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Abstract
In this paper we analyze metastability and nucleation in the context of the Kawasaki

dynamics for the two-dimensional Ising lattice gas at very low temperature with periodic
boundary conditions. Let β > 0 be the inverse temperature and let Λ ⊂ Λβ ⊂ Z2 be two
boxes. We consider the asymptotic regime corresponding to the limit as β → ∞ for finite
volume Λ and limβ→∞ 1

β log |Λβ | = ∞. We study the simplified model, in which particles

perform independent random walks on Λβ\Λ and inside Λ particles perform simple exclusion,
but when they occupy neighboring sites they feel a binding energy −U1 < 0 in the horizontal
direction and −U2 < 0 in the vertical one. Thus the Kawasaki dynamics is conservative
inside the volume Λβ . The initial configuration is chosen such that Λ is empty and ρ|Λβ |
particles are distributed randomly over Λβ \Λ. Our results will use a deep analysis of a local
model, i.e., particles perform Kawasaki dynamics inside Λ and along each bond touching
the boundary of Λ from the outside to the inside, particles are created with rate ρ = e−∆β ,
while along each bond from the inside to the outside, particles are annihilated with rate 1,
where ∆ > 0 is an activity parameter. Thus, in the local model the boundary of Λ plays
the role of an infinite gas reservoir with density ρ. We take ∆ ∈ (U1, U1 + U2), so that the
empty (respectively full) configuration is a metastable (respectively stable) configuration.
We investigate how the transition from empty to full takes place in the local model with
particular attention to the critical configurations that asymptotically have to be crossed
with probability 1. To this end, we provide a model-independent strategy to identify some
unessential saddles (that are not in the union of minimal gates) for the transition from the
metastable (or stable) to the stable states and we apply this method to the local model. The
derivation of further geometrical properties of the saddles allows us to use this strategy and
to identify the union of all the minimal gates for the nucleation in the isotropic (U1 = U2)
and weakly anisotropic (U1 < 2U2) cases. More precisely, in the weakly anisotropic case
we are able to identify the full geometry of the minimal gates and their boundaries. We
observe very different behaviors for these two cases with respect to the strongly anisotropic
one (U1 > 2U2). Moreover, we investigate the asymptotics, mixing time and spectral gap for
isotropic and weakly anisotropic cases.
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1 Introduction

Metastability is a dynamical phenomenon that occurs when a thermodynamic system is close
to a first order phase transition, that takes place when some physical parameter such as the
temperature, pressure or magnetic field abruptly changes. The phenomenon of metastability is
characterized by the tendency of the system to remain for a long time in a state (the metastable
state m) different from the stable states denoted by X s. Moreover, the system leaves this
apparent equilibrium at some random time performing a sudden transition to the stable state.
This transition is called metastability or metastable behavior. In the study of metastablity there
are three main issues that are tipically investigated. The first one is the study of the typical
transition time from the metastable to the stable state. The second and third issues, that are
physically more interesting, concern the geometrical description of the gate configurations (also
called critical configurations) and the tube of typical trajectories, that we will discuss in the
sequel. A central role in these descriptions is played by the optimal paths, i.e., the set of paths
realizing the minimal value among all the paths going from m to X s of the maximal energy
reached in a single path. A basic notion for the second issue is the set of saddles S(m,X s)
defined as the set of all maxima in the optimal paths between m and X s. Since we want to
focus on the subsets of saddles that are typically visited during the last excursion from m to
X s, we introduce the gates W(m,X s) from m to X s, defined as the subsets of S(m,X s) that
are visited by all the optimal paths. The process, while performing the transition, is likely (with
probability that tends to 1 in the chosen asymptotic regime) to cross a subset of the optimal
paths. Therefore, gates are subsets of S(m,X s) that are typically visited during the transition.
A minimal gate has the physical meaning of “minimal set of critical configurations” and it is
defined as a gate such that removing any configuration from it, the new set has not the gate
property. For this purpose is important the characterization of the set G(m,X s) ⊂ S(m,X s),
defined as the union of minimal gates (see (3.13)). The third issue, the so-called tube of typical
trajectories, is the set of typical paths followed by the system during the transition from the
metastable to the stable state. We note that the hypotheses needed to discuss the gates are
weaker than the ones necessary to completely characterize the tube of typical paths. The
geometrical characterization of the union of minimal gates G(m,X s) is a central issue both from
a probabilistic and from a physical point of view and it is a crucial step in the description of
the typical trajectories. Metastability is an ubiquitous phenomenon with many examples from
physical systems such as supersatured vapour, superheated and supercooled water, magnetic
hysteresis loop, and from wireless networks. We remark that in several models proposed to
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describe ferromagnetic systems and analyzed in the literature in the context of F-W Markov
chains evolving under Glauber dynamics, the minimal gate is unique but, in general, there
may exist many minimal sets with the gate property, either distinct or overlapping. To model
mathematically phenomena such as superheated or supercooled water is often proposed the use
of lattice gas models evolving according to Kawasaki dynamics since the dynamics conserves the
number of particles.

In this paper we consider the metastable behavior of the two-dimensional Ising lattice gas at
very low temperature and low density that evolves under Kawasaki dynamics, i.e., a discrete time
Markov chain defined by the Metropolis algorithm with transition probabilities given in (2.9).
Let β > 0 be the inverse temperature and let Λ ⊂ Λβ ⊂ Z2 be two boxes. We consider periodic
boundary conditions and we fix the density ρ of particles in Λβ such that limβ→∞

1
β log |Λβ| =∞.

Particles live and evolve in a conservative way in Λβ, but when they occupy neighboring sites
they feel a binding energy −U1 < 0 in the horizontal direction and −U2 < 0 in the vertical one.
Without loss of generality we may assume U1 ≥ U2. Unfortunately, we are unable to handle
this model. Thus we consider a simplified model (see Section 2.3 for more details) obtained by
removing all the interactions outside Λ \ ∂−Λ and the exclusion outside Λ, i.e., the dynamics of
the gas in Λβ \ Λ is that of independent random walks.

For this semplified model, our goal is to identify the full geometry of the union of the minimal
gates for the isotropic case (see Theorem 5.1) and we do this also for the weakly anisotropic case
together with the characterization of a gate, the estimate in probability of the transition time
from the metastable to the stable state and the description of the subcritical and supercritical
rectangles (see Theorem 5.2). In order to obtain these results, we rely on the study of the local
version of the model inside the box Λ with open boundary conditions (see Section 2.1 for more
details). In particular, along each bond touching the boundary of Λ from the outside to the
inside, particles are created with rate ρ = e−∆β, while along each bond from the inside to the
outside, particles are annihilated with rate 1, where ∆ > 0 is an activity parameter. Thus, in the
local model the boundary of Λ plays the role of an infinite gas reservoir with density ρ. We take
∆ ∈ (U1, U1 + U2), so that the empty (respectively full) configuration can be naturally related
to metastability (respectively stability). We consider the asymptotic regime corresponding to
finite volume Λ in the limit of large inverse temperature β. We investigate how the system
nucleates, i.e., how it reaches � (box full of particles) starting from � (empty box). We fix the
parameters U1, U2 and ∆ such that ε := U1 +U2−∆ > 0 is sufficiently small (we will consider in
the sequel 0 < ε� U2) and U1 = U2 = U in what we call the isotropic case and U1 < 2U2 − 2ε
in the weakly anisotropic case.

For this local model, one of our goals of the paper is to investigate this two-dimensional
model in the isotropic and weakly anisotropic cases giving the geometrical description of the set
G(�,�) in Theorems 4.8 and 4.12. We will prove that in these different cases there are many
distinct minimal gates that we will geometrically characterize together with their union. Let
us explain the strategy we adopt in our paper. In [47, Theorem 5.1] the authors characterized
in general the set G(m,X s) as the union of all the essential saddles for the transition from
m to X s. These are defined as the configurations in S(m,X s) that cannot be avoided with a
short-cut of an optimal path (where a short-cut of a path ω is a path ω′ whose set of maxima
is a subset of the set of maxima in ω). Thanks to this equivalence (see Section 3.1 point 4 for
the definition of essential saddle), we reduce our study to the identification of the set of all the
essential saddles that has to be crossed during the transition between the metastable state �
and the stable state � in these two cases. First, we give a model-independent strategy that is
useful to eliminate some unessential saddles, i.e., those that are not essential. More precisely,
we require some model-dependent inputs (see Subsection 3.2.1 for more details) in order to
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state Propositions 3.3 and 3.5, in which we prove that two types of saddles are unessential and
therefore they are not in G(m,X s). In the sequel we apply this strategy to the isotropic and
weakly anisotropic two-dimensional cases that evolve under Kawasaki dynamics where m = �
and X s = {�}. In order to do this, we need to verify that the required model-dependent inputs
are valid for our model in the two cases. This study together with the characterization of the
essential saddles rely on a detailed analysis of the motion of particles along the border of the
droplet, that is a typical feature of the Kawasaki dynamics. Indeed in the metastable regime,
particles move along the border of a droplet more rapidly than they arrive from the boundary
of the box. More precisely, before the arrival of the next particle, we have that single particles
attached to one side of a droplet tipycally detach (because eU1β � e∆β and eU2β � e∆β), while
bars of two or more particles tipycally do not detach (because e∆β � e(U1+U2)β). Roughly
speaking, we will investigate the saddles that are crossed “just before visiting” and “just after
visiting” the gate of the transition G(�,�). For the isotropic case, in [15, Theorem 1.4.3(ii)] the
authors give a description of a gate, but they state that the geometrical characterization of the
set G(�,�) is an open problem. We fill this gap in Theorem 4.8. This suggests that an analogue
detailed description for the weakly anistropic case is needed and we give it in Theorems 4.11
and 4.12. Additionally, we prove sharp asymptotics for the transition time in Theorem 4.13 and
for the uniform entrance distribution in Theorem 4.14 for the weakly anisotropic case, while we
refer to [15, Theorems 1.4.4 and 1.4.3(ii)] for the isotropic case. Moreover, in Theorem 4.16 we
investigate the spectral gap and mixing time in both cases.

The corresponding analysis for the strongly anisotropic case, i.e., U1 > 2U2, is given in [2]
and we discuss the differences and similarities below. Despite the structure of the gate is similar
for the three cases, we emphasize that the entrance in them is very different. In particular,
for the strongly anisotropic case there are two different mechanisms to enter the gate (see [2,
Lemma 6.17]), while for the other two cases there is a unique one (see Lemma 7.16). On the
other hand, it is clear that the properties that are strictly related to the horizontal and vertical
interactions are the same for both weakly and strongly anisotropic cases. While some properties
that involve the motion of particles along the border of the droplet are very different. Intuitively,
we can think of the weakly anisotropic case as a “sort of interpolation” between the isotropic and
strongly anisotropic ones, indeed it has some properties similar to the first, others to the latter.
This specific difference between these cases motivates together with applications the rigorous
investigation of the anisotropic cases. Moreover, we highlight this difference in the description
of the set G(�,�), indeed for the isotropic case more motions along the border are allowed and
thus a totally explicit geometric description of the set is more difficult (see Theorem 4.8), but
for the anisotropic cases we fully obtain it, since the condition U1 6= U2 makes more difficult the
sliding of particles along the border of the droplet. Among the anisotropic cases, by Theorem
4.12 and [2, Theorem 4.10] it is clear that the structure of the set G(�,�) “strongly” depends
on “how large” is U1 with respect to U2, indeed in the case U1 > 2U2 less slidings along the
border are allowed and thus the structure of the union of minimal gates is less rich than the
weakly anisotropic case.

Some properties of the metastable behavior for these three cases have been already derived
in the literature. In particular, for the isotropic interactions in [42] the authors investigated
the simplified and local models. In particular, they studied the asymptotic properties of the
transition time together with an intrinsic description of a gate (see Section 3.1 point 4 for
the precise definition). This paper initiated the study of the local model that we describe in
the following discussion. In [15] a geometric characterization of a subset of G(�,�) is given,
we further improve this result in Theorem 4.8 determining the minimal gates and their union
G(�,�). For the three-dimensional lattice gas we refer to [38], where the authors investigated the
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asymptotic properties of the transition time and an intrinsic description of a gate. Moreover, for
both two and three-dimensional isotropic case, using the potential theoretic approach the authors
investigated in [15] the sharp asymptotics of the mean transition time, the so-called pre-factor.
They proved that it is a constant that asymptotically depends only on the size of the box and
the cardinality of the gate that they identified, but not on the parameter β. In the framework
of the pathwise approach it is natural to study the third issue of metastability, namely the tube
of typical trajectories realizing the transition between � and �. This has been analyzed only in
[36] for two dimensions, indeed actually there are no known results about the tube for the three-
dimensional isotropic case and for the anisotropic one. Concerning the anisotropic case, the
asymptotic behavior of the transition time in probability, law and expectation has been derived
for the weakly anisotropic interactions (see [51]) and for the strongly anisotropic interactions
(see [3]). In those papers there is also the geometric description of a gate, but with less control
over the geometry of the minimal gates, their union and the entrance in it, with respect to what
we give in Theorems 4.11 and 4.12 for the weakly anisotropic case.

State of the art. The first dynamical approach, known as pathwise approach, was initiated
in 1984 in [18], developed in [55, 56] and summerized in the monograph [57]. For Metropolis
chains associated with statistical mechanics systems, metastability has been described by this
approach in an elegant way in terms of the energy landscape associated to the Hamiltonian of
the system. This approach focuses on the dynamics of the transition from metastable to stable
states and it is so flexible that has been later developed to treat the tunnelling, namely the
transition from a stable state to another stable state or stable states. Independently, a graphical
approach was introduced in [19] and later used for Ising-like models [20]. Using the pathwise
approach it is possible to obtain a detailed description of metastable behavior of the system
and it made possible to answer all the three questions of metastability. A modern version of
the pathwise approach can be found in [47, 24, 25, 53]. In particular, in [47], for the Metropolis
markov chains, there are model-independent results concerning the transition time in probability,
expectation and distribution, and concerning minimal gates and their union disentangled with
respect to the tube of typical trajectories. In [47] the results on hitting times are obtained with
minimal model-dependent knowledge, i.e., find all the metastable states and the minimal energy
barrier which separates them from the stable states. In [24, Sections 2-3] the authors prove
model-independent results to treat systems with multiple metastable states and give a sufficient
condition to identify them. In [25] the authors extend the results of [47] to general Markov chains
(reversible and non reversible) with rare transitions setup, also called Freidlin-Wentzel Markov
chains. These results are a useful tool to approach metastability for non-Metropolis systems
such as Probabilistic Cellular Automata. In [53, Section 3] the authors extended the model-
independent framework of [47] to study the first hitting times from any starting configuration
(not necessarily metastable) to any target subset of configurations (not necessarily the set of
stable configurations). This approach developed over the years has been extensively applied to
study metastability in Statistical Mechanics lattice models. In this context, this approach and
the one that follows ([13, 47, 57]) have been developed with the aim of finding answers valid with
maximal generality and to reduce as much as possible the number of model dependent inputs
necessary to describe the metastable behavior of any given system.

Another approach is the potential-theoretic approach, initiated in [13]. We refer to [14] for
an extensive discussion and applications to different models. In this approach, the metastability
phenomenon is interpreted as a sequence of visits of the path to different metastable sets. This
method focuses on a precise analysis of hitting times of these sets with the help of potential
theory. In the potential-theoretic approach the mean transition time is given in terms of the so-
called capacities between two sets. Crucially capacities can be estimated by exploiting powerful
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variational principles. This means that the estimates of the average crossover time that can
be derived are much sharper than those obtained via the pathwise approach. The quantitative
success of the potential-theoretic approach is however limited to the case of reversible Markov
processes.

These mathematical approaches, however, are not equivalent as they rely on different def-
initions of metastable states (see [24, Section 3] for a comparison) and thus involve different
properties of hitting and transition times. The situation is particularly delicate for evolutions of
infinite-volume systems, for irreversible systems, and degenerate systems, i.e., systems where the
energy landscape has configurations with the same energy (as discussed in [24, 25, 29]). More
recent approaches are developed in [4, 6, 11].

Statistical mechanical models for magnets deal with dynamics that do not conserve the total
number of particles or the total magnetization. They include single spin-flip Glauber dynamics
and many probabilistic cellular automata (PCA), that is a parallel dynamics. The pathwise
approach was applied in finite volume at low temperature in [18, 54, 20, 44, 45, 30, 50, 22, 1,
8, 7] for single-spin-flip Glauber dynamics and in [23, 26, 27, 28] for parallel dynamics. The
potential theoretic approach was applied to models at finite volume and at low temperature
in [17, 15, 41, 40, 52, 39, 10]. The more involved infinite volume limit at low temperature or
vanishing magnetic field was studied in [31, 32, 58, 59, 48, 49, 42, 33, 35, 16, 21, 34] for Ising-like
models under single-spin-flip Glauber and Kawasaki dynamics.

The outline of the paper is as follows. In Section 2 we define the simplified model with
periodic boundary conditions and the local model with open boundary conditions, and the
Kawasaki dynamics. In Section 3 we give some model-independent definitions in order to state
our main model-independent results in Propositions 3.3 and 3.5. In Section 4 we give some
geometric definitions valid for the two models (see Section 4.1). We state our main results
concerning the gates for the isotropic case in Section 4.2 and for the weakly anisotropic in
Section 4.3. The main results about the sharp asymptotics are given in Section 4.4, while
the results for the simplified model are given in Section 5. In Section 6 we prove the model-
independent results that we apply to our model in Section 7. In particular, in Section 7.2 we give
some model-dependent definitions, in Section 7.3 some tools that are useful in Section 7.4 for
our model-dependent strategy. In Section 8 we give the proof of the main result for the isotropic
interactions regarding the identification of the union of all the minimal gates (see Theorem
4.8). In Section 9 we give the proof of the main results for the weakly anisotropic interactions
regarding the description of the gate (see Theorem 4.11) and the geometric characterization of
the union of all the minimal gates (see Theorem 4.12). In Section 10 we give the proof of the
main theorems about the sharp asymptotics (see Theorems 4.13, 4.14 and 4.16) and in Section
11 we give the proof of the results for the simplified model (see Theorems 5.1 and 5.2). In the
Appendix A we give additional explicit proofs and computations.

2 Definition of the model

2.1 The model with open boundary conditions

Let Λ = {0, .., L}2 ⊂ Z2 be a finite box centered at the origin. The side length L is fixed, but
arbitrary, and later we will require L to be sufficiently large. Let

∂−Λ := {x ∈ Λ : ∃ y /∈ Λ |y − x| = 1}, (2.1)

be the interior boundary of Λ and let Λ0 := Λ \ ∂−Λ be the interior of Λ. With each x ∈ Λ
we associate an occupation variable η(x), assuming values 0 or 1. A lattice configuration is
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denoted by η ∈ X = {0, 1}Λ. Each configuration η ∈ X has an energy given by the following
Hamiltonian:

H(η) := −U1

∑

(x,y)∈Λ∗0,h

η(x)η(y)− U2

∑

(x,y)∈Λ∗0,v

η(x)η(y) + ∆
∑

x∈Λ

η(x), (2.2)

where Λ∗0,h (resp. Λ∗0,v) is the set of the horizontal (resp. vertical) unoriented bonds joining
nearest-neighbors points in Λ0. Thus the interaction is acting only inside Λ0; the binding energy
associated to a horizontal (resp. vertical) bond is −U1 < 0 (resp. −U2 < 0). We may assume
without loss of generality that U1 ≥ U2.

The grand-canonical Gibbs measure associated with H is

µ(η) :=
e−βH(η)

Z
η ∈ X , (2.3)

where
Z :=

∑

η∈X
e−βH(η) (2.4)

is the so-called partition function.

2.2 Local Kawasaki dynamics

Next we define Kawasaki dynamics on Λ with boundary conditions that mimic the effect of an
infinite gas reservoir outside Λ with density ρ = e−∆β. Let b = (x → y) be an oriented bond,
i.e., an ordered pair of nearest neighbour sites, and define

∂∗Λout := {b = (x→ y) : x ∈ ∂−Λ, y 6∈ Λ},
∂∗Λin := {b = (x→ y) : x 6∈ Λ, y ∈ ∂−Λ},
Λ∗,orie := {b = (x→ y) : x, y ∈ Λ},

(2.5)

and put Λ̄∗,orie := ∂∗Λout ∪ ∂∗Λin ∪Λ∗, orie. Two configurations η, η′ ∈ X with η 6= η′ are said to
be communicating states if there exists a bond b ∈ Λ̄∗,orie such that η′ = Tbη, where Tbη is the
configuration obtained from η in any of these ways:

• for b = (x→ y) ∈ Λ∗, orie, Tbη denotes the configuration obtained from η by interchanging
particles along b:

Tbη(z) =





η(z) if z 6= x, y,
η(x) if z = y,
η(y) if z = x.

(2.6)

• For b = (x→ y) ∈ ∂∗Λout we set:

Tbη(z) =

{
η(z) if z 6= x,
0 if z = x.

(2.7)

This describes the annihilation of a particle along the border;

• for b = (x→ y) ∈ ∂∗Λin we set:

Tbη(z) =

{
η(z) if z 6= y,
1 if z = y.

(2.8)

This describes the creation of a particle along the border.
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The Kawasaki dynamics is the discrete time Markov chain (ηt)t∈N on state space X given by
the following transition probabilities: for η 6= η′:

P (η, η′) :=

{
|Λ̄∗, orie|−1

e−β[H(η′)−H(η)]+ if ∃b ∈ Λ̄∗,orie : η′ = Tbη
0 otherwise

(2.9)

where [a]+ = max{a, 0} and P (η, η) := 1−∑η′ 6=η P (η, η′). This describes a standard Metropolis

dynamics with open boundary conditions: along each bond touching ∂−Λ from the outside,
particles are created with rate ρ = e−∆β and are annihilated with rate 1, while inside Λ0

particles are conserved. Note that an exchange of occupation numbers η(x) for any x inside the
ring Λ \ Λ0 does not involve any change in energy.

Remark 2.1 The stochastic dynamics defined by (2.9) is reversible w.r.t. Gibbs measure (2.3)
corresponding to H.

2.3 The model with periodic boundary conditions and its simplified version

In this Section we consider a lattice gas model to study the metastable behavior of conservative
systems. Let Λβ ⊂ Z2 be a large finite box centered at the origin, with periodic boundary
conditions. With each x ∈ Λβ we associate an occupation variable ηβ(x), assuming the values 0

and 1. A lattice gas configuration is denoted by ηβ ∈ X β = {0, 1}Λβ . We consider the interaction
defined by the following Hamiltonian

H(ηβ) := −U1

∑

(x,y)∈Λ∗β,h

ηβ(x)ηβ(y)− U2

∑

(x,y)∈Λ∗β,v

ηβ(x)ηβ(y) + ∆
∑

x∈Λβ

ηβ(x), (2.10)

where Λ∗β,h (resp. Λ∗β,v) is the set of the horizontal (resp. vertical) unoriented bonds joining

nearest-neighbors points in Λβ. Thus the binding energy associated to a horizontal (resp. verti-
cal) bond is −U1 < 0 (resp. −U2 < 0). We may assume without loss of generality that U1 ≥ U2.
We fix the particle density in Λβ at

1

|Λβ|
∑

x∈Λβ

ηβ(x) = ρ = e−∆β, (2.11)

where ∆ > 0 is an activity parameter. This corresponds to a total number of particles in Λβ

equal to N = ρ|Λβ|. From (2.11) we see that in order to have particles at all we must pick |Λβ|
at least exponentially large in β. This means that the regime where Λβ is fixed, as in the non
conservative case considered in Section 2.2, has no relevance here. We will in fact be interested
in the regime

∆ ∈ (U1, U1 + U2), β →∞, lim
β→∞

1

β
log |Λβ| =∞. (2.12)

We can not define the dynamics in Λβ as in Section 2.2 due to the presence of periodic boundary
conditions, but if we change the open boundary conditions the model is too difficult to treat due
to the behavior of the gas in Λβ \Λ. Indeed in this conservative case the dynamics is not really
local: particles must arrive from or return to the gas, which acts as a reservoir. It is therefore
not possible to decouple the dynamics of the particles inside Λ from the dynamics of the gas
in Λβ \ Λ. For this reason we consider a simplified model, in which we remove the interactions
outside the box Λ0 = Λ \ ∂−Λ, where ∂−Λ is defined in (2.1). Moreover, we also remove the
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exclusion outside Λ, thus the dynamics of the gas in Λβ \Λ is that of independent random walks.
Thus we replace the Hamiltonian defined in (2.12) with

H ′(ηβ) := −U1

∑

(x,y)∈Λ∗0,h

ηβ(x)ηβ(y)− U2

∑

(x,y)∈Λ∗0,v

ηβ(x)ηβ(y) + ∆
∑

x∈Λβ

ηβ(x). (2.13)

We will use the results for the local model that concern the Hamiltonian defined in (2.2) to
derive results for the simplified model as it will be clear in Section 11. In this setting, we can
view the model described in Section 2.1 as the local version of the one described in this Section,
where the effect on Λ of the gas in Λβ \ Λ may be described in terms of the creation of new
particles with rate ρ = e−∆β at sites on the interior boundary of Λ and the annihilation of
particles with rate 1 at sites on the exterior boundary of Λ.

Let VN = {ηβ ∈ X β : NΛβ = N} the set of configurations with N particles. For η ∈ X =
{0, 1}Λ, let νη denote the canonical Gibbs measure conditioned on the configuration inside Λ
being η, i.e.,

νη(η
β) =

νN (ηβ)1Jβ(η)(η
β)

νN (Jβ(η))
, ηβ ∈ X β, (2.14)

where J β(η) = {ηβ ∈ X β : ηβ |Λ = η}, with ηβ |Λ the restriction of ηβ to Λ, and νN is the
canonical Gibbs measure defined as

νN (ηβ) =
e−βH(ηβ)

1VN (ηβ)

ZN
, ηβ ∈ X β, (2.15)

where
ZN =

∑

ηβ∈VN

e−βH(ηβ) (2.16)

For η ∈ X , write Pνη and Eνη to denote respectively the probability law and expectation for the
Markov process (ηt)t≥0 on X β following the Kawasaki dynamics with Hamiltonian

H ′′(ηβ) = −U1

∑

(x,y)∈Λ∗0,h

ηβ(x)ηβ(y)− U2

∑

(x,y)∈Λ∗0,v

ηβ(x)ηβ(y), (2.17)

given that η0 is chosen according to νη. Write � to denote the empty configuration in Λ, i.e.,
�β = J β(�).

3 Model-independent definitions and results

We will use italic capital letters for subsets of Λ, script capital letters for subsets of X , and
boldface capital letters for events under the Kawasaki dynamics. We use this convention in
order to keep the various notations apart. We will denote by Pη0 the probability law of the
Markov process (ηt)t≥0 starting at η0 and by Eη0 the corresponding expectation.

3.1 Model-independent definitions

1. Paths and hitting times.

• A path ω is a sequence ω = (ω1, . . . , ωk), with k ∈ N, ωi ∈ X and P (ωi, ωi+1) > 0 for
i = 1, . . . , k − 1. We write ω : η → η′ to denote a path from η to η′, namely with ω1 = η,
ωk = η′. A set A ⊂ X with |A| > 1 is connected if and only if for all η, η′ ∈ A there exists
a path ω : η → η′ such that ωi ∈ A for all i. We indicate with ω1 ◦ ω2 the composition of
two paths ω1 and ω2.
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• Given a non-empty set A ⊂ X , define the first-hitting time of A as

τA := min{t ≥ 0 : ηt ∈ A}. (3.1)

2. Min-max and communication height

• Given a function f : X → R and a subset A ⊆ X , we denote by

arg maxAf := {η ∈ A : f(η) = max
ζ∈A

f(ζ)} (3.2)

the set of points where the maximum of f in A is reached. If ω = (ω1, ..., ωk) is a path,
in the sequel we will write arg maxωH to indicate arg maxAH, with A = {ω1, ..., ωk} e H
the Hamiltonian.

• The bottom F(A) of a non-empty set A ⊂ X is the set of global minima of the Hamiltonian
H in A:

F(A) := {η ∈ A : H(η) = min
ζ∈A

H(ζ)}. (3.3)

For a set A ⊂ X such that all the configurations have the same energy, with an abuse of
notation we denote this energy by H(A).

• The communication height between a pair η, η′ ∈ X is

Φ(η, η′) := min
ω:η→η′

max
ζ∈ω

H(ζ). (3.4)

Given A ⊂ X , we define the restricted communication height between η, η′ ∈ A as

Φ|A(η, η′) := min
ω:η→η′
ω⊆A

max
ζ∈ω

H(ζ). (3.5)

3. Stability level, stable and metastable states

• We call stability level of a state ζ ∈ X the energy barrier

Vζ := Φ(ζ, Iζ)−H(ζ), (3.6)

where Iζ is the set of states with energy below H(ζ):

Iζ := {η ∈ X : H(η) < H(ζ)}. (3.7)

We set Vζ :=∞ if Iζ is empty.

• We call V -irreducible states the set of all states with stability level larger than V :

XV := {η ∈ X : Vη > V }. (3.8)

• The set of stable states is the set of the global minima of the Hamiltonian:

X s := F(X ). (3.9)
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• The set of metastable states is given by

Xm := {η ∈ X : Vη = max
ζ∈X\X s

Vζ}. (3.10)

We denote by Γm the stability level of the states in Xm.

4. Optimal paths, saddles and gates

• We denote by (η → η′)opt the set of optimal paths as the set of all paths from η to η′

realizing the min-max in X , i.e.,

(η → η′)opt := {ω : η → η′ such that max
ξ∈ω

H(ξ) = Φ(η, η′)}. (3.11)

• The set of minimal saddles between η, η′ ∈ X is defined as

S(η, η′) := {ζ ∈ X : ∃ω ∈ (η → η′)opt, ω 3 ζ such that max
ξ∈ω

H(ξ) = H(ζ)}. (3.12)

• A saddle ξ ∈ S(η, η′) is called unessential if for any ω ∈ (η → η′)opt such that ω∩ ξ 6= ∅ we
have {arg maxωH} \ {ξ} 6= ∅ and there exists ω′ ∈ (η → η′)opt such that {arg maxω′ H} ⊆
{arg maxωH} \ {ξ}.

• A saddle ξ ∈ S(η, η′) is called essential if it is not unessential, i.e., if either

(i) there exists ω ∈ (η → η′)opt such that {arg maxωH} = {ξ} or

(ii) there exists ω ∈ (η → η′)opt such that {arg maxωH} ⊃ {ξ} and {arg maxω′H} *
{arg maxωH} \ {ξ} for all ω′ ∈ (η → η′)opt.

• Given a pair η, η′ ∈ X , we say that W ≡ W(η, η′) is a gate for the transition η → η′ if
W(η, η′) ⊆ S(η, η′) and ω ∩W 6= ∅ for all ω ∈ (η → η′)opt. In words, a gate is a subset of
S(η, η′) that is visited by all optimal paths.

• We say that W(η, η′) is a minimal gate for the transition η → η′ if it is a gate and for any
W ′ ( W(η, η′) there exists ω′ ∈ (η → η′)opt such that ω′ ∩W ′ = ∅. In words, a minimal
gate is a minimal subset of S(η, η′) by inclusion that is visited by all optimal paths.

• For a given pair of configurations η, η′, we denote by G(η, η′) the union of all minimal
gates:

G(η, η′) :=
⋃

W(η,η′) minimal gate

W(η, η′) (3.13)

3.2 Model-independent strategy in finite volume

In this Section we give a general strategy in order to analyze the geometry of the set G(m,X s),
where either m ∈ Xm is a metastable state if we analyze metastability or m ∈ X s is a stable
state if we analyze tunnelling between two stable states. Assume that we are in finite volume and
W(m,X s) is a set of configurations that has been proven to be a gate. The following strategy
is useful to eliminate some unessential saddles from the set S(m,X s) \ W(m,X s) in order to
determine the set G(m,X s). This strategy is more efficient if the gate proposed is minimal or
union of minimal gates.

12



3.2.1 Model-independent results for unessential saddles

In order to state our results concerning the unessential saddles we need the following definitions.

• A nonempty set A ⊂ X is a cycle if it is either a singleton or it verifies the relation

max
x,y∈A

Φ(x, y) < Φ(A,X \ A). (3.14)

See [25, equation (3.40)]. In the case of Metropolis dynamics, this definition coincides with
[47, equation (2.7)].

• Given σ ∈ X , Γ > 0 and A a set of target configurations, we say that the initial cycle for
the transition from σ to A with depth Γ is

CσA(Γ) := σ ∪ {η ∈ X : Φ(σ, η)−H(σ) < Γ = Φ(σ,A)−H(σ)}. (3.15)

Note that in definition (3.15) we emphasize the dependence on σ and A and that Γ is
identified by them. Note that this definition of CσA(Γ) concides with CA(σ) defined in [47,
equation (2.25)].

W(m,X s)K K̃K ∩ ∂CmX s(Γ)

K̃ ∩ ∂CX s

m (Γ +H(m)−H(X s))

σ′ σ′′

LB
Γ

σi ζi

m
H(m)

H(X s)
X s

CmX s(Γ)

CX s

m (Γ +H(m)−H(X s))

Φ(m,X s)

Figure 1: We depict an example of energy landscape for the transition between the metastable
state m and the stable states X s. We depict on the left the cycle of the metastable state CmX s(Γ)
and on the right the cycle of the stable states CX sm (Γ + H(m) −H(X s)). We indicate in black
W (m,X s), in light grey K and K̃ emphasizing with dark grey the part of K and K̃ that intersect
the boundaries of the two previous cycles. We give an example of two configurations σ′ and σ′′

that are in LB.

In order to apply this strategy to a concrete model, we require the following model-dependent
inputs (we encourage the reader to inspect Figure 1):

(i) identify the sets Xm and X s = {ηs1, ..., ηsk}, where ηs1, ..., η
s
k have to be in CX sm (Γ +H(m)−

H(X s)). For a given m ∈ Xm compute Φ(m,X s) and we set Γ := Φ(m,X s) −H(m) the
energy barrier between m and X s.
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(ii) find a set W(m,X s) and prove that it is a gate for the transition m→ X s;

(iii) find two sets of configurations LG and LB and prove the following conditions for any
η ∈ W(m,X s):

(a) there exist a path ωG1 : η → LG such that maxσ∈ωG1
H(σ) ≤ Γ + H(m) and a path

ωG2 : LG → X s such that maxσ∈ωG2
H(σ) < Γ +H(m);

(b) there exists a path ωB1 : η → LB such that maxσ∈ωB1
H(σ) ≤ Γ + H(m) and @ ωB2 :

LB → X s and @ ωB2 : LB → m such that maxσ∈ωB2
H(σ) < Γ +H(m);

(iv) identify the subset K (resp. K̃) of the saddles that are visited by the optimal paths “just
before entering” (resp. “just after visiting”) W(m,X s). More precisely,

K := {η̄ ∈ S(m,X s) \W(m,X s) : ∃ η ∈ W(m,X s) and ω = ω1 ◦ ω2,
with ω1 : η → η̄ s.t. ω1 ∩W(m,X s) = {η}, ω1 ∩ CmX s(Γ) = ∅
and ω2 : η̄ → m s.t. ω2 ∩W(m,X s) = ∅, maxσ∈ωH(σ) ≤ Γ +H(m)}

(3.16)

and

K̃ := {η̄ ∈ S(m,X s) \W(m,X s) : ∃ η ∈ W(m,X s) and ω = ω1 ◦ ω2, with
ω1 : η → η̄ s.t. ω1 ∩W(m,X s) = {η}, ω1 ∩ CX sm (Γ +H(m)−H(X s)) = ∅
and ω2 : η̄ → X s s.t. ω2 ∩W(m,X s) = ∅, maxσ∈ωH(σ) ≤ Γ +H(m)}.

(3.17)

Note that, if X s is a singleton, it holds that it belongs to CX sm (Γ +H(m)−H(X s)). Conditions
(iii)-(a) and (iii)-(b) guarantee that when the dynamics reaches LG it has gone “over the hill”,
while when it reaches LB the energy has to increase again to the level Γ+H(m) to visit m or X s.
In particular, this implies that LG ⊂ CX sm (Γ+H(m)−H(X s)) and LB * CX sm (Γ+H(m)−H(X s)).
We will show in Section 7.4 how the model-dependent inputs (iii)-(a) and (iii)-(b) apply to
isotropic and weakly anisotropic models evolving under Kawasaki dynamics. For the strongly
anisotropic case see [2, Section 6.4]. In Section 10 we will refer to CmX s(Γ) as Xmeta and to
∂CX sm (Γ +H(m)−H(X s)) as X stab.

Remark 3.1 Note that it is possible that K = ∅ and/or K̃ = ∅, since the gate W(m,X s) could
contain all the configurations with such properties. Indeed in [8, Lemma 7.4(a)] it is proved that
this is the case for the q-state Potts model with negative external magnetic field evolving under
Glauber dynamics. In particular, assuming q = 2, the same result holds for the Ising model.

See Figure 1 for Propositions 3.3 and 3.5.

Definition 3.2 A saddle σ is of the first type if it is not in W(m,X s) ∪K and belongs to the
boundary of the cycle CmX s(Γ), i.e., σ ∈ ∂CmX s(Γ) ∩ (S(m,X s) \ (W(m,X s) ∪K)), where CmX s(Γ)
is defined in (3.15).

Proposition 3.3 Any saddle of the first type σ is unessential and therefore it is not in G(m,X s).

We refer to Section 6.1 for the proof of Proposition 3.3. As we can see in the proof, it will be
clear that this result is guaranteed only by the model-dependent inputs (i), (ii) and (iv).

Definition 3.4 A saddle ζ is of the second type if it is not in W(m,X s)∪ K̃ and belongs to the
boundary of the cycle CX sm (Γ+H(m)−H(X s)), i.e., ζ ∈ ∂CX sm (Γ+H(m)−H(X s))∩ (S(m,X s)\
(W(m,X s) ∪ K̃)), where CX sm (Γ +H(m)−H(X s)) is defined in (3.15).
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Proposition 3.5 Any saddle ζ of the second type is unessential and therefore it is not in
G(m,X s).

We refer to Section 6.2 for the proof of Proposition 3.5. For this result all of the four model-
dependent inputs are necessary.

Remark 3.6 This strategy can be applied also in the tunnelling scenario, i.e., the transition
between two stable states, that corresponds to select the starting state m ∈ X s. The model-
dependent input (i) has to be modified by requiring that the configurations in X s \ {m} are
in the same cycle, that does not contain m, while the inputs (ii)-(iv) remain the same. Thus
Propositions 3.3 and 3.5 still hold by replacing the set X s by X s \ {m}. In this case, since

H(m) = H(X s), note that the cycles CmX s\{m}(Γ) and CX
s\{m}

m (Γ + H(m) − H(X s)) have the
same depth. The idea of this strategy can be applied also in the tunnelling scenario in which
the configurations in X s \ {m} are not in the same cycle, but this requires an extension of this
strategy. This occurs in the q-state Potts model with q possible spins and zero external magnetic
field (in [9]), where the stable states are the configurations with all spins of the same type. In [9,
Theorem 3.4] the authors study the gates relevant for the tunnelling between one stable state m
to the set of the other stable states X s \{m}. For the proof of this theorem they use [9, Theorem
3.2], in which they identify all the unessential saddles for the transition between the selected
stable state m to one of the other stable states s ∈ X s \{m} when the dynamics is restricted only
to the optimal paths that do not visit the rest of the stable states X s \ {m, s}. The proof of [9,
Theorem 3.2] uses, in the specific model, the ideas presented in this Section and the symmetry
of the energy landscape for q-state Potts model with zero external magnetic field.

These model-independent propositions will be applied for the isotropic and weakly anisotropic
models evolving under Kawasaki dynamics (in Section 7.4) to identify the set G(m,X s). For the
application to the strongly anisotropic model see [2, Section 6.4].

4 Main results: the gates for the local model

In this Section we state our main results: in Section 4.2 (resp. Section 4.3) we obtain the
geometrical characterization of the union of all minimal gates for the isotropic (resp. weakly
anisotropic) case. In order to do this we need some model-dependent definitions for the Kawasaki
dynamics (see Section 4.1) and some specific ones for the weakly anisotropic case (see Section
4.3). In Section 4.4 we derive sharp estimates for the asymptotic transition time in the weakly
anisotropic case. Moreover, we derive the mixing time and spectral gap in the isotropic and
weakly anisotropic cases. For the corresponding results obtained in the strongly anisotropic case,
i.e., in the parameter regime U1 > 2U2, we refer to [2, Section 4.2] for the results concerning the
gates and union of minimal gates and to [2, Section 4.3] for the results concerning the asymptotic
transition time, mixing time and spectral gap.

4.1 Geometric definitions for Kawasaki dynamics

We give some model-dependent definitions and notations in order to state our main theorems.

1. Free particles and clusters

• For x ∈ Λ0, let nn(x) := {y ∈ Λ0 : d(y, x) = 1} be the set of nearest-neighbor sites of x in
Λ0, where d in the entire paper denotes the lattice distance.
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• A free particle in η ∈ X is a site x, with η(x) = 1, such that either x ∈ η ∩ ∂−Λ, or
x ∈ η∩Λ0 and

∑
y∈nn(x)∩Λ0

η(y) = 0. We denote by ηfp the union of free particles in ∂−Λ
and free particles in Λ0. We denote by n(η) the number of free particles in η.

We denote by ηcl the clusterized part of the occupied sites of η:

ηcl := {x ∈ Λ0 : η(x) = 1} \ ηfp. (4.1)

• We denote by ηfp the addition of a free particle anywhere in Λ to the configuration η.

• Given a configuration η ∈ X , consider the subset C(ηcl) of R2 defined as the union of
the 1 × 1 closed squares centered at the occupied sites of ηcl in Λ0 and call the maximal
connected components of this set the clusters of ηcl.

• Given a set A ⊂ R2, we define the number of 1× 1 closed occupied squares in A as

|A| := |A ∩ C(ηcl)| (4.2)

and as ||A|| the numbers of 1 × 1 closed squares in A. Note that || · || takes into account
the possibility that the squares are occupied or not.

2. Projections, semi-perimeter and vacancies

• For η ∈ X , we denote by g1(η) (resp. g2(η)) one half of the horizontal (resp. vertical)
length of the Euclidean boundary of C(ηcl). Then the energy associated with η is given
by

H(η) = −(U1 + U2 −∆)|C(ηcl)|+ U1g2(η) + U2g1(η) + ∆n(η). (4.3)

• Let p1(η) and p2(η) be the total lengths of horizontal and vertical projections of C(ηcl)
respectively. More precisely, let rj,1 = {x ∈ Z2 : (x)1 = j} be the j-th column and
rj,2 = {x ∈ Z2 : (x)2 = j} be the j-th row, where (x)1 or (x)2 denote the first or second
component of x. Let

π1(η) := {j ∈ Z : rj,1 ∩ C(ηcl) 6= ∅} (4.4)

and p1(η) := |π1(η)|. In a similar way we define the vertical projection π2(η) and p2(η).

• We define g′i(η) := gi(η) − pi(η) ≥ 0; we call monotone a configuration such that gi(η) =
pi(η) for i = 1, 2.

• We define the semi-perimeter s(η) and the vacancies v(η) as

s(η) := p1(η) + p2(η),
v(η) := p1(η)p2(η)− |C(ηcl)|.

(4.5)

3. n-manifold, rectangles and corners

• The configuration space X can be partitioned as

X =
⋃

n

Vn, (4.6)

where Vn := {η ∈ X : |C(ηcl)| + n(η) = n} is the set of configurations with n particles,
called the n-manifold.
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Figure 2: Here we depict the same configuration η on the left and on the right to emphasize
different geometrical definitions. The grey area in both pictures represents C(ηcl). In particu-
lar, on the left-hand side we stress the frame-angles cαα

′
(η), the bars Bα(η), CR−(η) and the

circumscribing rectangle CR(η) (respresented with a dashed line). While on the right-hand side
we stress the sites that are in a corner (represented with a dot), CR+(η) and the external frame
∂+CR(η) (the dashed area).

• We denote by R(l1, l2) the set of configurations that have no free particle and a single
cluster such that C(ηcl) is a rectangle R(l1, l2), with l1, l2 ∈ N. For any η, η′ ∈ R(l1, l2) we
have immediately:

H(η) = H(η′) = H(R(l1, l2)) = U1l2 + U2l1 − εl1l2, (4.7)

where
ε := U1 + U2 −∆. (4.8)

• A corner in η ∈ X is a closed 1×1 square centered in an occupied site x ∈ Λ0 such that, if
we order clockwise its four nearest neighbors x1, x2, x3, x4, then

∑
y∈nn(x) η(y) = 2, with

η(xi) = η(xi+1) = 1, with i = 1, ..., 4 and the convention that x5 = x1 (see Figure 2 on the
right-hand side).

4. Circumscribed rectangle, frames and bars

• If η is a configuration with a single cluster then we denote by CR(η) the rectangle circum-
scribing C(ηcl), i.e., the smallest rectangle containing η.

We denote ∂+CR(η) the external frame of CR(η) as the union of squares 1× 1 centered at
sites that are not contained in CR(η) such that those sites have Euclidean distance with
sites in CR(η) less or equal than

√
2 (see Figure 2 on the right-hand side). Note that the

external frame of CR(η) contains only non occupied sites.

We denote ∂−CR(η) the internal frame of CR(η) as the union of squares 1 × 1 centered
at sites that are contained in CR(η) such that those sites have Euclidean distance with
sites not in CR(η) less or equal than

√
2. If this distance is equal to

√
2, we say that

the unit square is a frame-angle cαα
′
(η) in ∂−CR(η), where αα′ ∈ {ne, nw, se, sw}, with

n = north, s = south, etc. Note that the internal frame of CR(η) is a geometrical object
contained in R2 that can contain both occupied and non occupied sites (see Figure 2 on
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-
+U1

-
0, ..., 0

-
−U1

Figure 3: 1-translation of the horizontal bar Bn(η) at cost U1.

-
+U2

-
0, ..., 0

-
−U2

Figure 4: 1-translation of the vertical bar Be(η) at cost U2.

the left-hand side). We partition the set ∂−CR(η) without frame-angles in two horizontal
and two vertical rows rα(η), with α ∈ {n,w, e, s}.
Moreover, we set

CR−(η) = CR(η) \ ∂−CR(η),
CR+(η) = CR(η) ∪ ∂+CR(η).

(4.9)

See Figure 2 for an example.

Remark 4.1 Note that, for example, the frame-angles cne(η) and cen(η) are the same,
but this distinction will be useful in Definitions 4.4 and 4.5.

• A vertical (respectively horizontal) bar Bα(η) of a single cluster of η with length k is a 1×k
(respectively k × 1) rectangle contained in C(ηcl), with α ∈ {n,w, e, s}, k ≥ 1, such that
each square 1 × 1 of the bar is attached only to one square of C(ηcl) \ Bα(η) (see Figure
2 on the left-hand side). In the cases in which it is not specified if the bar is vertical or
horizontal we call it simply bar. If k = 1 we say that the bar is a protuberance.

Remark 4.2 Note that two bars Bα(η) and Bα′(η), with α, α′ ∈ {n, s, w, e}, can possibly
intersect in the frame-angle cαα

′
(η). If this is the case, we get |Bα(η)∪Bα′(η)| = |Bα(η)|+

|Bα′(η)| − 1.

5. Motions along the border
Recall definitions of | · | and || · || in (4.2) and below. In the following, we give the precise notion
of translation by 1 of a bar, for example to the left or to the right, while keeping all the squares
of the bar attached to the cluster below.

Definition 4.3 Given η and a bar Bα(η) of length k, with α ∈ {n, s, e, w}, we say that it is
possible to translate the bar Bα(η) if

k = |Bα(η)| < |∂+Bα(η)|. (4.10)

We define the 1-translation of a bar Bα(η) of length k as a sequence of configurations (η1, ..., ηk)
such that η1 = η and ηi is obtained from ηi−1 translating by 1 a unit square along the rectangle
∂+Bα(η) ∩ C(ηcl) for any 2 ≤ i ≤ k.

In Figure 3 (resp. Figure 4)we depict a 1-translation of a horizontal (resp. vertical) bar at cost
U1 (resp. U2).

In the following, we give the precise notion of sliding a unit square from row rα(η) to rα
′
(η)

passing through the frame angle cαα
′
(η).
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-
+U1

-
0

-
−U1

-
+U2

-
0

-
−U2

Figure 5: Sliding of a unit square around the frame angle cne(η) at cost U1. In this case α = n,
α′ = e, α′′ = w and α′′′ = s.

Definition 4.4 Given η, let αα′ such that cαα
′
(η) is a frame-angle. We say that it is possible

to slide a unit square around a frame-angle cαα
′
(η) ⊆ ∂−CR(η) from a row rα(η) ⊆ ∂−CR(η) to

a row rα
′
(η) ⊆ ∂−CR(η) via a frame-angle cαα

′
(η) if

|cαα′(η)| = 0, |rα(η)| ≥ 1, 1 ≤ |rα′(η)| < ||rα′(η)||+ 1. (4.11)

Let α′′ 6= α′ such that cαα
′′
(η) is a frame-angle. See Figure 5 for an example. We define a sliding

of a unit square around a frame-angle cαα
′
(η) ⊆ ∂−CR(η) as the composition of a sequence of 1-

translations of the bar Bα(η) from rα(η)∪cαα′′(η) to rα(η)∪cαα′(η), namely (η1, ..., ηk), and the
1-translation of a bar Bα′(η) = C(ηkcl)∩(rα

′
(η)∪cαα′(η)) from rα

′
(η)∪cαα′(η) to rα

′
(η)∪cα′α′′′(η),

where α′′′ 6= α is such that cα
′α′′′(η) is a frame-angle.

The definition above is used only to define the following sliding of a bar from row rα(η) to
rα
′
(η) passing through the frame angle cαα

′
(η), that corresponds to iteratively apply the sliding

of a unit square around a frame-angle.

Definition 4.5 Given η, let αα′ such that cαα
′
(η) is a frame-angle. Before sliding a bar around

a frame-angle, we translate the bars Bα(η) and Bα′(η) at distance 1 to the frame-angle cαα
′
(η)

obtaining a configuration η′. We say that it is possible to slide a bar Bα(η′) around a frame-angle
cαα

′
(η′) ⊆ ∂−CR(η′) if it is possible to move all the unit squares in Bα(η′) around a frame-angle

cαα
′
(η′) from a row rα(η′) ∪ cαα′′(η′) to a row rα

′
(η′) ∪ cα′α′′′(η′), where α′′ 6= α′ and α′′′ 6= α

are such that cαα
′′
(η′) and cα

′α′′′(η′) are frame-angles. Namely,

|Bα(η′)|+ |rα′(η′)| ≤ ||rα′(η′)||+ 1. (4.12)

Moreover, we define a sliding of a bar Bα(η′) around a frame-angle cαα
′
(η′) as the sequence of

|Bα(η′)| slidings of unit squares around a frame-angle cαα
′
(η′).

See the path described in Figure 6, that connects the configuration η to the configuration (12) for
an example of sliding of the bar Be(η) around the frame-angle cen(η), with η as the configuration
(3).

4.2 Gate for isotropic interactions

In this Section we impose U1 = U2 = U in (2.2), i.e., we consider isotropic interactions between
nearest-neighbors sites. Recall (4.8) for the definition of ε. We will consider 0 < ε� U , where
� means sufficiently smaller; for instance ε ≤ U

100 is enough. Many interesting quantities that
follow have lower index is to remind that they refer to isotropic interactions.

In order to state our main result we recall some important definitions that are given in [15].

Definition 4.6 (a) Let

lc :=

⌈
U

2U −∆

⌉
(4.13)

the critical length, where d e denotes the integer part plus 1.
(b) Let Qis denote the set of configurations having one cluster consisting of an (lc − 1) × lc
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(1) −→
∆

(2) −→−U2
(3) −→

+U2
(4) 99K

0, .., 0

(5) −→−U2

(6) −→
+U1

(7) −→−U1

(8) −→
+U2

(9) 99K
0, .., 0,−U2

(10) 99K
+U1

(11) −→−U1

?

(12)

Figure 6: Sliding of the bar Be(η) around the frame-angle cen(η) that connects the configuration
η to the configuration (12), with η as the configuration (3).

quasi-square anywhere in Λ0 with a single particle attached anywhere to one of its sides.
(c) Let Dis denote the set of configurations that can be reached from some configuration in Qis
via a U -path, i.e.,

Dis :=
{
η′ ∈ Vncis : ∃ η ∈ Qis : H(η) = H(η′), Φ|Vnc

is
(η, η′) ≤ H(η) + U

}
, (4.14)

where ncis := lc(lc − 1) + 1 is the volume of the clusters in Qis.
(d) Let C∗is := Dfpis .
(e) Let

Γ∗is := H(C∗is) = H(Dfpis ) = H(Dis) + ∆ = H(Qis) + ∆
= −U [(lc − 1)2 + lc(lc − 2) + 1] + ∆[lc(lc − 1) + 2]
= 2U [lc + 1]− (2U −∆)[lc(lc − 1) + 2]

(4.15)

denote the energy of the configurations in C∗is.

By [15, Theorem 1.4.1] we obtain the geometric description of the set Dis as Dis = D̄is ∪ D̃is
that will be useful later on. Roughly speaking, one can think of Dis as the set of configurations
consisting of a rectangular cluster with four bars attached to its four sides, whose lengths satisfy
precise conditions. See Figure 7 for an example of a configuration in D̄is that is obtained via a
U -path from a configuration in Q̄is.

Now we define two types of sets that will be useful in order to characterize the set Gis(�,�).
For any i = 0, 1, 2 we define Pis,i ⊆ Sis(�,�) that consists of configurations with a single cluster
and no free particle, a fixed number of vacancies, that is not monotone with circumsribed
rectangle obtained from the one of the configurations in Dis via increasing and/or decreasing
the horizontal or vertical length. More precisely,

Pis,i := {η : n(η) = 0, v(η) = 2lc − i(i+ 1)− 2, ηcl is connected, g′1(η) + g′2(η) = 1,
with a (lc + i+ 1)× (lc − i) circumscribed rectangle}, i = 0, 1, 2, 3.

(4.16)

See Figure 8(c) for an example of configurations in Pis,1 and not in C∗is.
For any i = −1, 0, 1, 2 we define Pfpis,i ⊆ Sis(�,�) that consists of configurations with a single

cluster and one free particle, a fixed number of vacancies, that is monotone with circumscribed
rectangle obtained from the one of the configurations in Pis,i via decreasing by one the shortest
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12× 12

Q̄is

-

U -path
12× 12

D̄is

Figure 7: Configurations in Q̄is and D̄is for lc = 14. A similar picture applies for Q̃is and
D̃is with a 11 × 13 rectangle in the center. Note that in the anisotropic regime the cost is
max{U1, U2} = U1.

length. More precisely,

Pfpis,i := {η : n(η) = 1, v(η) = lc − i(i+ 2)− 2, ηcl is connected, g′1(η) + g′2(η) = 0,

with a (lc + i+ 1)× (lc − i− 1) circumscribed rectangle}, i = −1, 0, 1, 2.
(4.17)

See Figure 8 for an example of configuration in Pfpis,−1 \ C∗is (in (a)) and in Pfpis,0 and in C∗is (in
(b)). Note that other examples of configurations in C∗is can be obtained by those in Figure 7 by
adding a free particle.

Remark 4.7 Note that C∗is ( Pfpis,−1∪P
fp
is,0, indeed there exist configurations that are in Pfpis,−1∪

Pfpis,0 and not in C∗is: for an example see Figure 8(a).

lc

lc

(a)

lc − 1

(b)

lc + 1

lc − 1

(c)

lc + 2

re,1cl

re,2cl

Figure 8: Critical configurations in the isotropic case: in (a) is represented a configuration in

Pfpis,−1 \ C∗is, in (b) a configuration in Pfpis,0 ∩C∗is and in (c) a configuration in Pis,1 and not in C∗is.

The set Gis(�,�) contains all the configurations that are in the sets defined in (4.16) and
(4.17) with the following further conditions. First, for any i = 0, 1, 2 we define the subset I α

i
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of the saddles in Pis,i with the condition that the configurations have only one occupied unit
square in either a row or in one of its two adjacent frame-angles. More precisely,

I α
i := {η ∈ Pis,i : |rα(η) ∪ cαα′(η) ∪ cαα′′(η)| = 1}, i = 0, 1, 2, 3, (4.18)

with α, α′, α′′ ∈ {n, s, w, e} such that cαα
′
(η) and cαα

′′
(η) are different frame-angles. Next, for

any i = 0, 1, 2 we define the subset I α,α′

k,k′,i of the saddles in Pis,i that are obtained from η ∈ Pis,i
during the sliding of the bar Bα′(η) around the frame-angle cα

′α(η). More precisely,

I α,α′

k,k′,i := {η ∈ Pis,i : |rα(η)| = k − 1, |rα′(η)| = k′ − k + 1, k′ ≤ 1 + ||rα(η)||, |cα′α(η)| = 1,

(rα(η) ∪ cα′α(η)) ∩ ηcl = rα,1cl ∪̇r
α,2
cl with d(rα,1cl , r

α,2
cl ) = 2}, i = 0, 1, 2,

(4.19)
where α, α′ ∈ {n, s, w, e} such that cα

′α(η) is a frame-angle, rα,1cl , rα,2cl are two disjoint connected

components in rα(η) ∪ cα′α(η) and k′ = 2, ..., lc, k = 2, ..., k′ (see for example the configuration
in Figure 8(c), that is in I e,s

lc−2,lc−1,1). The index i in (4.19) has to be different from 3 because
if the system is in I α

3 is not possible to complete the sliding of a bar around the frame-angle.
Note that the conditions in (4.19) guarantee that these configurations are obtained during a
sliding of a bar around a frame-angle, that is identified by the indeces α and α′. Moreover, the
index k′ denotes the length of the bar that we are sliding. The index k counts the number of
particles that are in rα(η) ∪ cα′α(η) during the sliding and can be less or equal than lc, but for

some values of k the set I α,α′

k,k′,i can be empty. Our notation does not distinguish if I α,α′

k,k′,i is
empty or not in order to avoid the presence of an additional index.

Furthermore, for any i = −1, 0, 1, 2 we define the subset I α,α′

i of the saddles in Pfpis,i that
are the last saddle at the end of a path that describes the sliding of a bar around a frame-angle,
i.e., the saddle where the last particle of the bar (protuberance) is detached. (See configuration
(12) in the path described in Figure 6 imposing U1 = U2 = U because we are in the isotropic
case). More precisely,

I α,α′

i := {η ∈ Pfpis,i : ∃ η′ ∈ I α,α′

2,k′,i such that η is obtained from η′ by removing the

non monotonicity, then removing the protuberance and
possibly moving the free particle at zero cost}, i = −1, 0, 1, 2,

(4.20)

where α, α′ ∈ {n, s, w, e}. Again, the indexes α and α′ identify the frame-angle with respect to
the sliding of the bar takes place. Note that the configuration in Figure 8(a) is in I s,w

0 ∪I e,n
0

and the configuration in Figure 8(b) is in I w,s
−1 ∪I w,n

−1 ∪I e,n
−1 ∪I n,e

1 .
In the discussion below [15, Theorem 1.4.3], the authors state that the fully identification of

the set Gis(�,�) is not known. The following result fills this gap.

Theorem 4.8 (Union of minimal gates for isotropic interactions). We obtain the following
description for Gis(�,�):

Gis(�,�) = C∗is ∪
3⋃

i=0

⋃

α

I α
i ∪

2⋃

i=0

⋃

α,α′

⋃

k,k′

I α,α′

k,k′,i ∪
2⋃

i=−1

⋃

α,α′

I α,α′

i (4.21)

We refer to Section 8.1 for the proof of the main Theorem 4.8.
In [15, Theorem 1.4.3(i)] the authors show that in Sis(�,�) there are unessential saddles,

also called dead-ends, without fully identifying them, while in Corollary 7.13 and Proposition
7.14 we identify three types of unessential saddles. Moreover, in Proposition 7.11 we prove that
C∗is is contained in G(�,�), that contradicts what is said in the discussion below [15, Theorem
1.4.3].
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4.3 Gate for weakly anisotropic interactions

In this Section we impose U1 6= U2 and U1 < 2U2 − 2ε in (2.2) (recall (4.8) for the definition
of ε), i.e., we consider weakly anisotropic interactions between nearest neighboring sites. We
will consider 0 < ε � U2, where � means suffiently smaller; for instance ε ≤ U2

100 is enough.
Many interesting quantities that follow have lower index wa to remind that they refer to weakly
anisotropic interactions. In order to state our main results for the gates in the weakly anisotropic
regime we need the following definitions. Let

l̄ :=

⌈
U1 − U2

U1 + U2 −∆

⌉
. (4.22)

For any s > l̄ + 2, if s has the same parity as l̄ i.e., [s− l̄]2 = [0]2, then we define the set of
0-standard rectangles as R0−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ l̄

2
`2(s) :=

s− l̄
2

, for [s− l̄]2 = [0]2. (4.23)

If s has the same parity as l̄− 1 i.e., [s− l̄]2 = [1]2, we define the set of 1-standard rectangles to
be R1−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ l̄ − 1

2
, `2(s) :=

s− l̄ + 1

2
for [s− l̄]2 = [1]2. (4.24)

For this value of s we define the set of quasi-standard rectangles as Rq−st(s) := R(`1(s) +
1, `2(s)− 1). Finally, we set

Rst(s) :=

{
R0−st(s) if [s− l̄]2 = [0]2
R1−st(s) if [s− l̄]2 = [1]2.

(4.25)

We define the critical horizontal length l∗1 and the critical vertical length l∗2 as

l∗1 :=

⌈
U1

U1 + U2 −∆

⌉
, l∗2 :=

⌈
U2

U1 + U2 −∆

⌉
, (4.26)

where d e denotes the integer part plus 1. We set the critical value of swa as

s∗wa := l∗1 + l∗2 − 1. (4.27)

Now we need the following definitions.

Definition 4.9 (a) We define Q̄wa as the set of configurations having one cluster anywhere
in Λ0 consisting of a (l∗1 − 1) × l∗2 rectangle with a single protuberance attached to one of

the shortest sides. Similarly, we define Q̃wa as the set of configurations having one cluster
anywhere in Λ0 consisting of a (l∗1 − 1) × l∗2 rectangle with a single protuberance attached
to one of the longest sides.

(b) We define
Γ∗wa := U1l

∗
2 + U2l

∗
1 + U1 + U2 + εl∗2 − εl∗1l∗2 − 2ε. (4.28)
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(c) We define the volume of the clusters in Q̄wa as

ncwa := l∗2(l∗1 − 1) + 1, (4.29)

and

D̄wa := {η′ ∈ Vncwa | ∃ η ∈ Qwa : H(η) = H(η′) and Φ|Vncwa
(η, η′) ≤ H(η) + U1},

D̃wa := {η′ ∈ Vncwa | ∃ η ∈ Q̃wa : H(η) = H(η′) and Φ|Vncwa
(η, η′) ≤ H(η) + U1}.

(4.30)

Note that the last condition in (4.30) is the same as requiring that Φ|Vncwa
(η, η′) < Γ∗wa +

H(�) = Γ∗wa. We encourage the reader to consult Proposition 7.1, where we give the
geometrical description of the sets D̄wa and D̃wa. Roughly speaking, one can think of D̄wa
and D̃wa as the sets of configurations consisting of a rectangular cluster with four bars
attached to its four sides, whose lengths satisfy precise conditions.

(d) We define
C∗wa := D̄fpwa. (4.31)

The reason why only the set D̄wa is relevant for the set C∗wa will be clarified later (see Lemma
7.9). Note that

H(C∗wa) = H(D̄fpwa) = H(D̄wa) + ∆ = H(Q̄wa) + ∆
= U1l

∗
2 + U2(l∗1 − 1)− εl∗2(l∗1 − 1) + 2∆− U1

= U1l
∗
2 + U2l

∗
1 + U1 + U2 + εl∗2 − εl∗1l∗2 − 2ε

= Γ∗wa.

(4.32)

See Figure 9 for an example of configurations in C∗wa.

Remark 4.10 Note that H(Q̄wa) < H(Q̃wa), indeed

H(Q̄wa) = Γ∗wa −∆,

H(Q̃wa) = Γ∗wa −∆ + U1 − U2.
(4.33)

The first main result of Section 4.3 is a refinement of [51, Theorem 2].

l∗2

l∗1

l∗2

l∗1

Figure 9: Critical configurations in C∗wa in the weakly anisotropic case. Moreover, if we remove
the free particle we obtain on the left a configuration in Q̄wa and on the right a configuration
in D̄wa \ Q̄wa.
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l∗2

l∗1 + 1

l∗2 + 1

l∗1

Figure 10: Critical configurations in the weakly anisotropic case: on the left hand-side is repre-
sented a configuration in Pwa,0 and on the right hand-side a configuration in Pwa,1.

Theorem 4.11 (Gate for weakly anisotropic interactions). The set C∗wa is a gate for the tran-
sition from � to �.

We refer to Section 9.1 for the proof of Theorem 4.11.
In order to give the result regarding the geometric characterization of Gwa(�,�), we need

some definitions. For any i = 0, 1 we define Pwa,i ⊆ Swa(�,�) that consists of configurations
with a single cluster and no free particle, a fixed number of vacancies, that is not monotone with
circumscribed rectangles obtained from the one of the configurations in D̄wa via increasing by
one the horizontal or vertical length. More precisely,

Pwa,i := {η : n(η) = 0, v(η) = 2l∗2 + i(l∗1 − l∗2)− 2, g′1(η) = i, g′2(η) = 1− i, ηcl is
connected with circumscribed rectangle in R(l∗1 − i+ 1, l∗2 + i)}, i = 0, 1.

(4.34)

See Figure 10 for an example of configurations in Pwa,0 (on the left-hand side) and in Pwa,1 (on
the right-hand side).

The set Gwa(�,�) contains all the configurations that are in the sets defined in (4.34) with
the following further conditions. First, we define the subsets Nα′

0 (resp. Nα
1 ) of the saddles

in Pwa,0 (resp. Pwa,1) that contains only one occupied unit square in either a vertical (resp.
horizontal) row or in one of its two adjacent frame-angles. More precisely,

Nα′
0 := {η ∈ Pwa,0 : |rα′(η) ∪ cα′ᾱ(η) ∪ cα′α̃(η)| = 1}, (4.35)

for any α′ ∈ {w, e} and ᾱ, α̃ ∈ {n, s} such that ᾱ 6= α̃, and

Nα
1 := {η ∈ Pwa,1 : |rα(η) ∪ cαα′′(η) ∪ cαα′′′(η)| = 1}, (4.36)

for any α ∈ {n, s} and α′′, α′′′ ∈ {w, e} such that α′′ 6= α′′′. Note that in Figure 10 the
configuration on the left-hand side is in N e

0 and the configuration on the right-hand side is in
N n

1 .

Next, we define the subsets Nα,α′

k,k′ of the saddles in Pwa,0 that are obtained from η ∈ Pwa,0
during the sliding of the bar Bα′(η) around the frame-angle cα

′α(η). More precisely,

Nα,α′

k,k′ := {η ∈ Pwa,0 : |rα(η)| = k − 1, |rα′(η)| = k′ − k + 1, k′ ≤ 1 + ||rα(η)||,
|cα′α(η)| = 1, (rα(η) ∪ cα′α(η)) ∩ ηcl = rα,1cl ∪̇r

α,2
cl with d(rα,1cl , r

α,2
cl ) = 2},

(4.37)
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where α ∈ {n, s}, α′ ∈ {w, e}, rα,1cl , rα,2cl are two disjoint connected components in rα(η)∪cα′α(η)
and k′ = l∗1 − l∗2 + 1, ..., l∗2, k = 2, ..., k′. Note that the conditions in (4.37) guarantee that these
configurations are obtained during a sliding of a bar around a frame-angle, that is identified by
the indeces α and α′. Note that the index k′ denotes the length of the bar that we are sliding.
The index k counts the number of particles that are in rα(η) ∪ cα′α(η) during the sliding and

can be less or equal than l∗2, but it is possible that for some values of k the set Nα,α′

k,k′ is empty.

Our notation does not distinguish if Nα,α′

k,k′ is empty or not in order to avoid the presence of an
additional index.

Now we are able to give the second main result of Section 4.3.

Theorem 4.12 (Union of minimal gates for weakly anisotropic interactions). We obtain the
following description for Gwa(�,�):

Gwa(�,�) = C∗wa ∪
⋃

α

⋃

α′

l∗2⋃

k′=l∗1−l∗2+1

k′⋃

k=2

Nα,α′

k,k′ ∪
⋃

α′

Nα′
0 ∪

⋃

α

Nα
1 (4.38)

We refer to Section 9.2 for the proof of Theorem 4.12.

4.4 Main results: sharp asymptotics for weakly anisotropic interactions

If the reader is interested in the sharp asymptotics below can find the proofs and some discussions
in Section 10.

Theorem 4.13 There exists a constant Kwa = Kwa(Λ, l
∗
2) such that

E�(τ�) = Kwae
Γ∗waβ [1 + o(1)], β →∞. (4.39)

Moreover, as Λ→ Z2,

Kwa(Λ, l
∗
2)→ 1

4πNwa

log |Λ|
|Λ| (4.40)

with

Nwa =

4∑

k=1

(
4

k

)(
l∗2 + k − 2

2k − 1

)
(4.41)

the cardinality of D̄wa = D̄wa(Λ, l∗2) modulo shifts.

Theorem 4.13 investigates the prefactor for the weakly anisotropic case. This analysis for the
isotropic case is given in [15, Theorem 1.4.4], while for the strongly anisotropic case is given in
[2, Theorem 4.11].

Theorem 4.14 Let τC∗−wa be the time just prior τC∗wa, then the entrance distribution of C∗wa is
uniform, i.e.,

lim
β→∞

P�
(
ητC∗−wa

= η|τC∗wa < τ�

)
=

1

|D̄wa|
∀ η ∈ D̄wa. (4.42)

Remark 4.15 Note that Theorem 4.14 concerning the uniform entrance distribution in the gate
can not be extended for the strongly anisotropic case due to the two possible entrances in the
gate (see [2, Lemma 6.16]).
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We define the mixing time as

tmix(ε) := min{n ≥ 0 : max
x∈X
||Pn(x, ·)− µ(·)||TV ≤ ε}, (4.43)

where ||ν−ν ′||TV := 1
2

∑
x∈X |ν(x)−ν ′(x)| for any two probability distributions ν, ν ′ on X . The

spectral gap of the Markov chain is defined as

ρ := a(2) (4.44)

where 1 = a(1) > a(2) ≥ ... ≥ a|X | ≥ −1 are the eigenvalues of the matrix (P (x, y))x,y∈X defined
in (2.9).

Theorem 4.16 Let int ∈ {is, wa}. For any ε ∈ (0, 1)

lim
β→∞

1

β
log tmix(ε) = Γ∗int = lim

β→∞
− 1

β
log ρ (4.45)

Furthermore, there exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that for every
β > 0

c1e
−βΓ∗int ≤ ρ ≤ c2e

−βΓ∗int (4.46)

Theorem 4.16 holds also for the strongly anisotropic case (see [2, Theorem 4.13]).

5 Main results for the simplified model

In this Section we focus on the simplified model described in Section 2.3 for int ∈ {is, wa}. For
the case int = sa, i.e., for the strongly anisotropic case, see [2, Section 5]. The case int = is
has been already studied in [42], see [42, Theorem 1.53] for the main result. In this paper we
extend that result for int = wa and we derive a result concerning the union of the minimal gates
for int ∈ {is, wa}. In this Section we set τA as the first hitting time of the dynamics in A for
A ⊆ X β. We refer to Section 11 for the proof of the two following Theorems.

Theorem 5.1 Let int = is. Fix ∆ ∈ (3
2U, 2U), with U/(2U − ∆) not integer. Suppose that

limβ→∞
1
β log |Λβ| = ∞. Thus the union of minimal gates Gis(�β,�β) for the transition from

�β to �β is

Gis(�β,�β) = J β(C∗is) ∪
3⋃

i=0

⋃

α

J β(I α
i ) ∪

2⋃

i=0

⋃

α,α′

⋃

k,k′

J β(I α,α′

k,k′,i) ∪
2⋃

i=−1

⋃

α,α′

J β(I α,α′

i ), (5.1)

where C∗is, I α
i , I α,α′

k,k′,i and I α,α′

i are defined in Definition 4.6(d), (4.18), (4.19) and (4.20)
respectively.

Theorem 5.2 Let int = wa. Fix ∆ ∈ (U1 + U2
2 , U1 + U2), with U2/(U1 + U2 −∆) not integer,

and U1 < 2U2 − 2ε, where ε is defined in (4.8). Suppose that limβ→∞
1
β log |Λβ| =∞.

(a) Let R≤(l1,l2) (resp. R≥(l1,l2)) be the set of configurations whose single contour is a rectangle
contained in (resp. containing) a rectangle with sides l1 and l2. Then

if η ∈ J β(R≤(l∗1−1,l∗2−1)) =⇒ lim
β→∞

Pνη(τ�β < τ�β ) = 1,

if η ∈ J β(R≥(l∗1 ,l
∗
2)) =⇒ lim

β→∞
Pνη(τ�β < τ�β ) = 1.

(5.2)
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(b) The set of configurations J β(C∗wa), with C∗wa defined in (4.31), is a gate for the transition
from �β to �β and there exists c > 0 such that, for sufficiently large β,

Pν�(τJ β(C∗wa) > τ�β ) ≤ e−βc. (5.3)

(c) For any δ > 0,
lim
β→∞

Pν�(eβ(Γ∗wa−δ) < τ�β < eβ(Γ∗wa+δ)) = 1. (5.4)

(d) The union of minimal gates Gwa(�β,�β) for the transition from �β to �β is

Gwa(�β,�β) = J β(C∗wa)∪
⋃

α

⋃

α′

l∗2⋃

k′=l∗1−l∗2+1

k′⋃

k=2

J β(Nα,α′

k,k′ )∪
⋃

α′

J β(Nα′
0 )∪

⋃

α

J β(Nα
1 ), (5.5)

where the sets Nα′
0 , Nα

1 and Nα,α′

k,k′ are defined in (4.35), (4.36) and (4.37) respectively.

Remark 5.3 In the simplified model we focus on the local aspects of metastability and nucle-
ation: the removal of the interactions outside Λ0 forces the critical droplet to appear inside Λ0.
In the original model with interaction and exclusion throughout Λβ, if lim infβ→∞

1
β log |Λβ| is

large enough, then the decay from the metastable to the stable state is driven by the formation of
many droplets far away from the origin, which subsequently grow, coalesce and reach Λ0. This is
a much harder problem. In [33, 35] important steps in this direction are achieved. The authors
show that, in the limit as temperature and the particle density tends to zero simultaneously, the
gas of Kawasaki’s particles evolves as a system of “Quasi-Random Walks”, in other words close
to an ideal gas, where particles have no interaction. In [33] the authors are able to deal with
a large class of initial conditions having no anomalous concentration of particles and with time
horizons that are much larger than the typical particle collision time.

6 Proof of the model-independent propositions

In this Section we give the proof of Propositions 3.3 and 3.5.

6.1 Proof of Proposition 3.3

Proof. We denote by σ1, ..., σj the saddles in the statement. We want to prove that these
saddles are unessential (see Section 3.1 point 4 for the definition). Since we can repeat the
following argument j times, we may focus on a single configuration σi. Consider any ω ∈ (m→
X s)opt such that ω ∩ σi 6= ∅. Since W(m,X s) is a gate for the transition from m to X s and
σi ∈ S(m,X s) \W(m,X s) for any i = 1, ..., j, we note that {arg maxωH} \ {σi} 6= ∅. Thus our
strategy consists in finding ω′ ∈ (m → X s)opt such that {arg maxω′ H} ⊆ {arg maxωH} \ {σi}.
We analyze separately the two following cases.

Case 1. Suppose that the path ω reaches S(m,X s) for the first time in the configuration
σi ∈ ∂CmX s(Γ) ∩ (S(m,X s) \ (W(m,X s) ∪K)), i.e., there exists the configuration σi (as above)

such that ω = (m, ..., σi, ..., η
(1)
1 , ...,X s), where η

(1)
1 ∈ ∂CmX s(Γ) ∩ (W(m,X s) ∪K). Any such ω

can be written in the form

ω = (m,ω1, ..., ωk1 , σi, ωk1+1, ..., ωk2 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., ωkq , ..., ωkq+1 , γq, η

(q)
1 , ..., η(q)

mq) ◦ ω̄, (6.1)
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where ω1, ..., ωk1 , ωk1+1, ..., γ1 ∈ CmX s(Γ), ωk2+1, ..., ωk3 , γ2, ..., ωkq+1, ..., ωkq+1 , γq ∈ X \ S(m,X s)
and η

(j)
i ∈ S(m,X s) for all i = 1, ...,m, j = 1, ..., q. At least one among these saddles belongs to

W(m,X s) and ω̄ is a path that connects η
(q)
mq to X s such that maxσ∈ω̄H(σ) < Γ +H(m). Note

that q and m1, ...,mq could be 1. We want to prove that σi is unessential, thus we define a new
path

ω′ = (m,ω′1, ..., ω
′
h, γ1, η

(1)
1 , ..., η(1)

m1
, ..., ωkq , ..., ωkq+1 , γq, η

(q)
1 , ..., η(q)

mq) ◦ ω̄, (6.2)

where (m,ω′1, ..., ω
′
h, γ1) is a path that is contained in CmX s(Γ) such that its time-reversal exists

by [47, Lemma 2.28] with η = γ1 and A = m. We note that the part of ω′ after γ1 is the same

as in equation (6.1), thus {arg maxω′H} = {η(1)
1 , ..., η

(1)
m1 , ..., η

(q)
1 , ..., η

(q)
mq} and therefore

{arg maxω′H} ⊆ {arg maxωH} \ {σi}, i = 1, ..., n. (6.3)

This implies that the saddle σi is unessential for any i = 1, ..., n and thus, using [47, Theorem
5.1], σi ∈ S(m,X s) \ G(m,X s).
Case 2. The path ω reaches the set S(m,X s) before reaching ∂CmX s(Γ)∩(S(m,X s)\(W(m,X s)∪
K)) in σi. In this case we can bypass the saddle σi by arguing in a similar way as in case 1,
indeed we can write

ω = (m,ω1, ..., ωk1 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., σi, ..., γt, η

(t)
1 , ..., η(t)

mt , ..., ωkq+1 , γq, η
(q)
1 , ..., η(q)

mq) ◦ ω̄ (6.4)

and define
ω′ = (m,ω′1, ..., ω

′
h, γt, η

(t)
1 , ..., η(t)

mt , ..., ωkq+1 , γq, η
(q)
1 , ..., η(q)

mq) ◦ ω̄, (6.5)

where (m,ω′1, ..., ω
′
h, γt) is is a path that is contained in CmX s(Γ) such that its time-reversal exists

by [47, Lemma 2.28] with η = γt andA = m. Thus {arg maxω′H} = {η(t)
1 , ..., η

(t)
mt , ..., η

(q)
1 , ..., η

(q)
mq}

and therefore (6.3) holds. �

6.2 Proof of Proposition 3.5

Proof. We denote by ζ1, ..., ζl the saddles in the statement. We want to prove that these
saddles are unessential (see Section 3.1 point 4 for the definition). Since we can repeat the
following argument l times, we may focus on a single configuration ζi. Consider any ω ∈ (m→
X s)opt such that ω ∩ ζi 6= ∅. Since W(m,X s) is a gate for the transition from m to X s and
ζi ∈ S(m,X s) \ W(m,X s) for any i = 1, ..., j, we note that {arg maxωH} \ {ζi} 6= ∅. Thus our
strategy consists in finding ω′ ∈ (m → X s)opt such that {arg maxω′ H} ⊆ {arg maxωH} \ {ζi}.
Due to Proposition 3.3, we can reduce the proof to consider any ω ∈ (m → X s)opt such that

the first saddle that is visited is η
(1)
1 ∈ ∂CmX s(Γ) ∩ (W(m,X s) ∪ K). Note that there exists

η
(q)
mq ∈ ∂CX

s

m (Γ +H(m)−H(X s))∩ (W(m,X s)∪ K̃), different from ζi, that can be connected to
the set LG via one step of the dynamics. By the model-dependent input (iii) we deduce that ζi
can be reached either after visiting the set LG

ω = (m,ω1, ..., ωk1 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., ωkq , ..., ωkq+1 , γq, η

(q)
1 , ..., η(q)

mq , η
G, ..., ζi) ◦ ω̃ (6.6)

or directly from η
(q)
mq

ω = (m,ω1, ..., ωk1 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., ωkq , ..., ωkq+1 , γq, η

(q)
1 , ..., η(q)

mq , ζi, ..., η̄
G) ◦ ω̄, (6.7)

where ω1, ..., ωk1 , γ1 ∈ CmX s(Γ) and ωk1+1, ..., ωk2 , γ2, ..., ωkq+1, ..., ωkq+1 ∈ X \ S(m,X s). Addi-

tionally, the configurations η
(j)
i ∈ S(m,X s) for all i = 1, ...,m, j = 1, ..., q and at least one
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among these saddles belongs to W(m,X s). Moreover, ηG (resp. η̄G) is in LG and ω̃ (resp. ω̄) is
a path that connects ζi (resp. η̄G) to X s. Note that q and m1, ...,mq could be 1. We want to
prove that ζi is unessential, thus for both ω in (6.6) and (6.7) we define a new path

ω′ = (m,ω1, ..., ωk1 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., ωkq , ..., ωkq+1 , γq, η

(q)
1 , ..., η(q)

mq , η
G) ◦ ω̂, (6.8)

where by the model-dependent input (iii)-(a) there exists a path ω̂ that connects ηG to X s such
that

max
σ∈ω̂

H(σ) < Γ +H(m). (6.9)

Thus {arg maxω′H} = {η(1)
1 , ..., η

(1)
m1 , ..., η

(q)
1 , ..., η

(q)
mq} and therefore

{arg maxω′H} ⊆ {arg maxωH} \ {ζi}, i = 1, ..., n. (6.10)

This implies that the saddle ζi is unessential for any i = 1, ..., n and thus, using [47, Theorem
5.1], ζi ∈ S(m,X s) \ G(m,X s). �

7 Useful model-dependent definitions and tools

In this Section (and only here) we set

Qwa = Q̄wa, Dwa = D̄wa (7.1)

to show the similarites between the results with the isotropic model.

7.1 Geometric description of the protocritical droplets

In [15, Theorem 1.4.1] the authors obtain the geometric description of the set Dis as Dis =
D̄is ∪ D̃is. In this Section we derive the geometric description of the analogous sets for the
weakly anistropic models D̄wa and D̃wa following the argument proposed in [15]. The geometric
description of the sets D̄sa and D̃sa is given in [2, Proposition 6.1]. Recall definition (4.30).

Proposition 7.1 (Geometric description of D̃wa and D̄wa). We obtain the following geometric
description of D̄wa and D̃wa:

(a) D̄wa is the set of configurations having one cluster η anywhere in Λ0 consisting of a (l∗1 −
2)× (l∗2− 2) rectangle with four bars Bα(η), with α ∈ {n,w, e, s}, attached to its four sides
satisfying

1 ≤ |Bw(η)|, |Be(η)| ≤ l∗2, l∗1 − l∗2 + 1 ≤ |Bn(η)|, |Bs(η)| ≤ l∗1, (7.2)

and ∑

α

|Bα(η)| −
∑

αα′∈{nw,ne,sw,se}

|cαα′(η)| = 2l∗1 + l∗2 − 3. (7.3)

(b) D̃wa is the set of configurations having one cluster η anywhere in Λ0 consisting of a (l∗1 −
3)× (l∗2− 1) rectangle with four bars Bα(η), with α ∈ {n,w, e, s}, attached to its four sides
satisfying

1 ≤ |Bw(η)|, |Be(η)| ≤ l∗2 + 1, 1 ≤ |Bn(η)|, |Bs(η)| ≤ l∗1 − 1, (7.4)

and ∑

α

|Bα(η)| −
∑

αα′∈{nw,ne,sw,se}

|cαα′(η)| = l∗1 + 2l∗2 − 2. (7.5)
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Remark 7.2 Let η ∈ D̄wa.

(i) Note that (7.3) takes into account the number of occupied unit squares in ∂−CR(η) due
to Remark 4.2. We deduce that at most three frame-angles of CR(η) can be occupied,
otherwise |∂−CR(η)| = 2l∗1 + 2l∗2 − 4 > 2l∗1 + l∗2 − 3, which is absurd.

(ii) Since |Bs(η)|+ |Bw(η)| ≤ l∗1 + l∗2 − 4 + k − |cne(η)|, we get

|Bn(η)|+ |Be(η)| = 2l∗1 + l∗2 − 3− (|Bs(η)|+ |Bw(η)|) + k ≥ l∗1 + 1 + |cne(η)|. (7.6)

By symmetry, we generalize the inequality above for any α ∈ {n, s} and α′ ∈ {w, e}: we
get |Bα(η)|+ |Bα′(η)| ≥ l∗1 + 1 + |cαα′(η)|.

Proof of Proposition 7.1 (a) We denote by D̄geowa the geometric set with the properties specified
in point (a) that we introduce to make the argument more clear. The proof will be given in two
steps:

(i) D̄geowa ⊆ D̄wa;

(ii) D̄geowa ⊇ D̄wa.

Proof of (i). To prove (i) we must show that for all η ∈ D̄geowa ,

(i1) H(η) = H(Q̄wa);

(i2) ∃ ω : Q̄wa → η, i.e., ω = (ω1, ..., ωk = η), such that max
i
H(ωi) ≤ H(Q̄wa) + U1, with

|ωi| = ncwa for all i = 1, ..., k and ω1 ∈ Q̄wa (see (4.29) for the definition of ncwa).

Proof of (i1). Any η ∈ D̄geowa satisfies n(η) = 0, |C(ηcl)| = (l∗1−2)(l∗2−2)+2l∗1 + l∗2−3 = ncwa,
and g1(η) = l∗1 and g2(η) = l∗2 since the configuration is monotone. Thus by (4.3) we deduce
that H is constant on D̄geowa . Since Q̄wa ⊆ D̄geowa , this completes the proof of (i1).

Proof of (i2). Consider ζ ∈ Q̄wa and η ∈ D̄geowa . Here, without loss of generality, we assume
that the protuberance is in rw(ζ). Then we have

- |Bw(ζ)| = 1;

- |Bn(ζ)| = |Bs(ζ)| = l∗1 − 1;

- |Be(ζ)| = l∗2;

- |cne(ζ)| = |cse(ζ)| = 1.

Using the sliding of a unit square around a frame-angle described in Figure 5 (see Definition
4.4), we move, one by one, |Bn(ζ)| − |Bn(η)| particles from around the frame-angle cnw(ζ).
After that we move |Be(ζ)|− |Be(η)|+ |Bs(ζ)|− |Bs(η)| particles around the frame-angle csw(ζ).
Finally, we move |Be(ζ)| − |Be(η)| particles around the frame-angle ces(ζ). The result is the
configuration η ∈ D̄geowa . This concludes the proof of (i2).

Proof of (ii). By (i2), we know that all configurations in D̄geowa are connected via U1-path to
Q̄wa. Since Q̄wa ⊆ D̄wa ∩ D̄geowa , in order to prove (ii) it suffices to show that following U1-paths
it is not possible to exit D̄geowa . We call a path clustering if all the configurations in the path
consist of a single cluster and no free particles. Below we will prove that for any η ∈ D̄geowa and
any η′ connected to η by a clustering U1-path,
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+U2 0 0 0

Figure 11: Creation and motion of the recess at cost 0.

(A) CR(η′) = CR(η);

(B) η′ ⊇ CR−(η).

Proof of (A). Starting from any η ∈ X , it is geometrically impossible to modify CR(η)
without detaching a particle, that contradicts the hypotheses of clustering U1-path.

Proof of (B). Fix η ∈ D̄geowa . The proof is done in two steps.

1. First, we consider clustering U1-paths along which we do not move a particle from CR−(η).
Along such paths we only encounter configurations in D̄geowa or those obtained from D̄geowa by
breaking one of the bars in ∂−CR(η) into two pieces at cost U1 (resp. U2) if the bar is horizontal
(resp. vertical). This holds because there is no particles outside CR(η) that can lower the cost.

If the broken bar is horizontal, then only moves at zero cost are admissible, so any particle
can be detached. This implies that the unique way to regain U1 and complete the U1-path is to
restore the bar.

If the broken bar is vertical, then the admissible moves are those with cost less or equal than
U1 − U2. Again any particle can be detached, indeed its cost is at least U1. The moves at cost
U2 are not possible, since U1 < 2U2 − 2ε. Thus the unique way to complete the U1-path is to
restore the broken bar. Thus we have proved that η′ ⊇ CR−(η).

2. Consider now clustering U1-paths along which we move a particle from a corner of CR−(η).
It is not allowed to move at cost U1 + U2, because it exceeds U1, thus the overshoot U2 must
be regained by letting the particle slide next to a bar that is attached to a side of CR−(η)
(see Figure 11). If the particle moves vertically (resp. horizontally), we regain U1 (resp. U2).
Since there are never two bars attached to the same side, we can at most regain U1, thus it
is not possible to move a particle from CR−(η) other than from a corner. From now on, since
U2 < 2U1 − 2ε, only moves at cost at most zero are admissible. There are no protuberances
present anymore, because only the configurations in Q̄wa have a protuberance. Thus no particle
outside CR−(η) can move, except those just detached from CR−(η). These particles can move
back, in which case we return to the same cofiguration η (see Figure 11). In fact, all possible
moves at zero cost consist in moving the recess just created in CR−(η) along the same side of
CR−(η), until it reaches the top of the bar, after which it cannot advance anymore at zero cost
(see Figure 11). All these moves do not change the energy, except the last one that returns the
particle to its original position and regains U1. This concludes the proof of (B).

From (A), we deduce that CR(η′) = R(l∗1, l
∗
2). From (A) and (B), we deduce that the number

of particles that are in ∂−CR(η) is equal to the number of particles that are in ∂−CR(η′), thus
(7.3), 1 ≤ |Bw(η′)|, |Be(η′)| ≤ l∗2 and 1 ≤ |Bn(η′)|, |Bs(η′)| ≤ l∗1 hold. In order to prove that
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following clustering U1-paths it is not possible to exit D̄geowa , we have to prove the lower bound
in (7.2) for the lengths |Bn(η′)| and |Bs(η′)|. We set

k =
∑

αα′∈{nw,ne,sw,se}

|cαα′(η′)|. (7.7)

Since |Bw(η′)|+ |Be(η′)| ≤ 2l∗2 − 4 + k, by (7.3) we get

|Bn(η′)|+ |Bs(η′)| = 2l∗1 + l∗2 − 3− (|Bw(η′)|+ |Be(η′)|) + k ≥ 2l∗1 − l∗2 + 1. (7.8)

Since |Bs(η′)| ≤ l∗1, (7.8) implies

|Bn(η′)| ≥ 2l∗1 − l∗2 + 1− |Bs(η′)| ≥ l∗1 − l∗2 + 1. (7.9)

By symmetry we can similarly argue for the length |Bs(η′)|. This implies that following U1-
paths it is not possible to exit D̄geowa . The argument goes as follows. Detaching a particle costs
at least U1 + U2 unless the particle is a protuberance, in which case the cost is U1. The only
configurations in D̄geowa having a protuberance are those in Q̄wa. If we detach the protuberance
from a configuration in Q̄wa, then we obtain a (l∗1 − 1)× l∗2 rectangle with a free particle. Since
in the sequel only moves at zero cost are allowed, it is only possible to move the free particle.
Since in a U1-path the particle number is conserved, the only way to regain U1 and complete the
U1-path is to reattach the free particle to a vertical side of the rectangle, thus return to Q̄wa.
This implies that for any η ∈ D̄geowa and any η′ connected to η by a U1-path we must have that
η′ ∈ D̄geowa . This concludes the proof.

(b) The proof is analogue to the one in (a). �

7.2 Definitions

Since we are considering the isotropic and weakly anisotropic models and some properties are
in common with the strongly anisotropic model, we choose the lower index int ∈ {is, wa, sa} to
make clear in the notation which of the three models we are referring to. We set

L∗int :=

{
L− lc if int = is,

L− l∗2 if int = wa.
(7.10)

Let int ∈ {is, wa}. For η ∈ C∗int, we associate (η̂, x) with η̂ ∈ Dint protocritical droplet and
x ∈ Λ the position of the free particle. We denote by CGint(η̂) (resp. CBint(η̂)) the configurations
that can be reached from (η̂, x) by a path that moves the free particle towards the cluster and
attaches the particle in ∂−CR(η̂) (resp. ∂+CR(η̂)). In Figure 12 on the left-hand side we depict
explicitly the good and bad sites for a specific η̂. Let

CGint =
⋃

η̂∈Dint

CGint(η̂), CBint =
⋃

η̂∈Dint

CBint(η̂). (7.11)

For η ∈ C∗int, let η̂ ∈ Dint be the configuration obtained from η by removing the free particle.
For A ⊆ Λ and x ∈ Λ, recall that d(x,A) denotes the lattice distance between x and A. As in
[15, Section 3.5], we need the following definitions.

Definition 7.3 Let Λ4 be Λ without its four frame-angles. We define, recursively,

B1(η̂) := {x ∈ Λ4| x /∈ η̂, d(x, η̂) = 1} (7.12)
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Figure 12: On the left-hand side we represent good sites (G) and bad sites (B) for `c = 14 in
the isotropic case. On the right-hand side we depict with x the sites in B1(η̂), with y the sites
in B̄2(η̂), with z and z̄ the sites in B̄3(η̂) and with z̄ and w the sites in B̄4(η̂).

and
B2(η̂) := {x ∈ Λ4| x /∈ η̂, d(x,B1(η̂)) = 1},
B̄2(η̂) := B2(η̂),

(7.13)

and
B3(η̂) := {x ∈ Λ4| x /∈ B1(η̂), d(x,B2(η̂)) = 1},
B̄3(η̂) := B3(η̂) ∪ {B̄2(η̂) ∩ ∂−Λ4}, x (7.14)

and for i = 4, 5, ..., L∗int

Bi(η̂) := {x ∈ Λ4| x /∈ Bi−2(η̂), d(x,Bi−1(η̂)) = 1},
B̄i(η̂) := Bi(η̂) ∪ {B̄i−1(η̂) ∩ ∂−Λ4}. (7.15)

In words, B1(η̄) is the ring of sites in Λ4 at distance 1 from η̂, while B̄i(η̂) is the ring of sites in
Λ4 at distance i from η̂ union all the sites in ∂−Λ4 at distance 1 < j < i from η̂ (i = 2, 3, ..., L∗int)
(see Figure 12 on the right-hand side). Note that, depending on the location of η̂ in Λ, the B̄i(η̂)
coincide for large enough i. The maximal number of rings is L∗int.

Now we need to introduce specific sets that will be crucial later on.

Definition 7.4 Let int ∈ {is, wa}. We define

C∗int(i) := {(η̂, x) : η̂ ∈ Dint, x ∈ B̄i(η̂)}, i = 2, 3, ..., L∗int. (7.16)

First, note that the sets C∗int(i) are not disjoint.

Remark 7.5 From the definitions of the sets C∗is and C∗wa, for any int ∈ {is, wa} we deduce
that

C∗int =

L∗int⋃

i=2

C∗int(i). (7.17)

For this discussion in the case int = sa we refer to [2, Section 6.2].
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7.3 Useful lemmas for the gates

In this Section we give some useful lemmas that help us to characterize the gates.

7.3.1 Lemmas valid for the two models

Here we state Lemma 7.6 for the case int ∈ {is, wa}, but it holds also for the case int = sa (see
[2, Lemma 6.6]).

Lemma 7.6 Let int ∈ {is, wa}. Starting from C∗int \ Qfpint, if the free particle is attached to a
bad site obtaining ηB ∈ CBint, the only transitions that does not exceed the energy Γ∗int are either
detaching the protuberance, or a sequence of 1-translations of a bar or slidings of a bar around
a frame-angle. Moreover, we get:

(i) if it is possible to slide a bar around a frame-angle, then the saddles that are crossed are
essential;

(ii) if it is not possible to slide a bar around a frame-angle, then the path must come back to
the starting configuration and the saddles that are crossed are unessential.

Proof. Let int ∈ {is, wa}. Let ηB ∈ CBint the configuration obtained by attaching the free
particle as a protuberance to a bar, thus H(ηB) = Γ∗is−U if int = is and either H(ηB) = Γ∗int−U1

or H(ηB) = Γ∗int − U2 if int = wa. Note that it is impossible to move particles in ∂−CR(ηB)
before further lowering the energy, since this move costs at least 2U if int = is and U1 + U2 if
int = wa. Moreover, it is impossible to create a new particle before further lowering the energy,
since this move costs ∆. On the other hand there are no moves available to lower the energy.
If the protuberance is detached, then the energy reaches the value Γ∗int. Analyzing motions of
particles along the border of the droplet (both sequence of 1-translations of a bar and sliding
around a frame-angle), if int = is the energy raises by U at the first step, it is constant in the
following steps but the last, when it decreases by U . If int = wa, the energy raises by either U1

or U2 at the first step, it is constant in the following steps but the last, when it decreases by U1

or U2 respectively. Thus these are admissible moves.

First, we prove (i). Let ξ
(e)
1 , ..., ξ

(e)
m /∈ C∗int the saddles visited during the sliding of a bar

around a frame-angle. We want to prove that these saddles are essential (see Section 3.1 point
4 for the definition). Since we can repeat the following argument m times, we may focus on

a single configuration ξ
(e)
i . Since C∗int is a gate for the transition and ξ

(e)
i ∈ Sint(�,�) \ C∗int

for any i = 1, ...,m, we note that a path ω ∈ (� → �)opt such that {arg maxωH} = {ξ(e)
i }

does not exist. Thus our strategy consists in finding a path ω ∈ (� → �)opt such that for any
ω′ ∈ (�→ �)opt

ω ∩ ξ(e)
i 6= ∅ and {arg maxω′H} * {arg maxωH} \ {ξ(e)

i }, i = 1, ...,m. (7.18)

Let ηB be the union of a cluster η ∈ Dint and a protuberance attached to one of its bars in
a site with coordinates (i, j). Without loss of generality assume that the bar is Bn(η) and
that |cwn(η)| = 1, otherwise a sequence of 1-translations of the bars Bn(η) and Bw(η) can take
place before creating the free particle in order to obtain |cwn(η)| = 1. Note that during these
translations the path does not cross any saddle. We define the specific path ω of the strategy
above as

ω = (�, ω1, ..., ωk, η, η1, ..., ηL−j−2, η
B, ξ

(e)
1 , ..., ξ(e)

m ) ◦ ω̄, (7.19)
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Figure 13: Here we depict the configuration η1 that consists of a cluster η ∈ Dint union a free
particle, in grey, that is in position (i, L − 1). The dotted unit squares represent the following
positions of the free particle that moves as represented by the arrows on the left, until the
particle is attached to the cluster in position (i, j). The latter is the configuration ηB.

where ω1, ..., ωk ∈ C��(Γ∗int), η ∈ Dint, η1 ∈ C∗int(L−j−1), ..., ηL−j−2 ∈ C∗int(2), ηB ∈ CBint(η̂L−j−2)

(see Figure 13 for a picture of this situation) and ω̄ is a path that connects ξ
(e)
m to � such that

maxσ∈ω̄H(σ) ≤ Γ∗int. Now we show that for any ω′ the condition (7.18) is satisfied. If ω′

passes through the configuration ξ
(e)
i , {arg maxω′H} ⊇ {ξ(e)

i }, thus (7.18) is satisfied. Therefore

we can assume that ω′ ∩ ξ(e)
i = ∅. If ω′ crosses the set Sint(�,�) through a configuration η̃

such that η̃ ∩ ω = ∅, then the condition (7.18) holds. In the sequel ω′ visits the configurations
η1, ..., ηL−j−2 ∈ C∗int. Starting from ηL−j−2, there are four allowed directions for moving the free
particle. If we move it in the direction of the cluster (south in Figure 13), we deduce that the
path ω′ visits the configuration ηB. For the other three choices, the free particle still remains
free after the move, indeed by construction of the path ω, starting from ηL−j−2 it is not possible
to reach the set CGint via one step of the dynamics. Thus the path ω′ can visit either a saddle
not already visited by ω (west or east in Figure 13) or a saddle that has been already visited by
ω (north in Figure 13). In the first case, we obtain that (7.18) is satisfied. In the latter case, we
can iterate this argument and, since ω′ goes from � to �, we can assume that the path ω′ visits
the configuration ηB ∈ CBint(η̂L−j−2). From now on, starting from ηB, there are two possible
scenarios:

I. ω′ activates the same sliding of a bar around a frame-angle as ω;

II. ω′ activates a sliding of a bar around a frame-angle different from ω.

In case I, since ω′ ∩ ξ(e)
i = ∅, the sliding of a bar around a frame-angle has been stopped

before hitting ξ
(e)
i . Thus we can assume that ω′ comes back to ηB, otherwise the energy exceeds
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Γ∗int. Since the path ω′ must reach �, starting from ηB the protuberance is detached and in
the sequel is attached in another site. Thus ω′ reaches a saddle that is not visited by ω. This
implies that (7.18) is satisfied.

In case II, when the path ω′ initiates the sliding of a bar around a frame-angle, it reaches at
the first step a saddle that it is not visited by ω, thus the condition (7.18) is satisfied. Therefore
the unique possibility is not to start this sliding and thus the path ω′ must come back to ηB,
since it has to reach �. From now on, as before, the path ω′ has to detach the protuberance
that in the sequel is attached in another site, thus ω′ visits a saddle that is not visited by ω.

This implies that (7.18) is satisfied. Thus we have proved that the saddle ξ
(e)
i is essential for

any i = 1, ...,m.
Finally, we prove (ii). By assumptions we know that it is not possible to complete a sliding

of a bar around a frame-angle and thus this sliding must stop. Let ξ
(ne)
1 , ..., ξ

(ne)
n the saddles

that are visited during this motion, we want to prove that these saddles are unessential (see
Section 3.1 point 4 for the definition). Since we can repeat the following argument n times, we

may focus on a single configuration ξ
(ne)
i . Consider any ω ∈ (� → �)opt such that ω ∩ ξ(ne)

i 6=
∅. Since C∗int is a gate for the transition from � to � and ξ

(ne)
i ∈ Sint(�,�) \ C∗int for any

i = 1, ..., n, we note that {arg maxωH} \ {ξ(ne)
i } 6= ∅. Thus our strategy consists in finding

ω′ ∈ (� → �)opt such that {arg maxω′ H} ⊆ {arg maxωH} \ {ξ(ne)
i }. Starting from ξ

(ne)
i ,

the unique admissible moves in order to not exceed Γ∗int are the time-reversal of the previous
moves. This implies that the path must come back to the starting configuration ηB. Thus we can

write ω = (�, ω1, ..., ωk, γ1, ..., γl, η, η
B, ξ

(ne)
1 , ..., ξ

(ne)
i , .., ξ

(ne)
1 , ηB)◦ω̄, where ω1, ..., ωk ∈ C��(Γ∗int),

γ1, ..., γl ∈ X \ C��(Γ∗int − H(X s)) such that H(γi) ≤ Γ∗int for any i = 1, ..., l and η ∈ C∗int,
ηB ∈ CBint(η̂) and ω̄ is a path that connects ηB to � such that maxσ∈ω̄H(σ) ≤ Γ∗int. For
this path we define a new path ω′ = (�, ω1, ..., ωk, γ1, ..., γl, η, η

B) ◦ ω̄. Thus we deduce that

{arg maxω′H} ⊆ {arg maxωH} \ {ξ(ne)
i }, which implies that the saddle ξ

(ne)
i is unessential for

any i = 1, .., n. �

7.3.2 Lemmas valid for the weakly anisotropic model

In this Section we give some lemmas for the weakly anisotropic model, i.e., int = wa, that will
be useful later on. We postone the proof to Appendix A.1. Lemmas 7.8 and 7.9 are valid also
in the case int = sa (see [2, Lemma 6.8] and [2, Lemma 6.9] respectively), while Lemma 7.7 has
a corresponding version for the case int = sa (see [2, Lemma 6.7]).

Lemma 7.7 Starting from ηB ∈ CBwa, the saddles obtained by a 1-translation of a bar are
essential and in Nα′

0 ∪Nα
1 . Moreover, all the saddles in Nα′

0 ∪Nα
1 can be obtained from this ηB

by a 1-translation of a bar.

Lemma 7.8 Starting from a configuration η ∈ C∗wa, it is not possible to slide a vertical bar
around a frame-angle without exceeding the energy Γ∗wa.

With the following Lemma we can justify the definition of C∗wa given in (4.31).

Lemma 7.9 Starting from D̃wa, the dynamics either passes through D̄wa or it is not possible
that a free particle is created without exceeding the energy level Γ∗wa.
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7.4 Model-dependent strategy

Our goal is to characterize the union of all the minimal gates for isotropic and weakly anisotropic
interactions. To this end, due to [47, Theorem 5.1], we will characterize all the essential saddles
for the transition from the metastable to the stable state. In this Section we apply the model-
independent strategy explained in Section 3.2 in order to identify some unessential saddles. Let
int ∈ {is, wa}. We apply (3.15) both for σ = �, A = {�} and Γ = Γ∗int defining C��(Γ∗int), and
for σ = �, A = {�} and Γ = Γ∗int −H(�) defining C��(Γ∗int −H(�)). We chose this notation in
order to emphasize the dependence on Γ∗int. First, we prove the required model-dependent inputs
(iii)-(a) and (iii)-(b) in Section 3.2 (see Proposition 7.10(i) and Proposition 7.10(ii)). Second, by
[15, Theorem 1.3.3(iii)] for int = is and Theorem 4.11 for int = wa, we know that C∗int is a gate
for the transition from � to � for int ∈ {is, wa}. Thus we apply the model-independent strategy
explained in Section 3.2 to Kawasaki dynamics by taking m = �, X s = {�}, W(m,X s) = C∗int,
LB = CBint and LG = CGint. In Proposition 7.11 we prove that C∗int ⊆ Gint(�,�), that allows us to
study the essentiality only of the saddles that are not in C∗int.

In order to apply Propositions 3.3 and 3.5, we need to characterize the sets Kint and K̃int (see
(3.16) and (3.17) respectively for the definitions) for our models. This is done in Proposition 7.12.
Due to this result, our strategy consists in partitioning the saddles that are not in C∗int in three
types: the saddles that are in the boundary of C��(Γ∗int), i.e., σ ∈ ∂C��(Γ∗int)∩ (Sint(�,�) \ C∗int),
the saddles that are in the boundary of C��(Γ∗int −H(�)) and not in K̃int, i.e., ζ ∈ ∂C��(Γ∗int −
H(�)) ∩ (Sint(�,�) \ (C∗int ∪ K̃int)), and the remaining saddles ξ ∈ Sint(�,�) \ (∂C��(Γ∗int) ∪
(∂C��(Γ∗int −H(�)) \ K̃int) ∪ C∗int). By Propositions 3.3 and 3.5, we obtain Corollary 7.13 that
states that the saddles of the first and second types are respectively unessential. In Proposition
7.14 for int ∈ {is, wa} we highlight some of the saddles of type three that are unessential.

We need to distinguish the analysis for int ∈ {is, wa} and int = sa due to the different en-
trance in C∗int for int ∈ {is, wa} and int = sa (see Lemma 7.16 and [2, Lemma 6.17] respectively).
For the case int = sa this strategy is presented in [2, Section 6.4].

Finally, we identify the essential saddles of the third type in Proposition 8.1 for the isotropic
interactions and in Proposition 9.2 for the weakly anisotropic interactions.

7.4.1 Main Propositions

In this Subsection we give the main results for our model-dependent strategy. We refer to
Subsection 7.4.3 for the proof of these propositions.

The next proposition shows that when the dynamics reaches CGint it has gone “over the hill”,
while when it reaches CBint the energy has to increase again to the level Γ∗int to visit � or �.
An analogue version for int = is is proven in [15, Proposition 2.3.9], while here we extend that
result to int = wa following a similar argument. Note that this result holds also in the case
int = sa: see [2, Proposition 6.10].

Proposition 7.10 Let int ∈ {is, wa}.
(i) If η ∈ CGint, then there exists a path ω : η → � such that maxζ∈ωH(ζ) < Γ∗int.

(ii) If η ∈ CBint, then there are no ω : η → � or ω : η → � such that maxζ∈ωH(ζ) < Γ∗int.

Proposition 7.11 Let int ∈ {is, wa}, then C∗int ⊆ Gint(�,�).

Proposition 7.11 holds also in the case int = sa (see [2, Proposition 6.11]).

Proposition 7.12 Let int ∈ {is, wa}, then
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(i) Kint = ∅;

(ii) For the set K̃int we obtain the following characterization:

(a) K̃is ∩ ∂C��(Γ∗is −H(�)) = {η ∈ ⋃i

⋃
α,α′ I

α,α′

i \ C∗is : it is possible to attach the free

particle in ∂−CR(η) via one step of the dynamics} =: Īis;

(b) K̃wa ∩ ∂C��(Γ∗wa −H(�)) =
⋃
α

⋃
α′
⋃
k′ N

α,α′

2,k′ .

For the corresponding result of Proposition 7.12 for int = sa we refer to [2, Proposition 6.12].

Corollary 7.13 Let int ∈ {is, wa}.
(i) The saddles of the first type σ ∈ ∂C��(Γ∗int) ∩ (Sint(�,�) \ C∗int) are unessential;

(ii) The saddles of the second type

(a) ζ ∈ ∂C��(Γ∗is −H(�)) ∩ (Sis(�,�) \ (C∗is ∪ Īis)) are unessential;

(b) ζ ∈ ∂C��(Γ∗wa −H(�)) ∩ (Swa(�,�) \ (C∗wa ∪
⋃
α

⋃
α′
⋃
k′ N

α,α′

2,k′ )) are unessential.

Proof. Combining Propositions 3.3, 3.5 and 7.12 we get the claim. �

Proposition 7.14 Let int ∈ {is, wa}. Any saddle ξ that is neither in C∗int, nor in the boundary

of the cycle C��(Γ∗int), nor in ∂C��(Γ∗int−H(�))\K̃int, i.e., ξ ∈ Sint(�,�)\(∂C��(Γ∗int)∪(∂C��(Γ∗int−
H(�)) \ K̃int) ∪ C∗int), such that τξ < τCBint

is unessential. Therefore it is not in Gint(�,�).

For the corresponding result of Proposition 7.14 for int = sa we refer to [2, Proposition 6.13].

7.4.2 Useful Lemmas for the model-dependent strategy

In this Subsection we give some useful lemmas about the entrance in the gate and the minimality
of the sets C∗int(i) with i = 3, ..., L∗int for int ∈ {is, wa}. We stress that the behavior for
int ∈ {is, wa} is very different from that observed for int = sa, indeed we note that the weakly
anisotropic model has some characteristics similar to the isotropic and some similar to the
strongly anisotropic model. For the corresponding results obtained in the case int = sa we
refer to [2, Subsection 6.4.2]. Recall Definition 4.6 for the definitions of Qis, Dis and C∗is, and
(7.1) and (4.31) for the corrisponding definition for int = wa. The next lemma generalizes [15,
Proposition 2.3.8], proved for int = is, to the case int = wa following similar arguments. In the
case int = sa, this result is given in [2, Lemma 6.14].

Lemma 7.15 Let int ∈ {is, wa}.

(i) Starting from C∗int \ Qfpint, the only transitions that do not raise the energy are motions of
the free particle in the region where the free particle is at lattice distance ≥ 3 from the
protocritical droplet.

(ii) Starting from Qfpint, the only transitions that do not raise the energy are motions of the free
particle in the region where the free particle is at lattice distance ≥ 3 from the protocritical
droplet and motions of the protuberance along the side of the rectangle where it is attached.
When the lattice distance is 2, either the free particle can be attached to the protocritical
droplet or the protuberance can be detached from the protocritical droplet and attached to
the free particle, to form a rectangle plus a dimer. From the latter configuration the only
transition that does not raise the energy is the reverse move.
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(iii) Starting from C∗int, the only configurations that can be reached by a path that lowers the
energy and does not decrease the particle number, are those where the free particle is
attached to the protocritical droplet.

Proof. The proof is analogue to the one reported in [15] for int = is: the path we consider is
the same as in the isotropic case, but the energy of the moves is different. Indeed the energy
decreases by U if int = is and by either U1 or U2 depending whether it is attached to the vertical
or horizontal side respectively. �

The next lemma investigates how the entrance in C∗int occurs when int ∈ {is, wa}. This result
for int = is is proven in [15, Proposition 2.3.7], while here we extend that result for int = wa.
We encourage the reader to inspect the difference between lemma 7.16 and [2, Lemma 6.16],
where the peculiar entrance in the gate for the strongly anisotropic case is analyzed.

Lemma 7.16 Let int ∈ {is, wa}. Any ω ∈ (� → �)opt passes first through Qint, then possibly
through Dint \ Qint, and finally through C∗int.

We postpone the proof of Lemma 7.16 in Appendix A.1. We refer to Subsection 7.4.4 for the
proof of the remaining lemmas. The next Lemma is proven for int = is in [15, Section 3.5],
while here we extend that result for int = wa. Recall the definition of minimal gate given in
Section 3.1 point 4. In Lemma 7.17 we extend to int = wa the statement in [15, eq. (3.5.5)] for
C∗is(i) with i = 3, ..., L∗is. Concerning C∗is(2), in Lemma 7.19, we correct the statement in [15, eq.
(3.5.5)] by replacing the minimality of the gate C∗is(2) with the sentence “C∗is(2) is composed by
essential saddles”. We stress that this correction does not effect the results where the statement
was used in [15]. Moreover, in Lemma 7.19, we prove that the saddles in C∗int(2) are essential
also for int = wa. The result for int = sa is given in [2, Lemma 6.15].

Lemma 7.17 Let int ∈ {is, wa}, then C∗int(i) is a minimal gate for any i = 3, ..., L∗int.

Remark 7.18 In the case int = sa, the statement of Lemma 7.17 does not hold. A different
result is derived in [2, Lemma 6.17].

Lemma 7.19 Let int ∈ {is, wa}. The saddles in C∗int(2) are essential.

7.4.3 Proof of Propositions

Proof of Proposition 7.10 The case int = is is proven in [15, Proposition 2.3.9], thus we
consider int = wa.

(i) If η ∈ CGwa, then its energy is either Γ∗wa−U1−U2 or Γ∗wa−U1 (resp. Γ∗wa−U2), depending
on whether the attached particle is in a corner or is a protuberance on a vertical (resp. horizontal)
side. In the latter case we can move the particle at no cost and gain an extra −U2 (resp. −U1)
when it has become a corner. After that it is possible to create a new particle and attach it,
which leads to energy Γ∗wa−U1−U2− (U1 +U2−∆) < Γ∗wa. We can continue in this way, filling
up all the sites in ∂−CR(η). Now we can proceed along the reference path for the nucleation
constructed in [51, Section 3.2] until the path reaches �. We have exhibited a path ω such that
maxσ∈ωH(σ) < Γ∗wa.

(ii) If η ∈ CBwa, then H(η) = Γ∗wa−U1 (resp. H(η) = Γ∗wa−U2) if the protuberance has been
attached to a vertical (resp. horizontal) side. As long as the energy does not exceed Γ∗wa, it is
impossible to create a new particle before further lowering the energy. But there are no moves
available to lower the energy. As a consequence the unique admissible moves are those where the
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last particle that was attached is moving along the side at zero cost or detaching again, or start
a sliding of a bar around a frame-angle (see the explanation in the third case). In the first case
we obtain a configuration that is analogue to η ∈ CBwa and therefore we can iterate the argument
by taking this configuration as ηB for a finite number of steps, since the path has to reach �. In
the second case, we obtain a configuration that is in C∗wa, thus the path has to reach again the
energy value Γ∗wa. In the third case, we justify separately when the sliding is at cost U1 or at
cost U2. If H(η) = Γ∗wa − U1, the only admissible motions along the border of the droplet that
do not exceed Γ∗wa are those at cost U1, since the unique possibility is to move the particle in a
frame-angle in such a way that it connects to the protuberance, otherwise all the other moves
have cost at least U1 + U2. Similarly, by symmetry we deduce that if H(η) = Γ∗wa − U2, then
the only admissible move is starting a sliding of a bar around a frame-angle at cost U2. In both
cases the energy returns to Γ∗wa, which concludes the proof. �

Proof of Proposition 7.11 Let int ∈ {is, wa}. By Lemma 7.19 we know that the saddles in
C∗int(2) are essential and thus are in Gint(�,�) due to [47, Theorem 5.1]. Moreover, by Lemma
7.17 we know that the set C∗int(i) is a minimal gate for any i = 3, ..., L∗int, thus

C∗int = C∗int(2) ∪
L∗int⋃

i=3

C∗int(i) ⊆ Gint(�,�). (7.20)

�

Proof of Proposition 7.12 Let int ∈ {is, wa}.
(i) To prove that Kint = ∅ we argue by contradiction. Let η̄ ∈ Kint, thus there exist η ∈ C∗int and
ω = ω1◦ω2 from η to � with the properties described in (3.16), where ◦ denotes the composition
of two paths. We know that η is composed by the union of a protocritical droplet in Dint and
a free particle. Since ω1 ∩ C∗int = {η}, we note that the free particle must be in Λ−, otherwise
the free particle has to cross at least Λ− and ∂Λ−, the latter in the configuration η′ ∈ C∗int, with
η′ 6= η, which contradicts the conditions in (3.16). Therefore, starting from η, by the optimality
of the path we deduce that the unique admissible move is to remove the free particle. The
configuration that is obtained in this way is in Dint, that belongs to C��(Γ∗int), which is absurd
since (3.16) requires that ω1 ∩ C��(Γ∗int) = ∅. Thus it is not possible to find ω1 and ω2, therefore
Kint = ∅.
(ii) Let η̄ ∈ K̃int ∩ ∂C��(Γ∗int −H(�)) for any int ∈ {is, wa}. By the definition of the set K̃int

we know that there exist η ∈ C∗int and ω = ω1 ◦ ω2 from η to � with the properties described
in (3.17). We know that η is composed by the union of a protocritical droplet η̂ ∈ Dint and a
free particle. Since ω1 ∩ C∗int = {η}, we note that η ∈ C∗int(2), otherwise the free particle has
to cross at least B̄2(η̂) and B̄3(η̂), the latter in the configuration η′ ∈ C∗int, with η′ 6= η, which
contradicts the conditions in (3.17). Therefore, starting from η, by the optimality of the path
we deduce that the unique admissible move is to attach the free particle to the cluster. If η̄ is
obtained from η by attaching the free particle in a good site giving rise to a configuration in
CGint(η̂), by Proposition 7.10(i) we know that ω1 ∩ C��(Γ∗int −H(�)) 6= ∅, that contradicts (3.17),

thus t is not possible to find ω1 and ω2, therefore η̄ /∈ K̃int, which is in contradiction with the
assumption.

Assume now that η̄ is obtained from η by attaching the free particle in a bad site giving
rise to a configuration in CBint(η̂). If η ∈ Qfpint, then by Lemma 7.15(ii) the unique admissible

move is the reverse one, thus we may assume that η ∈ C∗int \ Qfpint and that the path does not
go back to η, otherwise we can iterate this argument for a finite number of steps since the
path has to reach �. Starting from η, by Lemma 7.6 we know that η̄ is obtained either via a
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sequence of 1-translations of a bar or via a sliding of a bar around a frame-angle. If a sequence
of 1-translations takes place, by the optimality of the path we deduce that the unique possibility
is either detaching the protuberance or sliding a bar around a frame-angle. In the first case the
configuration that is obtained is in C∗int and thus η̄ /∈ K̃int, which contradicts the assumption.
Now we analyze separately the case in which a sliding of a bar around a frame-angle takes place
for int = is and int = wa.

If int = is, the configurations visited by the path ω during this sliding are η̄1, ..., η̄m ∈ I α,α′

k,k′,i
for some α, α′ ∈ {n, s, w, e}, k′ = 2, ..., lc and k = 2, ..., k′, while the last configuration is a saddle

η̃ ∈ I α,α′

i when the last particle of the bar is detached. Thus {η̄1, ..., η̄m}∩∂C��(Γ∗int−H(�)) = ∅.
Starting from η̃, the free particle can move and be attached in ∂+CR(η̃) and another sliding
of a bar around a frame-angle can take place. If this is the case, as proved above the saddles
visited during this motion are not in ∂C��(Γ∗is − H(�)) except the last configuration ˜̃η visited

during the sliding, that is a saddle, if P(˜̃η, CGis) > 0. Thus the unique possibility to have η̄ ∈
K̃is ∩ ∂C��(Γ∗is − H(�)) is that η̄ ∈ I α,α′

i \ C∗is and it is possible to attach the free particle
in ∂−CR(η̄) via one step of the dynamics. Taking the union over all i ∈ {−1, 0, 1, 2} and
α, α′ ∈ {n, s, w, e} we get the claim.

If int = wa, by (4.12), Proposition 7.1(a) and Lemma 7.8 we deduce that the unique possi-
bility to slide a bar around a frame-angle is that the bar is horizontal and it has length between
l∗1 − l∗2 + 1 and l∗2 − 1. Thus the configurations visited by the path ω during this sliding are

η̄1, ..., η̄m ∈ Nα,α′

k,k′ for some α ∈ {n, s}, α′ ∈ {w, e}, k′ = l∗1 − l∗2 + 1, ..., l∗2 − 1 and k = 2, ..., k′,
while the last configuration η̃ obtained when the last particle of the bar is detached is not a
saddle. Note that η̃ is not in the set B defined in [51, eq. (3.64)], since s(η̃) = s∗wa + 1 and
v(η̃) = 2l∗2 − l∗1 − 2 < pmin(η̃) − 1 = l∗2 − 1. Thus by [51, Proposition 11] we know that

η̃ ∈ C��(Γ∗wa −H(�)). This implies that only the configuration η̄m, that belongs to Nα,α′

2,k′ , is in

K̃wa ∩ ∂C��(Γ∗wa −H(�)). Taking the union of Nα,α′

2,k′ over all α ∈ {n, s} and α′ ∈ {w, e}, we get
the claim. �

Proof of Proposition 7.14 Let int ∈ {is, wa}. We denote by ξ1, ..., ξn the saddles in the
statement. We want to prove that these saddles are unessential (see Section 3.1 point 4 for
the definition). Since we can repeat the following argument n times, we may focus on a single
configuration ξi. Consider any ω ∈ (�→ �)opt such that ω ∩ ξi 6= ∅. By hypotheses, we have to
analyze only the case in which the path ω reaches the saddle ξi before reaching CBint. Since C∗int is
a gate for the transition and ξi ∈ Sint(�,�) \ C∗int, we note that {arg maxωH} \ {ξi} 6= ∅. Thus
our strategy consists in finding ω′ ∈ (�→ �)opt such that {arg maxω′ H} ⊆ {arg maxωH}\{ξi}.

First, assume that ω reaches the saddle ξi before reaching CGint and thus ξi must be obtained
by a configuration η ∈ C∗int without attaching the free particle. In particular, Lemmas 7.15(ii)
and 7.16 imply that the only possibility is that η is composed by the union of a cluster η̂ ∈ Qint
and a free particle at distance 2 from the cluster. Moreover, ξi is either the union of a quasi-
square (lc − 1) × lc with a dimer if int = is, or the union of a rectangle (l∗1 − 1) × l∗2 with an
horizontal dimer if int = wa. Thus starting from ξi, by Lemma 7.15(ii) we know that the only
transition that does not raise the energy is the reverse move giving rise to the configuration η.
Thus by Lemma 7.16 we can write

ω = (�, ω1, ..., ωk1 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., ωkq , γq, η

(q)
1 , ..., η(q)

mq , η, ξi, η) ◦ ω̄, (7.21)

where ω1, ..., ωk1 , ..., ωkq ∈ C��(Γ∗int), γ1, ..., γq ∈ Dint, η(1)
1 , ..., η

(1)
m1 , ..., η

(q)
1 , ..., η

(q)
mq ∈ C∗int and ω̄ is

a path that connects η to � such that maxσ∈ω̄H(σ) ≤ Γ∗int. We define a new path

ω′ = (�, ω1, ..., ωk1 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., ωkq , ..., ωkq+1 , γq, η

(q)
1 , ..., η(q)

mq , η) ◦ ω̄. (7.22)
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Thus {arg maxω′ H} = {η(1)
1 , ..., η

(1)
m1 , ..., η

(q)
1 , ..., η

(q)
mq , η} ∪ {arg maxω̄H} and therefore

{arg maxω′H} ⊆ {arg maxωH} \ {ξi}, i = 1, ..., n. (7.23)

This implies that the saddle ξi is unessential for any i = 1, ..., n and thus, using [47, Theorem
5.1], ξi ∈ Sint(�,�) \ Gint(�,�).

Finally, if the path ω reaches the saddle ξi after reaching CGint in the configuration ηG, we
can write

ω = (�, ω1, ..., ωk1 , γ1, η
(1)
1 , ..., η(1)

m1
, ..., η

(q)
1 , ..., η(q)

mq , η
G, ..., ξi, ...,�) (7.24)

and define
ω′ = (�, ω1, ..., ωk1 , γ1, η

(1)
1 , ..., η(1)

m1
, ..., η

(q)
1 , ..., η(q)

mq , η
G) ◦ ω̃, (7.25)

where ω̃ is a path such that maxσ∈ω̃H(σ) < Γ∗int. This path exists by Proposition 7.10(i). It
easy to check that the saddle ξi is unessential for any i = 1, ..., n and thus, using [47, Theorem
5.1], ξi ∈ Sint(�,�) \ Gint(�,�). �

7.4.4 Proof of Lemmas

Proof of Lemma 7.17 The case int = is is proven in [15, Section 3.5], thus we consider int =
wa. First, we prove that C∗wa(i) is a gate. By Lemma 7.16 we know that any ω ∈ (� → �)opt
enters C∗wa through a configuration of the form (η̂, z), with η̂ ∈ D̄wa a protocritical droplet (by
(eq.)) and z the site occupied by the free particle. Note that either z ∈ Bi(η̂) if d(∂−Λ4, η̂) > i
or z ∈ B̄i(η̂) if d(∂−Λ4, η̂) ≤ i, thus C∗wa(i) is a gate.

Now we prove that C∗wa(i) is a minimal gate. For any η ∈ C∗wa(i), our strategy consists in
proving that C∗wa(i)\{η} is not a gate by defining a path ω ∈ (�→ �)opt such that ω∩ (C∗wa(i)\
{η}) = ∅. For the following the reader can visualize the path described using Figure 12. We take
an arbitrary path starting from � and that enters C∗wa(i) in η = (η̂, z). Then the path proceeds
by moving the free particle from z to η̂ such that, the distance between the free particle and
η̂ at the first step is strictly decreasing, and at the later steps is not increasing. Finally the
free particle is attached in a site x ∈ ∂−CR(η̂) giving rise to a configuration in CGwa(η̂). From
this configuration, the path proceeds towards � as the one in Proposition 7.10(i). Since the
constructed ω ∈ (�→ �)opt and ω ∩ C∗wa(i) = {η}, the proof is concluded. �

Proof Lemma 7.19 Let ξ1, ..., ξn the saddles in C∗int(2), we want to prove that these saddles are
essential (see Section 3.1 point 4 for the definition). Since we can repeat the following argument
n times, we may focus on a single configuration ξi. We note that a path ω ∈ (� → �)opt
such that {arg maxωH} = {ξi} does not exist, thus our strategy consists in finding a path
ω ∈ (�→ �)opt such that for any ω′ ∈ (�→ �)opt

ω ∩ ξi 6= ∅ and {arg maxω′H} * {arg maxωH} \ {ξi}, i = 1, ..., n. (7.26)

Let ξi be the union of a cluster η ∈ Dint and a free particle in a site with coordinates (i, j) at
lattice distance 2 from the cluster. We define the specific path ω of the strategy above as

ω = (�, ω1, ..., ωk, η, η1, ..., ηL−j−3, ξi, η
(1), ..., η(k), ηG) ◦ ω̄, (7.27)

where ω1, ..., ωk ∈ C��(Γ∗int), η ∈ Dint, η1 ∈ C∗int(L−j−1), ..., ηL−j−3 ∈ C∗int(3), η(1), ..., η(k) ∈ C∗int,
ηG ∈ CGint(η̂(k)) and ω̄ a path that connects ηG to � such that maxσ∈ω̄H(σ) < Γ∗int. Note that
the part of the path ω from ξi to η(k) is constructed by moving the free particle at zero cost from
(i, j) to a good site depicted on the left-hand side of Figure 12, so that we obtain a configuration
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ηG. Moreover, the path ω̄ exists by Lemma 7.10(i). Now we show that for any ω′ the condition
(7.26) is satisfied. If ω′ passes through the configuration ξi, then {arg maxω′ H} ⊇ {ξi}, thus
(7.26) is satisfied. Therefore we can assume that ω′ ∩ ξi = ∅. If ω′ crosses the set Sint(�,�)
through a configuration η̃ such that ω ∩ η̃ = ∅, then the condition (7.26) holds. Thus we can
reduce our analysis to ω′ that visits all the configurations η1, ..., ηL−j−3 ∈ C∗int. Starting from
ηL−j−3 ∈ C∗int(3), there are four allowed directions for moving the free particle. The move can not
be in the direction of the cluster, indeed in that case the path ω′ visits ξi ∈ C∗int(2). Concerning
the other three choices, we have two cases. In the first case, the path ω′ visits a saddle not
already present in ω, thus (7.26) is satisfied. In the second case, the path ω′ visits a saddle that
has been already visited by ω, thus we can iterate this argument for a finite number of steps,
since the path ω′ has to reach �. Thus we have proved that the saddle ξi is essential for any
i = 1, ..., n. �

8 Proof of the main Theorem 4.8: isotropic case

In this Section we give the proof of the main Theorem 4.8 by analyzing the geometry of the set
Gis(�,�).

8.1 Main Proposition

In this Section we give the proof of the main Theorem 4.8, emphasizing the saddles for the
transition from � to � that are essential and the ones that are not. We want to investigate in
more detail the saddles ξ ∈ Sis(�,�) \ (∂C��(Γ∗is)∪ ∂C��(Γ∗is−H(�))∪C∗is) visited after crossing
the set CBis .

Proposition 8.1 Any saddle ξ that is neither in C∗is, nor in the boundary of the cycle C��(Γ∗is),

nor in ∂C��(Γ∗is −H(�)) \ K̃is, such that τξ ≥ τCBis
can be essential or not. For those essential,

we obtain the following characterization:

Gis(�,�) ∩ Sis(�,�) \ (∂C��(Γ∗is) ∪ (∂C��(Γ∗is −H(�)) \ K̃is) ∪ C∗is) =

=
3⋃

i=0

⋃

α

I α
i ∪

2⋃

i=0

⋃

α,α′

⋃

k,k′

I α,α′

k,k′,i ∪
2⋃

i=−1

⋃

α,α′

I α,α′

i

(8.1)

We refer to Section 8.2 for the proof of the Proposition 8.1.

Proof of the main Theorem 4.8 By Corollary 7.13 we know that the saddles of the first and
second type, defined in Definitions 3.2 and 3.4 respectively, are unessential. By Propositions
7.14 and 8.1 we have the characterization of the essential saddles of the third type in Section
7.4. Use Proposition 7.11 to get the claim. �

8.2 Proof of Proposition 8.1

We recall Definitions 4.3 and 4.5 for the definitions of the 1-translation of a bar and for the
sliding of a bar around a frame-angle respectively and that d(·, ·) denotes the lattice distance.
In order to prove Proposition 8.1 we need the following lemma.
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Lemma 8.2 (i) Starting from η ∈ I α,α′

0 (resp. η ∈ I α,α′

−1 ), if the free particle is attached
in ∂+CR(η) obtaining the configuration η′, then the following saddles obtained via a 1-
translation of any bar are essential and in I α

0 ∪ I α
1 (resp. in I α

0 ). Moreover, all the

saddles in I α
0 ∪I α

1 can be obtained from a η ∈ I α,α′

−1 ∪I α,α′

0 via a 1-translation of a bar.
In particular, starting from η ∈ C∗is, if the free particle is attached in a bad site obtaining
ηB ∈ CBis , then the following saddles obtained via a 1-translation of any bar are essential.

These saddles are in I α
0 if η̂ ∈ D̄is and in I α

0 ∪I α
1 if η̂ ∈ D̃is.

(ii) Starting from η ∈ I α,α′

1 , if the free particle is attached in ∂+CR(η) obtaining the config-
uration η′, then the following saddles obtained via a 1-translation of any bar are essential

and in I α
1 ∪I α

2 . Moreover, all the saddles in I α
1 ∪I α

2 can be obtained from a η ∈ I α,α′

1

via a 1-translation of a bar.

(iii) Starting from η ∈ I α,α′

2 , if the free particle is attached in ∂+CR(η) obtaining the config-
uration η′, then the following saddles obtained via a 1-translation of any bar are essential

and in I α
2 ∪I α

3 . Moreover, all the saddles in I α
2 ∪I α

3 can be obtained from a η ∈ I α,α′

2

via a 1-translation of a bar.

The proof of the lemma is postponed to Section 8.3.

Proof of Proposition 8.1 Consider a configuration η ∈ C∗is(2) such that η = (η̂, x), with
η̂ ∈ Dis and x the site of the free particle such that d(η̂, x) = 2. By hypotheses we have that
the free particle is attached in a bad site obtaining a configuration η′ ∈ CBis (see Figure 14(a)-(b)
for a possible pair of configuration (η, η′)). Due to [47, Theorem 5.1], our strategy consists in
characterizing the essential saddles that could be visited after attaching the free particle in a
bad site. We consider the following cases:

Case 1. η̂ ∈ D̄is;

Case 2. η̂ ∈ D̃is.

Note that from case 1 one can go to the other cases and viceversa, but since the path has to
reach � this back and forth must end in a finite number of steps.

Case 1. Let η̂ ∈ D̄is, thus by [15, Theorem 1.4.1] we know that η̂ consists in an (lc−2)× (lc−2)
square with four bars Bα(η), with α ∈ {n, e, w, s}, attached to its four sides satisfying

1 ≤ |Bα(η)| ≤ lc,
∑

α

|Bα(η)| −
∑

αα′∈{nw,ne,sw,se}

|cαα′(η)| = 3lc − 3. (8.2)

First, note that at most three frame-angles in ∂−CR(η̂) can be occupied, otherwise |∂−CR(η̂)| =
4lc − 4 > 3lc − 3, which is absurd. Thus we consider separately the following cases:

A. three frame-angles in ∂−CR(η̂) are occupied;

B. two frame-angles in ∂−CR(η̂) are occupied;

C. one frame-angle in ∂−CR(η̂) is occupied;

D. no frame-angle in ∂−CR(η̂) is occupied.
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(a)

(lc − 2)× (lc − 2)

(b)

(lc − 2)× (lc − 2)

(c)

(lc − 3)× (lc − 1)

Figure 14: Here we depict a possible configuration η in (a), its corresponding η′ in (b) and the
configuration obtained from η′ after the sliding of the bar Be(η) around the frame-angle cen(η′)
in (c) for the case 1A.

Case 1A. Without loss of generality we consider η as in Figure 14(a). If we are considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by Lemma
8.2(i) the saddles that are crossed are essential and in I α

0 . If a sequence of 1-translations of a
bar takes place in such a way that the last configuration has at most two occupied frame-angles,
then we can reduce our proof to the cases B, C and D below. Thus we are left to analyze the
case in which there is the activation of a sliding of a bar around a frame-angle. Consider again,
for example, η as in Figure 14(a). If the free particle is attached to the bar Be(η), then it is
not possible to slide the bar Bn(η) around the frame-angle cne(η′), since the condition (4.12)
is not satisfied. Thus by Lemma 7.6(ii) we know that the saddles that could be crossed are
unessential. If the free particle is attached to the bar Bs(η), we conclude as before. If the free
particle is attached to the bar Bn(η) (see Figure 14(b)), then it is not possible to slide the bar
Bw(η) around the frame-angle cwn(η′) because the condition (4.12) is not satisfied and thus we
can conclude as before. The unique possibility is to slide the bar Be(η) around the frame-angle
cen(η′) if |Be(η)| < |Bn(η)|, otherwise (4.12) is not satisfied. The saddles that are possibly

visited (except the last one) are in I α,α′

k,k′,0 and by Lemma 7.6(i) they are essential. The last
configuration visited during this sliding of a bar is depicted in Figure 14(c). It belongs to C∗is,
indeed the cluster is in D̃is and therefore the saddles that could be crossed starting from it will
be investigated in case 2. If the free particle is attached to the bar Bw(η), we conclude in a
similar way as before. This concludes case 1A.

Case 1B. We consider separately the following subcases:

(i) the two occupied frame-angles are cαα
′
(η) and cα

′′α′′′(η), with all the indeces α, α′, α′′, α′′′

different between each other (see Figure 15(a));

(ii) the two occupied frame-angles are cαα
′
(η) and cα

′α′′(η), with α 6= α′′ (see Figure 16(a)).

Case 1B(i). Without loss of generality we consider η as in Figure 15(a). If we are considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by Lemma
8.2(i) the saddles that are crossed are essential and they are in I α

0 . If at least one bar is full, it
is possible to activate a sequence of 1-translations of a bar in order to obtain either two occupied
frame-angles with a bar in common or three occupied frame-angles. For example, in Figure 15(a),
if the bar Bs(η) is full, one could attach the free particle to Be(η) and translate the bar Bw(η)
in order to have the frame-angle csw(η) occupied. In both situations the saddles visited up to
this point are essential by Lemma 8.2(i), while the saddles that follow are analyzed in case 1B(ii)
and 1A respectively. Thus we can reduce our proof to the case in which there is no translation of
a bar and therefore we need to consider only the sliding of a bar around a frame-angle. We may
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(a)

(lc − 2)× (lc − 2)

(b)

(lc − 2)× (lc − 2)

(c)

(lc − 2)× (lc − 2)

Figure 15: Case 1B(i): we depict a possible starting configuration η ∈ C∗is in (a), the configuration
η̃ obtained from η after the sliding of the bar Bn(η) around the frame-angle cnw(η′) in (b) and
the configuration η̄ obtained from η̃ after the sliding of the bar Bs(η̃) around the frame-angle
cse(η′′) in (c).

(a)

(lc − 2)× (lc − 2)

(b)

(lc − 3)× (lc − 1)

(c)

(lc − 3)× (lc − 1)

Figure 16: Case 1B(ii): we depict a possible starting configuration η ∈ C∗is in (a), the config-
uration η̃ obtained from η after the sliding of the bar Bw(η) around the frame-angle cwn(η′)
in (b) and the configuration η̄ obtained from η after the sliding of the bar Be(η) around the
frame-angle cen(η′′) in (c).

assume without loss of generality that |Bn(η)| < |Bw(η)| and |Bs(η)| < |Be(η)|, indeed the other
cases can be treated with the same argument. By Lemma 7.6 to obtain essential saddles there
are one of the following possibilities: attach the free particle to the bar Bw(η) (resp. Be(η)) and
then slide the bar Bn(η) (resp. Bs(η)) around the frame-angle cnw(η′) (resp. cse(η′)). Assume
first that the free particle is attached to Bw(η). By Lemma 7.6(i) the saddles that are possibly

visited are essential and, except the last one, they are in I α,α′

k,k′,0. The last configuration visited

during this sliding of a bar is η̃ ∈ I α,α′

0 and it is depicted in Figure 15(b). Starting from η̃,
the unique possibility to visit essential saddles is to attach a free particle in ∂+CR(η̃) and then
either activate a sequence of 1-translations of bars or slide a bar around a frame-angle. In the
first case, by Lemma 8.2(i) the saddles that are possibly visited are essential and in I α

0 ∪I α
1 .

In the latter case, the unique possibility is to attach the free particle to the bar Be(η̃) obtaining
a configuration η′′, and then slide Bs(η̃) around the frame-angle cse(η′′). By Lemma 7.6(i) the

saddles that are possibly visited are essential and, except the last one, they are in I α,α′

k,k′,1. The

last configuration visited during this sliding of a bar is in I α,α′

1 and it is depicted in Figure
15(c). Starting from this configuration it is impossible to slide a bar around any frame-angle,
thus by Lemma 7.6(ii) the saddles that possibly will be crossed if the sliding of a bar is initiated
are unessential. If a sequence of 1-translations of bars takes place, by Lemma 8.2(ii) the saddles
that could be crossed are essential and in I α

1 ∪I α
2 .

Note that if |Bw(η)| < |Bn(η)| and/or |Be(η)| < |Bs(η)| a similar argument can be used.
This concludes case 1B(i).

Case 1B(ii). Without loss of generality we consider η as in Figure 16(a). If we are consid-
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(a)

(lc − 2)× (lc − 2)

(b)

(lc − 2)× (lc − 2)

(c)

(lc − 2)× (lc − 2)

Figure 17: Case 1C: in (a) we depict a possible starting configuration η ∈ C∗is and in (b) the
configuration η̃ obtained from η after the sliding of the bar Bw(η) around the frame-angle
cwn(η′). Case 1D: in (c) we depict a possible starting configuration in C∗is.

ering the case in which a sequence of 1-translations of a bar is possible and takes place, then by
Lemma 8.2(i) the saddles that are crossed are essential and they are in I α

0 . If one bar among
Bw(η) and Be(η) is full, it is possible to activate a sequence of 1-translations of the bar Bs(η) in
order to have three occupied frame-angles. This situation has already been analyzed in case 1A.
Thus we can reduce our proof to the case in which there is no translation of a bar and therefore
we need to consider only the sliding of a bar around a frame-angle. If the free particle is attached
to the bar Bs(η), since it is not possible to slide a bar around any frame-angle, by Lemma 7.6(ii)
we know that the saddles that could be crossed are unessential. If the free particle is attached
to one bar among Bw(η) and Be(η), then it is not possible to complete the sliding of the bar
Bn(η) around the frame-angle cnw(η′) or cne(η′). Thus by Lemma 7.6(ii) the saddles that could
be crossed are unessential. If the free particle is attached to the bar Bn(η), then it is possible
to slide the bar Bw(η) or Be(η) around the frame-angle cwn(η′) or cen(η′) respectively. Thus
by Lemma 7.6(i) we know that the saddles that could be crossed are essential and they are in

I α,α′

k,k′,0, except the last one that is in C∗is (see Figure 16(b)-(c)). Hence the saddles that could be
crossed starting from such configuration will be analyzed in case 2. This concludes case 1B(ii).

Case 1C. Without loss of generality we consider η as in Figure 17(a). If we are a considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by Lemma
8.2(i) the saddles that are crossed are in I α

0 . Starting from this configuration it is possible to
obtain two occupied frame-angles: this situation has been already analyzed in case 1B. Thus we
can reduce our proof to the case in which there is no 1-translation of a bar and therefore there
is the activation of a sliding of a bar around a frame-angle. If the free particle is attached to the
bar Be(η) or Bs(η), since it is not possible to complete any sliding of a bar around a frame-angle
at cost U , by Lemma 7.6(ii) we know that the saddles that could be crossed are unessential. If
|Bw(η)| < |Bn(η)| and the free particle is attached to the bar Bn(η), then it is possible to slide
the bar Bw(η) around the frame-angle cwn(η′). Thus by Lemma 7.6(i) the saddles that could be

crossed are essential and, except the last one, they are in I α,α′

k,k′,0. Note that the last configuration

is in I α,α′

0 (see Figure 17(b)). Starting from such a configuration, since it is not possible to
complete any sliding of a bar around a frame-angle, by Lemma 7.6(ii) we know that the saddles
that could be visited are unessential unless a sequence of 1-translations of bars takes place. In
this case, by Lemma 8.2(ii) the saddles that could be visited are essential and in I α

0 ∪I α
1 . The

case |Bn(η)| < |Bw(η)| in which the free particle is attached to the bar Bw(η) is analogue. This
concludes case 1C.

Case 1D. Without loss of generality we consider η as in Figure 17(c). If we are considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by Lemma
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8.2(i) the saddles that are crossed are in I α
0 . Starting from this configuration, it is possible to

obtain one or two occupied frame-angles: these situations have been already analyzed in cases 1C
and 1B respectively. Thus we can reduce our proof to the case in which there is no 1-translation
of a bar and therefore there is the activation of a sliding of a bar around a frame-angle. If the
free particle is attached to one of the bars, since it is not possible to complete any sliding of
bar around a frame-angle, by Lemma 7.6(ii) we know that the saddles that could be crossed are
unessential. This concludes case 1D.

Case 2. Let η̂ ∈ D̃is, thus by [15, Theorem 1.4.1] we know that η̂ consists of an (lc−3)× (lc−1)
quasi-square with four bars Bα(η), with α ∈ {n,w, e, s}, attached to its four sides satisfying

1 ≤ |Bα(η)|, |Bα′(η)| ≤ lc + 1, 1 ≤ |Bα′′(η)|, |Bα′′′(η)| ≤ lc − 1, (8.3)

where either α, α′ ∈ {n, s} and α′′, α′′′ ∈ {w, e}, or α, α′ ∈ {w, e} and α′′, α′′′ ∈ {n, s}, and

∑

α

|Bα(η)| −
∑

αα′∈{nw,ne,sw,se}

|cαα′(η)| = 3lc − 2. (8.4)

First, note that at most three frame-angles in ∂−CR(η̂) can be occupied, otherwise |∂−CR(η̂)| =
4lc − 4 > 3lc − 2, which is absurd. By hypotheses we have that the free particle is attached in a
bad site obtaining a configuration η′ ∈ CBis . We consider separately the following cases:

A. three frame-angles in ∂−CR(η) are occupied;

B. two frame-angles in ∂−CR(η) are occupied;

C. one frame-angle in ∂−CR(η) is occupied;

D. no frame-angle in ∂−CR(η) is occupied.

The argument used in case 2 is analogue to that used above in case 1 and is discussed in
details in Appendix A.2. �

8.3 Proof of Lemma 8.2

Proof. (i) Note that H(η′) = Γ∗is − U , thus it is possible to translate bars at cost U with cost

≤ Γ∗is. These saddles are in I α
0 if η ∈ I α,α′

−1 and in I α
0 ∪ I α

1 if η ∈ I α,α′

0 . To conclude, all

the configurations in I α
0 ∪ I α

1 can be obtained from a configuration η ∈ I α,α′

−1 ∪ I α,α′

0 via a

1-translation of a bar. Since D̄fpis ⊆ I α,α′

−1 and D̃fpis ⊆ I α,α′

0 , we get the particular case in which
η′ = ηB ∈ CBis as claimed.

It remains to prove that the saddles in I α
0 ∪ I α

1 are essential. Let ξ1, ..., ξm ∈ I α
0 ∪ I α

1

the saddles visited during a 1-translation of a bar. We want to prove that these saddles are
essential (see Section 3.1 point 4 for the definition). Since we can repeat the following argument
m times, we may focus on a single configuration ξi. Since C∗is is a gate for the transition and
ξi ∈ Sis(�,�) \ C∗is, we note that a path ω ∈ (� → �)opt such that {arg maxωH} = {ξi} does
not exist. Thus our strategy consists in finding a path ω ∈ (� → �)opt such that for any
ω′ ∈ (�→ �)opt

ω ∩ ξi 6= ∅, {arg maxω′H} * {arg maxωH} \ {ξi}, i = 1, ...,m. (8.5)
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Figure 18: Here we depict in grey the configuration η1 that consists of the union of a cluster
C(η1) and a free particle. The dotted unit squares represent the following positions of the free
particle that moves as represented by the arrows on the left, north, east and south, until the
particle is attached to the cluster in position (i, j). The latter is the configuration η′. To simplify
the exposition we chose to use the path in the external frame of ∂+CR(C(η1)).

Let η′ be the configuration with a single cluster obtained as union of a cluster C(η1) and a
protuberance attached to one of its bars in a site with coordinates (i, j) such that H(η1) = Γ∗is
and η1 is the configuration with cluster C(η1) and one free particle. More precisely, by (4.20)
the configuration η1 is obtained by the configuration η0 via a sliding of the bar Bα(η0) around
the frame-angle cαα

′
(η0). Without loss of generality we assume that that the protuberance of η′

is attached to the bar Be(C(η1)). We define the specific path ω of the strategy above as

ω = (�, ω1, ..., ωk, γ1, ..., η0, ...γs, η1, ..., ηk, η
′, ξ1, ..., ξm) ◦ ω̄, (8.6)

where ω1, ..., ωk ∈ C��(Γ∗is), γ1, ..., γs ∈ X such that H(γi) ≤ Γ∗is for any i = 1, ..., s and ω̄ is a
path that connects ξm to � such that maxσ∈ω̄H(σ) ≤ Γ∗int. Moreover, the saddles η1, ..., ηk are
composed by the union of the cluster C(η1) and a free particle such that the free particle is at
distance ≥ 3 from a site in ∂−CR(η1) (see Figure 18 for a picture of this situation in the case
α = w and α′ = n). In particular, consider that η1 has the free particle in B̄2(η1) and ηk in
the site with coordinates (i+ 1, j) ∈ B̄2(η1) using the assumption that the protuberance of η′ is
attached to Be(η1).

Now we show that for any ω′ the condition (8.5) is satisfied. If ω′ passes through the
configuration ξi, {arg maxω′H} ⊇ {ξi}, thus (8.5) is satisfied. Therefore we can assume that
ω′ ∩ ξi = ∅. If ω′ crosses the set Sis(�,�) through a configuration η′′ such that η′′ ∩ ω = ∅,
then the condition (8.5) holds. Thus we can reduce our analysis to ω′ that visits all the saddles
η1, ..., ηk. Starting from ηk, there are four allowed directions for moving the free particle. If we
move it in the direction of the cluster (west in Figure 18), we deduce that the path ω′ visits
the configuration η′. For the other three choices, the free particle still remains free after the
move, indeed by construction of the path ω, starting from ηk it is not possible to attach the free
particle in ∂−CR(η1) via one step of the dynamics. Thus the path ω′ can visit either a saddle
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not already visited by ω (south or east in Figure 18) or a saddle that has been already visited
by ω (north in Figure 18). In the first case, we obtain that (8.5) is satisfied. In the latter case,
we can iterate this argument and, since ω′ goes from � to �, we can assume that the path ω′

visits the configuration η′. From now on, starting from η′, there are two possible scenarios:

I. ω′ activates the same 1-translation of a bar as ω;

II. ω′ activates a different 1-translation of a bar from ω.

In case I, since ω′∩ ξi = ∅, we deduce that the 1-translation of a bar has been stopped before
hitting ξi. Thus we can assume that ω′ comes back to η′, otherwise the energy exceeds Γ∗is. Since
the path ω′ has to reach �, starting from η′ the protuberance is detached and in the sequel is
attached in another site. Thus ω′ reaches a saddle that is not visited by ω. This implies that
(8.5) is satisfied.

In case II, when the path ω′ initiates a 1-translation of a bar different from ω, it reaches
a saddle that it is not visited by ω, thus the condition (8.5) is satisfied. Therefore we deduce
that the path does not start this 1-translation and thus the path ω′ must go back to η′ (since
it has to reach �). From now on, as before, the path ω′ has to detach the protuberance and
in the sequel it is attached in another site, thus ω′ reaches a saddle that is not visited by ω.
This implies that (8.5) is satisfied. Thus we have proved that the saddle ξi is essential for any
i = 1, ...,m.

The proof of (ii) and (iii) is analogue to the one done in (i) by modifying the length of the
horizontal and vertical sides of CR(η). �

9 Proof of the main results: weakly anisotropic case

9.1 Proof of the main Theorem 4.11

In this Section we give the proof of the main Theorem 4.11. Recall the definitions of standard
rectangles given in (4.25). Now we recall the definition of the set P given in [51] as

P := {η : n(η) = 1, v(η) = `2(s∗wa)− 1, ηcl is connected, monotone,
with circumscribed rectangle in R(`1(s∗wa) + 1, `2(s∗wa))}.

(9.1)

In particular, in order to state that the set C∗wa is a gate for the transition from � to �, we need
the following

Lemma 9.1 If ω ∈ (�→ �)opt passes through the set P, then ω ∩ C∗wa 6= ∅.

Since the proof of Lemma 9.1 follows a similar argument used in the proof of [2, Lemma 7.1],
we postpone it to Appendix A.3.

Proof of the main Theorem 4.11 By [51, Theorem 2], we know that the set P is a gate
for the transition from � to �. By Lemma 9.1 we know that every path ω ∈ (� → �)opt that
crosses P has to intersect also C∗wa. This implies that every optimal path ω from � to � is such
that ω ∩ C∗wa 6= ∅ and thus C∗wa ∩ P ≡ C∗wa is a gate. �
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9.2 Proof of the main Theorem 4.12

In this Section we analyze the geometry of the set Gwa(�,�) (recall (3.13)). In particular, we give
the proof of the main Theorem 4.12 by giving in Proposition 9.2 the geometric characterization
of the essential saddles of the third type that are not in C∗wa and that are visited after crossing
the set CBwa.

Proposition 9.2 Any saddle ξ that is neither in C∗wa, nor in the boundary of the cycle C��(Γ∗wa),

nor in ∂C��(Γ∗wa−H(�)) \ K̃wa, such that τξ ≥ τCBwa can be essential or not. For those essential,
we obtain the following characterization:

Gwa(�,�) ∩ Swa(�,�) \ (∂C��(Γ∗wa) ∪ (∂C��(Γ∗wa −H(�)) \ K̃wa) ∪ C∗wa) =

=
⋃

α

⋃

α′

⋃

k′

k′⋃

k=2

Nα,α′

k,k′ ∪
⋃

α′

Nα′
0 ∪

⋃

α

Nα
1

(9.2)

Since the proof of Proposition 9.2 is similar to the one of [2, Proposition 7.3], we postpone it to
Appendix A.3.

Proof of Theorem 4.12 By Corollary 7.13 we know that the saddles of the first and second
type, defined in Definitions 3.2 and 3.4 respectively, are unessential. By Propositions 7.14 and
9.2 we have the characterization of the essential saddles of the third type in Section 7.4. We use
Proposition 7.11 to get the claim. �

10 Proof of the sharp asymptotics

In this Section, following the approach initiated in [15] for Kawasaki dynamics and developed in
[14, Chapters 16 and 18], we provide a comparison with some model-independent results given
in [14, Chapter 16].

10.1 Model-independent results for the prefactor

In order to give the results, we need some definitions. In [14] the authors let the protocritical
and critical sets as P∗(m, s) and C ∗(m, s) respectively. Since they differ from our notation,
we refer to them as P∗

PTA(m, s) and C ∗PTA(m, s). Given ξ, ξ′ ∈ X , we set ξ ∼ ξ′ if the two
configurations can be obtained from each other via an allowed move.

Definition 10.1 [14, Definition 16.3] Let

Γ∗ = Φ(m, s)−H(m). (10.1)

Then (P∗
PTA(m, s),C ∗PTA(m, s)) is the maximal subset of X × X such that:

(1) ∀ ξ ∈P∗
PTA(m, s) ∃ ξ′ ∈ C ∗PTA(m, s) : ξ ∼ ξ′ and ∀ ξ′ ∈ C ∗PTA(m, s) ∃ ξ ∈P∗

PTA(m, s) :
ξ′ ∼ ξ;

(2) ∀ ξ ∈P∗
PTA(m, s), Φ(ξ,m) < Φ(ξ, s);

(3) ∀ ξ′ ∈ C ∗PTA(m, s) ∃ γ : ξ′ → s such that max
ζ∈γ

H(ζ)−H(m) ≤ Γ∗, γ ∩ {ζ ∈ X : Φ(ζ,m) <

Φ(ζ, s)} = ∅.
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Now we abbreviate P∗
PTA = P∗

PTA(m, s) and C ∗PTA = C ∗PTA(m, s). In [14] the following results
(Theorems 10.2 and 10.3) are proved subject to the two hypotheses

(H1) Xm = {m} and X s = {s};

(H2) ξ′ → |{ξ ∈P∗
PTA : ξ ∼ ξ′}| is constant on C ∗PTA.

Theorem 10.2 [14, Theorem 16.4]

(a) lim
β→∞

Pm(τC ∗PTA < τs|τs < τm) = 1;

(b) lim
β→∞

Pm(ξτC∗
PTA

= χ) =
1

|C ∗PTA|
for all χ ∈ C ∗PTA.

Theorem 10.3 [14, Theorem 16.5] There exists a constant K ∈ (0,∞) such that

lim
β→∞

e−βΓ∗Em(τs) = K. (10.2)

Concerning Theorem 10.3, we add some comments below about the general strategy developed
in [14, Subsection 16.3.2]. A key role is played by the Dirichlet form

Eβ(h) =
1

2

∑

η,η′∈X
µβ(η)cβ(η, η′)[h(η)− h(η′)]2, h : X → [0, 1], (10.3)

where µβ is the Gibbs measure defined in [14, eq. (16.1.1)] and cβ is the kernel of transition
rates defined in [14, eq. (16.1.2)]. Given two non-empty disjoint sets A,B ⊆ X , the capacity of
the pair A,B is defined by

CAPβ(A,B) = min
h : X→[0,1]
h|A≡1, h|B≡0

Eβ(h), (10.4)

where h|A ≡ 1 means that h(η) = 1 for all η ∈ A and h|B ≡ 0 means that h(η) = 0 for all η ∈ B.
The right-hand side of (10.4) has a unique minimizer h∗A,B, called the equilibrium potential of
the pair A,B, given by

h∗A,B(η) = Pη(τA < τB), η ∈ X \ (A ∪ B) (10.5)

This is the solution of the equation

(cβh)(η) = 0, η ∈ X \ (A ∪ B),

h(η) = 1, η ∈ A,
h(η) = 0, η ∈ B.

(10.6)

Moreover,

CAPβ(A,B) =
∑

η∈A
µβ(η) cβ(η,X \ η)Pη(τB < τA) (10.7)

with cβ(η,X \ η) =
∑

η′∈X\η cβ(η, η′) the rate of moving out of η. This rate enters because τA
is the first hitting time of A after the initial configuration is left. Note that from (10.3–10.4) it
follows that

CAPβ(A,B) = CAPβ(B,A). (10.8)

First, we introduce a graph representation of the configuration space. View X as a graph whose
vertices are configurations and whose edges connect communicating configurations. Let
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- X ∗ be the subgraph of X obtained by removing all vertices η with H(η) > Γ∗+H(m) and
all edges incident to these vertices;

- X ∗∗ be the subgraph of X ∗ obtained by removing all vertices η with H(η) = Γ∗ + H(m)
and all edges incident to these vertices;

- Xmeta and X stab be the connected components of X ∗∗ containing m and s respectively.

Moreover, we consider the set

X ∗∗ \ (Xmeta ∪ X stab) =

I⋃

i=1

X (i), (10.9)

where each X (i) is a well in S(m, s), i.e., a set of communicating configurations with energy
< Γ∗ + H(m) but with communication height Γ∗ + H(m) towards both m and s. Among all
the wells X (i), we can highlight the wells Zmj (resp. Zsj ) of the unessential saddles of the first
(resp. second) type σj (resp. ζj) (see Definitions 3.2 and 3.4, and Propositions 3.3 and 3.5). In
particular, these wells can be defined as follows.

Definition 10.4 We define

1) Zmj ⊂ X ∗∗, j = 1, ..., Jm, is a connected set such that, for all η ∈ Zmj , Φ(m, η) = Φ(s, η)
and any path ω : η → s must be such that ω ∩ Xmeta 6= ∅;

2) Zsj ⊂ X ∗∗, j = 1, ..., Js, is a connected set such that, for all η ∈ Zmj , Φ(s, η) = Φ(m, η)

and any path ω : η → m must be such that ω ∩ X stab 6= ∅.

Proposition 10.5 If Zmj 6= ∅, X (i) ≡ Zmj if and only if Zmj is a connected component in

X ∗∗ \ (Xmeta ∪ X stab) such that there exists a saddle of the first type σj that communicates via
one step with a configuration in Zmj .

Proof. First, assume that X (i) ≡ Zmj for some i ∈ {1, ..., I} and j ∈ {1, ..., Jm}. It is clear that

Zmj is a connected component in X ∗∗\(Xmeta∪X stab), indeed any configuration η ∈ Xmeta∪X stab
has Φ(η,m) 6= Φ(η, s). Furthermore, by definition of Zmj , we note that Φ(s, η) = Γ∗ + H(m)
and any path ω : η → s must be such that ω ∩ Xmeta 6= ∅. This implies that there exists
σj ∈ ω ∩S(s,m) that is an unessential saddle of the first type (see Proposition 3.3) such that it
communicates via one step with a configuration in Zmj .

Conversely, assume that any fixed Zmj is a connected component in X ∗∗\(Xmeta∪X stab) such
that there exists a saddle of the first type σj that communicates via one step with a configuration
in Zmj . Thus we deduce that X (i) ≡ Zmj for some i ∈ {1, ..., I}, indeed for all η ∈ Zmj it hold
Φ(η,m) = Φ(η, s) = Γ∗ +H(m) and H(η) < Γ∗ +H(m) since Zmj ⊂ X ∗∗. �

Proposition 10.6 If Zsj 6= ∅, X (i) ≡ Zsj if and only if Zsj is a connected component in X ∗∗ \
(Xmeta ∪ X stab) such that there exists a saddle of the second type ζj that communicates via one
step with a configuration in Zsj .

Proof. The proof is analogue to the proof of Proposition 10.5 by replacing Zmj with Zsj and

“ω : η → s such that ω ∩ Xmeta 6= ∅” with “ω : η → m such that ω ∩ X stab 6= ∅”. �

First, note that the unessential saddles of the first and second type are not in the set C ∗PTA.
Indeed, on the one hand, the saddles {σj}Jmj=1 do not verify the condition (3) in Definition 10.1,
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because every optimal path that connects any fixed σj to s passes through Xmeta. On the
other hand the saddles {ζj}Jsj=1 do not verify conditions (1) and (2) in Definition 10.1, because
they communicate only with configurations that are not in P∗

PTA. By [14, eq. (16.3.4)] and
[14, Lemma 16.16], we know that h is constant on each wells, but for the wells Zmj and Zsj we
compute this constant in Lemma 10.7, indeed [14, Lemma 16.15] can be extended also for these
sets together with the unessential saddles of the first and second type.

Lemma 10.7 Recall Definitions 3.2 and 3.4 for the definition of the saddles σj of the first type
and ζj second type respectively and Definition 10.4 for the definition of the wells Zmj and Zsj .
As β →∞,

ZβCAPβ(m, s) = [1 + o(1)]Θe−βΓ∗ , (10.10)

with

Θ = min
c1,...,cĪ

min
h:X∗→[0,1]

h|Xmeta
I

=1, h
|Xstab
II

=0, h|X (i)=ci,i=1,...,Ī

1

2

∑

ξ,ξ′∈X ∗
1{ξ∼ξ′}[h(ξ)− h(ξ′)]2, (10.11)

where

XmetaI := Xmeta ∪
Jm⋃

j=1

({σj} ∪ Zmj ), X stabII := X stab ∪
Js⋃

j=1

({ζj} ∪ Zsj ). (10.12)

and X (i), i = 1, ..., Ī, are all the wells of the transition except
⋃Jm
j=1Zmj and

⋃Js
j=1Zsj .

Proof. The statement is similar to the one of [14, Lemma 16.17], but the difference is in the
variational formula for Θ. More precisely, comparing (10.11) with [14, eq. (16.3.11)], the proof
is analogue to the one done for [14, Lemma 16.17], but we have to prove that the function h is
constant equal to 1 (resp. 0) on

⋃Jm
j=1({σj} ∪ Zmj ) (resp.

⋃Js
j=1({ζj} ∪ Zsj )).

Fix any saddle of the first type σj . By [14, Lemma 16.16] we set h(η) = cj for any η ∈ Zmj ,
h(η) = ck for any η ∈ Zmk with k 6= j, and h(σj) = c̄j . By definition of saddles of the first type,
note that σj communicates only with configurations either in Xmeta, or in Zmj or in Zmk with
k 6= j. Thus the contribution to (10.11) of the saddle of the first type σj is

∑

ξ∈Xmeta
|σj ∼ ξ|(1− c̄j)2 +

∑

ξ∈Zmj

|σj ∼ ξ|(c̄j − cj)2 +
∑

ξ∈Zm
k

k 6=j

|σj ∼ ξ|(ck − c̄j)2 (10.13)

The cases Zmj = ∅ (resp. Zmk = ∅) or there is no ξ ∈ Zmj (resp. ξ ∈ Zmk ) such that σj ∼ ξ
correspond to the situation in which either there is not the well Zmj (resp. Zmk for any k 6= j) or
the dynamics does not allow the communication via one step from σj and Zmj (resp. Zmk ). In
the first situation we get c̄j = 1 and in the second one we get c̄j = cj = 1. Otherwise, since the
quantity in (10.13) is greater or equal than zero, the minimum w.r.t. cj , ck and c̄j of (10.13) is

obtained for cj = ck = c̄j = 1, thus h is constant equal to 1 on
⋃Jm
j=1({σj} ∪Zmj ). If we consider

all the possible transitions of this type and use (10.13), we obtain a contribution to (10.11) equal
to

Jm∑

j=1

( ∑

ξ∈Xmeta
|σj ∼ ξ|(1− c̄j)2 +

∑

ξ∈Zmj

|σj ∼ ξ|(c̄j − cj)2 +
∑

ξ∈Zm
k

k 6=j

|σj ∼ ξ|(ck − c̄j)2

)
(10.14)
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Again, the minimum of (10.14) with respect to c1, ..., cJm and c̄1, ..., c̄Jm is obtained for ci = c̄i = 1
for any i = 1, ..., Jm.

Similarly, we deduce that h is constant equal to 0 on
⋃Js
j=1({ζj} ∪ Zsj ). Indeed, if we fix any

saddle of the second type ζj , by [14, Lemma 16.16] we set h(η) = cj for any η ∈ Zsj , h(η) = ck
for any η ∈ Zsk with k 6= j, and h(ζj) = c̄j . By definition of saddles of the second type, note
that ζj communicates only with configurations either in X stab, or in Zsj or in Zsk with k 6= j.
Thus the contribution to (10.11) of the saddle of the second type ζj is

∑

ξ∈X stab
|ζj ∼ ξ|c̄2

j +
∑

ξ∈Zsj

|ζj ∼ ξ|(c̄j − cj)2 +
∑

ξ∈Zs
k

k 6=j

|ζj ∼ ξ|(ck − c̄j)2. (10.15)

The cases Zsj = ∅ (resp. Zsk = ∅) or there is no ξ ∈ Zsj (resp. ξ ∈ Zsk) such that ζj ∼ ξ correspond
to the situation in which either there is not the well Zsj (resp. Zsk for any k 6= j) or the dynamics
does not allow the communication via one step from ζj and Zsj (resp. Zsk). In the first situation
we get c̄j = 0 and in the second one we get c̄j = cj = 0. Otherwise, since the quantity in
(10.15) is greater or equal than zero, the minimum w.r.t. cj , ck and c̄j of (10.15) is obtained

for cj = ck = c̄j = 0, thus h is constant equal to 0 on
⋃Js
j=1({ζj} ∪ Zsj ). If we consider all the

possible transitions of this type, we obtain a contribute to (10.11) equal to

Js∑

j=1

( ∑

ξ∈X stab
|ζj ∼ ξ|c̄2

j +
∑

ξ∈Zmj

|ζj ∼ ξ|(c̄j − cj)2 +
∑

ξ∈Zm
k

k 6=j

|ζj ∼ ξ|(ck − c̄j)2

)
(10.16)

Again, the minimum of (10.16) with respect to c1, ..., cJs and c̄1, ..., c̄Js is obtained for ci = c̄i = 0
for any i = 1, ..., Js. Therefore formula (16.3.15) in the proof of [14, Lemma 16.17] should be
modified as

h =





1 on Xmeta ∪
Jm⋃

j=1

({σj} ∪ Zmj ),

0 on X stab ∪
Js⋃

j=1

({ζj} ∪ Zsj ),

ci on X (i), i = 1, ..., Ī,

(10.17)

where X (i), i = 1, ..., Ī, are all the wells of the transition except
⋃Jm
j=1Zmj and

⋃Js
j=1Zsj . We get

the claim. �

Remark 10.8 Lemma 10.7 implies that also the unessential saddles σj and ζj have to be con-
sidered in the estimate of the prefactor. However, since h(σj) = 1 and h(ζj) = 0 for any j, the
transitions that involve these unessential saddles do not contribute numerically to the compu-
tation of K. The variational formula for Θ in (10.11) is non-trivial because it depends on the
geometry of all the wells X (i), i = 1, ..., I, and on the form of the function h on the configura-
tions in X ∗ \ X ∗∗, namely the saddle configurations. These two steps are the model-dependent
keys to compute the prefactor K = 1/Θ.

Remark 10.9 For the hexagonal Ising model that evolves under Glauber dynamics, the estimate
of the upper bound of the prefactor, given in [1, Section 6.1], is done setting the equilibrium
potential h, for that specific model, according to our discussion (see (10.17) and [1, eq. (6.19)])).
The authors analyzed the unessential saddles of first and second type that they used for the
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definition of h together with their valleys. Indeed they define the sets
⋃JA
j=1NA

j and
⋃JB
j=1NB

j

in [1, Section 6.1] that coincide, in their model, with
⋃Jm
j=1Zmj (resp.

⋃Js
j=1Zsj ) by Proposition

10.5 (resp. Proposition 10.6). In [1, Section 6.1] an explicit example of saddle σi is given.

Remark 10.10 In [8, Section 7] the authors study the estimate of the prefactor for the q-state
Potts model that evolves under Glauber dynamics using the above discussion and Lemma 10.7.
In [8, Lemma 7.4(b)] the authors identify geometrically unessential saddles of the first type (see
[8, Figure 18(b)]) and describe their wells in the proof. In [8, Lemma 7.4(c)] the authors identify
geometrically one unessential saddle of the second type (see [8, Figure 19]). Choosing q = 2,
this Lemma gives the same results for the standard Ising model. We refer also to [14, Chapter
17], where the authors compute the prefactor in [14, Theorem 17.4] using [14, Lemma 16.17]
and some model-dependent properties without identifying the unessential saddles.

Remark 10.11 For the Ising model with strongly anisotropic interactions that evolves under
Kawasaki dynamics, the estimate of the prefactor is given in [2, Theorem 4.11] according to
the above discussion and Lemma 10.7. For the strongly anisotropic case the authors are able to
obtain a sharp estimate for Ksa in [2, eq. (4.28)]. Nevertheless, the asymptotic behavior of the
prefactor Ksa as Λ → Z2 is the same as Kwa (see Theorem 4.13) and Kis (see [15, Theorem
1.4.5]). Moreover, in [2, Figure 14] an example of unessential saddle of the second type is given.

10.2 Isotropic and weakly anisotropic cases

In this Subsection we consider int ∈ {is, wa}. For our model Xmint = {�} and X sint = {�}, thus
(H1) holds and Γ∗ = Φ(�,�) −H(�) = Γ∗int. Moreover, P∗

PTA(�,�) = Dint and C ∗PTA(�,�)
is the union of all the configurations that are composed by a cluster in Dint and a free particle
in ∂−Λ. Therefore it is clear that C∗int 6= C ∗PTA(�,�). Note that (H2) follows from Lemma
7.16. Here we abbreviate P∗

PTA = P∗
PTA(�,�) and C ∗PTA = C ∗PTA(�,�). Note that Xmeta =

C��(Γ∗int) and X stab = C��(Γ∗int − H(�)). Recall Definition 10.4 for the definition of the wells
Z�int,j and Z�int,j . Concerning Theorem 10.3 for our cases, by [15, Lemma 3.3.2] we know that
h is constant on each wells for the isotropic case and this holds also for the weakly anisotropic
case. Thanks to the model-independent discussion given in Section 10.1 and Lemma 10.7, for
int ∈ {is, wa} formula (10.17) becomes

h =





1 on C��(Γ∗int) ∪
J�⋃

j=1

({σint,j} ∪ Z�int,j),

0 on C��(Γ∗int −H(�)) ∪
J�⋃

j=1

({ζint,j} ∪ Z�int,j),

ci on Xint(i), i = 1, ..., Ī,

(10.18)

where Xint(i), i = 1, ..., Ī, are all the wells of the transition except
⋃J�
j=1Z�int,j and

⋃J�
j=1Z�int,j .

Note that, for int = is, formula (3.3.20) in the proof of [15, Proposition 3.3.3] should be modified
accordingly to (10.18).

10.3 Proof of Theorem 4.13

In this Section we give the proof of Theorem 4.13, that represents sharp asymptotics for the
weakly anisotropic case. To this end, we need a theorem that summarizes what we have shown
so far. It represents the analogue version of [15, Theorem 2.3.10] valid for the isotropic case.
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Theorem 10.12 Let int ∈ {wa, sa}. The following conditions hold:

(i) C��(Γ∗int) 6= C��(Γ∗int −H(�)), so C��(Γ∗int) and C��(Γ∗int −H(�)) are disconnected in X ∗∗int;

(ii) D̄int ⊆ C��(Γ∗int), CGint ⊆ C��(Γ∗int −H(�)) and CBint ⊆ X ∗∗int \ (C��(Γ∗int) ∪ C��(Γ∗int −H(�))).

In [13] metastability is defined in terms of properties of capacities, namely:

Definition 10.13 [15, Definition 3.2.1.],[14, Definition 8.2] Consider a family of Markov chains,
indexed by β, on a finite state space X . A set M⊆ X is called PTA-metastable if

lim
β→∞

maxη/∈M µβ(η)[CAPβ(η,M)]−1

minη∈M µβ(η)[CAPβ(η,M\ η)]−1
= 0. (10.19)

By [15, Lemma 3.2.2] we know that the set {�,�} is PTA-metastable in the sense of Definition
10.13. To obtain our sharp estimate of E�(�), we need the following

Proposition 10.14 [15, Proposition 3.2.3]

E�(τ�) =
1

Zβ CAPβ(�,�)
[1 + o(1)]

as β →∞.

We follow the general strategy outlined in [17, 12, 14, 15]:

– Note that all terms in the Dirichlet form in (10.3) involving configurations η with H(η) >
Γ∗wa, i.e., η ∈ Xwa \ X ∗wa, contribute at most Ce−(Γ∗int+δ)β for some δ > 0 and can be
neglected. Thus, effectively we can replace Xwa by X ∗wa.

– Show that h∗�,� = O(e−δβ) on C��(Γ∗wa −H(�)) and h∗�,� = 1 − O(e−δβ) on C��(Γ∗wa) for
some δ > 0.

– Prove sharp upper and lower bounds for h∗�,� on X ∗wa \ (C��(Γ∗wa) ∪ C��(Γ∗wa − H(�))) in
terms of a variational problem involving only the vertices and the bonds on and incident
to X ∗wa \ (C��(Γ∗wa) ∪ C��(Γ∗wa −H(�))).

Note that
C��(Γ∗wa) = {η ∈ X ∗wa : Φ(η,�) < Φ(η,�)},

C��(Γ∗wa −H(�)) = {η ∈ X ∗wa : Φ(η,�) < Φ(η,�)}.
(10.20)

The guiding idea behind the sharp estimate of Zβ CAPβ(�,�) is that h∗�,� is exponentially close

to 1 on X�� (Γ∗wa) and exponentially close to 0 on X�� (Γ∗wa − H(�)). By [15, Lemma 3.3.1] we
know that h∗�,� is trivial on C��(Γ∗wa) ∪ C��(Γ∗wa − H(�)), thus it remains to understand what
h∗�,� looks like on the set

X ∗wa \ (C��(Γ∗wa) ∪ C��(Γ∗wa −H(�))) = {η ∈ X ∗wa : Φ(η,�) = Φ(η,�)}, (10.21)

which separates C��(Γ∗wa) and C��(Γ∗wa−H(�)) and contains Swa(�,�). Before doing so, we first
show that h∗�,� is also trivial on X ∗∗wa \ (C��(Γ∗wa)∪C��(Γ∗wa−H(�))). This set can be partitioned
into maximally connected components,

X ∗∗wa \ (C��(Γ∗wa) ∪ C��(Γ∗wa −H(�))) =

I⋃

i=1

Xwa(i), (10.22)
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where each Xwa(i) is a well in Swa(�,�), i.e., a set of communicating configurations with energy
< Γ∗wa but with communication height Γ∗wa towards both � and �. By [15, Lemma 3.3.2] we
know that h∗�,� is close to a constant on each of these wells. By Proposition 7.10(ii) we know

that for each η̂ ∈ D̄wa the four bars of bad sites in ∂+CR(η̂) form a well. These are not the only
wells, but [15, Lemma 3.3.2] shows that we not need care too much about wells anyway. For the
weakly anisotropic case, only the transitions in and out of the wells contribute to the Dirichlet
form at the order we are after, not those inside the wells.

Using Lemma 10.7, [15, Proposition 3.3.4] and [15, Lemma 3.4.1], in order to prove Theorem
4.13 it remains to count the cardinality of D̄wa modulo shifts. We denote by Nwa that quantity.

Proposition 10.15

Nwa =

4∑

k=1

(
4

k

)(
l∗2 + k − 2

2k − 1

)
.

Proof. We have to count the number of different shapes of the clusters in D̄wa. We do this
by counting in how many ways l∗2 − 1 particles can be removed from the four bars of a l∗1 × l∗2
rectangle starting from the corners. We split the counting according to the number k = 1, 2, 3, 4
of corners from which particles are removed. The number of ways in which we can choose k
corners is

(
4
k

)
. After we have removed the particles at these corners, we need to remove l∗2−1−k

more particles frome either side of each corner. The number of ways in which this can be done
is

|{(m1, ...,m2k) ∈ N2k
0 : m1 + ...+m2k = l∗2 − 1− k}|

= |{(m1, ...,m2k) ∈ N2k : m1 + ...+m2k = l∗2 − 1 + k}|
=

(
l∗2 + k − 2

2k − 1

)
.

(10.23)

Thus we get the claim. �

10.4 Proof of Theorem 4.14

In this Section we give the proof of Theorem 4.14, that represents the uniform entrance dis-
tribution for int = wa. Let ∂−C∗wa be those configurations in C∗wa where the free particle is in
∂−Λ. Following the same argument used in [15] for the isotropic regime, since D̄wa ⊆ C��(Γ∗wa)
by Theorem 10.12(ii), it follows from [15, Lemma 3.3.1] and C∗wa ⊆ Swa(�,�) that

min
η′∈D̄wa

h∗�,∂−C∗wa(η′) ≥ 1− Ce−δβ, (10.24)

where

h∗�,∂−C∗wa(η′) =

{
0 if η′ ∈ ∂−C∗wa,
Pη′(τ� < τ∂−C∗wa) otherwise.

(10.25)

Moreover, letting ∂−−C∗wa be the set of configurations obtained from ∂−C∗wa by moving the free
particle from ∂−Λ to ∂−−Λ = ∂−(Λ−), we deduce that

max
η′∈∂−−C∗wa

h∗�,∂−C∗wa(η′) ≤ Ce−δβ. (10.26)

From now on, following the argument proposed in [15] we are able to prove the assertion in
(4.42).
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10.5 Proof of Theorem 4.16

Thanks to [53, Lemma 3.6], we deduce that for our model the quantity Γ̃(B), with B ( X ,
defined in [53, eq. (21)] is such that Γ̃(X \{�}) = Γ∗int, with int ∈ {is, wa}. Thus Theorem 4.16
follows by the following proposition.

Proposition 10.16 [53, Proposition 3.24] For any ε ∈ (0, 1) and any s ∈ X s

lim
β→∞

1

β
log tmixβ (ε) = Γ̃(X \ {s}) = lim

β→∞
− 1

β
log ρβ (10.27)

Furthermore, there exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that for every
β > 0

c1e
−βΓ̃(X\{s}) ≤ ρβ ≤ c2e

−βΓ̃(X\{s}) (10.28)

11 Proof of the main results for the simplified model

In this Section we provide the proof of results in Section 5 that are extensions to the simplified
model (described in Section 2.3) of the local model. In the case int = is, Theorem 5.1 follows
from [42] and Theorem 4.8. Now we consider int ∈ {wa, sa} and we follow the strategy proposed
in [42] for int = is. In [42, Section 2] the authors give several large deviation estimates concerning
exponential clocks, that hold also for the anisotropic cases. In [42, Section 3] the authors give
several large deviation estimates concerning random walks. All these results are valid for the
cases int ∈ {wa, sa} without changes except for [42, Proposition 3.13], in which we have to
replace U with U1. The recurrence property for the anisotropic simplified model is obtained
with similar arguments carried out in [42, Section 6]. To this end, we modify the definition
of the set X̄2 given in [42, eq. (5.8)] by replacing U with U1. Therefore also the definition of
the set X2 given in [42, eq. (6.1)] should be modified accordingly. Thus, if we define for the
anisotropic model T1 = e0β, T2 = eU1β and T3 = e∆β, [42, Proposition 6.2] holds also for the
anisotropic cases. Concerning the reduction, we follow the strategy proposed in [42, Section 7].
In particular, we have to study the behavior of the gas and its interaction with the dynamics
in the box Λ. There are two classes of gas particles with different behavior: particles that have
been in Λβ \ Λ for a long time (say of order T3), which we call green particles; and particles
that exit from Λ and afterwards return to Λ in a short time (say of order 1), which we call
red particles. The effect of green (resp. red) particles is studied in [42, Section 7.6] (resp. [42,
Section 7.7]) and can be extended to the cases int ∈ {wa, sa} by modifying the times T1, T2

and T3, and the sets X2 and X̄2 as above. In the case int = wa, from this discussion and [51,
Theorem 3] (resp. Theorem 4.11) for the local model, Theorem 5.2(a) (resp. Theorem 5.2(b))
follows. Analogously, using [51, Theorem 1] (resp. Theorem 4.12) for the local model, Theorem
5.2(c) (resp. Theorem 5.2(d)) holds.

A Appendix

A.1 Additional material for Section 7

Proof of Lemma 7.7 Let int = wa. Note that H(ηB) = Γ∗wa−U2 (resp. H(ηB) = Γ∗wa−U1) if
the free particle has been attached to an horizontal (resp. vertical) bar. In the first case, in order
to avoid exceeding the energy value Γ∗wa it is possible to translate only the vertical bars. These
saddles are in Nα

1 . In the latter case, it is possible to translate both vertical and horizontal bars.
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If the translated bar is horizontal, the saddles that are crossed are in Nα′
0 . If the translated bar

is vertical, the configurations obtained do not reach the level Γ∗wa, thus they are not saddles.
To conclude, all the configurations in Nα′

0 ∪ Nα
1 can be obtained from a configuration ηB via a

1-translation of a bar.
It remains to prove that the saddles in Nα′

0 ∪ Nα
1 are essential. This part of the proof is

analogue to the corresponding one done for int = is in Lemma 8.2. �

Proof of Lemma 7.8 Let int = wa. Since H(η) = Γ∗wa, it is possible to activate a sliding of a
vertical bar around a frame-angle only after lowering the energy. Thus the only admissible move
is to attach the free particle to an horizontal bar, since we want to slide a vertical bar. When
this happens, the energy reaches the value Γ∗wa−U2. Now the only possibility to slide the bar is
to activate a 1-translation of the vertical bar at cost U2, thus the subsequent moves must be at
zero cost, until the last one that costs −U2. This implies that the last configuration has energy
Γ∗wa−U2. If a 1-translation of a horizontal bar is activated, the energy increases by U1 and thus
it reaches the value Γ∗wa − U2 + U1 > Γ∗wa, which is in contradiction with the optimality of the
path. �

Proof of Lemma 7.9 By Proposition 7.1(a) we know the geometric description of D̃wa. Starting
from a configuration η ∈ D̃wa, since H(η) = Γ∗wa −∆ +U1 −U2, by optimality of the path, it is
possible to create a free particle only after lowering the energy. This is possible only if η ∈ Q̃wa,
where it is possible to detach the protuberance and reattach it to a vertical side, thus we obtain
a configuration in Q̄wa. This concludes the proof. �

We give the proof of Lemma 7.16 here in Appendix A.1, since it is similar to the proof of [2,
Lemma 6.16] that concerns the strongly anisotropic interactions.
Proof of Lemma 7.16 The proof is analogue to the one of [2, Lemma 6.16] done for the
strongly anisotropic interactions. The difference is only in case (iii), indeed, considering the
time-reversal of the path ω from η ∈ C∗wa to �, if a sliding of a bar around a frame-angle takes
place at cost U1, the configuration ωk̄ that we obtain does not belong to the set B defined in [51,
eq. (3.64)], because s(ωk̄) = s∗wa + 1 and v(ωk̄) = 2l∗2 − l∗1 − 2 < pmin(ωk̄)− 1 = l∗2 − 1. Thus by
[51, Proposition 11] we know that the time-reversal of the path ω visits a configuration σ̄ ∈ C∗wa.
Thus we can iterate the argument by taking this configuration as η and the iteration involves a
finite number of steps since ω has to reach �. This concludes the proof. �

A.2 Additional material for Section 8

We give explicit argument to complete the proof of Proposition 8.1, considering the cases that
were left in Section 8.2, since the proofs are analogue to the ones discussed in that Section. Due
to [47, Theorem 5.1], our strategy consists in characterizing the essential saddles that could be
visited after attaching the free particle in a bad site.

Case 2A. Without loss of generality we consider η as in Figure 19(a). If we are considering
the case in which a sequence of 1-translations of a bar is possible and takes place, then by Lemma
8.2(i) the saddles that are crossed are essential and in I α

0 ∪I α
1 . If a sequence of 1-translations

of a bar takes place so that the last configuration has at most two occupied frame-angles and
it belongs to the cases 2B, 2C and 2D treated below. Thus we are left to analyze the case in
which there is the activation of a sliding of a bar around a frame-angle.

If the free particle is attached to the bar Be(η), then it is not possible to complete the sliding
of the bar Bn(η) around the frame-angle cne(η′), since the condition (4.12) is not satisfied. Thus
by Lemma 7.6(ii) we know that the saddles that could be crossed in this attempt are unessential.
If the free particle is attached to the bar Bs(η), we conclude as before.
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(a)

(lc − 3)× (lc − 1)

(b)

(lc − 4)× lc

(c)

(lc − 2)× (lc − 2)

Figure 19: Case 2A: in (a) we depict a possible starting configuration η ∈ C∗is, in (b) the
configuration η̃ obtained from η after the sliding of the bar Be(η) around the frame-angle cen(η′)
and in (c) the configuration η̃ obtained from η after the sliding of the bar Bs(η) around the
frame-angle csw(η′).

If the free particle is attached to the bar Bn(η), then it is not possible to complete the sliding
of the bar Bw(η) around the frame-angle cwn(η′) because the condition (4.12) is not satisfied
and thus we can conclude as before. If |Be(η)| < |Bn(η)| the condition (4.12) is satisfied, thus it
is possible to slide the bar Be(η) around the frame-angle cen(η′). By Lemma 7.6(i) the saddles

that are possibly visited are essential and, except the last one, they are in I α,α′

k,k′,1. The last

configuration visited during this sliding of a bar is η̃ ∈ I α,α′

1 , has a free particle and it is
depicted in Figure 19 (b). Starting from such a configuration, if a sequence of 1-translations of
a bar is possible and takes place, then by Lemma 8.2(ii) the saddles that could be crossed are
essential and in I α

1 ∪I α
2 . If this free particle is now attached to ∂−CR(η̃), then the path reaches

C��(Γ∗is) and the saddles are those obtained up to this point. Otherwise, if the free particle is now
attached to Bw(η̃) obtaining the configuration η′′, and if a sliding of the bar Bs(η̃) around the
frame-angle csw(η′′) takes place, by Lemma 7.6(i) the saddles that could be crossed are essential

and, except the last one, are in I α,α′

k,k′,1. The last configuration is in C∗is, because the cluster is in

D̃is. If this sliding of a bar does not take place, the path ω has to go back to a configuration

in I α,α′

1 and the saddles that could be crossed are already considered. From now on, we can
iterarate this argument for a finite number of steps since the path has to reach �.

If the free particle is first attached to the bar Bw(η), we argue in a similar way as before.
Indeed, if |Bs(η)| < |Bw(η)|, it is possible to slide the bar Bs(η) around the frame-angle csw(η′).
By Lemma 7.6(i) the saddles that are possibly visited are essential and, except the last one, are

in I α,α′

k,k′,0. The last configuration visited during this sliding of a bar is in C∗is (see Figure 19(c))
and it belongs to case 1A. This concludes case 2A.

Case 2B. We consider separately the following subcases:

(i) the two occupied frame-angles are cαα
′
(η) and cα

′′α′′′(η), with all the indeces α, α′, α′′, α′′′

different between each other (see Figure 20 on the left-hand side);

(ii) the two occupied frame-angles are cαα
′
(η) and cα

′α′′(η), with α 6= α′′ (see Figure 20 on the
right-hand side).

Case 2B(i). Without loss of generality we consider η as in Figure 20 on the left-hand side.
If we are considering the case in which a sequence of 1-translations of a bar is possible and takes
place, then by Lemma 8.2(i) the saddles that are crossed are essential and they are in I α

0 ∪I α
1 .

If at least one bar is full and a sequence of 1-translations of a bar takes place, it is possible
to obtain a configuration either with two occupied frame-angles with a bar in common or with
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(lc − 3)× (lc − 1) (lc − 3)× (lc − 1)

Figure 20: On the left-hand side we depict a possible starting configuration η ∈ C∗is for the case
2B(i) and on the right-hand side a possible starting configuration η ∈ C∗is for the case 2B(ii).

three occupied frame-angles. The first case will been analyzed in case 2B(ii) and the latter one
has been already analyzed in case 2A. Thus we can reduce our proof to the case in which there
is no translation of bars and therefore there is the activation of a sliding of a bar around a
frame-angle. First, assume that |Bn(η)| < |Bw(η)| and |Bs(η)| < |Be(η)|. By Lemma 7.6 the
only two possibilities to obtain essential saddles is to attach the free particle to the bar Bw(η)
or Be(η) and then slide the bar Bn(η) around the frame-angle cnw(η′) or Bs(η) around cse(η′)
respectively. If the free particle is first attached to Bw(η), by Lemma 8.2(i) the saddles that are

possibly visited are essential and, except the last one, are in I α,α′

k,k′,0. The last configuration is

η̃ ∈ I α,α′

−1 . Starting from η̃, it is possible to attach the free particle to the bar Be(η̃) obtaining a
configuration η′′, and then slide the bar Bs(η̃) around the frame-angle cse(η′′). Thus by Lemma

7.6(i) we know that these saddles are essential and, except the last one, are in I α,α′

k,k′,0. The

last configuration is η̄ ∈ I α,α′

0 . Starting from η̄, it is not possible to complete any sliding of a
bar around a frame-angle and thus by Lemma 7.6(ii) we conclude that the saddles that will be
possibly crossed are unessential unless a sequence of 1-translations of bars takes place. In this
case, by Lemma 8.2(i) the saddles that could be crossed are essential and in I α

0 ∪ I α
1 . If the

free particle is first attached to Be(η), we conclude similarly.
Assume now that |Bw(η)| < |Bn(η)| and |Be(η)| < |Bs(η)|: we argue in the same way as

before. If the free particle is first attached to the bar Bn(η), the essential saddles that could be

crossed are in I α,α′

k,k′,1 and the last one is η̃ ∈ I α,α′

1 and has a free particle. Again, starting from
η̃, if the free particle is attached to the bar Bs(η̃) obtaining the configuration η′′, by Lemma
7.6(i) we know that the saddles that will be possibly crossed are essential and, except the last

one, are in I α,α′

k,k′,2. The last configuration is η̄ ∈ I α,α′

2 . If the free particle is first attached to
the bar Bs(η), we conclude as above. Starting from η̄, it is not possible to complete any sliding
of a bar around a frame-angle and thus by Lemma 7.6(ii) the saddles that could be crossed are
unessential unless a sequence of 1-translations of bars takes place. In the latter case, by Lemma
8.2(iii) the saddles that could be crossed are essential and in I α

2 ∪I α
3 .

The cases |Bw(η)| < |Bn(η)|, |Bs(η)| < |Be(η)| and |Bn(η)| < |Bw(η)|, |Be(η)| < |Bs(η)| can
be treated with the same argument as the previous ones and the essential saddles encountered
have been already considered. This concludes case 2B(i).

Case 2B(ii). Without loss of generality we consider η as on the right-hand side in Figure
20. If we are considering the case in which a sequence of 1-translations of a bar is possible and
takes place, then by Lemma 8.2(i) the saddles that are crossed are essential and they are in
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(lc − 3)× (lc − 1) (lc − 3)× (lc − 1)

Figure 21: On the left-hand side we depict a possible starting configuration η ∈ C∗is for the case
2C and on the right-hand side a possible starting configuration η ∈ C∗is for the case 2D.

I α
0 ∪ I α

1 . If one bar among Bw(η) and Be(η) is full, then it is possible that a sequence of
1-translations of the bar Bs(η) takes place in order to have three occupied frame-angles. This
situation has already been analyzed in case 2A. Thus we can reduce our proof to the case in
which there is no translation of bars and therefore there is the activation of a sliding of a bar
around a frame-angle. If the free particle is attached to the bar Bs(η), it is not possible to
complete any sliding of a bar around a frame-angle at cost U and by Lemma 7.6(ii) we know
that the saddles that could be crossed are unessential. If the free particle is attached to one bar
among Bw(η) and Be(η), since (4.12) is not satisfied it is not possible to complete the sliding of
the bar Bn(η) around the frame-angle cnw(η′) and cne(η′) respectively. Thus by Lemma 7.6(ii)
the saddles that will be possibly crossed are unessential. If the free particle is attached to the
bar Bn(η), then it is possible to complete the sliding of the bar Bw(η) or Be(η) around the
frame-angle cwn(η′) or cen(η′) respectively. Thus by Lemma 7.6(i) we know that the saddles

that will be crossed are essential and, except the last one, are in I α,α′

k,k′,1. The last configuration

is η̃ ∈ I α,α′

1 that has a free particle. If this free particle is now attached to ∂−CR(η̃), then
the path reaches C��(Γ∗is) and the saddles are those obtained up to this point. Otherwise, since
condition (4.12) is not satisfied, it is not possible to complete any sliding of a bar around a
frame-angle, thus by Lemma 7.6(ii) the saddles that will be possibly crossed during the sliding
of a bar are unessential. On the other hand, if a sequence of 1-translations of a bar is possible
and takes place, then, starting from η̃, by Lemma 8.2(ii) the saddles that could be crossed are
essential and in I α

1 ∪I α
2 . This concludes case 2B(ii).

Case 2C. Without loss of generality we consider η as in Figure 21 on the left-hand side. If we
are considering the case in which a sequence of 1-translations of a bar is possible and takes place,
then by Lemma 8.2(i) the saddles that are crossed are in I α

0 ∪I α
1 . Thus we can reduce our proof

to the case in which there is no 1-translation of a bar and therefore there is only the activation of
a sliding of a bar around a frame-angle. Starting from this configuration it is possible to obtain
two occupied frame-angles via a sequence of 1-translations of a bar: this situation has been
already analyzed in case 2B. If the free particle is attached to the bar Be(η) or Bs(η), since it
is not possible to complete any sliding of bar around a frame-angle at cost U , by Lemma 7.6(ii)
we know that the saddles that could be crossed are unessential. If |Bw(η)| < |Bn(η)| (resp.
|Bn(η)| < |Bw(η)|) and the free particle is attached to the bar Bn(η) (resp. Bw(η)), then it is
possible to complete a sliding of the bar Bw(η) (resp. Bn(η)) around the frame-angle cwn(η′)
(resp. cnw(η′)). Thus by Lemma 7.6(i) the saddles that could be crossed are essential and in

I α,α′

k,k′,1 (resp. I α,α′

k,k′,0), except the last one that is η̃ ∈ I α,α′

1 (resp. η̃ ∈ I α,α′

−1 ) with a free particle.

If this free particle is now attached to ∂−CR(η̃), then the path reaches C��(Γ∗is) and the saddles
are those obtained up to this point. Otherwise, condition (4.12) is not satisfied, thus it is not
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possible to complete any sliding of a bar around a frame-angle. Therefore by Lemma 7.6(ii) we
know that the saddles that could be visited are unessential unless a sequence of 1-translations
of a bar is possible and takes place. In this case, by Lemma 8.2(ii) (resp. Lemma 8.2(i)) the
saddles that could be crossed are essential and in I α

1 ∪I α
2 (resp. I α

0 ). This concludes case 2C.

Case 2D. Without loss of generality we consider η as in Figure 21 on the right-hand side. If
we are considering the case in which a sequence of 1-translations of a bar is possible and takes
place, then by Lemma 8.2(i) the saddles that are crossed are essential and in I α

0 ∪I α
1 . Thus we

can reduce our proof to the case in which there is no 1-translation of a bar and therefore there is
only the activation of a sliding of a bar around a frame-angle. Starting from this configuration,
it is possible to obtain one or two occupied frame-angles via a sequence of 1-translations: these
situations have been already analyzed in cases 2C and 2B respectively. If the free particle is
attached to one of the bars, since it is not possible to complete any sliding of bar around a
frame-angle at cost U , by Lemma 7.6(ii) we know that the saddles that could be crossed are
unessential. This concludes case 2D.

A.3 Additional material for Section 9

Proof of Lemma 9.1 Consider ω ∈ (� → �)opt. If ω ∩ C∗wa 6= ∅, we get the claim. Thus we
can reduce our analysis to the case in which the path ω reaches the set P in a configuration
η ∈ P \ C∗wa. We set ω = (�, ω1, ..., ωk, η) ◦ ω̄, where ω̄ is a path that connects η to � such that
maxσ∈ωH(σ) ≤ Γ∗wa. We are interested in the time-reversal of the path ω. Since η ∈ P \ C∗wa,
we know that it is composed by the union of a cluster CR−(η) = R(l∗1 − 2, l∗2 − 2), such that
at least one frame-angle of CR−(η) is empty, a free particle and four bars attached to the four
sides of CR−(η) in such a way that η contains ncwa + 1 particles (see (4.29) for the definition of
ncwa). For the entire proof we refer to Figure 22, where for int = wa the horizontal and vertical
lengths have to be changed to l∗1 and l∗2 respectively. Suppose that CR−(η) contains x empty
frame-angles, with 1 ≤ x ≤ 4, (see Figure 22(a) to visualize the configuration η in the case
x = 1). Since H(η) = Γ∗wa, the move from η to ωk must have a non-positive cost and thus the
unique admissible moves are:

(i) either moving the free particle at zero cost;

(ii) or removing the free particle;

(iii) or attaching the free particle at cost −U1 (see Figure 22(b)) or −U2, or −U1 − U2.

Case (i). In this case the configuration ωk is analogue to η and therefore we can iterate this
argument by taking this configuration as η.

Case (ii). In this case H(ωk) = Γ∗wa − ∆. We may assume that the configuration ωk−1 is
not obtained by ωk via adding a free particle, otherwise ωk−1 is analogue to η and thus we can
iterate the argument by taking this configuration as η. By the optimality of the path, again
considering the time-reversal, we deduce that the unique admissible move to obtain ωk−1 from
ωk is breaking a horizontal (resp. vertical) bar at cost U1 (resp. U2). Thus it is possible that
either a sequence of 1-translations of a bar or a sliding of a bar around a frame-angle takes
place. In the first case, we obtain a configuration that is analogue to ωk−1 and thus we can
iterate the argument for a finite number of steps, since the path has to reach �. In the latter
case, by Remark 7.2(ii) we deduce that the condition (4.12) is not satisfied and therefore it is
not possible to complete any sliding of a bar around a frame-angle. This implies that the unique
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(a) (b) (c) (d)

Figure 22: Here we depict in (a) the configuration η; in (b) the configuration obtained by η
by attaching the free particle at cost −U1 to Bw(η); in (c) the configuration η′ obtained from
η by attaching the free particle to cse(η) and then detaching the particle in cnw(CR−(η)) and
attach it to Be(η), and in (d) the configuration η′′ obtained from η′ by detaching the particle in
cne(CR−(η′)) attach it to Bn(η′).

admissible moves are the reverse ones, thus we obtain a configuration that is analogue to ωk−1

and therefore we can iterate the argument for a finite number of steps, since the path has to
reach �. In this way we can reduce ourselves to consider the case (iii).

Case (iii). (a) We consider the case where from η, again considering the time-reversal, we attach
a particle at cost −U1 in ∂+CR(η) giving rise to the configuration ωk, i.e., H(ωk) = Γ∗wa − U1

(see Figure 22(b)). Thus it is possible that either a sequence of 1-translations of a bar or a
sliding of a bar around a frame-angle takes place. In the first case, we obtain a configuration
that is analogue to ωk and thus we can iterate the argument for a finite number of steps, since
the path has to reach �. In the latter case, by Remark 7.2(ii) we deduce that the condition
(4.12) is not satisfied and therefore it is not possible to complete any sliding of a bar around a
frame-angle. This implies that the unique admissible moves are the reverse ones, thus we obtain
a configuration that is analogue to ωk and therefore we can iterate the argument for a finite
number of steps, since the path has to reach �.

(b) We consider the case where from η, again considering the time-reversal, we attach a
particle at cost −U2 in ∂+CR(η) giving rise to the configuration ωk, i.e., H(ωk) = Γ∗wa−U2. We
argue in a similar way as above.

(c) We consider the case where from η, again considering the time-reversal, we attach a
particle at cost −U1 − U2 in ∂−CR(η) giving rise to the configuration ωk, i.e., H(ωk) = Γ∗wa −
U1−U2. Thus it is possible either to have a sequence of 1-translations of a bar, or to have a sliding
of a bar around a frame-angle, or to detach a particle at cost U1+U2. In the first two possibilities,
analogously to what has been discussed previously in (a) and (b), the unique admissible moves
are the reverse ones and therefore we conclude as above. In the latter possibility, we have that
either ωk−1 is obtained from ωk by detaching a particle from a bar at cost U1 + U2 or from a
corner of η that is in CR−(η). In the first case, the particle can be attached to an empty frame-
angle of CR−(η) and we can repeat these steps at most x− 1 times (if x ≥ 2), that implies that
there exists k̄ < k − 1 such that ωk̄ is composed by the union of a free particle and a rectangle
R(l∗1 − 2, l∗2 − 2) with four bars attached to its four sides in such a way ωk̄ contains ncwa + 1
particles, namely ωk̄ ∈ C∗wa. In the second case, we may assume that the detached particle is
attached to a bar in ∂−CR(η) giving rise to a configuration η′ (see Figure 22(c)), otherwise we
obtain a configuration that is analogue to η. Starting from η′, similarly we obtain η′′ (see Figure
22(d)) if η′ has a corner in CR−(η′). If this is the case, we can proceed in a similar way until we
obtain a configuration η′′′ that has no corner in CR−(η′′′). Starting from η′′′, by the optimality
of the path we deduce that the unique admissible moves are the reverse ones and therefore the
path goes back to η. This concludes the proof. �
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(l∗1 − 2)× (l∗2 − 2) (l∗1 − 2)× (l∗2 − 2)

Figure 23: Case A: on the left-hand side we represent a possible starting configuration η ∈ C∗wa
and on the right-hand side the configuration η̃ obtained from η after the sliding of the bar Bn(η)
around the frame-angle cnw(η′).

Proof of Proposition 9.2 Consider a configuration η ∈ C∗wa(2) such that η = (η̂, x), with η̂ ∈
D̄wa and d(η̂, x) = 2. By Proposition 7.1(a) we deduce that that η̂ consists of an (l∗1−2)×(l∗2−2)
rectangle with four bars Bα, with α ∈ {n, s, w, e}, attached to its four sides satisfying

1 ≤ |Bw(η)|, |Be(η)| ≤ l∗2, l∗1 − l∗2 + 1 ≤ |Bn(η)|, |Bs(η)| ≤ l∗1, (A.1)

and ∑

α

|Bα(η)| −
∑

αα′∈{nw,ne,sw,se}

|cαα′(η)| = 2l∗1 + l∗2 − 3. (A.2)

Assume that the free particle is attached in a bad site obtaining a configuration η′ ∈ CBwa. Due
to [47, Theorem 5.1] and Proposition 7.14, our strategy consists in characterizing the essential
saddles that could be visited after attaching the free particle in a bad site. By Remark 7.2(i)
we consider separately the following cases:

A. three frame-angles of CR(η̂) are occupied;

B. two frame-angles of CR(η̂) are occupied;

C. one frame-angle of CR(η̂) is occupied;

D. no frame-angle of CR(η̂) is occupied.

Note that from case A one can go to the other cases and viceversa, but since the path has
to reach � this back and forth must end in a finite number of steps.
Case A. Without loss of generality we consider η as in Figure 23 on the left-hand side. If
we are considering the case in which a 1-translation of a bar is possible and takes place, then
by Lemma 7.7 the saddles that are crossed are essential and in Nα′

0 ∪ Nα
1 . If a sequence of

1-translations of a bar takes place in such a way that the last configuration has at most two
occupied frame-angles, then the saddles that could be visited starting from such a configuration
will be analyzed in cases B, C and D. Thus we are left to analyze the case in which there is
the activation of a sliding of a bar around a frame-angle. In the following we quickly exclude
the cases in which the particle is attached to Bn(η), Bs(η) or Be(η) and then explain the more
interesting case in which it is attached to Bw(η) giving rise to Figure 23 on the right-hand side. If
the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 7.8 we know that it is not
possible to complete the sliding of the bar Bw(η) (resp. Be(η)) around the frame-angle cwn(η′)
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(l∗1 − 2)× (l∗2 − 2)

(a)

(l∗1 − 2)× (l∗2 − 2)

(b)

(l∗1 − 2)× (l∗2 − 2)

(c)

Figure 24: Case B(i): in (a) we depict a possible starting configuration η ∈ C∗wa and in (b)
the configuration η̃ obtained from η after the sliding of the bar Bn(η) around the frame-angle
cnw(η′). Case B(ii): in (c) we depict a possible starting configuration η ∈ C∗wa.

(resp. ces(η′)). If the free particle is attached to the bar Be(η) or Bw(η), then it is not possible
to slide the bar Bs(η) around the frame-angle cse(η′) or csw(η′) respectively, since (4.12) is not
satisfied. In the last two cases by Lemma 7.6(ii), we know that the saddles that are visited are
unessential. This implies that the unique possibility to activate and complete a sliding of a bar
around a frame-angle is attaching the free particle to the bar Bw(η), then sliding the bar Bn(η)
around the frame-angle cnw(η′) when |Bn(η)| < |Bw(η)|, otherwise (4.12) is not satisifed. The

saddles that are possibly visited by the sliding path are in Nα,α′

k,k′ (see definition (4.37)) except
the last one, thus by Lemma 7.6(i) they are essential. The last configuration visited during this
sliding of a bar is depicted in Figure 23 on the right-hand side. This configuration has energy
Γ∗wa − U1 + U2 and therefore it is not a saddle and is in C��(Γ∗wa −H(�)). By Propositions 3.5
and 7.12(ii)-(b), the latter implies that the saddles that could be visited are either unessential

or in Nα,α′

2,k′ and therefore the case A is concluded.

Case B. If we are considering the case in which a 1-translation of a bar is possible and takes
place, then by Lemma 7.7 the saddles that are crossed are essential and in Nα′

0 ∪ Nα
1 . We

consider separately the following subcases:

(i) The two occupied frame-angles are cαα
′
(η) and cα

′′α′′′(η), with all the indeces α, α′, α′′, α′′′

different between each other (see Figure 24(a));

(ii) The two occupied frame-angles are cαα
′
(η) and cα

′α′′(η), with α′ ∈ {n, s} and α 6= α′′ (see
Figure 24(c));

(iii) The two occupied frame-angles are cαα
′
(η) and cα

′α′′(η), with α′ ∈ {e, w} and α 6= α′′ (see
Figure 25 on the left-hand side).

Case B(i). Without loss of generality we consider η as in Figure 24(a). We can reduce our
proof to the case in which there is no translation of a bar and therefore there is the activation of
a sliding of a bar around a frame-angle. If the free particle is attached to the bar Bn(η) (resp.
Bs(η)), by Lemma 7.8 we know that it is not possible to complete the sliding of the bar Bw(η)
(resp. Be(η)) around the frame-angle cwn(η′) (resp. ces(η′)). By Lemma 7.6(ii), this implies that
the saddles that could be crossed are unessential. Note that if the free particle is attached to the
bar Bn(η) (resp. Bs(η)), it is not possible to slide the bar Be(η) (resp. Bw(η)) by definition. If
the free particle is attached to the bar Bw(η) (resp. Be(η)) it is possible to slide the bar Bn(η)
(resp. Bs(η)) around the frame-angle cnw(η′) (resp. cse(η′)) when |Bn(η)| < |Bw(η)| (resp.
|Bs(η)| < |Be(η)|), otherwise (4.12) is not satisifed. The saddles that are possibly visited by the
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(l∗1 − 2)× (l∗2 − 2) (l∗1 − 2)× (l∗2 − 2)

Figure 25: Case B(iii): on the left-hand side we depict a possible starting configuration η ∈ C∗wa
and on the right-hand side the configuration η̃ obtained from η after the sliding of the bar Bn(η)
around the frame-angle cnw(η′).

sliding path are in Nα,α′

k,k′ except the last one, thus by Lemma 7.6(i) they are essential. The last
configuration visited during this sliding of a bar is depicted in Figure 24(b). This configuration
has energy Γ∗wa − U1 + U2 and therefore it is not a saddle and is in C��(Γ∗wa − H(�)). By
Propositions 3.5 and 7.12(ii)-(b), the latter implies that the saddles that could be visited are

either unessential or in Nα,α′

2,k′ and therefore the case B(i) is concluded.
Case B(ii). Without loss of generality we consider η as in Figure 24(c). If one bar among

Bw(η) and Be(η) is full, it is possible to translate Bs(η) in order to have three occupied frame-
angles. This situation has already been analyzed in case A. Thus we can reduce our proof to the
case in which there is no translation of a bar and therefore there is the activation of a sliding
of a bar around a frame-angle. If the free particle is attached to the bar Bn(η) or Bs(η), by
Lemma 7.8 we know that it is not possible to complete the sliding of a vertical bar around any
frame-angle. If the free particle is attached to the bar Bw(η) or Be(η), since the bar Bn(η) is
full, we deduce that (4.12) is not satisfied. This implies that it is not possible to slide the bar
Bn(η) around the frame-angle cnw(η′) and cne(η′). In the last two cases by Lemma 7.6(ii) we
know that the saddles that are visited are unessential. This concludes case B(ii).

Case B(iii). Without loss of generality we consider η as in Figure 25 on the left-hand side.
If the bar Bn(η) (resp. Bs(η)) is full, it is possible to translate Be(η) to occupy the frame-
angle cne(η′) (resp. cse(η′)). This situation has already been analyzed in case A. Otherwise,
it is possible to translate a bar with one occupied frame-angle in order to have two occupied
frame-angles in such a way that they have no bar in common. This situation has already been
analyzed in case B(i). Thus we can reduce our proof to the case in which there is no translation
of a bar and therefore there is the activation of a sliding of a bar around a frame-angle. If the
free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 7.8 we know that it is not
possible to complete the sliding of the bar Bw(η) around the frame-angle cwn(η′) (resp. cws(η′)).
If the free particle is attached to the bar Be(η), we deduce that (4.11) is not satisfied. In the
last two cases by Lemma 7.6(ii) we know that the saddles that are visited are unessential. If
the free particle is attached to the bar Bw(η), it is possible to slide the bar Bn(η) (resp. Bs(η))
around the frame-angle cnw(η′) (resp. csw(η′)) when |Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Bw(η)|),
otherwise (4.12) is not satisifed. The saddles that are possibly visited by the sliding path are

in Nα,α′

k,k′ except the last one, thus by Lemma 7.6(i) they are essential. The last configuration
visited during the sliding of the bar Bn(η) around the frame-angle cnw(η′) is depicted in Figure
25 on the right-hand side. This configuration has energy Γ∗wa − U1 + U2 and therefore it is not
a saddle and is in C��(Γ∗wa −H(�)). By Propositions 3.5 and and 7.12(ii)-(b), the latter implies

69



(l∗1 − 2)× (l∗2 − 2)

(a)

(l∗1 − 2)× (l∗2 − 2)

(b)

(l∗1 − 2)× (l∗2 − 2)

Figure 26: Case C: in (a) we depict a possible starting configuration η ∈ C∗wa and in (b) the
configuration η̃ obtained from η after the sliding of the bar Bn(η) around the frame-angle cnw(η′).
Case D: in (c) we depict a possible starting configuration η ∈ C∗wa.

that the saddles that could be visited are either unessential or in Nα,α′

2,k′ and therefore the case
B(iii) is concluded.

Case C. Without loss of generality we consider η as in Figure 26(a). If we are considering the
case in which a 1-translation of a bar is possible and takes place, then by Lemma 7.7 the saddles
that are crossed are essential and in Nα′

0 ∪Nα
1 . Starting from this configuration it is possible to

obtain two occupied frame-angles: this situation has been already analyzed in Case B. Thus we
can reduce our proof to the case in which there is no translation of a bar and therefore there is
the activation of a sliding of a bar around a frame-angle. If the free particle is attached to the bar
Bn(η) (resp. Bs(η)), by Lemma 7.8 we know that it is not possible to complete the sliding of the
bar Bw(η) around the frame-angle cwn(η′) (resp. cws(η′)). If the free particle is attached to the
bar Be(η), we deduce that (4.11) is not satisfied. In the last two cases by Lemma 7.6(ii) we know
that the saddles that are visited are unessential. If the free particle is attached to the bar Bw(η),
it is possible to slide the bar Bn(η) around the frame-angle cnw(η′) when |Bn(η)| < |Bw(η)|,
otherwise (4.12) is not satisifed. The saddles that are possibly visited by the sliding path are

in Nα,α′

k,k′ except the last one, thus by Lemma 7.6(i) they are essential. The last configuration
visited during this sliding of a bar is depicted in Figure 26(b). This configuration has energy
Γ∗wa − U1 + U2 and therefore it is not a saddle and is in C��(Γ∗wa −H(�)). By Propositions 3.5
and 7.12(ii)-(b), the latter implies that the saddles that could be visited are either unessential

or in Nα,α′

2,k′ and therefore the case C is concluded.

Case D. Without loss of generality we consider η as in Figure 26(c). If we are considering the
case in which a 1-translation of a bar is possible and takes place, then by Lemma 7.7 the saddles
that are crossed are essential and in Nα′

0 ∪Nα
1 . Starting from this configuration it is possible to

obtain one or two occupied frame-angles: these situations have been already analyzed in Cases
C and B respectively. Thus we can reduce our proof to the case in which there is no translation
of a bar and therefore there is the activation of a sliding of a bar around a frame-angle. If the
free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 7.8 we know that it is not
possible to complete the sliding of the bar Bw(η) around the frame-angle cwn(η′) (resp. cws(η′)).
If the free particle is attached to the bar Bw(η) or Be(η), we deduce that (4.11) is not satisfied.
In the last two cases by Lemma 7.6(ii) we know that the saddles that are visited are unessential.
This concludes case D. �
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[44] R. Kotecký, and E. Olivieri, “Droplet dynamics for asymmetric Ising model”, J. Stat. Phys.,
70, 1121–1148, (1993).
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