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Overview

Global food systems are under increasing pressure. There is an increasingly stochastic climate
with future projections showing declines in major food crop production across the major
growing locales. In the future, the geographic regions that are projected to be suitable for
staple production are expected to shift, which may lead to the need to abandon current
production regions and/or shift to new species for cultivation. Many of the potential new
species to replace current systems or fill novel niches include ~30,000 edible plants worldwide;
however, currently ~150 are cultivated at large scale across the world. These domestic and
semi-domestic plant species span 160 taxonomic families with a total of ~2,500 species having
undergone some extent of domestication. Domestication is a process by which a wild organism
shifts to a form more adapted for human use, typically through the acquisition and subsequent
fixation of traits, commonly termed the domestication syndrome. Neo-domestication is the
attempt to re-domesticate or newly domesticate wild and semi-wild species leveraging modern
breeding techniques in a strategic framework. These programs use large phenotypic and/or
genotypic data sets to efficiently select breeding parents to maximize progeny gain of typically
quantitative traits. Neo-domestication foci include fixation of simple traits, via variance
reduction, that typically hinder cultivation and breeding for complex traits that improve
marketability. The increasing pressure on food systems and breadth of options creates a
situation of strategic uncertainty, specifically two questions:

1) Which species do we choose?
2) How do we increase the adaptability of said species to the agroecosystem?

This dissertation aims to systematically answer the second question to understand the
impact of breeding schemes on the pace of adaptation. Specifically breeding scheme develop-
ment encompasses the parametrization in breeding cycle components (Crossing, Evaluation,
Selection) by leveraging empirical data to train stochastic models. First, empirical data are
integrated with simulation output to test specific use-cases, this is followed by optimization
of genetic gain. The empirical case study chapters (1-3) rely upon the concepts of popula-
tion improvement through artificial selection: an iterative process of generational selection
to increase in favorable alleles in the population (Figure 1). The goal is to increase the prob-
ability of extracting a superior cultivar from the population. The increase in favorable alleles
drives genetic gain, which is a product of additive genetic variation within the population,
selection intensity, and selection accuracy (Figure 1). Optimizing breeding cycle components
has beneficial effects on the genetic gain components. However, this framework has not been
applied to wild and semi-domesticated breeding towards domestication. The last chapter
(4) integrates the effects of these case studies to create a framework for understanding the
expected rate of gain for potential species with known biological characteristics.

In Chapter 1, the first breeding cycle component addressed is crossing. Crossing includes
the following parameters: number of parents, number of crosses, number of progeny, type of



cross, and mate allocation. To parse parametric effects in crossing on gain, the wild-endemic
tree species Acacia koa (koa) was used. Koa is an excellent system for understanding crossing
parameters of number of parents and number of progeny effects on gain in seedling vigor
with disease resistance constraint. The koa system provides a clear set of experiments to
validate the influence of breeding population size and number of progeny on phenotypic gain
in simulation results of seedling vigor when constrained by varying levels of disease.

The second chapter focuses on the next component of the breeding cycle, evaluation.
This component includes the following parameters: number of locations, levels of replication,
number of checks, experimental design, and subsampling. To parse parametric effects in eval-
uation on gain, the tropical tree species Theobroma cacao (cacao) is used. Cacao production
spans the globe, but production varieties vary from developed (hybrids) to semi-domesticated
(open-pollinated landrace). The cacao system provides a clear set of experiments to un-
derstand the precision necessary to observe significant differences between varieties within
different domestication status groups. The investigation into the deviation of phenotypic
measurements from the most precise (full sub-sampling of plot) to least precise (single sam-
ple of plot) will facilitate an understanding of the appropriate level of precision needed when
using different types of germplasm in a neo-domestication breeding program.

The last aspect of the breeding cycle, selection, is addressed in chapter 3. This component
includes the following parameters: percentage selected (intensity), selection method (culling,
index), selection unit (families, lines, parents), and selection criteria (phenotypic, genotypic,
breeding values, index). To parse parametric effects in selection on gain, the subtropical
herbaceous shrub species Stevia rebaudiana (stevia) is used. Stevia production spans the
globe, but production varieties are considered non-adaptable to the agroecosystem (semi-
domesticate) and lack classic domestication syndrome traits, including reduced dormancy,
branching, and photoperiod sensitivity. The stevia system provides a clear set of experiments
to understand the influence of phenotypic recurrent selection on domestication traits across
multiple generations.

Although these systems differ by life-history and domesticated status, they provide key
insight into the components of the breeding cycle with varying trait complexities. The sim-
ulation varying crossing parameters can take the empirical estimates from Koa and expand
intuition around other parameters during crossing (e.g., varying number of crosses). The
simulation varying evaluation parameters can take the empirical estimates from Cacao and
expand intuition around other parameters during evaluation (e.g., level of replication or en-
vironmental evaluation). The simulation varying selection parameters can take the empirical
estimates from Stevia and expand intuition around other parameters during selection (e.g.,
alternative selection criteria). Each variable is therefore grounded in crucial empirical esti-
mates derived from experiments in each case-study crop. The input for these case studies
provides the knowledge and intuition for the final chapter, which synthesizes these expecta-
tions into species agnostic neo-domestication breeding schemes. This synthesis uses replicated
and varying stochastic simulations across the breeding cycle components to provide an es-
timate of potential gain for any domestication scenario. These new breeding schemes are
returned to reality by applying known cost structures to key parameter decisions (e.g., cost
of phenotyping versus genotyping; cost of subsampling versus plot level analysis). Mixed-
model analysis is then applied to estimate breeding cycle component parameter values which
maximize the return on investment for given traits and targets.
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Figure 1: Schematic of how the components of the breeding cycle each play a role in the response
to selection, or genetic gain.
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Chapter 1: Acacia koa seedling disease tolerance driven
by breeding orchard size - informing breeding cycle cross-
ing expectations

1.1 Introduction

Acacia koa Gray (hereafter, koa) is an endemic timber tree species of the Hawaiian archipelago
with important cultural and ecological relevance (Baker, 2009). Historically used for ocean-
voyaging canoes and is presently used as a high value input in fine furniture, jewelry, and
musical instruments. Past deforestation for agriculture and ranching during the 19th and
20th centuries, along with its exquisite curly grain and rich coloration has driven the price
to $125 per board foot and estimated annual gross value of $20-30 million (Yanagida et al.,
2004). Further, koa is a critical canopy tree providing habitat for endangered native birds
and epiphytic plants (Pejchar et al., 2005, Baker, 2009).

Koa is an obligate outcrossing (cross-pollinating), autotetraploid species (2n=>52) (Carr,
1978, Shi, 2003). The species arose from a genome duplication event of the Australian species
Acacia melanozylon (Brown et al., 2012, Le Roux et al., 2014). Colonization of the Hawaiian
archipelago by koa likely occurred millions of years ago based on pollen records (Hotchkiss
and Juvik, 1999) and host-specific endemic insect species (Gagne, 1979). Phenotypic and
genotypic variation is found between and within different populations through the Hawaiian
Islands (Wagner et al., 1990, Sun et al., 1996, Adamski et al., 2012, Dudley et al., 2020).
Variation can also be found by eco-region (primarily wet windward or dry leeward popula-
tions) and elevation, yet these sub-groups still hierarchically cluster by island (Dudley et al.,
2017).

Compounding the impact of deforestation on population decline is the rise of Fusarium
ozysporum f. sp. Koae (FOXY), commonly known as koa wilt disease (Gardner et al., 1980,
Anderson et al., 2002, Dudley et al., 2007), decimating the remaining forest by clogging
xylem flow of infected, susceptible trees. However, varying levels of resistance to the disease-
causing pathogen can be found in each population of koa (Dudley et al., 2015) prompting
investigation into disease resistant seed production for koa orchard and reforestation efforts
(Dudley et al., 2020). The cultural, ecological, and economic importance of koa is the driving
force behind facilitating range expansion of the species by increasing tolerance to the disease
in distinct koa populations, providing a mechanism by which koa realizes a domesticated state
capable of cultivation in the agroecosystems and restoration of the ecosystems of Hawai’i. The
traits essential for domestication vary depending on the organism, its life-history and likely
agroecosystem. Koa, as a long-lived perennial with agricultural and ecological significance,
requires traits that facilitate range expansion, one of which is the ability to tolerate or resist
infection by FOXY. Although disease resistance typically has simple genetic architecture
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(Jungers et al., 2023), tolerance is often exemplified through improvements in different more
complex traits, such as vigor.

Population improvement through artificial selection requires optimization of genetic gain
for different traits and tailored towards the end goal (Gaynor et al., 2017). This is achieved
through an iterative process of generational increase in favorable alleles in the population
under selection, acting to increase the probability of extracting a superior cultivar from the
population (Cobb et al., 2019, Van Tassel et al., 2020). The increase in favorable alleles drives
genetic gain, which is a product of additive genetic variation within the population, selection
intensity, and selection accuracy. Each gain component can be increased through different
methods and technology applied across the breeding cycle (Hickey et al., 2017, Wallace et al.,
2018, Wartha and Lorenz, 2021). Population improvement relies upon adequate parametriza-
tion in the breeding cycle of crossing, evaluation, and selection (Covarrubias-Pazaran et al.,
2022).

The focus of this study is the effect of crossing on a wild species being selected for a domes-
ticated form, including decisions such as number of parents, number of crosses, and number
of progeny to continue. Moreover, this chapter accounts for the interplay of traits, seedling
vigor and disease resistance — a common occurrence during neo-domestication. Here general
knowledge on how to begin breeding scheme development for wild species (neo-domestication)
is developed through the use of koa as a novel system to understand crossing and breeding
population size during incipient domestication. The alteration of breeding population size in
the koa orchard is through thinning of individuals, a form of pollen control in the popula-
tion. These individuals are thinned for varying reasons, one of which being a low durability
of resistance which causes trees to succumb to disease over time. As the breeding population
size decreases, and therefore diminished background genetic variability, the progeny survival
probability is increased by removal of susceptible types from the breeding population. This
is an opportunity for insight to develop expectations of population improvement through
augmented crossing parameters to inform situational changes through breeding cycles in
neo-domestication programs (Cobb et al., 2019, Covarrubias-Pazaran et al., 2022).

1.2 Materials and Methods

1.2.1 Germplasm and breeding

Individual wild accessions were sourced from all major islands in the Hawaiian archipelago
(Hawai’i, Maui, O’ahu, Kaua’i) at dry-leeward and wet-windward locations in the late 1990s
where seed was grouped into half-sibling bulk seed (Supplemental Figure 1). Disease screening
following methods reported in (Dudley et al., 2015) were completed for each half-sibling bulk
where maternal lineages were removed for low progeny disease resistance (proportion survival
<60%). Resistant maternal half-sibling seedlings (proportion survival >60%) were sourced
from the wet-windward O’ahu population to include in the randomized complete block design
orchard in 1996. It was not until 12 years later that seed was collected, following the first
orchard thinning. Thinning in the orchard is done to improve tree structure, increase diameter
at breast height (DBH), and remove individuals with low durability of resistance and low or
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no seed production. This process has been repeated three more times for a second, third,
and fourth thinning with subsequent seed collections (Supplemental Figure 1).

1.2.2 Trials

To quantify the effect of breeding population size on seedling disease resistance, bulk seed
from each thinning group (1%, 224, 3t 4%h) were placed into a randomized complete block
design in greenhouse for disease screening compared against wild seed (native range — Ko’olau
Mountains). Disease screening methods follow those used in 1996 and (Dudley et al., 2007).
FOXY inoculum, derived from wild pathogenicity trials (Dudley et al., 2007) is used as a
dried fine powder and mixed thoroughly with growing media. The inoculum was a cocktail
of 9 highly virulent races of FOXY, identified and isolated by Dr. Susan Schencke and Nick
Dudley to estimate broad tolerance to the variety of virulent races likely to be encountered
in the agroecosystem (Dudley et al., 2007). Once koa seed has germinated (stratified and
soaked), the germinated seed is placed into inoculated media and watered, held growing until
visual signs of wilt and/or death is observed. Death by FOXY is quantified by including a
split-plot to our RCBD where half of the seedlings were planted into inoculated media and
half into sterile media. Therefore, proportion of group survival will be used as the measure
of disease resistance per population.

Koa seedlings from each seed group and split were also sampled for pathogen confirmation.
Each of the 33 sampled seedlings had its root collar, which included a small portion of the root
and stem, severed and surface sterilized with 10% Clorox bleach solution and rinsed twice in
sterile water. These segments were transferred to 1 potato dextrose agar (PDA) petri plates
and incubated at 25C for 3 days. Once mycelial growth was observed from each sample,
hyphal tips were taken for each seedling that appeared to be Fusarium. These cultures were
grown for a week to get sufficient growth of mycelium for storage. Representative cultures
were grown in potato dextrose broth (PDB) for 7 days for extraction of total DNA using
a Zymo plant/fungal DNA extraction kit. Polymerase chain reaction (PCR) was used to
amplify the rpb2 locus for these isolates and sent for sanger sequencing in both the forward
and reverse directions at Eurofins genomics. Sequences were trimmed and aligned using
Geneious prime and consensus sequences were BLASTed to NCBI GenBank database for
identification.

1.2.3 Analysis

Data collected during this trial include weekly survey of death (timing of death) and seedling
height at trial end (120 days). To investigate the effect of breeding population size on progeny
seedling disease resistance, we employ binomial regression with a logit-link function through a
generalized mixed-effects model using the R Statistical Software package 'lme4’ (Bates et al.,
2014) to make predictions about the probability of survival of a given seed dependent on
its source group. The formula uses the ratio of planted seeds to total death as the response
variable with random variables of block and fixed variables seed group and split treatment.
Next, we use a two-sample t-test to compare means of sterile and fusarium treated (split
treatment) because disease pressure degrades plant vigor, especially affecting seedling stage
(R Core Team, 2021). Moving past the t-test, we apply a linear mixed-model approach to
estimate seed group and treatment effects on seedling vigor at 120 days (height in cm) while
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removing random blocking effects.

1.2.4 Simulation integration and comparison

Once mixed-model analysis estimates seed group effect and predicts residual errors, we move
to integrate to stochastic simulation using the R Statistical Software package ’AlphaSimR’
(Gaynor et al., 2021) for future projection and estimating genetic complexities. More specifi-
cally, we adjust the founding population parameters to match estimates of our different seed
sources to detangle population size and resistance influence on seedling vigor. For future pro-
jection, we simulate alternative genetic complexities for seedling vigor as simple oligogenic
(8 QTL), complex oligogenic (20 QTL), and polygenic (100 QTL) over 10 cycles of selection.
Designing the founders takes species specific information such as 13 chromosomes in koa,
a genome duplication to simulate autotetraploidy, as well as specifying mean and variance
for the trait along each seed group (Wild through GroupE, Table 2). Once trait is speci-
fied under a given genetic architecture, phenotypes are estimated by taking into account the
additive genetic architecture with the residual error, estimated through mixed-model (Ta-
ble 2). We then specify factors relevant to the breeding cycle, such as number of parents
(# of maternal parents for each group, Table 2), number of crosses per parent (parents-1),
and number of progeny from each parent (varied according to number of parents to have
~500 total progeny). Number of parents follows empirical seed group amounts (Table 2)
while number of progeny per parent is altered to maintain ~500 total progeny each cycle
(Wild: 53x10; First: 43x12; Second: 18X28, Third: 17x30; Fourth: 16x32). The founding
population (cycle 0) therefore matches wild seed group linear mixed-model estimates while
each seed groups linear mixed-model estimates form cycle 1 and serve as the backbone for 10
cycles of selection within each group. The 10 cycles of selection are selected using truncation
selection for number of parents with the highest phenotypic observation. But, important
to this simulation is the presence of disease, which we simulate through random selection
and removal of breeding candidates for death at the proportion of death (1-survival proba-
bility). In effect, each generation there are randomly selected candidates removed from the
population to integrate disease susceptibility and death, where the proportion of selected is
calculated through the survival probability estimated in each seed group. The simulation
is replicated 100 times and the mean (per cycle) phenotypic value and variance, along with
their respective standard errors, are output.

We move to investigate the effects of breeding population size, number of progeny, and
survival probability on seedling vigor gain through 10 cycles of selection. To do so, we select
polygenic (100 QTL) to serve as the genetic architecture of seedling vigor, with founding
population and cycle 1 being formed the same way as previously but altering number of
parents, progeny, and survival probability. Therefore, we set 3 comparative schemes: (1) seed
group survival probabilities remain the same as empirical while setting constant - number
of parents (43) and progeny (12); (2) seed group survival probabilities remain the same as
empirical while setting constant — number of parents (16) and progeny (32); and (3) seed
group survival probabilities are inverted (First to Fourth, Second to Third, vice versa) and
seed group number of parents and progeny remain the same as empirical. These alterations
will inform our understanding of the effect of survival probability on vigor gain through 10
cycles of selection and the effect of breeding population size to mitigate these effects.
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1.3 Results

The size and status of a breeding population has direct influence on the frequency of impor-
tant traits like disease tolerance, vigor, and survivability in progeny seedlings. Differences
between the sterile and disease treatments were observed during trial execution in survival
and vigor. The proportion of survival in sterile groups ranged from 85-95%, but with the
application of FOXY to media during planting there is variable effect by thinning group
(Figure 2). Wild source seed has the lowest tolerance to disease (mean: 50%) while the seed
collected following the 4th thinning of the seed orchard has the highest (mean: 75%). Each

seed group between the wild and the 4th thinning exhibit incrementally improved survival
(Figure 2).

Figure 2: Proportion of seedling survival by seed source group. Comparison of sterile split (no
FOXY) and fusarium (FOXY) tolerance.
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1.3.1.1 Generalized mized-model estimates of survival probability

Generalized binomial mixed-effects model identifies seed from the second, third, and
fourth thinning as being significantly higher proportion survival as compared to the intercept
(wild seed; p<0.05). However, estimates of these groups are not different from one another,
improving log-odds by 0.66 (0.32), 0.67 (0.32), and 0.77 (0.33) over the wild seed intercept of
1.79 (0.30), respectively (Table 1). Furthermore, when we apply the logistic link function to
the log-odds, sterile probability of survival is 85.7% in wild seed with the largest increase in
survival of the 5-year-old orchard (1st thinning, Group B) to 90.8% (Table 1). Probability
of survival is further increased in the 6-year-old orchard (2nd thinning, Group C) to 92.0%
with minimal increase in following years and orchard thinnings to the 9-year-old orchard
(4th thinning, Group E) to 92.8%. Application of fusarium (treatment) reduces predicted
log-odds of survival by 1.13 (0.20; p<0.0001). Logistic link function finds treatment effect of
fusarium disease probability of survival dropping in every group, with the largest decrease in
survival estimated in wild seed by 20% to 65.9% survival and the smallest decrease in survival
estimated in the 9-year-old orchard (4th thinning, Group E) by 12% to 80.7% survival (Table

1).

Table 1: Generalized linear mixed-model log-odds estimates and probability of survival by seed
group under sterile (untreated) and fusarium (treated) conditions.

.. Seed Group LogOdds Probability |[LogOdds Fusarium| Probability
GLMM Coefficients ) ) .
(Maternal #) Estimate (SE) Control Estimate (SE) Fusarium
Intercept Wild Seed 2012 (53)| 1.790 (0.301) 0.857 0.659
B Effect 1st Thinning (43) | 0.498 (0.338) 0.908 0.761
C Effect 2nd Thinning (18) | 0.659 (0.323) 0.920 -1.130 (0.203) 0.789
D Effect 3rd Thinning (17) | 0.668 (0.325) 0.921 0.790
E Effect 4th Thinning (16) | 0.771 (0.330) 0.928 0.807

1.8.1.2 Linear mized-model estimates of seedling vigor

Survival proportion is not the only effect of FOXY on koa seedlings where vigor (seedling
height) of remaining seedlings (end of trial) is diminished across all seed source groups (Fig-
ure 3). Welch’s two sample t-test identifies significant (p<0.0001) differences between the
split — sterile versus FOXY applied, with mean height of sterile 21.53 ¢m and of FOXY
treated 17.70 cm. Linear mixed-model is used to estimate vigor (seedling height) at 120
days post germination in sterile (untreated) and fusarium (treated) conditions (Table 2).
The unexpected trend identified in data exploratory visualization (Figure 3) is corroborated
using mixed-model, where the surviving wild seed has the highest vigor estimate (19.28 cm
in height) out of all groups with Group E (4th thinning) as the next highest estimate (18.69
cm; Table 2). It can be inferred that this trend is exhibitive of disease tolerance in orchard
groups where rather than fusarium causing death in seedlings (lack of resistance observed
in wild seed; Table 1), seed derived from orchard groups have diminished growth and vigor
(Table 2).

1.3.2 Stochastic simulation for projected gain under variable crossing parameters
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Figure 3: Seedling vigor (height) by seed source group. Comparison of sterile split (no FOXY)

and fusarium (FOXY) tolerance.
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Table 2: Linear mixed-model estimates of seedling vigor, quantified as height (cm) at 120 days

=
Seed Group

post-germination, under sterile (untreated) and fusarium (treated) conditions.

LMM Coefficients

Seed Group

Vigor Control

Vigor Fusarium

Vigor Fusarium

(Maternal #) Estimate (SE) Estimate (SE) Estimate
Intercept Wild Seed 2012 (53)|23.112 (0.850) 19.279
B Effect 1st Thinning (43) |-1.371(0.923) 17.908
C Effect 2nd Thinning (18) |-2.516 (0.882) | -3.833(0.392) 16.763
D Effect 3rd Thinning (17) |-2.215 (0.882) 17.064
E Effect 4th Thinning (16) |-0.592 (0.880) 18.687
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Stochastic simulation was used to project gain in seedling vigor with variable seedling
survival via FOXY resistance. We begin with parameters matching empirical for each of
our four orchard seed groups to project gain in vigor through 10 cycles of selection with
varying genetic architecture complexity. Simple oligogenic control (8 QTL) of seedling vigor
finds a rank change in the top two vigor estimate seed groups (4th thinning: 18.69 & 1st
thinning: 17.91) after 10 cycles of selection (Figure 4A). The 1st thinning seed group gains
phenotypically 41% over 10 cycles of selection, compared to 29% in 4th thinning seed group.
This is a likely result of more genetic variation within the 1st thinning seed group (43 breeding
parents). These groups have a projected split at generation 6, where standing variation in
each population has diminished by 84% in the 4th thinning group versus 58% in the 1Ist
thinning group (Figure 4B). Increase in genetic complexity to complex oligogenic (20 QTL)
of the simulated trait finds no overlaps in genetic gain in 10 cycles of selection with seed
groups ranked in accordance with estimates used (Figure 4C). It appears 1st thinning seed
group will overtake the 4th thinning seed group in the 11th cycle, especially considering
the loss of genetic variation is almost 10% greater in the 4th thinning group, meaning more
genetic variation for selection is present (Figure 4D). Another increase in genetic complexity
to polygenic (100 QTL) of the simulated trait finds overlaps in genetic gain in 10 cycle of
selection with seed groups ranked according to their survival probabilities, with the worst in
gain being the first (67%) and the best in gain being the fourth seed group (81%), highlighting
the potential for disease resistance to maintain genetic variation becomes more important to
gain in primary traits as the architecture of those traits becomes increasingly complex (Figure
4E). The effect of a rather simple trait, disease resistance, on the gain in a complex trait,
vigor (simulated: 100 QTL), raises some questions regarding whether this effect may be
mitigated through breeding population size.

We therefore implement 3 different schemes by altering either seed group crossing pa-
rameters (number of parents and progeny) and/or survival probability. The first scheme was
designed to test the effect of survival probability on projected seedling vigor gain when using
the different seed groups (differ by cycle 1 estimates: Table 2) while maintaining a larger
breeding population size (43 parents). Here we observe increases in final gain comparative
to the seed groups survival probability: First (67%) gains 7.06 cm in height, Second (69%)
gains 8.14 cm, Third (74%) gains 8.73 cm, and Fourth (81%) gains 8.92 cm (Figure 4A).
Moreover, this change in breeding population size from 16 parents to 43 parents increases
variance in the 4th thinning seed group by almost 10% in the 10th cycle of selection (Figure
4B). The second scheme was designed to test the effect of survival probability on projected
gain when using a smaller breeding population size (16 parents) for each seed group.

Results of gain are more variable in the second scheme, but seed groups finish 10 cycles
of selection in the same order as their cycle 1 estimates (Table 2 & Figure 4C). The more
noticeable effect of the decrease in breeding population size is the loss of variance, where in
the 10th cycle for each seed group has more variation in the second than in the first scheme:
First loses 67% versus 75%, Second loses 66% versus 77%, Third loses 61% versus 76%,
and Fourth loses 66% versus 73% (Figure 4B/D). The third scheme was designed to test
whether the effect of survival has a proportional effect to the variable breeding population
sizes used empirically. Despite differing starting points (seed group vigor estimates; Table
2), when survival probabilities are inverted (decreasing) and breeding population parameters
are kept the same as empirical (decreasing), final projected gain of height in cm across all
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four groups is almost within 1 unit (First: 26.92 cm & Third: 25.73 cm; Figure 4E). More
variation (30%) is present in the first seed group breeding population than the alternatives,
highlighting the importance of a large breeding population size (43 parents) and high degree
of disease resistance (81%) (Figure 4F).

1.4 Discussion

1.4.1 Trait associations and influences on gain of vigor

Seedling attributes such as height, root mass, abiotic and biotic resistances, and nutrient
status are widely recognized to be critical components of plant success, especially in perennial
tree species (Grossnickle and MacDonald, 2018). Improving genetic gain of vigor, measured
as seedling height in our study, is especially important in forestry, where the cycle from
planting to harvest is extended. Vigor can be selected at early stages and decrease the
breeding cycle time as identified in Acacia mearnsii (Bisognin et al., 2023). Orchard stand
and yield potential is directly impacted by early-stage vigor as well as stress resistance. This
has been observed in the contemporary crops cotton and alfalfa. For example, more vigorous
cotton seedlings have a shortened duration of sensitivity to pathogens by the reduction of
fungal penetration into developed woody tissue (Bourland, 2019). There also is a slight
negative correlation between fusarium wilt in alfalfa and vigor, indicating that selection for
fusarium wilt resistance might increase vigor even in the absence of disease (Fonseca et al.,
1999). Additionally, vigor is an important indicator of yield potential, as observed in wild
soybean (Kofsky et al., 2020). These patterns are also observed in forestry, where in southern
pine production, seedling quality and vigor play a critical role in survivability and growth
potential (Johnson and Cline, 1991, South et al., 2001), also observed in resistant eco-types
of koa (Dudley et al., 2015, 2020). The improvement of vigor, which is entangled with
resistance, indicates the progress of population improvement during incipient domestication.
The selection of FOXY resistant types and removal of low durability of resistant genotypes
from the breeding population results in observed improvements of both traits in koa (Table
1 & 2). Our breeding population continues to generate more vigorous and resistant progeny
through this selection regime. Moreover, simulation predicts the population to maintain this
progress of seedling vigor improvement (Figure 5). However, simulation does identify optimal
crossing parameters given our population and genetic architecture, where maintaining a larger
breeding population and having fewer progeny per cross (Scheme 1; Figure 5A) will improve
gain substantially over alternative schemes (Figure 5C/E). Each generation consists of more
vigorous and resistant progeny, pushing the population towards a domesticated state which
will successfully fill the cultural, economic, and ecological role of wild koa.

1.4.2 Bottleneck size, genetic load, and effects on LD

Genetic variation is an extremely important consideration during neo-domestication,
where historical domestication incurred substantial bottlenecks (Eyre-Walker et al., 1998,
Zhu et al., 2007, Allaby et al., 2008). Moreover, loss of variation during selection limits the
potential for sustainable quantitative trait improvement (Lande, 1979). Our case study into
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Figure 4: 100 stochastic simulations of seedling vigor (height in cm) in koa with different crossing
parameters and survivability by seed group origin. Phenotypes are estimated in 1 environment.
The plotted points and lines represent the mean of replications per cycle with the shaded regions
representing the standard deviation of replications per cycle. (A/B) Genetic architecture of seedling
vigor is simple oligogenic (8 QTL). (C/D) Genetic architecture of seedling vigor is complex oligogenic
(20 QTL). (E/F) Genetic architecture of seedling vigor is polygenic (100 QTL). (A/C/E) represent
the phenotypic gain, measured as phenotypic value and (B/D/F) represent the phenotypic variance.
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Figure 5: 100 stochastic simulations of seedling vigor (height in cm) in koa with altered schemes
by different crossing parameters and survivability by seed group origin. Phenotypes are estimated
in 1 environment and the genetic architecture of seedling vigor is simulated as polygenic (100 QTL).
The plotted points and lines represent the mean of replications per cycle with the shaded regions
representing the standard deviation of replications per cycle. (A/B) Scheme 1: seed group survival
% is same as empirical estimates while number of parents and progeny are set constant, 43 and 12
respectively. (C/D) Scheme 2: seed group survival % is same as empirical estimates while number of
parents and progeny are set constant, 16 and 32 respectively. (E/F) Scheme 3: seed group survival
% is inverted from empirical while number of parents and progeny is same as empirical. (A/C/E)
represent the phenotypic gain, measured as phenotypic value and (B/D/F) represent the phenotypic
variance.
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improved types are not only for the agroecosystem but also for reforestation efforts, where a
narrow-genetic base could spell abiotic and biotic disaster considering the worsening climatic
conditions and expanding global trade (Foley et al., 2011, Ramankutty et al., 2018, Chapman
et al., 2017). As we begin to bottleneck our population during domestication, consideration
of realized and masked genetic load is important. Bottlenecks purge some deleterious mu-
tations (reducing load) but it also converts masked load into realized load with prolonged
bottlenecks fixing deleterious mutations (Bertorelle et al., 2022). The ratchet effect is a
common cost of domestication as regions of low effective recombination, often the selected
haplotypes, disproportionately accumulate deleterious variants (Kono et al., 2016). Balance
can be restored using migration (genetic rescue), a component worth consideration in breed-
ing scheme development for neo-domestication. Our breeding schemes (Figure 4) highlight
the influence of bottleneck size on genetic variation after 10 cycles of selection, where Scheme
1 (43 parents) possesses 25% more variation than Scheme 2 (16 parents). However, it should
be expected that following incipient domestication effective population sizes become small,
like crop species, creating a strong prevalence of genome-wide linkage disequilibrium that
should validate the use of genomic selection (Voss-Fels et al., 2019). Careful consideration is
necessary though because high LD decay is expected during the bottlenecking of an outbred
species with high effective population size, reducing the predictive ability of genomic selection
(Zhang et al., 2016).

1.5 Conclusion

In the koa example, large improvements are realized in a few cycles of selection even despite
the long temporal time of this perennial hardwood tree species. Our initial selection on
agronomic traits has empirically improved the adaptability of our populations to the agroe-
cosystem and natural ecosystem. These improvements in adaptation to the agroecosystem
highlight these agronomic traits as important domestication syndrome for koa. Furthermore,
orchard stand is improved, meaning the breeding program can shift to quality traits such as
rich and complex fiddleback grain. The stochastically simulated breeding schemes outline
rapid domestication when traits of interest are known. Moreover, the speed of this change
in phenotypic performance occurred regardless of the underlying genetic architecture, giving
promise to the introduction of new crops with alternative domestication syndromes. Our
empirical and simulated evidence of the trend towards domestication in Acacia koa outlines
parametrization of crossing in the breeding cycle for rapid improvement of adaptation to the
agroecosystem.
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Chapter 2: Theobroma cacao variety differentiation with
altered phenotyping precision - informing breeding cycle
evaluation expectations

2.1 Introduction

Theobroma cacao L. (hereafter, cacao) is a domesticated tropical fruit crop essential to the
chocolate industry. The center of diversity and origin of cacao is the border of Ecuador,
Colombia, and Brazil with first reports of domesticated uses by the Mayan peoples of
Mesoamerica (Clement et al., 2010, Thomas et al., 2012). Cultivated and wild cacao re-
semble one another, signifying there was, and continues to be, the identification of superb
accessions from wild stands which were distributed for production (Laliberté et al., 2012).
Hybrids generated from open-pollinated landraces are now major production varieties with
disease resistance across the world. Therefore, cacao in production can range from wild to
open pollinated landrace selections, to newly bred hybrids, where the cultivated types are
no more adapted to the agroecosystem than their wild counterparts, despite reduction in
allelic diversity in landraces (Motamayor et al., 2008, Laliberté et al., 2012). Despite this
range of domestication states, most cacao production is based on landraces selected prior to
1950 with only one-third of cacao globally derived from hybridization and crop improvement
(Laliberté et al., 2012). Wild genetic diversity is not represented in production varieties, but
this diversity is available for introgression of important traits to improve productivity of the
crop in the world’s tropical agroecosystems (Bekele and Phillips-Mora, 2019).

Previous work has identified three groups of cacao based on phenotypic clustering (Cheesman,
1944, Lachenaud and Oliver, 2005). Amazon Forastero cacao is cultivated on 70% of cacao
farms due to strong flavor, high butterfat content and disease resistance (Eskes and Lanaud,
2001, Iwaro et al., 2003, Khan et al., 2008). Criollo cacao has a limited production range
to mostly Central America due to high disease susceptibility and displays low vigor, likely
due to its low genetic diversity (Motamayor et al., 2002). Trinitario cacao is a highly het-
erogeneous group derived from the hybridization of Amazon Forastero and Criollo with high
levels of phenotypic and genetic variability, a key in clonally (i.e., grafted) propagated crops
(Lass and Wood, 1985, Motamayor et al., 2003). (Motamayor et al., 2008) found ten genetic
clusters of cacao (study did not include Trinitario types) with a focus on wild accessions.
This distinction is important for the maintenance of long-term adaptability and productivity
in crops, however, selection of individual accessions from a large survey (~1200 accessions)
for use as parents is costly (i.e. land and labor).

Selection of a new cultivar in possession of a key trait is often done through accurate
and precise phenotyping, even though marker-assisted selection is used in structured, more
developed breeding programs. The phenotyping must be precise enough where estimated
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differences between individuals are identified outside of confidence intervals while maintain-
ing cost minimization. Moreover, the precision of phenotyping (sub-sampling) should be
constrained to a set point where these differences are observable through data analysis and
genotypic performance ranking. For example, in cotton heat tolerance research, the pheno-
typic correlation of quantity and quality traits by high-throughput phenotyping (HTP) and
physiological hand collected phenotypes were mostly significantly correlated (Pauli et al.,
2016). Furthermore, impactful gains in a developed program can be realized with more fine-
tuned phenotyping (Cobb et al., 2013). Variation in the precision of phenotyping will often
result in different ranks, therefore using the correct amount of phenotyping will assist in expe-
diting selection of accessions and avoid situations such as the narrow genetic base of historic
cacao varieties that resulted in disease susceptibility during the mid-1900’s (e.g., witches’
broom, frosty pod rot). The disease susceptibility necessitated the use of exotic germplasm
usage in breeding programs to incorporate resistance, a process that has been slow to deliver
new cultivars in the short-lived perennial. Rapid and appropriate phenotyping techniques
permit efficient and accurate selection of exotic germplasm when it is of utmost importance.

Population improvement through artificial selection requires optimization of genetic gain
for different traits (Gaynor et al., 2017). This is achieved through an iterative process of
generational increase in favorable alleles in the population under selection, acting to increase
the probability of extracting a superior cultivar from the population (Cobb et al., 2019,
Van Tassel et al., 2020). The increase in favorable alleles drives genetic gain, which is a
product of additive genetic variation within the population, selection intensity, and selection
accuracy. Each gain component can be increased through different methods and technology
applied across the breeding cycle (Hickey et al., 2017, Wallace et al., 2018, Wartha and Lorenz,
2021). Population improvement relies upon adequate and appropriate parametrization in the
breeding cycle of crossing, evaluation, and selection (Covarrubias-Pazaran et al., 2022).

The focus of this study is the effect of changing precision of estimates during evaluation
of diverse germplasm on the selection for and gain of important agronomic traits. Cacao
is an excellent system to derive expectations because it provides the opportunity to un-
derstand how precision differentially affects selection across the domestication continuum of
landrace and developed varieties. Therefore, the case study provides a clear set of experiments
and evidence towards subsampling and replication procedures during evaluation of diverse
germplasm. This is an opportunity for insight to develop expectations of gain during popu-
lation improvement with variable evaluation precision to inform situational changes through
breeding cycles in neo-domestication programs (Cobb et al., 2019, Covarrubias-Pazaran et al.,
2022).

2.2 Materials and Methods
2.2.1 Germplasm and trials

The trial field (planted 2017) is a randomized complete block design with 15 treatments
(genotypes-Table 3) ranging from relatively wild, open pollinated landrace variety selections
(6 genotypes) to developed breeding lines (8 genotypes) and a control production variety (1
genotype) grafted to the same reliable rootstock variety to avoid rootstock-scion interaction
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effects. There are 4 blocks and 15 treatments for a total of 60 plots (6 clones per plot, sub-
samples) and 360 total trees. The orchard site is in proximity to koa (Acacia koa) to the
south, coffee (Coffea arabica and C. canephora) to the north, breadfruit (Artocarpus altilis)
to the west, and mix forest to the east (Supplemental Figure 2).

Cacao has two distinct harvest seasons in Hawaii, the early winter and mid to late spring.
The trees in this orchard site began pod production in winter 2020, the first harvest and
data collection. There were 5 discrete harvests from the trial plot: winter 2020, spring 2021,
winter 2021, spring 2022, winter 2022. The measurements are yield traits by tree (every
sub-sample) including pod count, seed count/pod (3 pods), seed weight/pod (3 pods), total
seed weight. Therefore, the average seed count and weight per pod, tree, or plot can be
calculated and subsampling can be used to simulate differing phenotyping precision.

Table 3: List of cacao germplasm included in the trial planted in 2017 at Hawaii Agriculture
Research Center — Maunawili Station.

Cultivar Year released Cultivar style | Breeding State Origin
MTc10-02 (CCN-51X 2012-2013 Hybrid Elite cultivar Mars, Inc.
2057)
MTc10-03 (UNAP-2 X 2012-2013 Hybrid Elite cultivar Mars, Inc.
TIP-1)
MTc10-04 (SIL-1 X D- 2012-2013 Hybrid Elite cultivar Mars, Inc.
147)
MTc10-12 (AMAZ-14 X 2012-2013 Hybrid Elite cultivar Mars, Inc.
EBC -148)
MTClO'OSég)CN SIXB 50122013 Hybrid Elite cultivar Mars, Inc.
MTClO'WB[g)CN'Sl X8l 50122013 Hybrid Elite cultivar Mars, Inc.
MTc10-09 (EET -387 X A
¢ ( 2012-2013 Hybrid Elite cultivar Mars, Inc.
645)
MTcl0-17 {I)AP'S XTIP-1 50122013 Hybrid Elite cultivar Mars, Inc.
ICS 95 1979 Unknown Production Trinidad
K25 OP N/A Open pollinated Landrace HARC, Hawaii
W1010709 N/A Open pollinated Landrace Waialua, Hawaii
W1010202 N/A Open pollinated Landrace Waialua, Hawaii
W1060205 N/A Open pollinated Landrace Waialua, Hawaii
TARS 2 N/A Open pollinated Landrace Puerto Rico
TARS 9 N/A Open pollinated Landrace Puerto Rico
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2.2.2 Analysis

To quantify the amount of phenotyping precision needed to observe significant differences be-
tween genotypes within groups, we fit three mixed-models. Data used in models is augmented
differently to simulate alternative phenotyping schemes: max sampling (six trees/plot), half
subsampling (random three trees/plot), and no subsampling (random one tree/plot). The
mixed-models follow general form of total seed weight as response with random predictor
block and fixed predictors of genotype and harvest date. This process is repeated with
response mean seed size (weight as grams). Comparison of estimated marginal means of
genotypes within each augmented precision model is used to identify rank change within
and between variety groups (i.e. domestication continuum landrace and hybrid) and identify
means outside of baseline model confidence intervals (0.95). Moreover, we fit another model
form using mean seed size as the response with fixed effect continuum group and random
effects genotype and harvest date. This is a specific change aimed to generate estimates for
the domestication continuum groups and residual error, while removing variance attributable
to genotype and harvest date.

2.2.3 Simulation

Once mixed-model analysis estimates group effect and predicts residual errors across variable
sampling precision, we move to integrate to stochastic simulation using the R Statistical
Software package ’AlphaSimR’ (Gaynor et al., 2021) for future projection under variable trait
genetic complexity. Model estimates and rank changes are then used to integrate stochastic
simulation. Founding population parameters match estimates of our different continuum
groups for mean seed size to parse gain in these groups given differential estimates and
variability. For future projection, we simulate alternative genetic complexities for mean
seed size as simple oligogenic (8 QTL) and complex oligogenic (20 QTL) over 10 cycles of
selection. Founders are formed from species specific information such as 10 chromosomes in
cacao and specifying mean and variance for the trait within each group (Seed Size; Table 4).
Once the population is specified under a given genetic architecture, phenotypes are estimated
by taking into account the additive genetic architecture with the residual error, estimated
through our augmented precision mixed-models (Seed Size; Table 4). We then specify factors
relevant to the breeding cycle, such as number of parents, number of crosses per parent,
and the number of progeny per cross. The founding population therefore matches each
seed groups’ linear mixed-model estimates, forming the substrate of the simulation, based
on truncation selection. However, truncation selection is augmented through the variable
precision, interpreted, and employed by rank change. Max sampling serves as baseline and
truncation selection of the top 33% of individuals is performed to serve as the parents for the
following generation. Precision begins to deteriorate when 50% subsampling is performed,
where landrace remains as the baseline (no rank change among genotypes) but hybrid derived
varieties have 50% of selections from top 33% performers and 50% of selections from 34-66%
performers. Precision does not deteriorate further in hybrids under no subsampling, but
in landrace precision follows hybrid under 50% subsampling. Concisely, full subsampling is
baseline, 50% subsampling affects the selection unit (individuals selected) in hybrids but not
landrace, and no subsampling effects the selection unit (individuals selected) in hybrids and
landrace. Reductions in precision result in imprecise selection of individuals which will have
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direct effects on the rate of gain.

Next, we investigate the effects of increasing environmental evaluation under these reduc-
tions to precision of estimates. To do so, we select complex oligogenic (20 QTL) to serve
as the genetic architecture of mean seed size, with the founding population of each contin-
uum group being formed as previously mentioned. Therefore, we set 3 comparative schemes
each with a gradient of environmental evaluation: (1) continuum groups under full subsam-
pling precision each with 1, 3, and 5 environmental replications of evaluation; (2) continuum
groups under 50% subsampling precision each with 1, 3, and 5 environmental replications
of evaluation; and (3) continuum groups under no subsampling precision each with 1, 3,
and 5 environmental replications of evaluation. These schematic alterations will inform our
understanding of the effects of environmental replication at alleviating the effects of reduced
subsampling. We define our discrete environments as location-by-year, which provides the
environmental variance-covariance metric integrated for simulation.

2.3 Results
2.3.1 Cultivar estimates and their rank change along a precision gradient

Yield of cacao varieties varied within and between groups, with landrace types exhibiting
larger variation (Figure 6). Certain varieties within each of these groups (Hybrid — 1/MTc10-
12 and Landrace - 14/W1060205) maintain the mean of total seed weight greater than the
production control mean through the two harvest seasons (Figure 6). Mixed-model analysis
of variety total seed weight with varied precision (altered sampling) produces varied levels
of clarity. Full sub-sampling (Figure 7A) exhibits distinction within landrace variety type
groups by estimated marginal means with 0.95 confidence intervals, such as W1060205 being
better than K25 and W1010202, which in turn are better than TARS 2. However, differences
between hybrid varieties requires expansion past the next LSD group (Supplemental Figure
3). Decreasing precision of estimates through reduced subsampling reduced the clarity of
differences to the point of being unable to observe statistically significant differences between
varieties from the landrace group as well as between varieties from the hybrid group (Fig-
ure 7C). The highest yielding variety through all precision levels is W1060205 (landrace),
highlighting the variety’s performance through all subsamples (trees). The next best variety
is MTc10-12 (hybrid) when subsampling is used, but the loss of subsampling decreases this
variety’s rank from 2 to 4, highlighting this variety’s lack of consistent tree performance and
the importance of subsampling for precise selection. Rank change (5 of 15) is restricted to
only 2 levels (increasing or decreasing) when reducing precision of estimates from full to 50%
subsamples (Figure 7A/B). However, ranks change at higher frequency (12 of 15) and levels
(6) when precision of estimates is reduced from 50% subsamples to a single sample (Figure
7B/C).

When the trait of interest is changed to mean seed size, an important attribute for roasting
during the chocolate making process, the best varieties change (Figure 8). MTc10-12 is the
best variety for mean seed size, only decreasing by one level in rank when 50% of samples
are used (Figure 8). W1060205 was identified as the highest yielding variety by total seed
weight, achieved through small seed size with rank of <11 in all sampling schemes (Figure 8).
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Figure 6: Total seed weight variability through sub-harvests in A) year 1 (winter 2020 and spring
2021) and B) year 2 (winter 2021 and spring 2022).

Cacao Seed Weight - Year 1 Harvest (W20 & S21) Cacao Seed Weight - Year 2 Harvest (W21 & S22)
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Seed size is a trait with little clarity of differentiation (three LSD groups in full sub-sampling
and 1 in single sample; Supplemental Figure 4) and higher frequency of rank change during
altered phenotyping precision (11 of 15 Figure 8A/B and 13 of 15 Figure 8B/C).

Figure 7: Estimated marginal mean rank change across varied sub-sampling for total seed weight
(grams) with A) full sub-sampling, B) half sub-sampling, and C) single sample. Arrows represent
no rank change (yellow), negative rank change (red), and positive rank change (purple). Varieties
a marked as open-pollinated landrace (magenta), hybrid variety (orange), and production control
(none). Asterisks next to EM mean represent those EM means of reduced subsampling outside of
the confidence intervals of baseline.

A) Lower CI  Upper CI B) Variety EM Mean | Lower CI Upper CI C) Variety EM Mean | Lower CI  Upper CI

1343 2257 1412 2368 1878.0 1289 2466

MTc10-12 X 953.5 1867 MTc10-12 X 1020 1977 MTc10-07 1289.0 701 1878
1152.0 695.4 1609 1131.0 653 1609 MTc10-3 1160.0 571 1748

1097.0 640.5 1554 >< 1102.0 623 1580 MTc10-12 1085.0 497 1674

1074.0 616.7 1531 990.0 512 1468 990.0 401 1578

964.0 506.6 1421 & 940.0 461 1418 MTc10-9 905.0 317 1493

947.0 490.4 1404 ICS 95 888.0 410 1367 813.0 225 1402

MTc10-9 897.0 440 1354 MTc10-9 846.0 368 1325 758.0 170 1347
MTc10-3 838.0 381.5 1295 MTc10-3 759.0 281 1237 684.0 96 1273
MTc10-5 701.0 2445 1158 MTcl0-5 664.0 186 1143 MTc10-5 562.0 =27 1150
617.0 160.2 1074 575.0 97 1053 / ICS 95 527.0% -61 1116

522.0 65.5 979 522.0 43 1000 MTc10-17 449.0 -140 1037

MTc10-17 339.0 -118.2 796 MTc10-17 357.0 -122 835 & MTc10-2 443.0 -146 1031
MTc10-2 337.0 -119.5 794 MTc10-2 319.0 -159 797 347.0 -241 936
MTc10-4 272.0 -184.7 729 MTcl0-4 202.0 -276 680 244.0 -344 833

2.3.2 Yield component performance of domestication continuum groups

Following the identification of cultivars within landrace and hybrid groups with high
yield and mean seed size along a precision gradient, we assign another linear mixed-model
for estimation of group parameters. The four yield component traits of interest are mean seed
size (grams), total seed weight (kilograms), number of pods per tree (count), and number
of seeds per pod (count). Mixed-model analysis finds a common gradient where production
estimates are greater than landrace estimates, which in turn are greater than hybrid estimates
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Figure 8: Estimated marginal mean rank change across varied sub-sampling for mean seed size
(grams) with A) full sub-sampling, B) half sub-sampling, and C) single sample. Arrows represent
no rank change (yellow), negative rank change (red), and positive rank change (purple). Varieties
a marked as open-pollinated landrace (magenta), hybrid variety (orange), and production control
(none). Asterisks next to EM mean represent those EM means of reduced subsampling outside of
the confidence intervals of baseline.

A) Variety | EM Mean | Lower CI  Upper CI B) Variety IEM Mean | Lower CI _ Upper CI C) Variety LS Mean | Lower CI__Upper CI
MTc10-12 4.05 3.71 4.39 >< MTc10-9 4.45% 3.76 5.14 MTc10-12 3.88 3.52 4.24
MTc10-9 3.87 3.51 4.23 MTc10-12 4.12 3.49 4.75 3.58 3.17 3.98
3.63 3.25 4.01 3.67 2.95 4.38 MTc10-07 3.54 3.23 3.86
MTc10-07 3.48 3.11 3.85 3.56 2.87 4.25 MTc10-2 3.52 2.65 4.40
3.43 2.99 3.87 MTc10-2 3.35 2.53 4.16 ICS 95 3.40 297 3.83
3.40 3.05 3.76 3.49 2.69 4.29 3.39 2.98 3.80
3.39 2.98 3.79 MTc10-07 341 2.68 4.14 3.32 2.87 3.77
3.36 294 3.78 ICS 95 3.41 2.63 4.18 3.29 2.76 3.82
MTc10-2 3.35 2.88 3.82 3.32 2.58 4.05 3.14* 2.80 3.48
294 2.55 3.33 3.01 2.28 3.74 2.77 237 3.17
MTc10-17 2.79 2.32 3.27 MTcl10-3 2.88 2.10 3.66 MTc10-17 2.76 227 3.25
MTc10-3 2.75 2.34 3.16 & 2.69 2.09 3.29 MTc10-3 2.69 2.34 3.04
2.71 2.39 3.03 MTc10-17 2.59 1.55 3.64 MTc10-5 2.62 227 2.97
MTc10-5 2.60 2.28 2.92 MTc10-5 2.59 1.99 3.20 2.57 225 2.89
MTc10-4 2.25 1.72 2.79 MTcl10-4 220 1.15 3.25 2.20 1.50 2.89

(Table 4). The standard error of the estimates follows this same gradient. However, the
number of seeds per pod is the only trait where the estimate gradient places production
below hybrid with landrace having the largest (Table 4). Although the production group
estimates are based on a single production variety (ICN 95) via replication, total seed weight
is not degraded due to a large mean seed size.

Table 4: Linear mixed-model estimates of yield component traits across different domestication
continuum groups using max sampling.

Mean Seed Size (g) | Total Seed Weight (kg) | Pod/Tree (#) Seeds/Pod (#)
a 2 Hybrid 2.99(0.19) 1.25 (0.018) 9.96 (1.32) 73.07 (9.19)
o E Landrace 3.17(0.25) 1.67 (0.025) 12.86 (2.02) 82.26 (9.16)
© & Production 3.37 (0.49) 2.03 (0.050) 15.61 (3.97) 64.49 (18.04)
- Genotype 0.21 (0.46) 196.55 (0.044) 12.34 (3.51) 265.6 (16.30)
5 E Harvest 0.04 (0.19) 24.15 (0.016) 0.00 (0.00) 241.9 (15.55)
“ Residual 0.44 (0.66) 1470.82 (1.213) 103.32 (10.17) | 1,432.1(37.84)

2.3.83 Stochastic simulation for projected seed size gain along varied evaluation precision

Stochastic simulation was used to project gain in mean seed size across a precision gradient.
We begin with parameters matching empirical estimates for both of our cultivar groups
(landrace and hybrid) to project gain in mean seed size through 10 cycles of selection with
varying genetic architecture complexity, taking into account the effect of reduced precision of
estimates. Simple oligogenic control (8 QTL) of mean seed size finds a 42% gain over 10 cycles
of selection with baseline precision and hybrid cultivar founders (Figure 9A). The reduction to
50% subsampling of hybrid cultivars decreases gain over 10 cycles of selection to 38% (Figure
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9C). Complex oligogenic control (20 QTL) of mean seed size finds a 73% gain over 10 cycles
of selection with baseline precision with hybrid cultivars (Figure 9A). The reduction in gain
increases with genetic complexity, where 50% subsampling reduces projected mean seed size
gain to 59% over 10 cycles. Interestingly, the effect of reducing subsampling (precision) is
smaller on the landrace group, even after considering that the effect is not noticed until no
subsampling is conducted. Under simple oligogenic control mean seed size has projected gain
of 46%, only decreasing to 45.5% gain (Figure 9A/E). Increasing genetic complexity for the
trait does result in a larger reduction to gain (67% to 57%), but still less than half the loss
realized by the hybrid group (Figure 9). Despite this reduction of gain in both continuum
groups when precision decreases, trait variation decreases at the same rate (Figure 9B/D/F).
The different gradient of reduced precision, 50% subsampling in hybrid and no subsampling
in landrace, could be alleviated through increased environmental replication.

We therefore implement three different levels of environmental replication within each
precision level, maintaining 1 evaluation environment as the baseline, increasing to 3 and 5
evaluation environments on a complex oligogenic trait (20 QTL) from landrace and hybrid
cultivar estimates. Under full subsampling, the rate of gain from hybrids in the complex
oligogenic trait (mean seed size) over 10 cycles of selection is 74%, 41%, and 54% using 1,
3, and 5 evaluation environments, respectively (Figure 10A). However, when precision of
estimates is decreased through reduction of subsampling to 50% and none, rate of gain over
10 cycles of selection is simulated at 53%, 33%, and 47% (Figure 10C/E). A shift of cultivar
group to landrace under full subsampling finds simulated gain over 10 cycles of selection of
81%, 93%, and 98% under 1, 3, and 5 environments, respectively (Figure 10A /C). These gains
are expected under 50% subsampling as well because rank change of selection does not occur
until no subsampling. Under no subsampling, the simulated gain over 10 cycles of selection is
72%, 65%, and 57% (Figure 10E). Population phenotypic gain for a complex oligogenic trait,
representing mean seed size, is larger using landrace cultivars as the founders by about 10%
greater than hybrid cultivar founders using full subsampling (Figure 10). Moreover, when
reductions to subsampling is considered, landrace cultivars are more tolerant to the loss of
precision, not losing gain until no subsampling occurs. The proportion of loss in genetic gain
is also different between populations formed from hybrid and landrace founders, where only
12%, 5%, and 8% differences in genetic gain are found in landrace while 22%, 8%, and 7%
differences in hybrid under 1, 3, and 5 environments, respectively (Figure 10A/C/E).

Stochastic simulation of increased evaluation environments does find heightened variation
via reduced measurement error. For example, using the founding population through lan-
draces predicts loss of variation (Figure 10B/D/F). However, results are also predicted over
10 cycles of selection using hybrid founders where variation increases (Figure 10B/D/F). The
loss of variation in the landrace founding population across schemes is occurring due to a
greater available genetic variance present over the predicted residual error.

2.4 Discussion

2.4.1 Interspecies comparisons of seed size change
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Figure 9: 100 stochastic simulations of mean seed size (g) in cacao using founding populations
from different continuum groups and alternative genetic complexity. Phenotypes are estimated in
1 environment. Genetic architecture of mean seed size is simple (8 QTL) or complex oligogenic (20
QTL) with estimates for founding population derived from hybrid (H) or landrace (LR) populations.
The plotted points and lines represent the mean of replications per cycle with the shaded regions
representing the standard deviation of replications per cycle. (A/B) Baseline model using full
subsampling and 30% truncation selection of highest performing individuals. (C/D) Reduction
to precision model using 50% subsampling and 30% truncation selection of highest performing
individuals. (E/F) Reduction to precision model using no subsampling and 30% truncation selection
of highest performing individuals. (A/C/E) represent the phenotypic gain, measured as phenotypic
value and (B/D/F) represent the phenotypic variance.
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Figure 10: 100 stochastic simulations of mean seed size (g) in cacao using founding populations
from different continuum groups and alternative genetic complexity. Phenotypes are estimated in
1, 3, and 5 environments. Genetic architecture of mean seed size is simple (8 QTL) or complex
oligogenic (20 QTL) with estimates for founding population derived from hybrid (H) or landrace
(LR) populations. The plotted points and lines represent the mean of replications per cycle with
the shaded regions representing the standard deviation of replications per cycle. (A/B) Baseline
model using full subsampling and 30% truncation selection of highest performing individuals. (C/D)
Reduction to precision model using 50% subsampling and 30% truncation selection of highest per-
forming individuals. (E/F) Reduction to precision model using no subsampling and 30% truncation
selection of highest performing individuals. (A/C/E) represent the phenotypic gain, measured as
phenotypic value and (B/D/F) represent the phenotypic variance.
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The specific trait of interest in our study is seed size, a well-studied domestication syndrome
component to yield and agronomic performance, such as early vigor and planting depths
(Purugganan and Fuller, 2009, Sedbrook et al., 2014). Variation is found within and be-
tween our continuum groups, with lower phenotypic variation found in the narrow genetic
base of hybrid types (Table 4), also found in new world bean cultivars following historical
domestication (Kaplan, 1965). Our use of stochastic simulation predicts phenotypic gains
in our in-silico trait representing mean seed size following directional selection for the trait
(Figure 9). Findings in other neo-domestication projects empirically observe similar gains
over few cycles of selection in intermediate wheatgrass and silphium (DeHaan et al., 2018,
Vilela et al., 2018). This suggests that the response to selection for this trait is in fact as
great as simulated, despite the route of improvement in historical domestication argued to
be at least a mixture of unconscious and conscious selection (Fuller, 2007). It is important
to note that gain in this trait, like any other, is restricted by available variation in which
selection can be performed (Cobb et al., 2019). Adequate collections of wild germplasm,
avoidance mating, and/or genetic rescue/migration during population improvement in neo-
domestication will likely play major roles towards later stages. These strategies will require
conscious implementation, whereas under historical domestication they have been postulated
to be unconsciously performed (Smykal et al., 2018). Lastly, seed is a reproductive organ
used for consumption and increases to alternative reproductive organs such as cultivated tu-
bers of sweet potato and cassava as well as phytoliths in bananas/plantains have been found
to be markedly larger than wild counterparts (Fuller et al., 2014). Accordingly, selection for
increases in size to sexual/asexual and aboveground /belowground reproductive organs under
historical and incipient domestication is possible, yet its sustainability will rely on variation
and germplasm resources (von Wettberg et al., 2020).

2.4.2 Precision and/or accuracy during neodomestication

Proper characterization of phenotypic variation is heavily reliant upon experimental de-
sign and statistical analysis. Our study helps to elucidate some of the effects to selection
accuracy under alternative estimation precision across different continuum groups (Figure
9) as well as the lessening of the environmental effect through increased environments of
evaluation (Figure 10). Accuracy and precision are related during the plant breeding process
where selection accuracy relies on the adequate precision of estimates (Resende and Alves,
2022). Plant breeding relies on the characterization of genotypic performance to identify and
select the best, thereby maximizing genetic gain. Therefore, the correct ranking of genotypes
and the precision of estimating their differences is highly relevant to cultivar improvement
(Schmidt et al., 2019). Precision mainly depends on the number of observations related
to a genotype and the structure of the design, where more information in balanced design
improves precision (Laloé, 1993). But precision of estimates has many potential routes for
improvement, including the improvement to trial design, the incorporation of genetic rela-
tionships among varieties, and the leveraging of analysis of covariance through correlated
component traits (Mackay et al., 2015). These estimations are important towards accurately
defining heritability for the given trait of interest, a component directly affecting response
to selection or genetic gain. The selection of a trait with a high narrow sense heritability
has the potential for more rapid improvement than those with low heritability, even under
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less intensive evaluation schemes. Moreover, increases in replication and environment during
evaluation will increase narrow sense heritability (Dudley and Moll, 1969). This is the case,
in part because the importance and impact of subsampling on the precision of estimates is
usually proportional to the level of stability in the genotype (Becker and Leon, 1988). The
stability in a genotype is an essential concern during the phenotypic evaluation of differ-
ent genotypes and expanding the environments of evaluation to cover the target population
of environments (including those inhibiting crop success) is key to describing variation for
the trait of interest and to accurately define adaptable and stable performance (Finlay and
Wilkinson, 1963). However, this expansion of evaluation environments is logistically and
financially constrained, especially in neo-domestication projects with limited market share
and funding resources. Appropriate strategies towards resource allocation are therefore im-
portant and should be further investigated and developed (Lorenz, 2013). Nothing comes
without a cost, hedging reductions of gain due to reduced precision of estimates (less sub-
sampling) by increasing measurement accuracy (more evaluation environments) will more
rapidly bottleneck the population. Therefore, careful consideration during strategic planning
for evaluation is important and should be aimed towards specific goals for specific traits of
interest with particular focus on genetic complexity and the status along the domestication
continuum.
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Chapter 3: Stevia rebaudiana phenotypic recurrent se-
lection improves population flowering response - inform-
ing breeding cycle selection expectations

3.1 Introduction

Stevia rebaudiana Bertoni (hereafter, stevia) is a perennial, herbaceous shrub native to
Paraguay which accumulates steviol glycosides in its leaves (Brandle et al., 1998). His-
torically the plant has been used as general sweetening agent by the indigenous Guarani
peoples of Paraguay and Brazil (Soejarto, 2001), but it has only been cultivated as a global
crop since the latter half of the 20th century (Lewis, 1992). Today, the crop is grown on every
continent (Midmore and Rank, 2002). Global expansion of the crop highlights its strength
as a non-caloric substitute in the natural sweeteners market (Kinghorn et al., 1984, Matsui
et al., 1996), as well as medicinal applications due to its high level of bioactive compounds
(Clemente et al., 2021).

Stevia is clonally propagated crop, due to the ease of cloning and the variable and unpre-
dictable trait values resulting from the near obligate outcrossing mating system. Paralleling
the expansion of production is the increase in the number of cultivars released, at the last
report there were 90 commercially available (Angelini et al., 2018). These cultivars are typi-
cally referred to as non-adaptive and low-value, as they were derived through open-pollinated
mass selection from few seminal parents (e.g., ”Eirete”, ”Criolla”, and ”Morita”) with selec-
tion focused primarily on steviol glycoside content (Brandle et al., 1998, Yadav et al., 2011,
Cosson et al., 2019). This has led to most other traits of interest (TOIs) being ignored even
though they represent many classic domestication traits including reduced seed dormancy,
photoperiod sensitivity, branching, along with the important traits for all commercial species
such as yield, biotic stress tolerance and abiotic stress resistances. These traits have different
types of genetic control ranging from single gene to highly quantitative (Meyer and Purug-
ganan, 2013). Improvement of these traits in turn improves agroecosystem adaptation and
agronomic performance (Jungers et al., 2023).

The short history of production, even shorter history of crop improvement and lack of
genetic/genomic resources has produced a situation where this crop remains semi-adapted
to common agroecosystems. When a cultivated plant is less adapted to the agroecosystem
compared to wild collected plants is a key determination of whether that crop is fully do-
mestic (Harlan et al., 1975). Selection drives adaptation to the agroecosystem, the first step
is usually through the selection of a suite of traits classically termed 'the domestication syn-
drome’ (Harlan et al., 1973), which facilitate agronomic tasks. Stevia lacks the improvement
of many of classic domestication syndrome traits including reduced dormancy, branching, and
photoperiod sensitivity (Brandle et al., 1998, Yadav et al., 2011, Cosson et al., 2019). The
improvement of traits requires variability within breeding populations (Lynch et al., 1998,
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Bernardo, 2002). Despite the lack of improvement for many of these domestication traits in
stevia, there has been variability documented in wild populations (Valio and Rocha, 1977,
Zaidan et al., 1980) indicating the capacity for improvement of syndrome traits (Lee et al.,
1982, Brandle and Rosa, 1992, Shyu et al., 1994, Shizhen, 1995). Therefore, appropriate se-
lection and breeding techniques should be able to shift domestication syndrome trait values
within breeding populations.

Population improvement through artificial selection requires optimization of genetic gain
for different traits and tailored towards the end goal (Gaynor et al., 2017). This is achieved
through an iterative process of generational increase in favorable alleles in the population
under selection, acting to increase the probability of extracting a superior cultivar from the
population (Cobb et al., 2019, Van Tassel et al., 2020). The increase in favorable alleles drives
genetic gain, which is a product of additive genetic variation within the population, selection
intensity, and selection accuracy (Figure 1). Each gain component can be increased through
different methods and technology applied across the breeding cycle (Hickey et al., 2017, Wal-
lace et al., 2018, Wartha and Lorenz, 2021). Population improvement relies upon adequate
parametrization in the breeding cycle of crossing, evaluation, and selection (Covarrubias-
Pazaran et al., 2022). Each step in a breeding cycle has multiple parameters and creating a
global optimum may result in less-than-optimal improvement for any given trait.

The focus of this chapter is the effect of selection on an early generation semi-domesticate,
where potential decisions include the percentage of individuals selected (selection intensity),
selection method (culling, index, tandem), the selection unit (family, line), and the selec-
tion criteria (phenotype, genotype, breeding value). This chapter provides general knowl-
edge on how to begin breeding scheme development for wild and semi-wild breeding (neo-
domestication), as stevia is an excellent model system to understand selection during in-
cipient domestication, providing an opportunity to develop expectations of population im-
provement through phenotypic recurrent selection to inform selection in the breeding cycle
in neo-domestication programs (Cobb et al., 2019, Covarrubias-Pazaran et al., 2022).

3.2 Materials and Methods
3.2.1 Germplasm and Breeding

3.2.1.1 Original Breeding Material

Germplasm was originally obtained by Jim Brandle and subsequently purchased by Sweet
Green Fields, Inc. (SGF). Germplasm was planted in field trials in California during 2015
and in 2016, true seed was sent from California by SGF and planted at three field sites in
Zhejiang, China. Approximately 9,000 plants were dug up from one site in China and moved
to a field at the SGF Ningbo location. These 9,000 seedlings were not selected for any traits,
so should be relatively representative of the population genetics from the original California
field, given no selection of maternal parent nor pollen control. These 9,000 individuals were
allowed to open pollinate and seed was collected at random and bulked together. This seed
was then germinated, and individual plants were dug up and transplanted into greenhouses.
These plants were allowed to grow for 1-2 years and selections were made from individual
seedlings based on steviol glycoside content. This is the origin of the eight progenitor lines for
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the Hawaii Agriculture Research Center (HARC) stevia breeding and improvement program.
Given intellectual property constraints, these 8 lines will be referred to as A, B, C, D, E, F,
G and H. Following the arrival in Hawaii, progenitor lines were allowed to openly cross in a
randomized complete block to begin a pedigree mass selection program. Therefore, maternal
lineage is documented, and seedlings are grouped into half-sib families. Equal amounts of
seed were collected from each progenitor (1,500 each or 12,000 total) forming the inter-mated
1 (IM;) generation.

3.2.1.2 First Breeding Cycle Selection

I M seedlings were germinated in a greenhouse facility located in Kunia, Hawaii, 500 seeds
from each half-sib family were selected for rapid germination and early vigor and transplanted
to 125em? pots. The resulting 4,000 seedlings were placed under artificial light to extend the
day-length photoperiod to 16 hours with incremental reduction by 0.5 hour every two weeks.
Seedling culling was conducted when flowering was observed, resulting in an M| population
of 75 individuals per half-sib family (600 total) selected for lower photoperiod sensitivity.
Therefore, IM] is derived through observational selection for germination, early vigor, and
photoperiod sensitivity. These individuals were allowed to randomly mate through polycross
and no pollen control, meaning each /M| has equal probability of serving as the paternal
parent, to form the /M, generation. Equal amounts of seed (20-30) were collected from each
IM] plant (serving as the maternal source of genetic variation) to form /M, generation of
1,500 per progenitor or 12,000 total.

3.2.1.3 Second Breeding Cycle Selection

The process of early selection in [ M, generation followed the same protocol as the previous
generation for germination and early vigor. However, an important caveat is that because
only 20-30 individual seeds share the same maternal parent, and each family had uneven
germination similar to previous reports in stevia (Brandle et al., 1998), some [ M| maternal
plants possess no representation in [ Ms, even though original parental progenitors (A, B,
C, D, E, F, G, H) maintain equal representation in the population (IMs: 12.5% A-H).
Furthermore, two augmented randomized complete block trials in Maunawili (MW) and
Kunia, Hawaii with 700 unique varieties between them were conducted during the summer
and fall 2020. The field trials possess 10 blocks with 35 plots per block for a total of 350
plots per field. Checks to account for within and between environment variation were 4
(MW: 19-0175 , 19-0241, 19-0091, 19-0407 & Kunia: 19-0107, 19-0121, 19-0172, 19-0085)
and 3 (B, D, 19-0189) genotypes, respectively. The genotypes used in the field trials include
progenitor lines, I M, and I M. Parental selection of elite genotypes from I M| and I M} were
identified via least-significant difference for photoperiod sensitivity, selecting those individuals
with statistically different (lowered photoperiod) groupings from commercial checks. Elite
genotypes were randomized into complete block design, consisting of 37 individuals (I Mg
=8 and IMpgs = 29) to form IM3. This crossing is the first in the program that does not
equally represent each original progenitor; where A=10, B=1, C=0, D=10, E=6, F=6, G=1,
and H=3. Approximately 300 seeds were collected from each individual for a total of 11,100
seeds in 1 M;.
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3.2.1.4 Third Breeding Cycle Selection

The same early selection protocol was followed in the I'Mj as in previous generations
resulting in 2,000 plants that were subsequently tested in greenhouse conditions with day
length extension. This second filter of I M3 provided the material needed to estimate the
breeding value of 20 individual inter-mated elite 1 (IMpg;) and 2 (I Mps) varieties, where
12 randomly selected I M3 seedlings were chosen for the first controlled environment trial
in a shipping container with GE Arize Element L1000 PKB fixtures, air conditioning, and
automatic irrigation. The elite varieties are from progenitors A (3), D (7), E (3), F (6),
and H (1). Elite selections of IMj plants (IMpgs) from this trial were sourced from elite
maternal lineage with the highest best linear unbiased prediction (BLUP) value for biomass,
photoperiod, and TSG content.

3.2.2 Trials to understand genetic gain between cycles of selection

To understand the phenotypic gain and assess the breeding program improvements of
traits, a second controlled environment trial was initiated as a randomized complete block
with 4 blocks and 104 plots including all original progenitors (A-H) and varieties from every
generation and lineage combination (prioritizing elite selections). The trait data collected
includes plant height, branching, leaf width and length, internode spacing, TSG content,
and photoperiod sensitivity. It is important to note that this is the first-time selection was
rigorously made including steviol glycosides content to confirm quality maintenance in the
program.

3.2.8 Analysis of gain per breeding cycle

To quantify differences in trait value and variation between stevia cycles of selection for
different TOIs and parse these differences between generations, we fit two mixed-models:
(1) with the form of TOI as the response with random predictors genotype (with additive
kinship matrix), block, and cycle of selection with heterogeneous variance to account for
varying genotypic variation in each cycle due to uneven sample sizes and quantify the shift
in variation through generations for best linear unbiased prediction (BLUP) of genotype
performance; and (2) with the form of TOI as the response with random predictors genotype
(with additive kinship matrix) and block with homogeneous variance with cycle of selection
as fixed to quantify genetic gain and generate best linear unbiased estimates (BLUE). Code
is available on GitHub. Mixed-models performed with sommer (Covarrubias-Pazaran, 2016).
Estimates of narrow-sense heritability are derived from the mixed-model with homogeneous
variance component outputs. This follows form of additive genetic variance (generation plus
variety effect) over the total genetic variance (additive genetic variance plus residual error).

3.2.4 Simulation integration and comparison

Once mixed-model estimates of generational effect and residual errors are generated, they
can be integrated into a stochastic simulation (Gaynor et al., 2021) to generate expectations
for future generations, estimating trait genetic architecture, as well as test unused, potential
methodologies to improve gain and/or variance. For projections, simulation for alternative
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genetic complexities for photoperiod causing flowering as monogenic (1 QTL), oligogenic
(20 QTL), and polygenic (100 QTL) over 10 cycles of selection. Designing the founders
takes species specific information such as 11 chromosomes in stevia as well as specifying
mean and variance for the trait (progenitor generation, Table 5). Once a trait is specified
under a given genetic architecture, phenotypes are estimated by taking into account the
additive genetic architecture with the residual error, estimated through mixed-model (Table
5). Relevant factors are specified for each breeding cycle, such as number of parents (15),
number of crosses per parent (14), and number of progeny from each parent (30). The
founding population (cycle 0) therefore matches our progenitor population and serves as the
backbone for 10 cycles of selection. The 10 cycles of selection are selected using truncation
selection for 15 genotypes with the lowest phenotypic observation (objective to decrease the
photoperiod causing flowering). The simulation is replicated 100 times and the mean (per
cycle) phenotypic value and variance, along with their respective standard errors, are output.

Following the simulation of alternative genetic architectures, oligogenic control for flow-
ering was selected to simulate alternative selection schemes for improvement of gain and
maintenance of genetic variation through testing of genomic selection (GS), phenotypic selec-
tion with pedigree-based optimum contribution selection (Pedigree-OCS), and genomic selec-
tion with marker-based optimum contribution selection (GS-OCS). GS is employed through
GBLUP by using a marker-based genomic relationship matrix to predict genomic estimated
breeding values (GEBVs). Therefore, selections are based on GEBVs and not phenotypic
performance, where phenotypes are estimated for selected individuals to serve as training
for the following cycle of selection. The Pedigree-OCS framework is selection on the phe-
notype while allocating selections dependent on their predicted contribution to inbreeding
in the following generation, minimizing pedigree-based kinship among selected individuals.
The GS-OCS framework combines the methods of GS and Pedigree-OCS, where selection
criteria is GEBV and predicted contribution to inbreeding of selections is minimized by
marker-based identity-by-descent. For simplicity, our selection schemes aim to improve gain
and/or maintain variation: (1) GS alters the selection criteria from phenotype to genotype,
increasing selection accuracy; (2) Pedigree-OCS optimizes the selection criteria of phenotype
to minimize inbreeding, increasing additive genetic variance; and (3) GS-OCS optimizes the
selection criteria of genotype to minimize inbreeding, combining the benefits of the preceding
schemes.

3.3 Results

Controlled environment trials to compare genotypes within and between generations (cycles
of selection) exhibit differences in multiple domestication syndrome and stevia specific traits
(Supplemental Figure 5). Selection has improved trait means in each breeding cycle, both
observationally and statistically: leaf width (increase 5mm), leaf length (increase 5mm),
internode spacing (decrease 0.5mm), photoperiod causing flowering (decrease 0.5hr), and
steviol glycosides content (increase 3.5%); while other traits show expanded variation: branch
count (range increase 5 branches) and plant height (range increase 13cm) (Supplemental
Figure 5). Expanded variation is not only important to maintain gain, but since stevia is
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clonally propagated, outliers can also be selected for production. The mean gain per cycle was
3.8% improvement for domestication traits and 5.1% for stevia specific traits. Correlations
between TOIs range from highly positively correlated (TSG and RebA content: 0.9) to
negatively correlated (Internode Spacing and Biomass Index: -0.4) (Supplemental Figure
6). Furthermore, the negative correlation between the photoperiod causing flowering and
TSG/RebA contents (r = —0.32,p < 0.001) confirms the glycoside consumption during the
ontogenetic change from vegetative to flowering (Bondarev et al., 2003).

3.3.1 Best Linear Unbiased Estimation (BLUE) of Generation Performance

A linear mixed-model (LMM) analysis using generation (cycle of selection) as fixed to
estimate generation level performance of domestication syndrome and stevia specific traits
of interest (TOIs) was used to explore selection efficiency. Domestication syndrome traits
(dsTOlIs) - flowering, plant height, branching, internode, leaf size — are estimated to improve
over the 3 cycles of selection with mixed consistency (Table 5). For example, TOIs pho-
toperiod causing flowering and internode spacing are found to have consistent improvement
over each cycle of selection, a non-surprising result considering the correlation between them
(r =0.3,p < 0.001). However, other dsTOIs plant height, branching, leaf size is estimated to
fluctuate over each generation, even though each respective dsTOI BLUE after three cycles
of selection is improved over the progenitors (Table 5). This non-linear improvement, typ-
ically found at generation two, is a likely result of observational evaluation for these traits
during the first and second cycles of selection as well as varying selection intensities. Stevia
specific TOIs (ssTOIs) are estimated as improving over the progenitors, again with mixed
consistency as observed in dsTOIs. For example, Rebaudioside A content has improved by
nearly 3% after 3 cycles of selection with a slight decrease in the third generation while Total
Steviol Glycosides content BLUE is improved by nearly 4% with gradual improvement over
each cycle of selection. Estimated narrow-sense heritability for the TOIs are variable (Table
5). The largest heritability belongs to the dsTOI photoperiod causing flowering (h? = 0.55)
with the lowest to dsTOI internode spacing (h? = 0.13). Lower than expected heritabilities
are estimated for alternative dsTOls, highlighting the imperfect selection in these traits and
a by-product of error-prone observational evaluation.

Table 5: Best linear unbiased estimates of generation performance across domestication syndrome
and stevia specific traits including variance components of random effects and estimated trait heri-
tability.

Domestication Syndrome TOI Stevia Specific TOI
Flowering (hr) | Plant Height (cm) | Branching (#) | Internode (mm) | Leaf Width (mm) | Leaf Length (mm)| Rebaudioside A (%) | Total Steviol Glycoside (%)
< Progenitor 13.32(0.06) | 17.82(0.75) | 8.73(1.21) | 2.16(0.16) 23.40 (2.16) 54.63 (3.32) 10.91 (0.47) 17.32 (0.57)
)
=1 g One 13.05(0.05) | 18.89(0.74) |11.52(0.94)| 1.88(0.16) 26.10 (1.58) 59.01 (2.74) 13.34 (0.33) 20.41 (0.39)
g a Two 12.95(0.06) | 18.49 (0.77) |10.41(1.05)| 1.78(0.17) 24.78 (1.84) 56.37 (3.14) 13.81(0.43) 20.84 (0.51)
(U]
Three 12.86 (0.06) | 18.56 (0.74) | 9.88(1.05) | 1.77(0.17) 27.71 (1.85) 59.75 (3.14) 13.69 (0.44) 21.03 (0.53)
Heritability (h2) | 0.55 (0.15) 0.29 (0.06) 0.28 (0.07) | 0.13(0.05) 0.42 (0.06) 0.33 (0.06) N/A* N/A*
. é Variance 0.01 (0.004) 0.65 (0.55) 4.39(1.30) | 0.06(0.03) 18.96 (4.23) 47.76 (11.90) 1.84 (0.07) 2.65 (0.10)
o
>3 Covariance 0.04(0.003) | 11.01(0.93) | 13.54(1.18)| 0.45(0.04) 28.47 (2.50) 97.89 (8.56) N/A* N/A*

*high-perf e liquid c perf on bulked sample across blocks, eliminating potential variation used for these components
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3.8.2 Best Linear Unbiased Prediction (BLUP) of Variety Performance

Following our estimation of generation performance, another linear mixed-model using
random predictors kinship informed variety and generation with heterogeneous variance was
used to predict variety performance in dsTOls. Variety BLUPs, informed through kinship,
identifies 71 varieties with predicted photoperiod causing flowering at less than 13 hours
of daylength with 7 being less than 12 hours and 45 minutes (Figure 11). However, using
the mean (ignoring kinship information) observed photoperiod causing flowering, only 60
varieties are identified at less than 13 hours of daylength with 15 being less than 12 hours
and 45 minutes. Therefore, the accuracy of the mean is less than that of BLUP, especially
if we consider the best 10 genotypes of each method, 3 of which are identified by BLUP
and not by mean as the selection unit. However, when leave-one-out cross-validation is used
in training our model, predictive ability for photoperiod causing flowering drops to 0.20,
highlighting the complexity of the trait and the underperformance of pedigree methodology.

Figure 11: (A) Boxplot of mixed-model best linear unbiased predictions of photoperiod causing
flowering for genotypes grouped by generation and (B) their correlation to mean observed.
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Variety BLUPs identifies 25 varieties with predicted number of at least 11 branches.
However, using the mean observed number of branches identifies 33 varieties with number of
at least 11 branches. When selecting using the BLUP branching, 2 of the top 10 varieties are
different than selecting using the mean (Table 6). Variety BLUPs identifies 10 varieties for
predicted plant height greater than 19cm. However, using the mean observed plant height
identifies 49 varieties with greater than 19cm. Furthermore, only 6 of top 10 BLUP selected
individuals for plant height are found in mean selected. Variety BLUPs identifies 13 varieties
with greater than 30mm leaf width. However, using the mean observed leaf width identifies
26 varieties with greater than 30mm leaf width. This is the first dsTOI that does not have a
large discrepancy between BLUP and mean selected, with only 1 variety of the BLUP selected
individuals for leaf width (>30mm) being absent from the top 20 mean selected (Table 6).
Variety BLUPs identifies 10 varieties with greater than 65mm leaf length. However, using the
mean observed leaf width identifies 22 varieties with greater than 65mm leaf width. Similarly,
to leaf width in the top 20, only 1 BLUP selected individual for leaf length is missing from
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the top 20 mean (Table 6). Internode spacing variety BLUPs only identifies 4 varieties with
less than 1.5mm internode while mean observed finds 19 varieties. Only 3 of the top 20
varieties from BLUP are missing from mean observed.

Table 6: Generational breakdown of truncated selection of top 20 best linear unbiased predicted
and mean performing varieties for domestication syndrome traits of interest.
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3.8.3 Stochastic simulation for future projection and genetic complezity

Stochastic simulation was used to project potential gains in flowering time trait. More
variable phenotypic gain is estimated than phenotypic variance, comparing genetic architec-
tures (Figure 12A /B). Over the simulated 10 cycles of selection, the oligogenic trait exhibits
the greatest overall mean gain (almost 1 hour decrease) as well as the second worst vari-
ance loss (about 0.01). Since there is a single environment used in evaluation (reality and
simulation), polygenic trait gain is inefficient and sports only a half-hour gain over 10 cy-
cles. When BLUESs are placed over mean phenotypic value simulated forecast, we observe
nearly perfect continuity, despite generations 1-3 BLUEs not being input anywhere in the
simulation (Figure 12A/B). When BLUE variances are placed over mean phenotypic variance
simulated forecast, we find the points to be within the lower bounds of standard error for
the simulation replications, a likely outcome due to progressing inbreeding in our population
(Figure 12B). Considering these results, we propose the genetic architecture of photoperiod
causing flowering to be oligogenic, similar to reported genetic complexity in flowering traits
of alternative species (Jungers et al., 2023).

Once genetic architecture is chosen, alternative selection schemes were explored by alter-
ing selection criteria for optimization (Figure 12C/D). Phenotypic selection simulated gain
over 10 cycles of selection is 6.3%, where the mean phenotype at 12.48 hours of daylight
causing flowering. GS simulates reduced gain over 10 cycles of selection by almost 50% and
reduces genetic variation more than phenotypic selection, a likely result given the simulation
format of a single environment trial which typically limits trait heritability. Pedigree-OCS
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improves gain over GS and maintains half-way as much variation in cycle 10 as GS and phe-
notypic selection with 4.4% improvement to mean of 12.73 hours. GS-OCS does not improve
gain over Pedigree-OCS but does over GS as well as maintaining as much variation in cycle
10 as phenotypic selection. When we increase environments of phenotyping (Figure 12E/F),
gain is improved in GS by 1.2% and Pedigree-OCS by 0.4% but is unimproved in GS-OCS
and declines in phenotypic selection by 1.0%. This increase in gain is less than reported
in intermediate wheatgrass (Zhang et al., 2016). However, genetic variation is severely lost
with the improved selection accuracy derived from multi-environment phenotyping, likely
requiring genetic introgression shortly after 10 cycles to increase trait variability for future
population improvement.

3.4 Discussion

3.4.1 Implications for selection in a semi-domesticate

Domestication is population improvement towards agroecological adaptability and agronomic
performance (Harlan et al., 1973, 1975). Breeding cycle components can be manipulated
to generate sustainable gain (Cobb et al., 2019). Our case study into selection in stevia
outlines progress of domestication TOlIs is possible through phenotypic recurrent selection.
Moreover, our approach to augment selection schemes through stochastic simulation identifies
methods and technology to increase gain and maintain more genetic variation during this
domestication phase. Implementation of GS can improve gain per cycle, and with potentially
3 cycles per year by also leveraging speed breeding technologies makes progress towards
domesticate form rapid (Jannink, 2010, Watson et al., 2018). Large selection intensity has
the potential to induce rapid bottlenecking in the population under selection, especially when
integrating technologies that make that selection more accurate (GS). This loss of variation
could be problematic with changing climatic conditions and continual evolution of pests
and pathogens. However, historical bottleneck were potentially not as bad as we previously
thought, albeit under phenotypic selection (Allaby et al., 2019).

Artificial selection drives breeding population improvement, just as natural selection of
heritable mutational variants drives evolution and speciation (Lande, 1976). But, we are
making the decisions with the goal of domestication being development of a population
with agroecosystem adaptation. Selection methods and technologies to improve genetic gain
(Figure 1) should be leveraged. However, careful consideration of genetic variation is key, to
preserve future gain of more complex syndrome traits. Genetic variation can be lost at lower
rates by implementing optimum contribution selection and increased by genetic rescue, two
approaches that ought to be used during domestication (Allier et al., 2020, Banci¢ et al.,
2021, Bertorelle et al., 2022). Historical domestication reports of multiple domestication
events for some crops (Kovach et al., 2007) where populations were selected separately and
subsequently combined, a potential technique that should be considered for boosting genetic
variation in neo-domestication. This technique paired with marker-assisted backcrossing
(simple traits) or genomic selection (complex traits) could alleviate some of the expected
outcrossing depression during population combination (Lynch, 1991, Allier et al., 2020).
Neo-domestication is ripe for empirical testing because, as breeders, we have a constantly
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Figure 12: 100 stochastic simulations of photoperiod causing flowering in stevia under varying
genetic architecture, selection criteria, and environments of evaluation. The plotted points and
lines represent the mean of replications per cycle with the shaded regions representing the standard
deviation of replications per cycle. (A/B) Varying the genetic architecture of photoperiod causing
flowering using phenotypic recurrent selection and a single environment. (C/D) Varying the selection
criteria for photoperiod causing flowering in stevia under oligogenic control and a single environment.
(E/F) Varying the selection criteria and increasing the number of environments to four during
evaluation of photoperiod causing flowering in stevia under oligogenic control. (A/C/E) represent
the phenotypic gain, measured as phenotypic value and (B/D/F) represent the phenotypic variance.
Selection criteria include genomic selection (GS), marker-based optimum contribution selection
(GS-OCS), pedigree-based optimum contribution selection (Ped-OCS), and phenotypic recurrent
selection (Phenotypic).
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evolving understanding and knowledge around the historical and future stages of breeding, as
mentioned by (Wallace et al., 2018): domestication, quantitative genetics theory, molecular
markers, functional variant combination, and custom genetic design. The decision of which
species to use should take into consideration those semi-domesticated by using a pipeline
strategy which considers potential market capture (DeHaan et al., 2016, Fernie and Yan,
2019). These considerations make stevia an excellent study species because of its novel
market application and semi-domesticated form (Matsui et al., 1996, Clemente et al., 2021).

3.4.2 Potential for use of Selection Index for traits

Neo-domestication is plant breeding utilizing modern techniques and methodologies (e.g. 5
steps listed by (Wallace et al., 2018)) and plant breeding is based on selection of traits that
are desirable for humans (Bernardo, 2014). Selection is often implemented on individual
traits, but the improvement of multiple traits through an index is the most effective method
for improving those traits simultaneously (Hazel and Lush, 1942). Selection indices have
been a part of breeding for decades (Lush, 1935, Smith, 1936, Hazel, 1943, Lush et al., 1949,
Henderson, 1975). Application of a selection index to the species identified domestication
syndrome should be considered to improve all relevant traits simultaneously, an area for
future investigation.

For example, we can take our population improvement program in stevia to understand
the discrepancy between selection for one trait at a time versus selection for a total score
(e.g. selection index). Progress for any one trait by the total score method is only 1//n
times (n=number of traits) as much as if selection were directed to that trait alone (Hazel
and Lush, 1942). To begin this comparison, we can calculate expected genetic gain or phe-
notypic gain for 2 traits (daylength causing flowering and leaf length) separately, where gain
is equal to the product of the intensity of selection, accuracy of selection or narrow-sense
heritability, and additive variation or phenotypic variation (Lynch and Walsh 1998, Rutkoski
2019). First, we will calculate selection intensity (i) like methods proposed by (Falconer and
Mackay, 1996) by taking a linear approximation of i. Our methods thus far have been pro-
ducing roughly 5,000 new progeny each generation and selecting 30 individuals for breeding
(selection proportion= 0.6%). Therefore, the linear approximation of our selection inten-
sity finds i=2.834. Second, we will take our linear mixed-model narrow-sense heritabilities
(flowering=0.55 and leaf length=0.33; Table 1). Third, we need the phenotypic variance
(flowering=0.048 and leaf length=170.50) to get standard deviation of phenotype (flower-
ing=0.219 and leaf length=13.06). Response to selection is therefore estimated on single
trait selection in the fourth generation to be 0.34 in flowering or 12.21 in leaf length. How-
ever, applying the reduction in gain when selecting for multiple traits as being adjusted by
1/4/n (n=2), gain on an index for flowering and leaf length would be 0.24 and 8.63 (Hazel
and Lush, 1942).

3.5 Conclusion

Linear mixed-model BLUPs have identified 7 lines being less than 12 hours and 45 minutes
daylength causing flowering, 12 lines with greater than 30 mm leaf width, 13 lines with
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greater than 65 mm leaf length, 5 lines greater than 12 branches, and 10 lines with greater
than 19 cm in height. There are 11 lines that are found for more than one dsTOI out of the
47 lines at the above trait-specific culling levels. These 11 lines trace their lineage back to 5
of the 8 progenitors (1 from A, 1 from C, 2 from D, 3 from E, 3 from F, and 1 from H). As we
move the breeding program forward, consideration should be given to alternative selection
criteria: (1) Pedigree-OCS to maintain more genetic variation in our breeding populations;
(2) implementation of GS or GS-OCS, requiring genotyping-by-sequencing and an increase
in trial environments improve predictive accuracy; (3) selection using an index, requiring
trait-specific economic valuations. These shifts are in no specific order and rather speak to
the different potential approaches for improving gain and/or maintaining variation
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Chapter 4: Optimizing cost efficiency under neo-
domestication and wide hybridization breeding schemes

4.1 Introduction

Domestication can broadly be defined as coevolution through selection to improve the
adaptation of plants for human cultivation and preferences. Historically this has been done
to accumulate yield and productivity, harmonize crop management practices, promote ease
of harvest, and improve palatability. Crop domestication imposes several microevolutionary
forces on the plant genome in comparison to their wild ancestors: (1) selectively neutral
forces (genetic drift and gene flow) are expected to have genome-wide effects with genetic drift
decreasing genetic diversity and gene flow maintaining or increasing genetic diversity; and (2)
selection leads to differential loss of genetic diversity in targeted genomic regions, creating
a molecular signature of selection (Olsen and Wendel, 2013). Furthermore, domestication
alters selection pressures so that wild favored traits become neutral or disfavored, results in
purifying selection following bottleneck, and reduces effective population size and effective
recombination rates through inbreeding (Wallace et al., 2018). Thousands of plant species
spanning 160 taxonomic families have undergone some extent of domestication (Meyer et al.,
2012, Meyer and Purugganan, 2013). The total number of cultivated consumable species is
~7,000 (Khoshbakht and Hammer, 2008), exemplifying the massive botanical resource for
improving agricultural sustainability.

Historical domestication is postulated to have started ~12,000 years ago with intensive
agricultural production beginning some millennia later (Meyer and Purugganan, 2013, Fuller
et al., 2014, Purugganan, 2019). The ‘domestication syndrome’ refers to the set of pheno-
types for traits which improve adaptability to the human agroecosystem compared to wild
type (Harlan et al., 1973). The domestication syndrome varies by crop-type, where seed-
propagated annuals typically obtain a different syndrome compared to fruit trees, vines, and
tubers (Zohary and Spiegel-Roy, 1975, Zohary et al., 2000, Gaut et al., 2015). Syndrome
traits not only vary by crop-type, but also by genetic architecture, ranging from monogenic
to polygenic control (Jungers et al., 2023). The target traits for neo-domestication are the
same as under historical domestication but with an improved understanding of the architec-
ture and effects of selection. Typically, these traits are of monogenic (transposable elements
such as tb1 for branching in maize or Gretl for anthocyanin synthesis in grapes), oligogenic
(seed shattering, seed size, dormancy traits), and polygenic (flowering, kernel composition,
leaf morphology, resistances) control (Jungers et al., 2023). Archaeological genetic evidence
suggests a multi-stage process to domestication through the increase of favorable alleles, cre-
ation of cultivated populations, and breeding (Fernie and Yan, 2019). Despite this process
being outlined as three stages, the progress was extremely slow owing to the presence of ge-
netic migration from the wild, inaccurate and often unconscious selection, increases in genetic
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load through bottleneck, and more. However, modern breeding technologies and methodolo-
gies have the potential to speed the progress through these stages enacted under historical
domestication (Watson et al., 2018, Zhang et al., 2023).

Climate extremes are decreasing food security, exacerbated by the increasingly globalized
food system, where localized production using crop-types amenable to locales enriches the
sustainability of regional food systems. Although adaptability in major food crops has shown
some success, historically, production and consumption of species is regional (e.g. wheat in
Europe, rice in Asia, maize in the Americas). Even though global trends of consumption
prefer access to all these major grain crops, regional types of plant species can provide sus-
tainability to their locale (tef, sorghum, amaranth, mung bean, etc.), especially in the current
variable climate. Broad adaptation strategies towards a changing climate and production re-
gion shifts include: (1) sourcing crop populations (e.g. landraces, varieties) from different
global geographic regions matching future projected climate, (2) assessing crop wild relatives
for naturally evolved adaptations, (3) defining replacement crops to be cultivated, (4) defining
different agroecosystems for existing crops, (5) substantially changing agronomic practices
such as row spacing, irrigation and planting date, and (6) abandoning current production
locations with human population moving to areas amenable to current practices/cultivars
(Burke et al., 2009, Ramirez-Villegas and Khoury, 2013, Pironon et al., 2019, Sloat et al.,
2020). Our study goal is to develop the breeding schemes relevant towards population devel-
opment through recurrent selection to include wild and crop wild relative species to improve
the sustainability of the local and regional food system.

A proven approach to increasing genetic diversity and adaptability in crop species is
through the utilization of wild relatives for crop improvement (Jansky et al., 2013, Dempe-
wolf et al., 2017, Mehrabi et al., 2019). Utilizing wild relative species, as well as landrace
and heirloom varieties, provides a mechanism to alleviate the abiotic stresses expected with
climatic shifts through evolved traits including tolerance to salinity, drought, and tempera-
ture extremes (Bailey-Serres et al., 2019, Ramankutty et al., 2018, Flint-Garcia et al., 2023).
Historic climatic events and shifts have placed pressure on crop cultivars by creating novel
abiotic and biotic stresses (Lesk et al., 2016) for which natural resistance variation in wild
populations exist. This variation can be leveraged to improve existing crops or to develop
novel breeding populations. Understanding the progress of these breeding populations can
be observed and predicted through phenotypic and genetic values.

The genetic gain equation is the product of additive genetic variation within a population,
selection intensity, and selection accuracy divided by cycle length used to predict the response
to selection (Lynch et al., 1998, Cobb et al., 2019). The breeder’s equation is an important
development in quantitative genetics because it provides a framework for predicting the
response to selection within a population (Lynch et al., 1998). Therefore, a breeder’s game
theory can be developed and optimized prior to specific action by predicting a population’s
response (e.g. genetic gain and variance) to artificial selection methods. Traits of interest
under modern neo-domestication efforts vary from monogenic through polygenic, often with
the ideotype possessing no variation for simple traits (non-shattering, branching, dormancy)
to fix within the population whilst also possessing enough variation for more complex traits
(flowering, leaf morphology, resistances) to maintain adaptive potential in the population. It
is often these simple traits that inhibit human mediated cultivation while the complex traits
promote expansion of cultivated area. Therefore, fixation of simple traits and preservation of

49



additive genetic variation of complex traits should be the goal of neo-domestication programs.

Stochastic simulation offers a unique framework to identify breeding cycle components
which optimize the target (gain, variance, cost, etc.) (Bernardo, 2020). Varying parameters
across the breeding cycle produces variable results for the given target which can be used to
strategically design a breeding scheme. Breeding schemes are the combination of crossing,
evaluation, and selection component parameters used to maximize genetic gain in a breeding
population per dollar invested (Covarrubias-Pazaran et al., 2022). Crossing parameters in-
clude variables such as number of parents, number of crosses, number of progeny, type of cross,
and mate allocation. Evaluation parameters include variables such as number of locations,
replications, number of checks, experimental design, plot sizes, and subsamples. Selection
parameters include percentage of selected individuals (selection intensity), selection method
(culling, tandem, index), and the selection unit (phenotype, GEBV, etc.). Genetic gain can
be improved through specific focus on components of the breeders’ equation. Selection in-
tensity can be increased by increasing the selection candidates while holding those selected
constant and selection accuracy can be increased primarily through increasing heritability
of the trait of interest. The number of cycles per year can be increased through predictive
methodologies (e.g. genomic selection) and novel strategies of increasing plant development
with longer daylength (e.g. speed-breeding). Additive genetic variation is important to main-
tain gain for quantitative traits when using predictive methodologies (Jannink, 2010), which
could be increased or maintained through mate allocation. However, additive genetic vari-
ation typically attenuates as selection accuracy increases, directly impacting potential gain
(Olsen and Wendel, 2013, Wartha and Lorenz, 2021).

There are numerous examples of stochastic simulations used for breeding scheme devel-
opment in plants (Wang et al., 2003, Gaynor et al., 2017, Gorjanc et al., 2018, Allier et al.,
2020, Bancic et al., 2021) and animals (Wall et al., 2010, Villalba et al., 2019). Wang et
al. compares the pedigree/bulk selection method and the selected bulk selection method
to understand genetic gain differences accounting for epistasis, pleiotropy, and GxE interac-
tion through simulation (Wang et al., 2003). Gaynor et al. uses simulation to investigate
a two-part strategy of product development, focusing on developing and screening inbred
lines, and population improvement, focusing on increasing the frequency of favorable alleles
through rapid recurrent genomic selection (Gaynor et al., 2017). Gorjanc et al. expands the
two-part strategy using optimal contribution selection to investigate how this technique of
mate allocation reduces the rapid loss of genetic variation during recurrent selection (Gor-
janc et al., 2018). Allier et al. used simulation to investigate methods of pre-breeding and
introduction of genetic diversity during population improvement as well as applying specific
mate allocation techniques (Allier et al., 2020). Banci¢ et al. even expands the single crop
simulations to investigate intercrop breeding by using an alteration of specific and general
combining abilities (Bancic¢ et al., 2021). Simulations have been used to integrate emerging
technologies such as phenomics (Peixoto et al., 2023) and to optimize resource allocation
(Lorenz, 2013, Ben-Sadoun et al., 2020, Jannink et al., 2023). However, this scheme devel-
opment research typically uses major crops as their model and only some examples integrate
costs which are limited in scope, focusing on hybrid development of major crops (Bernardo
and Yu, 2007, Lorenz, 2013, Jannink et al., 2023, Peixoto et al., 2023). Moreover, these cost-
integrated simulations typically only provide a single cost per methodology or technology,
instead of providing a range of costs that realistically would be undertaken depending on
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region, resource availability, organizational structure, budget, and crop-type.

Therefore, the goal of this study is threefold. First, we design in-silico populations to
match potential germplasm acquisition scenarios from wild, orphan (semi-domestic), or lan-
drace populations, each formed through varying effective population sizes and population
mating sizes over 40 cycles of varied selection intensity and genetic drift (i.e. burn-in phase).
Second, the variable populations developed in burn-in phase are incorporated into contem-
porary breeding, altering breeding cycle parameters to document phenotypic gain on two
different architecturally controlled traits under variable breeding schemes (i.e. population
development phase). Third, we apply a range of potential costs for breeding scheme method-
ologies and technologies applied in each parameter combination to understand the return on
investment for a given population type and scheme.

4.2 Materials and Methods

Stochastic simulations were used to compare the return on investment (ROI) of different
population development pipelines using in-silico wild and semi-domesticated types of species.
We tested different population complexities, breeding cycle parameters, and costs to formu-
laically identify parameters which optimize phenotypic gain given different populations under
variable resource availability. Phenotypic gain is used instead of genetic gain because incipi-
ent domestication studies often lack genetic resources, serving to make findings applicable to
researchers in the field and valuable for comparison to on-going neo-domestication programs.
Each simulated scheme is compared using the mean of 3 replicates, with each consisting of:
(1) a burn-in phase of 40 cycles to allow for genetic drift, mutation, and variable selection for
population formation of which germplasm can be collected; and (2) a breeding phase of 40
cycles of selection from differential populations for population development breeding schemes
through leveraging alternative breeding cycle parameter combinations. After all schemes are
simulated, a range of costs associated with the methods applied are designated and used to
calculate the ROI.

4.2.1 Simulation of founding populations and trait genetic values

The genome was simulated as consisting of 10 chromosomes and varying effective popu-
lation sizes (e.g. Ne = 25, 50, 100). The recombination and mutation rates were 1.25x1078
and 2.52107% per base pair, respectively (Hickey et al., 2014). Founder genotypes were gen-
erated using the Markovian Coalescent Simulator housed in the AlphaSimR package (Chen
et al., 2009, Gaynor et al., 2021). The genome was simulated with 10,000 single nucleotide
polymorphisms (SNP) with each population consisting of two simulated traits: (1) simple
oligogenic (z;) with 8 quantitative trait loci (QTL); and (2) complex oligogenic (z2) with 400
QTL. Genetic values were simulated as two independent traits with mean and variance at
zero and one, respectively. The narrow-sense heritability (h2) varied for each trait indepen-
dently through different pairs (e.g. h? = 0.7,0.3;0.3,0.7;0.3,0.3; &0.5,0.5). Both traits were
simulated using additive effects for each QTL and were sampled from a normal distribution.
The phenotypic value of each simulated genotype was calculated by adding the random sam-
pled error for the genetic values of each trait and sampled from a normal distribution with
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mean zero and residual variance based on each trait’s h2.

4.2.2 Differential population formation - burn-in phase

The burn-in phase used different selection depending on the population type to serve as
the baseline of potential germplasm acquisition scenarios. Each population type was formed
through 40 cycles of burn-in under varying selection: (1) the wild population formation used
random selection to allow for genetic drift; (2) the orphan population formation used lenient
truncation selection to allow for slow directional selection and genetic drift; and (3) the
landrace population formation used strict truncation selection to allow for quick directional
selection and genetic drift. Truncation selection used in (2) and (3) is based on a weighted
index to account for dual trait selection where the weight for z; and z; is 0.5. The number
of parents, crosses, and progeny per cross varies within each population type (Table 7).
This factorial design will provide insight into the size of a population in which germplasm is
acquired and its role in phenotypic gain along the gradient of Ne. The resulting population
from each parameter iteration is then passed to the population development pipeline by
selecting individuals from cycle 40.

Table 7: Burn-in phase crossing parameters

# of Parents |# of Crosses|# of Progeny/Cross | Total Progeny
2 380
20 190 10 1900
20 3800
40 7600
2 870
30 435 0 0
20 8700
40 17400
2 1560
10 7800
40 780
20 15600
40 31200
2 2450
205
50 1225 0 0
20 24500
40 49000

4.2.3 Population development - breeding phase

The breeding phase used different breeding cycle parameters, including but not limited
to population size, crosses made, progeny evaluated, and selection criteria. Each potential
combination of parameters was tested on each population formed during the burn-in phase
for a total of 5,184 unique combinations each with 3 replications. Population development
breeding phase begins with selection of individuals based on weighted index of z; and 2z
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(sip, = 0.25,0.75;0.5,0.5;0.75,0.25). We then apply phenotypic recurrent selection for the
first two cycles (cycle 41 and 42) to serve the role of data collection and germplasm knowl-
edge that is required when beginning a breeding program because burn-in phase data and
germplasm is considered unknown in our framework. The entire breeding phase consists of
40 cycles of selection, including cycles 41 and 42, where the latter 38 cycles apply phenotypic
recurrent selection (PRS), genomic selection (GS), or maximum avoidance (MxAv). The
selection criterion is still the weighted index of z; and 25 referenced above.

The first selection criteria scenario simulated across all parameter combinations is PRS,
serving as the baseline for our study. We then apply GS through genomic relationship,
retraining every other cycle, to understand the impact of gain for the two traits by selection
on the breeding value and decreasing the length of time per cycle (2 cycles per year) using the
R package ‘sommer’. GS is well understood to rapidly decrease genetic variance, we apply
MxAv based on pedigree relationships to understand the impact of variance for the two traits
using the R package ‘optiSel’. Maximum avoidance (MxAv) selection is essentially using
optimum contributions to select individuals based on minimizing inbreeding, but ignoring
proportion of contribution and instead using circular mating for equal representation and
static population size (Kimura and Crow, 1963). The strategic outlook for these methods
has implications towards increasing the rate of gain through GS’s ability to increase selection
accuracy and decrease time per cycle or decreasing the loss of variance through MxAv’s ability
to minimize mean kinship of progeny by reducing the inbreeding coefficient. Similarly, to the
burn-in phase, the number of parents, crosses, and progeny per cross varies within each
population type (Table 8).

Table 8: Population development phase crossing parameters

# of Parents |# of Crosses|# of Progeny/Cross Total Progeny
1 45
— v
10 45 > —
10 450
20 900
1 105
— —=
15 105 2 —
10 1050
20 2100
190
5 950
20 190
10 1900
20 3800
300
25 300 > 1500
10 3000
20 6000

4.2.4 Applying cost to the parameter combinations and return on investment formulation
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The costs associated with specific breeding schemes is a crucial parameter towards strate-
gically optimizing the breeding target. Despite its importance, the parameter is often re-
stricted to a single value or left out of consideration altogether. Here, we use a range of costs
(Low, Medium, and High) for a range of crop-types (Field, Horticultural, and Forestry) to
develop an understanding of the impact on breeding scheme strategies (Table 9). The costs
are based on incipient domestication and wide hybridization programs housed at the Hawaii
Agriculture Research Center and strictly restricted to phenotyping and/or genotyping costs
(Table 3), as the Medium cost per plot and/or genotyping sample for each crop-type. The
costs per plot and/or genotyping sample is then multiplied by the entire cycle population
size to gather a yearly phenotyping/genotyping cost and then summed for the entire cost
of a specific scheme across 40 cycles of selection. The breeding targets (gain and variance)
are compared by computing their change over the 40 cycles of selection and scaling towards
our baseline parameter combinations within each scheme: phenotypic recurrent selection,
h%, = 0.7 and h?, = 0.3, equal selection index weighting (0.50) per trait, and orphan crop
population. Scaling is done by dividing each parameter combination within every scheme by
the baseline to create a unit-less approach to understanding the change in gain and variance.
This technique is applied for the range of costs as well, using the same baseline combination.
Return on investment (ROI) is then viewed as a unit change in gain or variance for each trait
per unit cost.

Table 9: Costs per plot and/or genotyping sample. Medium level costs for each crop-type of
field, horticultural, and forestry are based on the phenotyping costs for stevia, cacao, and koa,

respectively.
Cycles | Selection Type Field Crop Horticultural Crop Forestry Crop
Low Meduum High Low Medium High Low Medium High
2|GA 5 8 10 10 15 20 20 25 30
38|PRS 10 15 20 20 30 40 40 50 60
38|GS 10 17 25 15 25 35 25 35 45
38| MxAv 10 15 20 20 30 40 40 50 60

4.2.5 Mixzed-model regression for optimizing ROI

Following the scaling of breeding targets and costs as well as ROI formulation, we fit
a linear mixed model for best linear unbiased estimation of this unit change per unit cost
for every stochastic simulation scheme using the R package “lme4”. Our model follows
the form of ROI as the response variable with fixed predictors including population type,
selection criteria, heritability, selection index weighting, and the interactions of heritability
with selection index weighting and selection criteria. Random predictors include the starting
effective population size, the number of parents, and the number of progeny per cross.

4.2.6 Calculating the asymptote of both traits’ phenotypic gain and variance

Although the unit change in gain or variance per unit cost is useful for comparison of
breeding schemes for neo-domestication breeding programs, the goal of these programs should
also be to fix simple traits with high phenotypic value within the population while maintain-
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ing enough variation for complex traits with high phenotypic value to facilitate sustainable
improvement. To parse this, we fit sigmoidal or logistic curves along every scheme to identify
the breeding cycle asymptotes of phenotypic value (upper) and variance (lower) for z; and zs.
We apply through nonlinear least squares a sigmoidal curve by four-parameter logistic model
along the cycles of selection for both targets of both traits for every scheme combination for
20,736 asymptote locations (5,184 schemes each with 4 targets). Starting points of upper and
lower asymptotes were specified as the minimum or maximum value of target per scheme.
Approximately 75% of the asymptotes were identified, with the remaining being unidentified,
where we moved to applying a linear model for predicting the unidentified asymptote using
scheme parameters and the sigmoidal midpoint (r = 0.68;p < 0.001).

4.3 Results

Breeding schemes showed a wide range of phenotypic gain and variance depending on
selection strategy and population type. For example, the largest phenotypic gain for both z;
and 2o during population improvement were under PRS for landrace and orphan populations
but GS for wild populations (Table 10). The smallest phenotypic gain, sometimes a loss of
phenotypic value, were typically under MxAv selection. The effect of selection on variance
varied by population type and trait: (1) the largest increases in variance for trait z; were
GS for landrace and orphan populations with MxAv increasing variance in the trait for wild
populations; and (2) the variance for trait z; was increased with MxAv in orphan and wild
populations with PRS increasing variance for the trait in landrace populations (Table 4).
The largest decreases for variance for the z; were observed as PRS for landrace and GS for
orphan and landrace populations while for z, variance was decreased by GS in wild, PRS in
orphan, and MxAv in landrace.

The starting effective population size and population type has direct influence on the
mean gain of both traits, z; mean phenotypic gain increases within each population type
alongside increasing effective population size of germplasm acquired while z; mean phenotypic
gain does not increase with effective population size but larger gains are observed when
germplasm is acquired from landrace or orphan populations (Supplemental Figure 7). The
narrow-sense heritability of each trait impacts mean phenotypic gain of 2z, while having
minimal impact on gain of z; over the 40 cycles of selection during population development
(Supplemental Figure 8). Selection and the starting effective population size play a role in
increasing mean phenotypic gain during population development, where all selection methods
similarly improve z; despite Ne (Supplemental Figure 9). However, z; has the largest gains
under GS and PRS with large Ne, while MxAv shows smaller mean gain. The weighting of
each trait shows a larger impact on gains of the complex z, trait with minor effects on the
simple z; trait (Supplemental Figure 10).

4.83.1 Best linear unbiased estimates of unit by unit cost change across targets, schemes, and
cost ranges

The best linear unbiased estimates (BLUESs) of unit change in the target varies by the
cost of phenotyping, genotyping, and breeding schemes applied. The mean z; BLUEs of gain
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Table 10: Largest increases and decreases of targets by population type. Unit change represents the
trait & target value per cost scaled to the baseline scheme trait & target per cost value (phenotypic
recurrent selection, h%, = 0.7 and h2, = 0.3, equal selection index weighting (0.50) per trait, and
orphan crop population). Increase/decrease represents the largest increase/decrease in unit change
per population type across all trait & targets.

Direction |Population] Ne |Nprogeny| Nparents h2 Selection | si weight | Trait & Target Unit Change
© 25 10 15 0.3 PRS 0.75 |zl gain 1.73 (61.7%)
@ 25 1 10 0.3 GS 0.25 |z1 variance 1.27 (58.9%)
.‘Eu 100 20 20 0.7 PRS 0.75 z2 gain 13.64 (112.9%)
= 25 1 10 0.7 PRS 0.5 z2 variance 1.21 (46.4%)
o c 25 20 15 0.3 PRS 0.5 z1 gain 3.74 (81.8%)
§ B 100 1 10 0.3 GS 0.5 z1 variance 1.53 (68.1%)
E g’ 100 20 25 0.3 PRS 0.75 z2 gain 18.18 (251.9%)
- 25 1 10 0.3 MxAv 0.75 |z2 variance 1.09 (41.6%)
50 5 25 0.3 GS 0.75 z1 gain 15.89 (7716.5%)
= 50 1 10 0.3 MxAv 0.25 |zl variance 0.94 (35.7%)
2 100 20 25 0.7 GS 0.75 [z2 gain 22.93 (3626.0%)
100 1 15 0.3 MxAv 0.5 z2 variance 0.77 (30.5%)
o 25 20 15 0.5 PRS 0.25 z1 gain -1.19 (-39.0%)
8 25 1 10 0.3 PRS 05 |zl variance -1.45 (-56.3%)
E 50 1 10 0.3 GS 0.25 [z2 gain -0.14 (-1.3%)
- 50 1 10 0.3 MxAv 0.5 [z2 variance -1.80 (-58.4%)
v c 25 10 15 0.3 MxAv 0.25 z1 gain -1.61 (-42.4%)
3 2 50 1 10 0.3 GS 0.75 z1 variance -1.71 (-52.3%)
s 5 25 1 10 0.3 MxAv 0.25 |22 gain 0.15 (5.8%)
e 50 1 10 0.3 PRS 025 |22 variance 2.13(-67.4%)
50 10 10 0.3 MxAv 0.25 z1 gain -1.70 (-12235.5%)
=2 100 10 15 0.5 GS 0.5 z1 variance -2.94 (-74.6%)
= 100 10 10 0.3 MxAv 0.25 z2 gain 0.37 (116.4%)
100 1 10 0.3 GS 0.75 |z2 variance -2.52 (-54.5%)
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target finds GS with 0.3 heritability and 0.5 selection index weighting to be ~3 times greater
than baseline selection scheme in landrace populations, GS with 0.7 heritability and 0.25
selection index weighting to be ~2.5 times greater in orphan populations, and GS with 0.7
heritability and 0.25 weighting to be ~15 times greater in wild populations. The mean z;
BLUE:S of variance loss target finds PRS with 0.7 heritability and 0.25 weighting to be ~1.5
times less than baseline in landrace and orphan and ~30 times more in wild populations.
The mean zo BLUEs of gain target finds GS with 0.7 heritability and 0.75 weighting to be
6% greater than baseline in landrace populations, 29% greater in orphan populations, and
53% greater in wild populations. The mean 2o BLUESs of variance target maintenance finds
MxAv with 0.7 heritability and 0.25 weighting to lose 50% less than baseline in landrace,
20% less variance loss in orphan, and ~20% more variance loss in wild populations.

Figure 13: Linear mixed-model analysis of variance covariate significance heat-map by cropping
system, cost level, trait target, and covariate. Identifying the level of significance by Type III
ANOVA with Satterhwaite’s method. p < 0.001 is filled with green, p < 0.01 is filled with yellow,
p < 0.1 is filled with orange, and no significant effect is filled with red.

Field |
Low | Medium | High |

BLUESs of unit per unit cost in 2; gain and variance targets exhibit large differences by
population type, with greater changes occurring in wild population development when com-
pared to landrace and orphan development driven by the near complete fixation of the trait
in these populations prior to development phase (Supplemental Figure 11-12). Differences
between selection method, narrow-sense heritabilities, and selection index weighting are mini-
mal for this trait within each population type (Supplemental Figure 11-12) and the significant
effect of these varies depending on trait target, cropping system, and cost level (Figure 13).
However, identifiable differences are found when shifting to BLUEs of unit per unit cost in z,
gain and variance targets, especially when phenotyping costs increase into horticultural and
forestry (Supplemental Figure 13-14). For example, once phenotyping costs are much greater
than single sample genotyping costs, such as under forestry crops, the benefits of GS become
apparent towards increasing unit gain per unit cost compared to the PRS baseline through
significant effect of selection criteria (Figure 13). Under field crop situations, across the range
of costs PRS maintains a slight edge over GS in performance of unit gain where GS begins
to form a strategic edge over PRS in horticultural crops. Once phenotyping costs increase
under horticultural and forestry crops, the unit loss of variance per unit cost is massive under
GS with PRS and MxAv maintaining more variation.

27



The simple trait targets are panels (A) and (B), representing gain and variance

change per unit cost, respectively. The complex trait targets are panels (C) and (D), representing

Figure 14: Boxplot of baseline scaled trait target unit by unit cost change during population
gain and variance change per unit cost, respectively.

development.
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The cropping system and the population type play a major role in the selection of a scheme
for population development. The benefits of GS towards unit gain per unit cost increases
moving from field to horticultural, and again to forestry (Supplemental Figure 13). As
expected, these benefits towards gain have equally large effects on variation loss, increasingly
detrimental moving through these same cropping systems. However, if the target is fixation of
z1, which landrace and orphan populations typically possess prior to population development,
then GS is most cost-effective method towards fixation in the wild population with PRS
functioning similarly but requiring high narrow-sense heritability (Supplemental Figure 12,
Figure 14). Shifting to maintaining variation in ze, MxAv minimizes unit variance loss per
unit cost across all population types and cropping systems, with larger differences found
under the more costly agricultural systems (Supplemental Figure 14). Moreover, decreasing
narrow-sense heritability and index weighting of z, could prevent variance reduction and
champion sustainable improvement of the trait (Figure 14).

4.3.2 Best linear unbiased predictions of breeding population sizes

Equally important to other parameters is the size of the breeding population and the
effective size of the population from which germplasm is acquired. These random effects of
number of parents, number of progeny per cross, and starting effective population size show
varying effects through increasing numbers as well as across and within breeding target by
cost combinations. For example, on average the parameters that generate the desired effect
from the population average vary by the target over the baseline method: (1) z; gain unit
per unit cost are 20 parents per cycle (16.03), 5 progeny per cross (14.81), and 100 effective
population size of germplasm acquisition (10.71); (2) z; reduction in variance unit per unit
cost are 10 parents per cycle (-9.12), 1 progeny per cross (-8.08), and 100 effective population
size (-2.84); (3) zo gain unit per unit cost are 25 or 10 parents per cycle (0.04), 20 progeny
per cross (0.03), and 25 effective population size (0.02); and (4) z2 increase in variance unit
per unit cost are 20 parents per cycle (0.03), 10 progeny per cross (0.03), and 50 effective
population size (0.03). Moreover, within each random effect trends are observed. Effective
population size of 100 is an important component during neo-domestication to meet every
goal for the specific targets (z; gain increase, z; variance reduction, z, gain increase, and
2o variance increase). The number of parents and progeny per cross have differential effects
depending on the specific target, including 5 progeny per cross meeting the goals of z; gain
and variance while staying neutral towards z, goals and 25 parents per cycle meeting the goals
of gain in z; and 29 but adversely affecting the variance goals for each trait. Moreover, the
benefit or detriment of each parameters’ random effect will improve or worsen when shifting
crop-types from field to horticultural to forestry crops, with the largest benefit or detriment
being found in the low cost of each crop-type.

4.3.3 Cycle asymptotes of target change

Landrace and orphan population types have a lower asymptote on the logistic or sigmoidal
curve for variance prior to population development phase (cycle < 40). When fixation of
z1 is the target, wild populations benefit from increased narrow-sense heritability and high
weighting of selection index, with the asymptote found for PRS and GS at cycle 45, and MxAv
only one cycle later. However, the upper asymptote on the sigmoidal curve for phenotypic
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gain of z, is greatest across population types under MxAv selection when the trait has low
heritability (Supplemental Figure 15). Under MxAv selection, wild and orphan populations
approach the asymptote of phenotypic gain (23), on average, around cycle 75 where landrace
populations approach the asymptote 10 cycles sooner.

4.4 Discussion

Fixation of the simple, cultivation constraining trait is of utmost importance within neo-
domestication breeding programs. Successful modern domestication has been demonstrated
through genetic engineering (Zhu and Zhu, 2021); however, these methods require years of
foundational research and are only accessible to developed breeding programs and domes-
tication candidates related to major crop species (Van Tassel et al., 2020). Our findings
show that phenotypic recurrent selection (PRS) is very fast, if heritability for the trait is
large, with the lower asymptote of variation found only 5 cycles of selection into population
development. However, deleterious variation is always of concern during the rapid reduc-
tion of population sizes in breeding, an occurrence observed during historical domestication
using comparative genomics (Morrell et al., 2012), where maximum avoidance (MxAv) or
alternative mate allocation methods may leave more variation for more complex traits while
still approaching the asymptote of simple trait variation rapidly (6 cycles of selection). New
mutations are always forming; however, the standing load of deleterious variation exceeds
the rate at which the new mutations arise. Once these variants are present in the crop breed-
ing population as standing variation, the genetic bottlenecks of domestication and breeding
allow them to drift to higher frequency (Kono et al., 2016, Moyers et al., 2018). Bottlenecks
will purge some deleterious mutations (reducing load), but it will also convert masked load
into realized load. Prolonged bottlenecks tend to fix deleterious mutations with balance re-
stored using migration (genetic rescue), championing the support for further investigation
towards dual population breeding during de novo domestication. As populations shift from
large (accumulated masked load) to small populations, load is lost due to random genetic
drift and purged by selection with deleterious mutations with large fitness effect becoming
exposed due to inbreeding. Demographic bottlenecks can affect the partition of genetic load
in different ways, the extent of which is dependent on the length of bottleneck and the effec-
tive population size. Increasing the duration of a bottleneck will increase the proportion of
realized load to masked load, with total load being less than found during short bottleneck
durations (Bertorelle et al., 2022). Therefore, our findings of high starting effective popu-
lation sizes for breeding (100) meeting target goals is critical towards reducing total load
that will be present during incipient domestication given the rapid bottlenecking of the large
starting population to the small manageable breeding populations we simulated. In crop
improvement, intense selection over short time periods is coupled with reduction in effective
population size and limited recombination and followed by migration events and population
expansion (MacQueen et al., 2022), returning some balance back to the population following
the fixation of beneficial traits, such as z;, as well as deleterious variants that are also swept
through.

The second goal during neo-domestication, often conducted concurrently with the first
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and continuing into crop improvement, is maximizing the phenotypic gain of a more complex
trait, typically a harvestable organ such as seed, tuber, fruit, or leaf size (Jungers et al.,
2023). We show that genomic selection (GS) offers the most cost-effective method towards
increasing complex trait gain in half the time of PRS, ranging from 6% more than PRS
baseline in landrace population to 53% in wild population. However, sustainability of such an
increase is of concern given GS’s accuracy reducing trait variation (Jannink, 2010, Olsen and
Wendel, 2013). Forfeiting some gain in these traits may be a practical solution when working
with more developed germplasm, such as orphan/semi-domestics given their proximity to
marketability, where MxAv in our study loses 50% and 20% less variation in 2, in landrace
and orphan populations, respectively. For example, in the scheme of low heritability (0.30)
and high index weighting (0.75) for the more complex trait, the difference in gain per unit
cost of MxAv compared to GS exhibits a negative relationship with cost, meaning under low
cost for field crops GS gain per unit cost is only 0.14 more than MxAv and under high cost
for field crops GS is actually 0.03 less than MxAv over the 40 cycles of selection. This specific
trend continues through the different crop-types, with the differences in response increasing
in horticultural and again in forestry. Moreover, the size of the breeding population has an
influence on the complex trait’s gain and variation, where more parents and more progeny
per cross account for a positive effect per unit of cost. This effect of more progeny per cross
is likely derived through an increasing selection intensity, increasing the response to selection
(Cobb et al., 2019, Covarrubias-Pazaran et al., 2022). Furthermore, the mean 2z, BLUEs
of variance target maintenance finding MxAv with 0.7 heritability and 0.25 weighting to
lose ~20% more variance in wild populations compared to the baseline should be considered
because of the beginning of directional selection in the wild population, where the baseline
orphan population began this process during burn-in operations (Table 10). The cycle which
the asymptote of variance for z, in wild is found, on average, at later cycles of selection than
compared to MxAv selection in other populations as well as other selection methods across
all populations (Supplemental Figure 15), outlining that although the change may be greater,
the reduced approach towards complete variance reduction is achieved through MxAv.
Equally important to the target goals of a neo-domestication breeding program is the
starting point (i.e. germplasm) from which the program begins. Wild species, including crop
wild relatives, possess useful variation for adaptation towards abiotic and biotic stress, novel
nutritional complexes, pharmacological uses, and niche human needs (Brozynska et al., 2016,
Bailey-Serres et al., 2019). We show through larger populations, both traits’ gain per unit
cost is increased, alongside a more dramatic bottleneck and loss of variation. This trend is ob-
served primarily through the random effects of starting effective population size and breeding
population (crossing) parameters. Over bottlenecking the population may be a temptation,
especially when small proportions of individuals contain alleles for simple domestication syn-
drome traits, but it should be considered that our 100 Ne starting point schemes are already
bottlenecked from a wider wild population. There are implications for further increasing this
bottleneck during these breeding programs where a continuous necessity to perform genetic
rescue/migration may occur (Kono et al., 2016, Bertorelle et al., 2022). However, the target
goals shift if considering the crop-type along with its specific agroecosystem, harvestable
organ, and primary reproduction. It is also a constantly moving target, where crop uses
shift over time and degrading variation in a complex trait early on forces the sustainability
of breeding populations towards an inability to adapt to new emerging markets and/or ge-
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ographies. Outlined by DeHaan et al. there are specific considerations when starting the
domestication of a crop beginning by defining an agricultural target to be met with a type of
crop that does not yet exist. Once domesticated, the crop can then be bred for adaptation
to different target environments, but only where the variation for the trait exists. Sourcing
germplasm from the wild will also require care towards the identification of species, popula-
tions, or subpopulations with preadaptation to the agroecosystem which in turn will inform
the strategy for domestication of that species (DeHaan et al., 2016). Preadaptations in a
wild population may place that breeding population more closely towards our orphan/semi-
domestic population schemes, given the proximity to fixation of z;, and then consideration
of maintaining 25 sustainable gain could be prioritized.

This study attempts the most comprehensive investigation to date in understanding and
varying the number of parameters and applying a range of costs towards optimizing breeding
schemes during neo-domestication. All possible combinations and parameter iterations were
not tested, providing a rich source for future research into stochastic simulation across a
wider range of genetic architectures, more traits, new selection methods, and many more.
We specifically parameterized given the incipient domestication work currently conducted at
the Hawaii Agriculture Research Center across a wide range of crop-types, each with different
target goals. The broad applicability of this work can be seen when compared against neo-
domestication efforts in intermediate wheatgrass, silphium, pennycress, the gene-editing work
in ground cherry, and ancient domesticates (DeHaan et al., 2018, Vilela et al., 2018, Sedbrook
et al., 2014, Mueller et al., 2017, 2019). The reported 23% increase in seed size in intermediate
wheatgrass is similar to our 30% simulated increase in zo under PRS (DeHaan et al., 2018),
further matching the reported 30% increase in biomass of silphium (Vilela et al., 2018). We
know these gains are possible and practical, but the goal of neo-domestication is not gain for
gain’s sake, it is to enrich regional food systems through sustainability and variety. Proper
market analyses should be conducted prior to embarking on neo-domestication to ensure a
market for the product exists or could eventually exist. It is widely accepted that emerging
crops must meet market needs (Runck et al., 2014, DeHaan et al., 2016, Messina et al.,
2023). Once a market need is identified and a species with a harvestable organ to fill the need
identified, then a neo-domestication program compared to a public sector breeding program is
comparatively less considering the achievable gains (Coe et al., 2020). The concern, however,
remains in the funding opportunity in the public-sector and meeting market needs for variety
release in the private sector.
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Synthesis: Conclusions and Recommendations

The empirical evidence gathered within this dissertation confirm theory and highlight
specific action during neo-domestication and wide hybridization breeding programs. Acacia
koa was used to better understand crossing and the affect of breeding population size and
disease resistance on the potential gain of the domestication syndrome trait early seedling
vigor. Elucidated in this chapter was the importance of maintaining large breeding population
sizes over the number of progeny, especially during disease susceptibility. Theobroma cacao
was used to improve our understanding of evaluation through the augmentation of precision of
estimates under varied population development and the affect of this change on the potential
gain of the domestication syndrome trait seed size. The affect of subsampling is highlighted
in this chapter, where max subsampling is pertinent to precise genotypic estimation and
appropriate selection in developed breeding populations while reducing subsampling can be
leveraged in developing breeding populations to limit costs. Stevia rebaudiana was used
to differentiate the affect of alternative selection criteria on the important domestication
syndrome trait of photoperiod sensitivity. Phenotypic recurrent selection was shown to be
effective during early stages of breeding the semi-domesticate, genomic selection increases
the potential gain by reducing the length of a cycle time but requires more environments
of evaluation, and mate allocation methods can maintain gain for more cycles of selection
through reducing the inbreeding coefficient.

The simulated evidence gathered in the final chapter of this dissertation is the most robust
analysis to date, looking into > 5,000 parameter combinations throughout the breeding cycle
and integrating a large range of costs across different cropping systems and population types.
The breadth of the study identified specific strategic decisions that can improve breeding
program progress towards specific targets during neo-domestication. Germplasm acquisition
is a critical moment in any breeding program, but especially so during neo-domestication as
larger breeding population size and effective population size beneficially effect the approach
to these targets in all schemes, population types, and cropping systems (Supplemental Figure
16). When considering specific targets, the parameter combinations which beneficially effect
the approach to that goal change. The fixation of the cultivation contraining simple trait, z;
in the simulations, is most rapidly approached through mid-level number of breeding parents,
low number of progeny per cross, high narrow-sense heritability, and phenotypic recurrent
selection using high index weighting (Supplemental Figure 17). Rapid and cost-effective gain
in a complex trait, z5 in the simulations, is maximized using large number of parents and
progeny per cross, high narrow-sense heritability, genomic selection and high index weighting
(Supplemental Figure 18). However, this will decrease additive genetic variation. Therefore,
cost-effective maintenance and sustainable gain in a complex trait is achieved using large
number of parents, mid-level number of progeny per cross, low narrow-sense heritability,
mate allocation methods with low index weighting (Supplemental Figure 19).

Although this dissertation outlines some strategic methods to begin and conduct neo-
domestication breeding programs, the process is long and can be resource intensive. Neo-
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domestication for the sake of research is valuable for informing the empirical estimates and
fine-tuning strategic options through stochastic simulation, especially as it relates to artifi-
cial selection and evolution. However, it is important to consider potential revenue sources
from any incipient program by first identifying markets which the newly domesticated crop
could fit (Figure 15). If there is a specific niche within the market that a new crop will fit,
then the breeder must focus on whether or not there is a constraining trait to cultivation
or breeding. When there is not a constraining trait, the crop can likely shift directly into
production, exemplified by stevia, where breeding for the improvement of the harvestable
organ and cultivar release can be conducted concurrently to production. However, when a
constraining trait exists, the program must focus on improving and fixing within the pop-
ulation first. Identifying a market niche for a potential crop with a harvestable organ is of
utmost importance and should be considered at the outset of any program. If there is not
niche market and the neo-domestication candidate will enter into market competition, then
breeding will focus on an index of the cultivation constraining trait and harvestable organ.
The candidate crop will not enter into the market until novelty or competitive advantage is
shown, either through novel nutritional complexes, ecosystem services, or some other benefit
to farmers, consumers, and society.

Figure 15: Flow chart outlining the overarching considerations when beginning a neo-
domestication breeding program.
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Appendix

Supplemental Figures and Tables

Supplementary Figure 1: Koa wild collection, pedigree, and operational diagram to illustrate
the process of deriving thinning group seedling collections.

)



Supplementary Figure 2: Trial map including blocks.
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Supplementary Figure 3: Least-Significant Difference rank change across varied sub-sampling
for total seed weight (grams) with A) full sub-sampling, B) half sub-sampling, and C) single sample.
Arrows represent no rank change (yellow), negative rank change (red), and positive rank change
(purple). Varieties a marked as open-pollinated landrace (magenta), hybrid variety (orange), and
production control (none).
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Supplementary Figure 4: Least-Significant Difference rank change across varied sub-sampling
for mean seed size (grams) with A) full sub-sampling, B) half sub-sampling, and C) single sample.
Arrows represent no rank change (yellow), negative rank change (red), and positive rank change
(purple). Varieties a marked as open-pollinated landrace (magenta), hybrid variety (orange), and
production control (none).
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Supplementary Figure 5: Mean trait values observed per genotype during controlled environ-
ment trial.

Wk4 Height (cm) Wk6 Height (cm) Branch Count hntemode Spacing (cm)
225+ 3 351 ' : - - 301
20.0 301 2.57
1751 25 ol
1.51
15.0 1 201
1.0 1
Zero One Two Three Zero One Two Three Zero One Two Three Zero One Two Three
3 Leaf Width (mm) Leaf Length (mm) Biomass Index Photoperiod Flowering
m . -
> 407 ' |
c 35 70 1.26+07 1 1350
©
@ 4 . 50+ 13.251
= 8.0e+06 1
2 25 50 13.00 1
2. 204 . 4.0e+06 1 12.751
g 40 1 ? ‘] :
o 154 . r r r . . r . 0.0e+00 r r r r 12.50 1 - . . 1
o Zero One Two Three Zero One Two Three Zero One Two Three Zero One Two Three
TSG Content (%) RebA Content (%) RebB Content (%) RebC Content (%)
24 . : 16 - - 054 - : T .
21 4 7 | 141 : E‘%‘ 0.41 > 4 ¢
209 - ? - R . 0 : T
131 : 121 N ' — 1
161 10 021 0 24
144 1. a7 0.1 i :
Zero One Two Three Zero One Two Three Zero One Two Three Zero One Two Three
Generation

67



Supplementary Figure 6: Stevia trait correlations.
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Supplementary Figure 7: All stochastic simulations of phenotypic gain of (A) z; and (C) 2o
as well as phenotypic variance of (B) z; and (D) z2 with mean of population type overlayed and

grouped by population type.
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Supplementary Figure 8: All stochastic simulations of phenotypic gain of (A) z; and (C) z3 as

well as phenotypic variance of (B) z; and (D) z2 grouped by heritability with mean of narrow-sense
heritability overlayed.

A. Phenotypic Value B. Phenotypic Variance

hHL
hLH
hLL
hMM

(I

Supplementary Figure 9: All stochastic simulations of phenotypic gain of (A) z; and (C) 22 as

well as phenotypic variance of (B) z; and (D) 23 grouped by selection method with mean of each
selection method overlayed.
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Supplementary Figure 10: All stochastic simulations of phenotypic gain of (A) z; and (C) 22 as
well as phenotypic variance of (B) z; and (D) z2 grouped by selection index weighting with mean
of each weighting overlayed. The weighting listed is the amount of weight placed on z;, with the
amount of weight placed on z3 being 1-si weight.
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Supplementary Figure 11: Phenotypic gain unit change by unit cost of z;. X-axis represents the
scheme combination of population type, selection method, narrow-sense heritability, and selection
index weighting with Y-axis representing the BLUE of unit by unit change, scaled to the baseline
scheme.
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Supplementary Figure 12: Phenotypic variance unit change by unit cost of z;. X-axis repre-
sents the scheme combination of population type, selection method, narrow-sense heritability, and
selection index weighting with Y-axis representing the BLUE of unit by unit change, scaled to the
baseline scheme.
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Supplementary Figure 13: Phenotypic gain unit change by unit cost of zo. X-axis represents the
scheme combination of population type, selection method, narrow-sense heritability, and selection
index weighting with Y-axis representing the BLUE of unit by unit change, scaled to the baseline
scheme.
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Supplementary Figure 14: Phenotypic variance unit change by unit cost of zo. X-axis repre-
sents the scheme combination of population type, selection method, narrow-sense heritability, and
selection index weighting with Y-axis representing the BLUE of unit by unit change, scaled to the
baseline scheme.
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Supplementary Figure 15: Cycle asymptote of target through sigmoidal curve modelling.
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Supplementary Figure 16: Schematic showing the influence of germplasm acquisition at im-
proving the response to selection.
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Supplementary Figure 17: Schematic showing the influence of parameter combinations at

achieving the target goal of z; fixation.
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Supplementary Figure 18: Schematic showing the influence of parameter combinations at cost-
effective maximization of the response to selection of z5.
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Supplementary Figure 19: Schematic showing the influence of parameter combinations at
achieving the target goal of zo gain maintenance.
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