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ALBERTO DOLCETTI and DONATO PERTICI

Some differential properties of GL,(R) with the trace metric

Abstract. In this note we consider some properties of GL,(R) with the Semi-
Riemannian structure induced by the trace metric g. In particular we study geo-
desics and curvature tensors. Moreover we prove that GL,, has a suitable foliation,
whose leaves are isometric to (SL,(R),g), while its component of matrices with
positive determinant is isometric to the Semi-Riemannian product manifold
SL, x R.

Keywords. Trace metric, Semi-Riemannian manifolds, geodesics, curvature ten-
sors, nonsingular (special) matrices, exponential and logarithm of real matrices.
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Introduction

The so-called trace metric g: g4(V, W) = tr(A"'VA-'W) for any A € GL,, and any
V,W e T4(GL,) (tr indicates the trace of a matrix) induces a Semi-Riemannian
structure on GL,, = GL,(R). The metric g is often studied in the context of positive
definite real matrices on which it defines a structure of Riemannian manifold. The
geometry of the Riemannian manifold of positive definite real matrices has recently
been object of interest in different frameworks. We refer the reader for instance to
[9] Ch.XTI, [10], [1], [3] §2, [2] Ch.6, [11] for more details and further information on
this subject. In particular geodesic arcs between two positive definite matrices have
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been studied in details, because their middle point is their expected geometric mean.
Of course existence, uniqueness and explicit descriptions of geodesics have a
fundamental role in this setting and are reached in many ways: for instance as
consequences of an exponential increasing metric property (see for instance [3], [2]
Ch. 6) or as solutions of the second-order differential equation P — PP~1P= 0 with
certain initial data (see [11] Sec. 3.5).

In this note we generalize some arguments used in the second approach and

nn+1) n(n —1)
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¢) and (GL,,,g), are sym-

prove that (GL,,9) is Semi-Riemannian with signature (

(Proposition 1.1), whose connected components, (GL;',
metric manifolds (Proposition 1.2).

The characterization of geodesics of (GL,,g) is in Theorem 2.1, where we also
describe the Levi-Civita connection. As in the case of positive definite matrices of
[11], the geodesics are solutions of the previous differential equation. Moreover
geodesic arcs between two points K; and K; of GL,, correspond to real solutions of
the exponential matricial equation exp(X) = K;1K; (Corollary 2.2) and so we are
able to translate the existence of these geodesic arcs in Theorem 2.2 in terms of
Jordan form of K;'K; by means of [4]. In particular any two points of GL,, can be
always joined by a geodesic arc or by a singly broken geodesic arc (Proposition 2.2).
When the geodesic are is unique, we give its explicit expression (Proposition 2.1). By
the way we observe that the Levi-Civita connection of (GL,,g) is the Cartan-
Schouten (0)-connection of GL,, (Corollary 2.1).

Afterwards we compute the Riemann curvature tensors of type (1, 3) and of type
(0,4) and the sectional curvature (Proposition 3.1) and also the Ricci curvature and
the scalar curvature of (GL,,, g) (Proposition 3.2).

Finally we focus our attention on SL,(R) = SL,,, where the metric g sets up a
structure of Einstein, symmetric, totally geodesic, Semi-Riemannian submanifold of
(GL,, 9) (Propositions 4.1, 4.2 and 4.3) and we show that GL,, has a foliation, whose
leaves are Einstein, symmetric, geodesically complete, totally geodesic, Semi-
Riemannian submanifolds and isometric to (SL,,, g) (Theorem 4.1) and furthermore
we show that its component of matrices with positive determinant is isometrie to the
Semi-Riemannian product manifold (SL,, x R,g x k) where h is the Euclidean me-
tric on R (Theorem 4.2).

Similar situations seem to appear even in case of some particular submanifolds of
(GL,, 9). These are the subject of further works currently in preparation.

We refer to [12] for all standard facts on Semi-Riemannian manifolds and in
particular for notions and notations not explicitally recalled here and also to [6] for
Riemannian symmetric spaces, while we refer to [7] and to [8] for standard facts
about matrices and exponential function.
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1 - The Semi-Riemannian manifold GL,(R)

Definition 1.1. A Semi-Riemannian manifold (M, g) is a smooth real mani-
fold M endowed with a metric tensor g, i.e. a symmetric nondegenerate (0, 2) tensor
field ¢ of constant signature.

Remark 1.1. If g is supposed to be only a symmetric C*-tensor of type
(0,2) on M and M is supposed to be homogeneous, i.e. for every p;,ps € M
there is a diffeomorphism ¥ : M — M with F(p;) = p2 and preserving g, then g
is nondegenerate (i.e. it is a Semi-Riemannian metric) if and only if it is so at
one point.

Notations 1.1. We denote by M, = M,(R) and GL, = GL,(R) respec-
tively the vector space of real square matrices of order n and the multi-
plicative group of nondegenerate matrices in M,,. GL, is a Lie group of
dimension #? with two connected components, depending on their determi-
nant: GL; and GL, . M, is the Lie algebra of GL, and the tangent space of
GL, at A € GL,, is Ta(GL,) = M,,. SL,, is the connected Lie subgroup of GL,
of matrices with determinant 1 and we put SL,(c) = {M € GL,, / det (M) = c}
for any c € R\ {0}.

S, and A,, are the vector subspaces of M,, of symmetric and skew symmetric
matrices respectively.

As usual I = I, is the identity matrix, [A,B] = AB — BA for any A, B € M,, and
also [X,Y]=XoY — Y oX for any X, Y vector fields on GL,,.

We define a C*>-tensor g of type (0,2) on GL,, by ga(V,W) = tr(A-'VA~'W)
(tr indicates the trace of a matrix). This tensor induces a metric, called also
trace metric, often considered in the context of positive definite real matrices on
which it defines a structure of Riemannian manifold (see for instance [9] Ch.XII,
[3] §2, [2] Ch.6, [11] §3).

From now on, g will indicate this tensor.

Proposition 1.1. (GL,,9) is a homogeneous Semi-Riemannian manifold
nn+1) n(n —1)
2 72 '

with signature (

Proof. Let us consider the left translation L¢ : GL,, — GL,,,X — GX and the
right translation R : GL,, — GL,,,X — XG and prove that both preserve the tensor
g for every G € GL,,.
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Indeed L and R are both linear, hence (DLg)4 = Lg and (DRg)4 = R at each
point A € GL,,. Therefore for any A € GL,, and any V, W € M,, we have

9L, ((DLe)A(V),(DLe)a(W)) = 9ga(GV,GW)
= tr((GA) 'GV(GA) 1GW) = trA"'VA'W) = g4(V, W)

and analogously
IR ((DR)A(V), DR s(W)) = ga(V,W).

The invariance of g under left and right translations implies that both translations
are isometries. This allows to deduce that (GL,,, g) is a homogeneous manifold: if A, B
are in GL,,, then, for instance, the left translation Ly, 1 preserves the tensor g and
maps A to B. Hence to conclude, by Remark 1.1, it is sufficient to argue for the single
point I = 1I,,.

First we note that g; : M,, x M,, — R is obviously a symmetric bilinear form.

Now let V be a matrix such that g;(V, W) =tr(VW) =0 for every matrix
W e M,.For W = VT (the transpose of V) we get t»(VVT) = 0, this suffices to get
V =0, so g; is nondegenerate.

Forany S € S,, and any A € A,, we have ¢;(S,A) = 0. Indeed g;(S,A) = tr(SA) =
tr((SA)T) = tr(ATST) = —tr(AS) = —tr(SA) = —g;(S,A). Moreover it is easy to
check that g;(S,S) > 0 with equality if and only if S = 0 and that g;(4,A) < 0 with
equality if and only if A = 0. This gives that the restriction g;|g . is positive de-
finite, that the restriction g;| 4,x4, 18 negative definite and that S, and A,, are or-

thogonal with respect to g;. Now M,, = S,, & A,,, hence it follows that the index of

1 -1
w41 (the dimension of S,,) and its index of negativity is wn )

nn+1) n(n — 1))

positivity of g; is

2 72 =

(the dimension of A,,), so the signature of g; is (

Remark 1.2. As both left and right translations are isometries of (GL,,g),
so all their compositions are; in particular: the opposite X+— — X =L_; (X) =
R_;,(X), the conjugacies Cg: Cq(X) = G™1XG and the congruences I'g: I'g(X) =
G'XG (G € GLy).

Now let us denote by ¢ : GL, — GL, the inversion map, i.e. p(4) =A"1; ¢
is a diffeomorphism of GL, onto itself with ¢* =Idg,, and differential
(D)4 (V) = —A"WA~! for any A € GL, and any V € M,,. Therefore we have

9oy (DY) a(V), (Dp)a(W)) = g4 1(— ATTVATL, —ATTWA™)
=trA(—ATVA HA(—ATWA™)) = tr(VATTWA™) = gu(V, W).

Hence also ¢ is an isometry of (GL,,, g).
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Let us denote by 7 : GL,, — GL,, the transposition map, i.e. 7(A) = AT;also tis a
diffeomorphism of GL,, onto itself with t*> = Idgy,, and it is an isometry. Indeed its
differential is  itself being linear and, after denoting by A7 = (A7) = @17,
we have

9e(DDAV), (DOLW)) = tr(A~TVIATTWT) = tr(WA'VA™Y) = ga(V, W).

Note that the symmetric nondegenerate matrices are the fixed points of the
isometry 7 on GL,,.

Finally we recall that a Semi-Riemannian (globally) symmetric space is a con-
nected Semi-Riemannian manifold M such that for each p € M there is a (unique)
isometry {, : M — M with differential map —id on T, M and fixing p.

Proposition 1.2. (1) Among the isometries of the Semi-Riemannian mani-
fold (GLy,, g) there are the left translations L, and the right translations R¢, the
conjugacies Cq, the congruences I'g (G € GLy,), the opposite map, the inversion ¢,
the transposition t and all their compositions.

(2) Both (GL;!,9) and (GL,,, g) are symmetric manifolds and for any A € GL;
(or in GL,, ) the symmetry with respect to Aiswyy =RgoLgsop=LgoRs0¢. In
particular y; = ¢.

Proof. Part (1) has been proved in the previous remark. To prove (2), we
note that for every A € GL; (or in GL;), y, is an isometry of (M,,q). We
have y,(X) = AX'A, therefore y,(A) = A and (Dy,)s = Ry o Ly o Dp,, hence
Dy )aW) = (Ry o Ly)(— A WA = W, so Dyy)a = —idr,cL,)- O

2 - Geodesics in (GL,,9)

Notations 2.1. Let P = (p¥) € GL,,, where p¥ indicates the (i,j)-entry of P.
We denote by {E;}, 1 <1,j < n, the standard basis of M,,, where E;; € M, is the
matrix whose entries are 0 except for the (7,7)-entry which is 1. After reordering,
{E;} can be rewritten as {E,}, 1 < o < n?, just following the columns one after
another. Hence we can write P = Y p*E, with p* € R. The p*, 1 < a < n? are
natural coordinates on the whole GL,, and (p*, - - - ,p”z) runs over an open subset of

: . . . . L, 0
R”. M » 18 the tangent space to GL,, at each point, hence we can identify £, with g
forany o = 1,---, %> P

Nowif X = ZZ; XK, Y = ZZ; Y*E, are tangent vector fields of class C* on

GL,, we can define a new tangent vector field of class C* on GL,: the Euclidean
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derivative of the field Y along the field X (indicated by X(Y)), by setting
2 oY#
X(Y) = Z:Jz’:l X“a—paEﬂ.

Theorem 2.1. (1) Let V be the Levi-Civita connection of (GL,,, ). If X and Y
are tangent vector fields of class C* on GL,, then

(Ve), = K), ~ L(X,P7'Y, + Y,P7X,)

for any P € GLy, where X(Y) is the Euclidean derivative of Y with respect to X.
(2) Let P = P(t) be a C*°-curve on (GLy, g), then P is a geodesic if and only if

V,P—P PP P =0

where P and P are the first and the second derivative of P with respect to t.
(8) The geodesics of (GL., g) are precisely the curves of the type

P(t) = Ke'©

forany C € M,, and any K € GL,,.
4) (GLy, g) 1s a geodesically complete Semi-Riemannian manifold.

Proof. Inthis proof we generalize the arguments developed by [11] §3, in case
of positive definite matrices.

We indicate by g.5 = ga/;(p17 e p"z) = gp(&,, Ep) the components of the metric
tensor ¢ with respect to the Euclidean coordinates (p!,--- ,p”z) and by ¢* =
g (pl,---,p") the entries of the inverse of the matrix (944) Which is invertible at
any point, because the metric g is nondegenerate on GL,. Hence we have:
Z;‘il 959" = 6, (Kronecker symbol).

Now let V be the Levi-Civita connection associated to the Semi-Riemannian
metric g. To simplify the notations we omit the index P. We have: Vg E; =
Z:il I E,, where the Christoffel symbols 77, can be expressed as I, =

99

2 g .
> o1 %(%.J,ﬁ + 9p5.0 — Gap.o) With gp5 = Waf for any o, ,0 € {1,---,n*}.

Claim 1. For any o, 8,7 € {1,---,n?} we have

]"7

14
w="5 > g {tr(P'E,P ' EgPE,) + tr(P EyP B, P Ey)}.
=1

Indeed, remembering that %(P’l) = —P1E;P !, standard computations
show that P

Gupo = %(tw(P—lExP—lEﬁ)) = —tr(P'B,P'EgP ' Ey) — tr(PT E4P'E,PEy).
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Hence

n‘
r, = Z g’ {—tr(P7'E,P"\E;P\E)) — tr(P"'E;P"\E,P'Ej)
—tr(P7\E;P"\EyP'E,) — tr(P"\E; PT'E;P7'E,)
+tr(P'E, P 'EgPEy) + tr(P'EyP'E,P'E;)}
z
== Z g°{tr(P'E,P ' E4yP ' Es) + tr(P ' E4P ' E, P E5)}
5 1

as predicted.
An elementary computation of linear algebra allows us to get also

Clatm 2. Let V = ZZ; V*E, be a vector field on GL,,. Then for any a =1, - - -, n?
we have V* = Y0, g9V, Ep) and so V = Y0, ¢**g(V, EpE,.
Nowlet X = " X*E,, Y = 3, Y/Ej be as in (1). Hence
n?

VxY =Y X"V, (Y'Ep)
o,f=1

’l’L %8Y )
=) X o —Ej + ZX YV Ey=X{Y)+ Z x*Y'r’ E,
a,fi=1 a,f=1 fy=1
which by Claim 1 is equal to
?’Lz
X() —% > XYl {tr(P'E,P T EgP T E,)
afy,0=1
+tr(P E4PE,PE)))E,

=X(Y) - Z g°{tr(P'XP'YP'E;) + tr(P'YP'XP'Ey)}E,
y() 1
2

=X(Y) - 1y Z g°{tr(PYXPY + YPIX)PE)))E,
;(3 1

=X(¥) - Z ¢°9,(XP'Y + YPIX E)E,.

}() 1
This is X(Y) — 5 (XP‘lY + YP1X) by Claim 2; this concludes (1).

“Now (2) follows from (1), because the Euclidean derivative of P with respect to P
is P.
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From P — PP1P =0 we get P~1 P —P~! PP-1P =0, hence, remembering
that %(P‘l) —_plp P71 we get %(P‘1 P) =0, so P! Pis a constant, say C.
Then P=PC, so Pe ' — PCe ' =0. For any constant matrix X we have
%(etx) = XX = ¢*X, so we deduce that %(Pe‘tc) =0, hence P(t)e'C is a con-
stant, say K, with det(K) # 0 and in conclusion P(t) = Ke'C, as predicted in (3).
Finally we get (4), because any maximal geodesic is clearly defined on the entire
real line. ]

Remark 2.1. Asin Notations 2.1, let X = Z’le X“(p)aa—pa be a C*®-vector field

on GL, and let us denote by P = ZZ; p*E, (it can be also viewed as a C*°-vector
field on GL,,), then we have: X(P) = X.

Let us denote by GL,, the Lie algebra of GL,,.

Let Xy € T1,(GL),) = M,,. The unique left-invariant vector field X € G£,,, as-
suming the value X, at the identity, is the field X defined by Xp = PX, for any
PecGL,. Then we get: [X,Y], = PXoYy— YoXy) for any P e GL,, where
X.,Y € GL,, are such that X;, = Xy, Y7, = Y).

If X,Y € GC, are such that X; = X,, Y7, = Yo, then (X(Y)), = PX,Y, for any
PeGL,.

Indeed, taking into account the previous facts, we have: (X(Y)), = PX,(P)Y,
= PX,Y,.

Now by these facts and by Theorem 2.1, if V is the Levi-Civita connection of

1 1
(GLy,9), we can get: (VxY), = X(X)), — E(XPP’IYP +YpP 1Xp) = é[X’ Y], for
any X,Y € G£, and any P € GL,,. This allows to state the following

Corollary 2.1. Let V be the Levi-Civita connection of (GLy,q). Then

VY = X, V1€ 6L,

forany X, Y € GL,.
Hence V 1is the Cartan-Schouten (0)-connection of GL,, (see [6] p. 148 and
pp. 549-550).

Corollary 2.2. (1) The curve P(t) = Ke'®, C € M,, and K € GL,, is the
unique geodesic of (GL,,g) emaning from K with velocity KC at t =0 and vice
versa the unique geodesic of (GLy,, g) emaning from K € GL,, with velocity S € M,
at t =01s P(t) = K exp(tK~1S).
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(2) Let Ky, K1 € GLy; a geodesic arc joining Ky and Ky in GL,, is any geodesic
y:[0,1] — GL, such that y(0) = Ko, y(1) = K. Then there exists a geodesic arc in
(GL,,, ) joining Ko, Ky if and only if the exponential equation exp(X) = K, Ky has
a real solution C, moreover the real solutions correspond bijectively to the geodesics
of (GLy,, 9) starting from Ky at t = 0 and passing through K; at t = 1.

3) If K is a positive definite symmetric real matrix and K denotes its unique
positive definite square root matrix and if S € S,, then the unique geodesic
emaning from K with velocity S at t = 0 is P(t) = Kz exp (tK “SKK? (see for in-
stance [11] thm. 3.5).

Proof. The first part of (1) follows by remarking that P(0) = K and
P (0) = KC is the velocity at ¢t = 0.

If K € GL, and S € M, the unique geodesic emaning from K with velocity S (for
existence and uniqueness, remember for instance [12] p. 68 lemma 22) can be only the
above curve: this completes (1).

To prove (2), assume that such a geodesic arc, P(t), exists. By Theorem 2.1,
P(t) = Ky exp(tC) for some C € M,, and so K; = P(1) = Ky exp(C). Hence we can
conclude that exp(C) = K;1K; . For the converse suppose that C is a real matrix with
exp(C) = Ky 1K, . By part (3) of Theorem 2.1, the curve P(t) = K exp(tC) (the unique
geodesic emaning from Ky with velocity KyC att = 0) passes through K too, because
P(1) = Ko exp(C) = KoK 1K, = K;. We conclude that distinct solutions C, C’ of the
previous exponential equation correspond to distinet geodesic arcs with prescribed
endpoints: indeed the corresponding geodesic arcs have in K velocities KyC and
KyC' which must be distinct, otherwise C = C'.

Finally by means of standard properties of exp we can write:

Pt) = K exp(tK~'S)

= K*K? exp(tK 2K *SK*K?) = K* exp(tK *SK HK>. -

Theorem 2.2. (1) Let Ko, K1 € GL,,. Thenthere exists a geodesic arc of (GL,, g)
Joming Ko, K if and only if each elementary divisor (Jordan block) of K 1K, be-
longing to any (possible) negative eigenvalue occurs an even number of times;
moreover the geodesic arc is unique if and only if all the eigenvalues of Ky 'Ky are
positive real and no elementary divisor (Jordan block) of K;1K; belonging to any
etgenvalue appears more than once.

(2) Assumethat there is more of one geodesic arc of (GLy, g) joining Ky, K1. Then
there exists an infinity of such geodesic arcs, which are

(a) countable if Ky Ky has complex eigenvalues none of which belongs to

more than one Jordan block and all (possible) real eigenvalues of Ky ' Ky are positive
such that their Jordan blocks appear only once;
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(b) uncountable (move precisely a continuous) if K 1K, has some negative
real eigenvalue, or if it has some positive real eigenvalues belonging to Jordan
blocks that appear more than once, or it has some complex conjugate eigenvalues
belonging to more than one Jordan block.

Proof. The point (2) of Corollary 2.2 translates the existence of geodesic arcs
in (GL,,g), joining K, and K;, into the existence of real solutions of the ex-
ponential equation exp(X) = K, 1K;. The study of the equation exp(X)= M,
M € M, has been accomplished by W. J. Culver in [4] and it depends on Jordan
form of K 1K;. So (1) translates the existence of a real solution of the previous
exponential equation ([4] thm. 1) and characterizes its uniqueness ([4] thm. 2),
while (2) describes the cases of its nonuniqueness ([4] cor.). O

Remark 2.2. The condition in (1) of Theorem 2.2 implies det (K 1K) > 0. The
positivity of this determinant is equivalent to say that Ky, K; belong both to GL, or
to GL,,, which is of course obvious for the existence of a geodesic arc between them.
Then the point (1) of the previous theorem points out that this fact is only necessary,
but not sufficient, for the existence of a geodesic arc between Kj and K; .

When K = I,,, then K;'K; = K;. Hence Jordan form of K;1K; is nothing but
Jordan form of K;. Note that we can always reduce to this case, because there are
some isometries (for instance the left translation L Ko—l) mapping K to I,,.

The next corollaries follow directly from Theorem 2.2.

Corollary 2.3. Let Ky, Ky € GL,, and assume that K(;lKl is stmilar to a
diagonal real matrix diag(dy, - -, Ay).

There exists a geodesic arc in (GL,,g) joining Ky and K; if and only if any
(possible) negative A; appears an even number of times.

There is a unique geodesic arc in (GLy,g) joining Ky and K if and only if
My Ay are positive and distinct.

Assumethat thereis morethan one geodesic arcin (GLy, g) joining Ko and Ki, then
there exists a continuous of such geodesic arcs and thereis a negative A; (which appears
an even number of times) or there is a positive A; which appears more than one time.

Corollary 2.4. Let Ky, K; be matrices both either in GL," or in GL, (so
K;'K; € GL)).

Casen = 2.

There exists a unique geodesic arcjoining Ky, Ki if and only if all eigenvalues of
Ky 1K, are real positive and Ky, Ki are linearly independent matrices.
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There are countably many geodesic arcs joining Ky, Ky if and only if the ei-
genvalues of Ky 1Ky are not real.

There is an uncountable family of geodesic arcs joining Ky, Ky if and only if they
are linearly dependent matrices.

In any other case there is no geodesic arc joining Ky, K;.

Casen = 3.

There exists a unique geodesic arc joining Ko, Ky if and only if either all ei-
genvalues of Ky1Ky are real positive and distinct or they are real positive and
Ky 'K is not diagonalizable.

There are countably many geodesic arcs joining Ko, K if and only if Ky Ky has
a positive eigenvalue and the others are not real.

There is an uncountable family of geodesic arcs joining Ky, Ky if and only if
Ky 'K, is diagonalizable over R and at least two eigenvalues are equal.

In any other case there is no geodesic arc joining Ky, K;.

Remark 2.3. Assume now that Ky, K; € GL, and that there is a unique
geodesic arc joining them (remember Theorem 2.2). We want to write down ex-
plicitally this geodesic arc.

Let J;,(1) = Al + N, be the Jordan block of order k and eigenvalue 1 with N}, the
upper-triangular matrix whose entry (¢,j) is ;11 j. Standard computations (for in-
stance on formal series of matrices) show that, if A € R, A > 0, the unique real
logarithm matrix of J;(1) (i.e. the unique real solution of exp(Y) = J;(1)) is

( _ 1)7+l
Y = LOG(J(4) = (log DI}, + Z = Nk

where log / is the real natural logarithm of 1.
For any ¢t € R we have

k—1 s
exp(t LOG(J,(2))) = It <Ik + @ Zj")

s=1

where

S s!

<t> :t(t—l)---(t—s—i-l)

and we set

k-1 ;
Nb
Je@' = Gl + N = 2 <Ik + (2) 75) :
s=1 :
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Now let X € GL,, be a matrix such that X = C~'diag(J (A1), - kp(ip))C, with
CeGLy, /1, --,4p > 0and (4;,k;) # (4;,k;) as soon as i # j. Then the unique real
logarithm of X can be written as

LOG(X) = C'diag(LOG(J}, (A1), - -, LOGWJ}, (7,)))C.
For any t € R we pose X! = exp(t LOG(X)) and so we get
X' = C ' diagJy, (), -, i, p))C.

Taking into account 2.2 we can state the following

Proposition 2.1. If there is a unique geodesic arc joining Ky, K1 € GLy,
then it can be written as y(t) = KoKy ' K1)

Corollary 2.5. If there is a unique geodesic arc jorning Ky, K1 € GL,, then
any two distinct points on the geodesic, to which this arc belongs, are joined by a
unique geodesic arc (and of course the geodesic, to which this new arc belongs,
overlaps to the previous one).

Proof. From the previous proposition the unique geodesic arc joining Ky, K; €
GL, is y() = Ko(K; 1K)!. Now let P,Q be on the corresponding geodesic, i.e.
P =K|(K,'K1)", Q = Ko(K,'K1)* for some r,s € R, »#s. This gives P1Q =
Ky K " (Ky K ) = (K Ky

Now K;1K; = Cdiag(Jy,(G1), - - - s Ik, Up))C, with C € GLy,, 21, -+, 4p > 0 and
(% ki) # (4j,k;) as soon as i#j (remember Remark 2.3), so we get P~1Q =
Cdiag(Jy, (4", - -, Ji, (4p)*"")C, whose Jordan form is the Jordan form of Ky ' K;
with eigenvalues /1;*’" instead of /; (remember that » # s). We can conclude with
Theorem 2.2. O

Proposition 2.2. Let K, K» be matrices both in GL; (resp. GL,). Then K;,
K can always be joined by a singly broken geodesic arc in (GL!, g) (resp. (GL,, . 9)).

Proof. We prove that for any K;, Ky as above there is a nonsingular matrix Z
that can be joined by a geodesic arc with both Kj, K. This fact, together with
Theorem 2.2, allows to conclude.

For any K, K> € GL,' we can consider their polar decompositions K; = 0P,
Ky = P20, with Oq, O¢ special orthogonal real matrices and P;, Py positive definite
real matrices. We denote Z = P20; = 01 P with P = OT P;0;: note that also P is
positive definite. We have K;'Z = P;10T0,P = P{'P. Now P! and P are si-
multaneously diagonalizable under congruence and Py 1P is similar to a nonsingular
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diagonal real matrix with positive eigenvalues, hence by Corollary 2.3 there is a
geodesic arc in (GL,, g), joining Z and K.

On the other hand K;'Z = O} P;'P»0; = O} O; which is in SO,,. The elements of
SO, are similar to diagonal complex matrices in which, if a negative real eigenvalue
appears, it is —1 and appears an even number of times, thus by Theorem 2.2 there is a
geodesic arc in (GL,, g), joining Z and K.

Analogous arguments work, if K;, K € GL,,. Indeed now the polar decomposi-
tions are K; = O1P1, Kz = P20 with Oy, Oz orthogonal real matrices with negative
determinant and P, P, positive definite real matrices. Again P is positive definite
and K;1Z = 010, € SO,,. O

3 - Curvature of (GL,,9)

Proposition 3.1. Let K € GL, and X,Y,Z € M,,.

1) The Riemann curvature tensor of type (1,3) of GL,, at K is
(RxyZ), = —%(Z [K'X,K'Y] - [XK ', YK '12).
(2) The Riemann curvature tensor of type (0,4) of GL,, at K is
Ry () = (KX, K'Y 1K 2, K- W)

3) Ifsk is a nondegenerate 2-section of Tx(GL,,) (i.e. a 2-dimensional subspace
of Tx(GLy,) = M,, such that the restriction of gk to sx X sk 1S a nondegenerate
symmetric bilinear form) and X, Y are linearly independent vectors in sk, then the
sectional curvature of (GLy,, g) on sk is
1 tr((K1X, K1Y P)

Klsr) = = .
1) =4 4 (X, X)g, (¥, V) — g, (X, VP

Proof. If {E,}, 1<« <n? is the basis contructed in Notations 2.1, for

2 1y O n? 0
X, IQ/,Z eaTK(GLn) =M,, we have X =" X 8_;9“"" Y=>%, Y/‘Wh{, 7 =
P Zywh{,where X,,Yy,Z, € R.

We can extend in a natural way X,Y,Z to C*-vector fields with constant coef-

ficients on GL,, we still call X,Y,Z. Then for any @ € GL, we have Xy =

2 0 2 0 2 0
22:1 X“é)_p“"‘?’ Yo = Z}gzl Yﬂa_pﬁlQ’ Zg = 27:1 X’8p7|Q and so X(2), Y(2), X(Y),

Y (X) are identically zero.
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Hence, by Theorem 2.1, (VyZ)Q = — %(YQ’IZ + ZQ*IY). Again, by Theorem 2.1,
we get

(V(Vy ), = (K(Vy2), — 3 (XK (Vv g + (Vy DK 'X)

= %(YK*IXK*IZ + ZK XK 1Y)

+ i(XK‘lYK‘lZ +XK'ZK'Y + YK 'ZK'X + ZK 'YK 'X).
Interchanging X and Y we get another analogous formula.

X, Y are vector fields with constant coefficients with respect to the coordinate
fields £,, so, by Schwarz rule, we have [X, Y] = 0; therefore at K we get

(Bxy2), = — (Vx(Vy2)), + (Vy(Vx2)),

_ _%(ZK%(XK*W _YKIX) + (VKX — XK-'Y)K-'2)

- —%(z [K~'X,K'Y] - (XK', YK '12).

This completes (1).
We get (2) by standard computations remembering (1):

Rxyzw(K) = gx(RxyZ, W)
= }L(tr{(K*IXK*Y — K YWYK'X)K1ZK'W — K'WK12)})

= itr([K’lX, KWWK 'Z, K-'W)).

Rxyxy
9,X, X)g,(Y,Y) — g,(X,Y)?

Finally we get (3) from (2), because K(sg) = and it

does not depend on the generators X, Y.

Corollary 3.1. With the same notations as in Remark 2.1, if R is the
Riemann curvature tensor of type (1,3) of (GLy, g), then

1
RyyZ = [IX.Y1.Z] € GL,
forany X,Y,Z € GL,, which can be written in the form
1
Rxy = Zad([X’ YD)

forany X,Y € GL, (see for instance [6] p. 99-100).
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Proof. By Proposition 3.1 at a point K € GL,, and with the notations of
Remark 2.1, we have

1
Rx,.vZg = Z( — Zg [K ' Xg, K'Yk + XK', Yk K1 Z),

K
which becomes —[[X07Y0] Zy] by standard computations. Hence, always by

Remark 2.1, the former is ~ [[X Y], Z],, which allows to conclude. O

Remark 3.1. Let £y, 1 <1,5 <% be the matrix whose entries are zero ev-
erywhere except for the entry (¢,7) which is 1. Easy computations show that at the
point I = I,, € GL,, an orthonormal basis for g; is

{Di ZEii/i = 1, <o ,n}
Ez; +E 71
< <
U{SU 7 —— 2 /1<i<] n}
E;
%/1 <i<j< n}

The vectors D;’s and Sj’s are space-like, while the vectors A;’s are time-like.

u {Ai,» -

Proposition 3.2. Let Ricg be the Ricci curvature tensor of (GLy,g) at
K € GL,, then for any X,Y € Tx(GL,,) = M,, we have

Ricg(X,Y) = % tr(K 1 X)tr(K71Y) — g gxX,Y).

Moreover (GL,,q) is a Semi-Riemannian manifold whose scalar curvature
n+1nn —1)
—

Proof. The formula on Ric(X,Y) can be obtained by standard but long (and
tedious) computations. Next we give shorter (and perhaps more elegant) arguments
involving the Cartan-Killing form (for standard facts on it see for instance [6] p. 131
and [5]).

In general Ric(X,Y) is the trace of the map Z— Ry;Y, where we can suppose

is constant and equal to S = —

X, Y 7Z left 1nvarlant By Corollary 3.1 thls trace is the trace of Z+—~ [[X Z1,Y]=

[Y X, Z]]=— *(CLdY ocadx)(Z) = — fB(Y X)=— EB’(X7 Y) Where B is the

Cartan Killing form of GL,,.
Now it is known that BX,Y)=2n tr(XY) — 2 tr(X)tr(Y) =2n gX,Y)—
2tr(X)tr(Y) (see for instance [5] p. 210).

Then Ric;(X,Y) = %tT(X)tT(Y) - g 91X, Y) for any X, Y € GL,,.
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More generally for any X,Y € Tx(GL,) we get the expected formula for
Rick(X,Y).

Finally let S be the scalar curvature of (GL,, g), which is homogeneous, so S is
constant, because it is invariant under isometries. Hence it suffices to compute it at
the point I = I,,. By Remark 3.1

n
S = ZRiCI(Di,Di) + Z Ricy(Sy;,Sy) — Z Ric(Ay;, Ay).
i1 1<icj<n 1<icj<n

But the first part of the proposition gives

. n-1
Ric;(D;,D;) = — 5 )

foranyi=1,---n,

. 1 n n .
RZC[(Sij,Sij) = Q(W(Sij))z — §QI(SZ:¢,Si7) = — 3 forany 1 <i<j<m,

. 1 n n ..
Rici(Ay, Ay) = é(tr(Aij))2 —3 914, Ay) = 3 forany1<1i<j<m.

Putting together the previous computations, we easily conclude the last state-
ment too. 0O

4 - The Semi-Riemannian manifold SL,(R)

Remark 4.1. For any K € SL,, we have: Tx(SL,) = {W € M,, /tr(K~'W) = 0}.
Recall Jacobi’s formula: if A = A(%) is a C'-curve of GL,, with t € (a,b) C R, then

. . A
%( det A(t)) = det (A@®) tr(A (A (t)) for any t € (a,b) where A = Ocli_t Then if
P = P(t)isa C*-curve in SL,, (hence det P(t) = 1for any t), we get: tr(Pfl(t)P(t)) =0

for any t. This allows to conclude.

At the point I =1, € SL,, C GL,, the identity matrix I is a space-like vector,
because g;(I,I) =tr(I) =n > 0, whose perpendicular space is Spanl Y= {WeM,/
g1, W) =tr(W) =0} = T(SLy,). Hence M, = Span(l)® Spom(])L = Span(l) ®
T;(SL,). Given a point P € SL,, we denote again with gp the restriction to
Tp(SLy) x Tp(SLy,) of the tensor gp defined on Tp(GL,,) X Tp(GLy,).

Proposition 4.1. (SL,,g) is a symmetric Semi-Riemannian submanifold of
n(n+1)_1 nin —1)
2 T2
isometries there are left and right translations L, R, congruences I'g (G € SLy,),

(GL,, g) with signature ( ) It is homogeneous and among its
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conjugacies Cg (G € GLy,), the transposition, the inversion ¢ and all their composi-
tions, so in particular the symmetries wp = Rp o Lp o ¢.

Proof. The metric g; is nondegenerate with signature (n(nz—i— 1 -1, n(n2— 1))
on T7(SL,). Indeed let W € T1(SL,,) such that g;(V, W) = 0 forevery V € T1(SL,,). If
Z is any vector in T7(GL,) = M,, then there exists a unique pair (Zy, 1) €
T;(SL,) x R, such that Z = Zy + Aol. Hence ¢;(Z, W) = g;(Zy, W) + Aog;(I, W) =
91(Zo, W) + Agtr(W) = 91(Zy, W) =0, because Zy € Ty(SL,). Now g; is non-
degenerate on T;(GL,,), hence W = 0, therefore g; is nondegenerate on 7;(SL,) too.
Moreover, M,, = Span(I) ® T;(SL,) and I is a space-like vector in T/(GL,) = M,,
so we get that the index of positivity of g; on T7(SL,,) is equal to the analogous index

nn+1) 17%(7@ - 1)). Now, for

2 2

P,Q € SLy, the left translation Lyp-1 is an isometry of (GL,,g) mapping P into Q.
Now the restriction of Lgp-1 to SL,, maps SL, into itself, so this restriction (denoted
again by Lgp-1) is an isometry of (SLy,g), which is therefore homogeneous. We
conclude the analogous results proved on (GL,, g). O

on T;(GL,) minus 1, hence the signature is <

Proposition 4.2. (SL,,g) is a totally geodesic Semi-Riemannian submani-

fold of (GLy, g).
The geodesics of (SL,, g) are precisely the curves of the type

P(@t) = Ke'®
with det (K) =1 and tr(C) = 0 and (SL,, g) is geodesically complete.

Proof. Asusuallet V be the Levi-Civita connection of (GL,,, g) and let X, Y be
vector fields, which are tangent to the submanifold SL,,. So, by Remark 4.1, for any
P e SL,: tr(P~'Xp) = tr(P~'Yp) = 0. The first part of the proposition follows from
the fact that (VxY)p € Tp(SL,), i.e. again by Remark 4.1 from the fact that
tr(P~Y(VxY)p) = 0 for any P € SL,,. )

By Theorem 2.1 we have: (VxY)p = X(Y))p - 5 {XpP~1Yp + YpP 'Xp}. Hence
1

EP_IYPP_lXP

=P lXX)p — P XpP 'Yp + %(P*lxppflyp — P 'YpPXp).

1
PN (VxY)p = PIX(Y)p — 5 P XpP'Yp —

Now we have t»(P~1Yp) = 0 for any P € SL,,, so
0 = Xp(tr(P~'Yp)) = tr(Xp(P~'Yp))
= —tr(P'XpP7'Yp) + tr(P 1 (X (Y)),).
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Hence

tr(P~ Y (VxY)p) = Xptr(P~'Yp)) + % tr(P ' XpP 'Yp — P 1YpP 1 Xp)
1
=3 {tr(P~'Xp)(P~'Yp)) — tr(P~'Yp)(P'Xp)} = 0

for any P € SL,, and so (SL,,, g) is a totally geodesic submanifold.

Let us denote again by V the Levi-Civita connection of (SL,, g), from the first
part of the proposition we get that the expression of V is formally similar to the
expression of the Levi-Civita connection on GL,,, hence the same holds for the
Riemann tensors and, analogously to Theorem 2.1, the equation of geodesics in SL,,
is the same and the geodesics are the curves of the predicted type. O

Proposition 4.3. (SL,,g) is an Einstein Semi-Riemannian manifold with
(n—Dn(n + 1)

Ricci curvature tensor Ric = — 5 g and scalar curvature S = — 5

Proof. Arguing as in the proof of Proposition 3.2 we get Ric(X,Y)=
— i BX,Y) for any left invariant fields X, Y where B is the Cartan-Killing form on

the Lie algebra of SL,, and that this is equal to 2n g(X, Y) (see for instance [5] p. 210)
and so we get the expected formula for Ric.
Therefore (SL,,g) is an Einstein manifold (i.e. Ric is a multiple of g) with

on, om ~ (m—Dmn+1)
S = 5 dim(SL,) = 5 n*—1)= 5 .
Theorem 4.1. GL;, = U.xSLy(c) is a foliation of GL,, whose leaves are to-
tally geodesic Semi-Riemannian submanifolds with respect to the metric g of GL,,.
The leaves are Einstein, symmetric, geodesically complete, mutually isometric

n(n +1) n(mn —1)
( 5 -1, 5 ) and

Semi-Riemannian hypersurfaces with signature

with scalar curvature S = — W

2
A curve P = P(t) is a geodesic of (SL,(c),q) if and only if P(t) = Ke'C with
det (K) = ¢, tr(C) = 0.

Proof. ForanyP € SL,(c)letusdenoteagainby gp therestrictionto 7'p(SL,(c))
of the metric tensor g and let Py be a fixed point of SL,,(c) (hence det (Py) = ¢). Then the
left translation Lp, : (GL,,9) — (GL,,¢) in an isometry, mapping SL,, onto SL,(c).
Hence the restriction of Lp, is anisometry of (SL,,, ) onto (SL,,(c), g). Moreover, Lp, is
an isometry of (GL,, g), so it transforms totally geodesic Semi-Riemannian submani-
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folds into totally geodesic Semi-Riemannian submanifolds and this allows to conclude
about SL,(c) . Finally for geodesics we can argue as in Proposition 4.2. O

Theorem 4.2. The manifold (GL;,q), with GL} = {A € GL,,/ det (4) > 0},
18 an open Semi-Riemannian submanifold of (GLy,q), isometric to the Semi-
Riemannian product manifold (SL, x R,g x h) where h = dx? is the Euclidean
metric on R.

Proof. Note that at any « € R, h.(a,a’) =aa’ for all (tangent vectors)
a,a¢’ € R and that

G X DoV, a0), V', a) = gp(V, V') + hy(a,d') = tr(P~'VP V') + ad/

for any PecSL,, xcR, V.,V e€TpSL,) Ge. tr(PV)=tr(PV')=0,
V? V/ S M’VL), a’y a// € TxR = R.
We prove that F' : (SL,, x R,g x h) — (GL;"

n?

¢), defined by F(P,x) = ¢/iP, is an
isometry.
Indeed F is of class C* with inverse F~! : GL:* — SL,, x R defined by F~1(Q) =
( Q  log(det (@)
Vdet@' vV

denotes the natural logarithm).

, for any matrix @ with positive determinant (“log”

We easily get

@ Vo
DFp )M, a) = eiM + 6% aP

for any P SL,, x € R, a € T,(R), M € Tp(SL,,) (i.e. for any M € M,, such that
tr(P~'M) = 0).
So, if tr(P~1M) = tr(P~1M’) = 0, we obtain

(DF p )M, @), (DF p )M, a))

o ge\/_P (ejﬁ(M +

9 F(P)

a =z , a
TP +Tp))

:tr<(P‘1M+3—%)(P M+ “\/%))

=tr(P'MP'M') + \/_tr(P M + \/_tr(P 1M)+—tr([)

= tr(PIMPM") + ad' = gp(M,M") + h,(a,d’)
= (g X h’)(Px)((M7 a’)a (M/) a/))

for any M, M’ € Tp(SL,) and a,a’ € T,(R) = R
This means that F" is an isometry between (SL,, x R,g x k) and (GL;}, 9). O
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