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Abstract

Propagating uncertainties through mechanical systems has been widely studied for the last

thirty years. In particular metamodels based on polynomial chaos expansion (PCE) have

been successfully developed in the context of both intrusive and non-intrusive methods.

However, modelling random dynamical systems is much more challenging and requires

increasing computational resources when the time integration becomes longer. Therefore

separating the time aspect of the dynamical response and the random contributions is an

appealing approach, which has been used in this paper. Thus, a non-intrusive method

is proposed by associating a proper orthogonal decomposition (POD) and a PCE. The

POD-PC model was applied on three examples. On two examples, the method was very

efficient not only in calculating the first two statistical moments, but also in estimating

the responses corresponding to several samples of the random parameters. As to the last

example, the Kraichnan-Orszag three-mode problem, the model was able to estimate well

the evolution of the first two statistical moments for the first part of the time duration,

but a noticeable discrepancy occurred for the remaining part. It seems that the model is

more appropriate to estimate the transient response of a random dynamical system than

the steady-state response.

Keywords: Random dynamical systems; structural dynamics; uncertainty propagation;

proper orthogonal decomposition; polynomial chaos expansion.

1. Introduction

Describing random dynamical systems is still a challenge that arises in many engi-

neering problems, despite the progresses made in the late thirty years. The main recent
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developments for modelling uncertain systems essentially concern the Polynomial Chaos

(PC) Expansion (PCE) method. The latter has gained a strong popularity since the works

by Ghanem and Spanos [1].

Despite many successful applications of the PCE for evaluating the response of linear

random dynamical systems in transient regime [2] or in frequency domain [3], it was shown

by several authors that the method [4–6] is not adapted when long-time integration is

required. Making use of the periodicity of the solutions, some transformations (either in

the phase space or in the time domain), together with a PCE, were used to obtain in-phase

solutions, and then to evaluate random limit cycle oscillations and long-time integration

response [5, 7, 8]. This method was developed further in a non-intrusive context [9]. While

these methods are dedicated to specific problems, a more general procedure is presented in

[6]: considering the drawbacks are a consequence of the statistical response evolution with

time, it is proposed to update the PC basis when it becomes not optimal to describe the

response distribution. This method is attractive, but may not be effective when the basis

must be often updated. Other approaches based on wavelet or Wiener-Haar expansion

were also used [4, 10].

A black-box method has been proposed in [11, 12] based on a nonlinear autoregressive

exogenous (NARX) model: this approach may be efficient as it separates the random

and time variables, but identifying the NARX structure is not easy. It turns out that

separating variables in function of their nature (space, time, randomness) belongs to a

class of efficient methods, the Proper Generalized Decomposition (PGD) methods [13].

They have been recently developed in the context of uncertainty propagation with the

generalized spectral decomposition in [14]. The latter has been extended for random

time dependent problem in [15] and similarities with the proper orthogonal decomposition

(POD) were observed: unlike the latter, the former builds an a priori basis for representing

the solution.

These methods are not directly applicable for non-intrusive methods or for data com-

ing directly from experiments, where the mathematical model is not known. However a

posteriori information is known in both cases either with the many simulations of a deter-

ministic code (non-intrusive methods) or with measured data (experiments). Therefore,



the POD can be applied to obtain a basis of representation that decouples the variables.

Thus, in [16–18] a principal component analysis or a POD was used to separate random-

ness from the others variables in a non-intrusive way. In [17], it was clear to the authors

that the method can be used for random dynamic problem, but they did not investi-

gated the method. Therefore, this study aims to address the applicability of the POD-PC

method to an uncertain dynamical systems.

The paper is organized as follows. After giving in section 2 the main notations, in

section 3 the PCE and the POD are briefly introduced, and the combination of both

methods is presented. In section 4 several examples are presented. Finally in section 5

some conclusions are drawn.

2. Notations

m number of random parameters

ξ random m-vector; element ξi is a random variable that has a one-to-one correspondence

with one uncertain parameter

M(ξ) mathematical or numerical model, which depends on random vector ξ

x =M(ξ) response of modelM: both the model and the response can be time dependent

Ξ any sample of ξ

Ξ N×m design of experiment (DoE) matrix; row i, Ξi, is a sample of ξ; column j collects

N samples of ξj

t time; t is discretized in nt values, {ti}i=1,··· ,nt

x(t,Ξ) response at time t when the random parameters are set to Ξ

x(Ξ) nt-vector, which corresponds to the time discretized x(t,Ξ)

x(Ξ) nt ×N -matrix: column i is the time discretized response when the random param-

eters are set to sample Ξi

∀i = 1, · · · , nt ∀j = 1, · · · , N x(Ξ)i,j = x(ti,Ξj) (1)



3. PCE and POD models

3.1. Polynomial chaos expansion

A polynomial chaos expansion consists in finding the response of a model as an

expansion on a polynomial orthogonal basis that depends on ξ [1]

x(ξ) =
∑
J∈Nm

YJ ΨJ(ξ) (2)

where:

� J is a multi-index J = (J1, · · · , Jm); |J | =
∑m

i=1 Ji is the order of polynomial ΨJ .

� ΨJ(ξ) =
∏m

j=1 ψJj(ξj)

� ψJj(ξj) belongs to an orthogonal polynomial family; the orthogonality is with respect

to the probability measure related to random variable ξj; the choice of the family

is related to the probability distribution of ξj (e.g., Legendre polynomial if ξj has a

uniform distribution).

In practice the series is truncated up to order P and the approximate solution xP is

an expansion over IP , a set of multi-index J such that IP = {J ∈ Nm/|J | ≤ P}. The

cardinality of IP is denoted nP , which depends on P and m: nP = (m+ P )!/(m!P !). xP

can be cast as [19]

x(Ξ) ' xP (Ξ) =
∑
J∈IP

YJ ΨJ(Ξ) =

nP∑
j=1

Yj Ψj(Ξ) (3)

where j referred to the j-th element of IP . To make the notations clearer xP is denoted

by x in the following, but obviously all the PCE results are related to a truncated PCE.

The main difficulties are to find the proper order P and also to select, within the

terms of the expansion, which ones are the most relevant. Indeed, it turns out that a large

number of terms in the expansion is unnecessary. In addition, considering too many terms

with a high polynomial degree may give overfitting. Finally, the selection of the more

relevant terms leads to a sparse representation involving nsparse
P terms instead of nP terms



(nsparse
P ≤ nP ), which increases the computation speed. Many methods exist to achieve

a sparse representation of a polynomial chaos basis. A least angle regression algorithm

[20] together with a cross-validation criterion is used in [21–23]. An alternative method

is based on a Bayesian approach and the so-called automatic relevance determination

[23–25]: it has been used in this study.

The coefficients of the PCE can be determined by several methods, which may be

categorized in intrusive methods and non-intrusive methods. The former [26–28] consists

mainly in substituting expansion (2) in the equations, which are then projected on the

PC: the coefficients are the solution of the obtained system. The non-intrusive methods

lay on N evaluations of the model for the N samples of the DoE, Ξ; amongst several

non-intrusive methods, a popular one is a regression method [29–31]

x̂(Ξ) = Ψ(Ξ) Y (4)

where x̂(Ξ) is a N -vector of the N model evaluations; Y is the nP -vector of the nP PCE

coefficients; Ψ(Ξ) is a N × nP matrix: element (i, j) is the evaluation of the j-th PC for

the i-th sample of Ξ. Solving Eq.(4) gives Y.

3.2. PCE in time domain

A PC model in time domain can be built as it was done with Eq. (3)

x(t, ξ) =

nP∑
j=1

Yj(t) Ψj(ξ) (5)

Each coefficient of the PCE depends on the time. In practice it means that each coefficient

Yj(t) must be determined at each time step [28]: therefore, nt PCE models should be

determined. This procedure can have a quite large numerical cost when the number of

time steps is large.

As already mentioned, some authors [5, 6] pointed out that a PCE may fail for long-

time integration when an intrusive method is used.

In Eq. 5, polynomials Ψj are known and the time dependent coefficient must be



estimated. An alternative would consist in finding an expansion:

x(t, ξ) =

nV∑
i=1

ai(ξ) Vi(t) (6)

where time dependent functions Vi(t) are known and coefficients ai(ξ) are the unknowns.

The proper orthogonal decomposition offers a way to estimate Vi(t) in a non-intrusive

way.

3.3. Proper orthogonal decomposition

Proper orthogonal decomposition has been widely used in turbulence [32] to detect

the “coherent structures” in a turbulent flow. The objective is similar in this study. Indeed

when a random DoE, Ξtr, is chosen to train the model, as long as no bifurcation occurs

[7], the related responses, xtr = x(Ξtr) (nt ×N -matrix), often look similar. Therefore, it

is possible to extract the “coherent” time shapes from nt × nt-matrix S

S = xtr xT
tr (7)

where “T” stands for the transpose matrix.

Matrix S is often considered as a kind of correlation matrix. It turns out that the set

of the eigenvectors {Vi}i=1,...,nt of S, which are gathered in matrix V, is an interesting

orthogonal basis [32, 33]. The vectors verify

∀i = 1, · · · , nt S Vi = λ2iVi (8)

POD-values λ2 = {λ2i }i=1,...,nt are useful as each one represents a so-called [34] energy

involved along the POD-vector Vi direction: their relative values indicate the relative

importance between two POD-components. In the following each vector Vi has a unit

norm and they are sorted according to the decreasing values of λ2i : accordingly V1 is often

similar to the response mean.

Each POD-vector Vi has nt element. Therefore, the random response can be repre-

sented by Eq. (6), with nV = nt:

x(t, ξ) =
nt∑
i=1

ai(ξ) Vi(t) (9)



It can also be noticed that V and λ can also be obtained with a singular value decom-

position (SVD) of xtr. Therefore, as N is usually lower than nt, ∀i > N , λi is equal to

zero. Consequently, only the first N POD modes are interesting to describe the response,

as the other ones do not bring any energy. Furthermore, in practice the responses can be

described accurately with the first na (na < N and often na << N) eigenvectors as most

of the energy is concentrated in these vectors

x(t, ξ) '
na∑
i=1

ai(ξ) Vi(t) (10)

na is often chosen so that 99 % of the POD-energy remains in the approximation [32, 35],

i.e.
∑na

i=1 λ
2
i ≥ 0.99

∑N
i=1 λ

2
i ; in [36], it is proposed to keep ”99.9 %” of the energy. The

“99 %” criterion will be addressed in the examples.

3.4. POD-PC model

The coefficients of expansion (10) are random and are estimated with a PCE

ai(ξ) =

nP∑
j=1

Aij Ψj(ξ) (11)

It can be noticed that a Gaussian process approach was used in [16] to estimate the

coefficients.

Due to the orthonormality of the basis, projecting Eq. (10) on POD-vector Vi gives

ai(ξ) = x(ξ)T Vi (12)

Using response vector x(Ξtr), Eq. (12) provides a collection of N samples for each ai,

which are gathered in vector ai. Therefore, coefficients Aij are evaluated by solving

ai = Ψ(Ξtr) Ai (13)

where Ai is the PCE coefficient vector of ai.

The response of a random dynamical system is then eventually described by the fol-

lowing POD-PC model

x(t, ξ) '
na∑
i=1

nP∑
j=1

Aij Ψj(ξ) Vi(t) (14)



All the steps of the POD-PC procedure are gathered in Algorithm 1.

Using a sparse PCE instead of a full PCE gives

x(t, ξ) '
na∑
i=1

nsparse
P∑
j=1

Aij Ψj(ξ) Vi(t) (15)

In that case, the least square regression in STEP 5 of Algorithm 1 is replaced by the

sparse method to identify the non-null coefficients and their evaluation.

Algorithm 1 POD-PC model

INPUT: N ; nP ; Ξtr ∈ RN×m

OUTPUT: Aij: Eq. (14)

STEP 1: model evaluation; PC evaluation
for i← 1 to N do

xtr(:, i) =M(t,Ξtr(i, :)
Ψtr(i, :) = Ψ(Ξtr(i, :))

end for
xtr ∈ Rnt×N

Ψtr ∈ RN×nP

STEP 2: POD eigenvectors and eigenvalues
Evaluate (V, λ) = svd(xtr)

STEP 3: truncature of the POD
Find na such that

∑na

i=1 λ
2
i ≥ α

∑N
i=1 λ

2
i ; usually α = 0.99

∀i ∈ 1, · · · , na Vi = V(:, i)

STEP 4: samples of POD coefficients
for i← 1 to na do

ai = xT
trVi

end for

STEP 5: PCE coefficients
for i← 1 to na do

Ai = Ψtr \ ai {least square regression}
end for

4. Examples

Three different examples are proposed. The first one is related to a real case and the

uncertainties are given in the standard. The responses of the second example are given



by a random ordinary differential equation and deform considerably when the random

parameter varies; nevertheless, at each instant the variation of the response in function

of the random variable is monotonic and smooth. The third example involves a long time

integration.

4.1. Helmet impact test

This study addresses the homologation tests for motorcycle helmets described in

the ECE 22.05 regulation [37]. Such tests consist in impacts of the helmet, fitted with an

instrumented headform, at a specified velocity and positions on a rigidly fixed anvil. As

such a test can not occur perfectly, uncertainties related to the position and the impact

velocity are given in the standard. The uncertain position is described with two angles,

which give the possible rotations (front/rear, left/right) of the helmet with respect to the

nominal position. The impact parameters and uncertainties are listed in Table 1.

One impact point was selected for this study: the “forehead” of the helmet. The

calculations were carried out with a finite element model of the helmet developed at

Università degli Studi di Firenze [38] on the LS-DYNA explicit solver. The impact test is

calculated for 29.9 ms and the outputs are written every 0.1 ms. The quantity of interest

is the acceleration of the headform along the direction of the initial velocity.

To pass the impact test [37], the peak acceleration of the headform must remain below

275 g (where g is the standard gravity), and the head injury criterion (HIC) must be lower

than 2400, where this quantity is defined as

HIC = max
t1,t2

{[ 1

t2 − t1

∫ t2

t1

x(t)dt
]2.5

(t2 − t1)
}

(16)

with t2− t1 ≤ 36 ms, and acceleration x (resp. time t1, t2) is given in g (resp. in seconds).

impact velocity vi [ 7.5, 7.65 ] m/s
x-angle αx [ -3, 3 ] °

y-angle αy [ -3, 3 ] °

Table 1: Ranges of the three uncertain parameters

A DoE matrix was build with 60 samples of the three uncertain parameters drawn

according to uniform laws, with the bounds given in Table 1, with a Latin Hypercube

Sampling (LHS) method and 60 samples of the acceleration were therefore calculated. The
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Figure 1: (a): 50 samples of acceleration; (b) first three proper orthogonal functions: V1(t) in black solid
line, V2(t) in red dashed line, V3(t) in magenta dash-dotted line

POD-PC procedure was applied with 50 samples of the acceleration drawn randomly from

the 60 samples: the 10 remaining samples were used to validate the model. Figure 1(a)

shows a progressive deformation of the acceleration curve when the random parameters

vary. The first three proper orthogonal function, Vi(t), are plotted in Fig. 1(b). It can be

seen that the first one is very close to the global shape of the accelerations.

Legendre polynomials were used as all the random variables have a uniform distribu-

tion. Each PCE coefficient vector Ai defined in Eq. (14) was identified from 50 samples

of ai calculated with Eq. (12) and a PCE order lower or equal to 4 (nP = 35). The quality

of the POD-PC procedure is tested on the 10 remaining samples of the acceleration time

series: the actual responses (i.e., obtained with the LS-DYNA model) were compared to

the identified ones obtained with the POD-PC model and plotted in Fig 2. A relative

error, err, was calculated between both responses over the 10 samples

err =
‖xactual − xidentified‖2

‖xactual‖2
(17)

The maximum number of terms in the sparse PCE involved in evaluating all the

coefficients ai (Eq. (11)), nsparse
P |max, the ratio of the remaining energy to the total energy

in the POD, renergy, and na are listed in Table 2. It can be seen than 99.99 % of the POD

energy remains in the approximation with only na = 8 terms over the 50 possible terms.

To check the robustness of the model, the procedure was repeated many times: it

means that several groups of 50 samples were used to identify the model. The error has
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Figure 2: Identified (black dashed line) and actual (red solid line) acceleration in time domain

nsparse
P |max renergy (%) na err (%)

9 99.99 8 1.2

Table 2: sparse POD-PC approximation parameters

changed very little and remained between 0.8 to 1.2 %.

In order to test the efficiency of the POD-PC model, The HIC was also calculated

from both the actual and identified accelerations from Eq. (16). The results are presented

in Fig. 3 where the identified values are given as a function of the actual ones: the closest

the points to the first bisector of the plot, the more accurate the model. It can be seen

that the values of HIC obtained from the POD-PCE model were very close to the actual

values: the relative error was about 0.25 %.

The initial budget for this example was for 60 model evaluations (50+10 for validation).

A study on the evolution of the HIC error with samples ranging from 2 up to 50 was

performed. Fig. 4 shows that even with N = 15 the error is already lower than 0.6 %.

4.2. First order ordinary differential equation (ODE)

Consider the following first order random ode

dx(t)

dt
+ k x(t) = 0, x(t = 0) = 1 (18)



1550 1600 1650 1700 1750 1800 1850 1900

Actual HIC

1550

1600

1650

1700

1750

1800

1850

1900

Id
e

n
ti
fi
e

d
 H

IC

Figure 3: Blue circles: scatterplot of identified and actual HIC; red solid line: first bisector

0 10 20 30 40 50

N

10-1

100

101

102

H
IC

 (
%

)

Figure 4: HIC error



0 5 10 15 20 25 30 35 40

t (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
(t

)

(a)

0 5 10 15 20 25 30 35 40

t (s)

-0.05

0

0.05

0.1

P
O

D
 e

ig
e
n
fu

n
c
ti
o
n

1st mode

2nd mode

3rd mode

(b)
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where k is a random variable with a uniform distribution in [0 1]. This equation has been

studied several times [6, 26, 39], and is interesting because the solution as well as the

mean (x) and the variance (σ2
x) have an analytical expression

x(t) = exp(−k t) (19)

x(t) =
1− exp(−t)

t
(20)

σ2
x(t) =

1− exp(−2t)

2t
−
(

1− exp(−t)
t

)2

(21)

Contrary to the previous example, the shape of the curves changes a lot between k = 0

and k = 1 (see Fig. 5(a)). The first three proper orthogonal functions are plotted in Fig.

5(b).

Algorithm 1 was applied:

� INPUT:N = 40 samples of random variable k are drawn according to a uniform law

over [0, 1] with a LHS method; m = 1 and d = 15, then np = 16; Ξtr = 2k−1 ∈ R40×1

� STEP 1a: For each sample of Ξtr, Eq. (18) is solved (nt = 4001 and t ∈ [0, 40] s):

the solution are collected in matrix xtr ∈ R4001×40

� STEP 1b: Legendre polynomials are used; Ψ(Ξtr) ∈ R40×16 is evaluated for each

sample of Ξtr



� STEP 2: The SVD of xtr provides (V, λ); V ∈ R4001×40; λ ∈ R40×1

� STEP 3: na = 3 POD modes were kept with the 99 % criterion; Vi ∈ R4001×1

� STEP 4: ∀i = 1, · · · , na = 3 compute ai = xT
tr Vi; ai ∈ R40×1

� STEP 5: PCE coefficients of ai, Ai, are evaluated with a sparse procedure.

As proposed at STEP 1 of the procedure, a PCE of degree 15 was necessary to identify

the POD expansion coefficients. It was found that the PCE was not sparse as each

coefficient ai(ξ) had an expansion with at least nsparse
P =14 terms over the nP =16 terms

present in the full PCE.

The above-mentioned criterion specified to determine the efficient number of POD

indicates that three POD modes should estimate the theoretical solutions. To verify the

quality of the POD-PC model, the mean and the variance of the response were plotted (see

Figs. 6(a)-6(c)) as well as one sample of the solution (Fig. 6(e)) for both the analytical

and the POD-PC solutions. It clearly appears that, except for the mean, the estimations

are not excellent, despite
∑3

i=1 λ
2
i /λ

2
max > 99.6%: it seems that the criterion should be

changed. Therefore all the POD modes such that λi/λmax > 10−5 were finally kept: for

all the cases tested, this criterion is such that
∑na

i=1 λ
2
i /λ

2
max > 99.99%. In the present

example, 6 POD modes are kept in the analysis. The results are in excellent agreement

with the theoretical results, as it may be seen in Fig. 6. In particular, the relative error

between the actual response and the identified one for the sample represented in Figs.

6(e)-6(f) was equal to 10.6 % with 3 modes and to 0.4 % with 6 POD modes. In Figure

7, it can be seen that, with 6 POD modes, the error is almost the lowest error possible;

above 7 POD modes, almost 100 % of the energy is kept.

The λi/λmax > 10−5 criterion is applied in the rest of the paper.

4.3. Kraichnan-Orszag three-mode problem

The Kraichnan-Orszag system has been used many times [6, 39, 40] since the

first study with the Wiener-Hermite expansion [41]. It consists in nonlinear differential

equations with uncertain initial conditions:



0 5 10 15 20 25 30 35 40

t (s)

0

0.2

0.4

0.6

0.8

1

1.2

m
e

a
n

 r
e

s
p

o
n

s
e

(a)

0 5 10 15 20 25 30 35 40

t (s)

0

0.2

0.4

0.6

0.8

1

1.2

m
e

a
n

 r
e

s
p

o
n

s
e

(b)

0 5 10 15 20 25 30 35 40

t (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

v
a
ri
a
n
c
e
 r

e
s
p
o
n
s
e

(c)

0 5 10 15 20 25 30 35 40

t (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
v
a
ri
a
n
c
e
 r

e
s
p
o
n
s
e

(d)

0 5 10 15 20 25 30 35 40

t (s)

0

0.2

0.4

0.6

0.8

1

re
s
p

o
n

s
e

 f
o

r 
s
a

m
p

le
 #

3
4

8
0

(e)

0 5 10 15 20 25 30 35 40

t (s)

0

0.2

0.4

0.6

0.8

1

re
s
p

o
n

s
e

 f
o

r 
s
a

m
p

le
 #

3
4

8
0

(f)

Figure 6: 1st order ode solution with analytical solution (red solid line) and the POD-OC model (black
dashed line); mean solution (a): na = 3, (b): na = 6; variance of the solution (c): na = 3, (d): na = 6;
3480-th sample of the solution (e): na = 3, (f): na = 6
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Figure 7: Evolution of (a) the error on u, (b) POD energy ratio

dx1
dt

= x2 x3 (22)

dx2
dt

= x3 x1 (23)

dx3
dt

= −2 x1 x2 (24)

with ∀i ∈ {1, 2, 3}, xi(0) = αi + βi ξi, where ξi is a uniformly random variable on the

interval [-1,1] and αi, βi are constants, which have the following values in this study

α1 = 0.99 or 0.995

α2 = α3 = 1

β1 = 0.01

β2 = β3 = 0

As β2 and β3 are zero, the studied problem is a 1 random variable problem. The solution

is very sensitive to the value of x1(0) and then to α1: therefore when α1 = 0.995 two

families of solution can be seen as x1(0) can be greater or lower than 1, which is a limit

point, whereas only one family is possible when α = 0.99. This is shown in Fig. 8 where

the response of the system was obtained for 5 different samples of ξi for both values of

α1 (red solid lines). It was then expected that the results would be more difficult to

reproduce with α1 = 0.995.
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Figure 8: Comparison direct simulations (red solid line) vs. POD-PC method (black dashed line) for 5
samples: α=0.990, response of x1 (a), response of x2 (b); α=0.995, response of x1 (c), response of x2 (d)



α1 0.990 0.995

x̄1 1.83 4.86
x̄2 1.46 2.90
x̄3 1.36 3.30

σx1 4.23 9.57
σx2 5.89 13.39
σx3 2.74 11.67

Table 3: Relative error (in %) on the mean response (x̄i) and the variance response (σxi
) computed with

POD-PC for both values of α1.

The POD-PC model was derived for both values of α1. Eqs (22-24) were solved with

a time step dt =0.01 s for 40 s; smaller time steps were also used without changing the

results. The POD-PC model calculated with N=200 initial samples; Legendre polynomi-

als were used and a PC order P=20 gave the response mean and variance plotted in Figs.

9-10 as well as the results obtained with a Monte Carlo simulation (MCS), with 10000

samples of α1 drawn with a LHS method. Fig. 8 shows the response obtained with both

the POD-PC method and the direct simulation, for 5 several samples.

The errors listed in Table 3 and Figs. 9-10 show that the mean is always very well

estimated with the POD-PC model, even for α1=0.995. However, if the variance is well

estimated for α1=0.99, Fig. 10 shows a discrepancy that increases with time for α1=0.995

and the relative error reaches 13.4 % for x2 (see Table 3). Therefore the accuracy is not

as good as the one presented in [6], which has even been improved in [40]; on the other

hand, the proposed method is very simple and efficient: the calculations are very fast as

the coefficients does not depend on time, whereas the accuracy is still acceptable.

In that case, considering P = 20 and N = 200 is not really efficient. However, it

turns out that running 200 simulations takes only 3 seconds. If the numerical cost of

one simulation had been much more, such a number of simulations would not have been

affordable: it is the main drawback of non-intrusive methods. Fig. 11 shows that P = 15

and N = 100 still give quite good results.

About 65 % of the N POD modes were kept in the model, which is quite high. It is

interesting to notice that with the “99 %” criterion, the number of POD modes is divided
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Figure 9: α=0.99; MCS (red solid line) vs. POD-PC method (black dashed line): x1: mean (a), variance
(b) - x2: mean (c), variance (d) - x3: mean (e), variance (f)
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Figure 10: α=0.995; MCS (red solid line) vs. POD-PC method (black dashed line): x1: mean (a),
variance (b) - x2: mean (c), variance (d) - x3: mean (e), variance (f)



by two and the results obtained were very similar to the ones with the λi/λmax > 10−5

criterion. However, it is noticeable that beyond the 20-th POD-mode, the PCE of the

coefficients given in Eq. (11) was very sparse: often, only 2 or 3 terms were required,

whereas the PCE was not sparse for some of the very first mode coefficients. Therefore,

the total number of PCE coefficients is only reduced by 30 %.

5. Conclusions

The non intrusive POD-PC model was presented to study random dynamical systems.

Most of the current metamodel used to describe such systems require to compute the

coefficient of the metamodel at each time step, which may be time demanding. Conversely,

the POD-PC model separates the time and the random variables. Therefore, the number

of PCE coefficients to be calculated does not depend on the number of time step but on

the number of initial simulations required to identify the model. Furthermore, the POD

extracts the main components of the signal and then reduces this number.

The examples show that this model works very well when the response shape does not

vary much or vary smoothly with the variation of the random parameters. In fact, the

amplitudes and the phases of the responses are affected by the randomness and then the

coherent structures tend to disappear after some time. As the POD is based on the coher-

ent structures of signals, it can then be expected that this can induce a lost of accuracy for

a long-time integration.Therefore, the POD-PC model seems more adapted for simulating

the transient response than the steady-state response of an uncertain dynamical system.

This model is simple and fast to implement as it only requires a singular value de-

composition to account for the time and a polynomial interpolation to deal with the

uncertainties. The examples showed that a quite high polynomial degree is often required

to describe the randomness of the first POD-mode coefficients, which may be a draw-

back when many uncertain parameters are involved in describing the random dynamical

system.
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Figure 11: α=0.990; mean response relative error (x1: (a), x2: (c), x3: (e)) and variance response relative
error (x1: (b), x2: (d), x3: (f)) in function of the PC order and for several initial numbers of samples:
black solid line N = 50, red dashed line N = 100, magenta dash-dotted line N = 200
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