the same operators. However, the final results encourage
to proceed with a prospective study recruiting more candidates in order to improve the
automatic delineation method and the performance of the classification. Moreover, a larger
(possibly multicentre) database could allow for better patient stratification, e.g., devising
specific classifiers focused on short ranges of patients’ age, which is important in pediatrics.

5. Conclusions and Further Work

This preliminary study demonstrates how a machine learning algorithm based on
Demons registration, active contour correction and SVM classification can be helpful
in the neurosurgical management of symptomatic patients with Chiari I malformation
with or without syringomyelia. It can provide predictive information about post-surgical
outcome and guide the choice of the most appropriate type of surgery, based on clinical
and radiological features present at diagnosis, in order to reduce the risk of symptoms
recurrence and syringomielia development. Prospective studies and larger patients’ series
are necessary to further validate and optimize this method.
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Abbreviations
The following abbreviations are used in this manuscript:

AngT angle of the tentorium
C/PF ratio of cerebellum area to posterior cranial fossa area
CVJ craniocervical junction
CM-I Chiari Malformation Type I
CSF cerebro-spinal fluid
DiaAntP antero-posterior diameter of posterior fossa
DCCFM distance between corpus callosum and foramen magnum
DFFM distance between fastigium and foramen magnum
DPoFM distance between pons and foramen magnum
GVF Gradient Vector Flow
H_PF height of posterior cranial fossa
LASSO least absolute shrinkage and selection operator
LenC length of the clivus
LenFM length of the foramen magnum
LenH length of hernia
LenT length of tentorium
LOO leave-one-out
MRI magnetic resonance imaging
PF/B Ratio of posterior cranial fossa area to brain area
REDCap Research Electronic Data Capture
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