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Abstract 

RecA plays a critical role during double strand break repair via homologous 

recombination. During the strand exchange reaction, RecA forms a helical filament 

on single stranded (ss) DNA that searches for homology and exchanges 

complementary base pairs with a homologous double strand (ds) DNA to form a new 

heteroduplex. The study of strand exchange in ensemble assays is limited by the 

diffusion limited homology search process which masks the subsequent strand 

exchange reaction. We developed a single molecule fluorescence assay with a few 

basepair and milliseconds resolution which can separate initial docking from the 

subsequent propagation of joint molecule formation. Our data suggests that 

propagation occurs in 3 bp increments with destabilization of the incoming dsDNA 

and concomitant pairing with the reference ssDNA. Our model for strand exchange 

links structural models of RecA to its catalytic function.  

Next, we investigated the mechanism of RecA mediated homology search. Using 

tools with high spatiotemporal resolution to observe the encounter complex between 

the RecA filament and dsDNA, we present evidence in support of the “sliding model” 

wherein a RecA filament diffuses on a dsDNA track. Our results suggest that the 

sliding of the dsDNA relative to the RecA filament can explain the rapid changes in 

FRET which we have observed upon the docking of non-homologous dsDNA to the 

RecA filament. We further show that homology can be identified during such sliding. 

Sliding is thermally driven and occurs in the absence of ATP hydrolysis. 

Furthermore, homology recognition and basepairing can involve as few as 6 bp of 

complementarity. Our observation presents an example of how a multi-protein 

complex bound to DNA can serve as a vehicle enabling homology search processes 

via 1-D sliding.  

Finally, we demonstrate how an extension of the two color FRET assay to measure 

four colors simultaneously allows us to measure the correlation of reaction 

completion between the two ends of a single synaptic complex. We expect that this 

method will enable a multi dimensional analysis of independent reaction coordinates 

with broad applications in measuring the correlated dynamics of more complex 

biological systems 
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Chapter 1  

Overview of DNA repair in E.coli 

I later came to realize that DNA is so  

precious that probably many distinct  

repair mechanisms would exist 

Francis Crick (1974) 

 

1.1 Introduction 

The ubiquitous presence of DNA damaging agents poses a constant threat to the 

integrity of the genome in all organisms. Cells have different pathways and 

mechanisms that are engaged in the detection, surveillance and repair of damaged 

DNA. In humans, malfunctions in DNA repair could result in the accumulation of 

mutations that could lead to cancer (Halazonetis et al., 2008). In bacteria, DNA 

damage and repair could cause mutations which may result in the development of 

altered traits such as antibiotic resistance that pose serious problems to human 

health (Cirz et al., 2005). Bacteria, archaea and eukaryotes encounter similar types 

of DNA lesions and have homologous pathways that restore DNA to its nascent state 

following the damage event. Hence, understanding DNA repair in E.coli lends 

insights that can be extrapolated to homologous repair proteins in humans. 

1.2 DNA repair pathways in E.coli 

Rather than a ‘one size fits all’ approach, E.coli employs specific DNA repair 

pathways to target the different types of lesions encountered in DNA. Here, I 

summarize some key features of DNA repair pathways (Davidsen and Tonjum, 

2006) (Figure 1.1). 

a. Base excision repair - Deamination or alkylation of bases invokes results in the 

formation of an abasic site. DNA glycosylase detects and removes the damaged 

nucleotide. For example, the formation of 8- oxoguanine via oxidative damage is 

detected and repaired by a DNA glycosylase, OGG1. 
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b. Mismatch repair – Misincorporation of a base during DNA replication engages the 

mismatch repair pathway consisting primarily of three proteins- MutS, MutH and 

MutL. The MutHSL system of proteins is involved in the detection of the site of 

damage and repair of the newly synthesized DNA based on differential methylation 

between the daughter and parental DNA strands.  

c. Nucleotide excision repair – Thymine dimers formed as a consequence of UV 

damage are repaired by the UvrABC system of proteins that excise the damaged 

region and subsequently recruit polymerases that reinitiate DNA synthesis in the gap 

region. 

d. Reversal of damage- This is a mechanism where a damaged nucleotide is directly 

converted to its undamaged state without the need for base excision mechanisms. 

Proteins such as photolyases mediate conversions of cyclobutane pyrimidine dimer 

(CPD) formed by crosslinking between adjacent thymine bases via UV exposure. In 

addition, E.coli possesses proteins that ensure that DNA damaging agents are 

eliminated from the cell. For example, superoxide dismutase (SOD) quenches free 

radicals which can cause breaks in DNA. 

e. Recombinational repair – In contrast to the DNA repair pathways where damage 

at a specific nucleotide position is interrogated, recombinational repair involves large 

scale rearrangements of DNA across several kilobase lengths allowing bypass of the 

site of damage and restart of replication at a downstream position (Cox, 1999). This 

repair process is crucial for addressing double strand breaks and lesions generating 

single strand DNA gaps. 

f. Translesional synthesis- While the repair processes previously described are non-

mutagenic and restore DNA to its nascent state, the presence of extensive DNA 

damage can invoke translesion DNA synthesis activity wherein a low fidelity DNA 

polymerase (PolV in E.coli) inserts a base opposite to a lesion containing site thus 

leading to rescue of stalled replication (Goodman, 2000).  

1.3 Structure and function of RecA 

1.3.1 Role of RecA during DNA repair 

DNA damage is a catastrophic event that is frequently encountered during replication 
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of DNA, and is repaired via the homologous recombination pathway (Cox et al., 

2000; Kowalczykowski, 2000; Kowalczykowski et al., 1994; Spies and 

Kowalczykowski, 2005). During the initial stages of homologous recombination, one 

strand of a blunt duplex end is processed to generate a long stretch of single 

stranded DNA (ssDNA). Then, in a process known as strand exchange, the ssDNA 

finds a homologous double stranded DNA (dsDNA) partner in the cell and 

exchanges complementary base pairs to form a new heteroduplex product. Strand 

exchange reaction is catalyzed by RecA in E.coli. Homologs of RecA such as Rad51 

and Dmc1 in eukaryotes and RadA in archaea perform similar functions during DNA 

repair via homologous recombination (Bianco et al., 1998). Strand exchange is 

followed by the formation of Holliday junction intermediates (Potter and Dressler, 

1976) which are eventually resolved by branch migration proteins to complete 

homologous recombination. In addition to the aforementioned functions during strand 

exchange, the activation of RecA by the cell upon sensing a double strand break 

underpins the mechanisms leading to initiation of the SOS response pathway (Sutton 

et al., 2000).  

1.3.2 SOS response – a regulated response to DNA damage 

In bacteria, different repair processes can be integrated into a single pathway which 

directs the response of the cell to DNA damage. This pathway is called the SOS 

response pathway and its activation signals a high activity state of DNA damage and 

repair within the cell (Figure 1.2). It is known that the presence of extensive DNA 

damage turns on the SOS response pathway leading to the induction of over 40 

different genes (Sutton et al., 2000). The SOS response results in the induction of 

genes that are involved in different aspects of DNA repair such as nucleotide 

excision repair (uvrA, uvrB, uvrD), homologous recombination (recA and recA 

loading proteins) cell division inhibitors which stall cytokinesis (sfiA) and a mutagenic 

translesional DNA polymerase PolV (umuC and umuD). Interestingly, the expression 

of these genes displays temporal regulation with nucleotide excision repair genes 

being expressed first and translesion polymerases being induced towards the end of 

the SOS response nearly 40 minutes after the initial damage has occurred (Michel, 

2005). An important aspect of RecA function is its ability to trigger a dramatic 

transformation of cellular activity in response to DNA damage. RecA participates in 

the initiation of the SOS response by controlling the activity of a second protein 
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called LexA. LexA is a transcriptional regulator inhibiting the expression of the genes 

expressed during the SOS pathway (including recA). The interaction of LexA with an 

activated RecA filament (RecA bound to ssDNA) initiates the autocatalytic cleavage 

of LexA leading to its inactivation and the subsequent expression of genes involved 

in the SOS response. The change in transcription and protein levels is dramatic 

leading to a 50 fold change in RecA expression levels from a basal level of ~1200 

molecules/ cell due to the loss of LexA repression (Sutton et al., 2000). Hence, loss 

of RecA function in bacterial cells leads to the inability of cells to mount an SOS 

response in addition to them being defective in homologous recombination activity.  

1.3.3 RecA mediated strand exchange reaction 

The coordination between different proteins leading to the assembly of the RecA 

filament sets the stage for a reaction involving the rearrangement of DNA strands 

that lies at the heart of the homologous recombination pathway (Wyman, 2011). In 

prokaryotes, the homologous recombination pathway is important for replication and 

repair of DNA but in eukaryotes it also serves an additional function of creating 

genetic diversity during meiosis. Chapter 3 will provide a more detailed description of 

RecA function during strand exchange.  

The events which lead to the loading of RecA protein on ssDNA and subsequent 

strand exchange may occur via two different pathways (Spies and Kowalczykowski, 

2005) 1) RecBCD pathway where the encounter of a double strand break leads to 

unwinding and resection of duplex DNA to generate a ssDNA substrate(Figure 1.3A) 

2) RecF pathway involving RecFOR proteins which are involved in the repair of 

ssDNA gaps generated during the replication of lesion containing DNA and consist of 

proteins that facilitate RecA loading on ssDNA (Figure 1.3B) 

The first step of the strand exchange reaction involves the binding of RecA proteins 

on ssDNA during a step referred to as pre-synapsis. In the next step called synapsis, 

the active RecA filament mediates the search for a homologous sequence and 

catalyzes basepair exchange to form a new heteroduplex product. Interestingly, both 

pre-synapsis and synapsis require ATP as a co-factor but ATP hydrolysis itself is not 

mandatory for reaction progression. RecA dissociation from ssDNA and the final 

heteroduplex requires ATP hydrolysis though it is not well understood how filament 

disassembly facilitates strand exchange (Cox, 2007). 
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1.3.4 Mechanism of RecA filament formation  

Pre-synapsis involves the assembly of a RecA filament along ssDNA by a nucleation 

event where 4-5 RecA monomers bind simultaneously (Galletto et al., 2006; Joo et 

al., 2006) followed by rapid extension of the RecA filament via monomer addition 

(Joo et al., 2006). The kinetics of RecA filament assembly is asymmetric with one 

end growing faster (3’ end) than the other (5’ end) and the molecular basis for such 

an asymmetry arises from differences in association rates at the two ends (Joo et al., 

2006) (Figure 1.4A). Given that nucleation acts as a critical rate limiting step in the 

assembly of the RecA filament it also potentially serves as a point of regulation. 

Several accessory proteins such as RecF, RecO and RecR have been hypothesized 

to play an important role in acting as a nucleation center for RecA filament assembly 

in vivo. RecA filament assembly also encounters other kinetic barriers such as the 

presence of secondary structure in ssDNA emphasizing a role for proteins such as 

SSB which remove secondary structure and facilitate filament extension (Roy et al., 

2009) (Figure 1.4B). 

1.3.5 RecA filament structure 

RecA forms a filament which stretches the ssDNA to a length of 1.5 times the length 

of B-form DNA (Dunn et al., 1982; Stasiak et al., 1981; Stasiak and Egelman, 1986). 

The RecA filament consists of 6.2 monomers per helical turn with a binding 

stoichiometry of three nucleotides per RecA monomer (Figure 1.5B). The average 

rise between nucleotides in the filament is 5.1 Å. The first crystal structure of a RecA 

filament in 1992 consisted of RecA monomers in a helical arrangement without the 

bound ssDNA (Story and Steitz, 1992; Story et al., 1992). The filament structure was 

consistent with the collapsed state of the RecA filament (ADP bound state) and 

provided atomic resolution details about several aspects of RecA filament structure.  

In 2008, Pavletich and his colleagues obtained a crystal structure of the RecA 

filament with ssDNA in its central axis (Chen et al., 2008) (Figure 1.5A). This 

structure dramatically altered our view of RecA interactions with ssDNA. Most 

importantly, the stretching of DNA by the RecA filament was found to be asymmetric 

(Figure 1.5C). The filament holds three successive nucleotides of ssDNA in B-form 

configuration with an average separation of 3.4 Å. The RecA mediated stretching 

occurs between successive nucleotide triplets with a rise of ~ 7.1 Å between them. 
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The crystal structure also revealed an allosteric interaction between the protein, ATP 

and the single strand DNA thus clarifying the mandatory requirement of a co-factor 

for the formation of functional RecA filaments. Since DNA is locally held in B- form 

configuration, it is tempting to propose a mechanism in which both homology 

recognition and basepair propagation might involve pairing of successive triplets.  

A second intriguing aspect is that the crystal structure with RecA bound to double 

strand DNA shows the second strand held in place predominantly by base pairing 

interactions with the primary ssDNA. The second DNA strand makes only few 

contacts with the RecA protein lending credence to the hypothesis that RecA is more 

of a scaffolding protein rather than being actively involved in discriminating between 

complementary and non-complementary base interactions.  

1.4 Overview of the thesis  

My thesis will focus on the study of the homologous recombination pathway with 

special emphasis on a critical step during homologous recombination, namely, the 

strand exchange reaction catalyzed by RecA. More broadly, the thesis consists of 

two parts: 1) Kinetics of basepair exchange and heteroduplex formation 2) Homology 

search mechanism.  

In Chapter 1, I have given a broad overview of DNA repair processes in E.coli and 

more specifically on RecA. This chapter provides a biological context for the role of 

RecA during homologous recombination and other cellular pathways in E.coli with 

some insight into structural and biochemical studies on RecA. Chapter 2 focusses on 

the methods I use to study the RecA mediated strand exchange reaction and also 

information regarding new methods which will prove useful for future single molecule 

fluorescence based studies. Chapter 3 contains results regarding the interaction 

between RecA-ssDNA and a homologous dsDNA. Chapter 4 contains preliminary 

observations of interactions between different DNA repair proteins and how single 

molecule FRET can address the mechanism underlying such interactions. Chapter 5 

introduces the second part of my thesis where I focus on the homology search 

process mediated by RecA in which I establish a role for sliding of dsDNA relative to 

the RecA filament leading into Chapter 6 where I establish that basepairing can 

occur during sliding providing a physiologically relevant context for the sliding 

activity. Chapter 7 introduces the prospect of future studies on the strand exchange 
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reaction using four color FRET to address some of the drawbacks of a conventional 

two color FRET approach to study the strand exchange reaction. The appendices at 

the end of the thesis provide supporting information on the experimental methods 

and analyses used. 
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1.5 Figures 

Figure 1.1 DNA repair pathways in E.coli 

 

 

 

Major DNA-repair pathways in Escherichia coli a. DNA damaging agent b. Result of 

DNA damaging c. Repair pathway d. Proteins involved in a specific repair pathway 
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Figure 1.2 SOS pathway responds to DNA damage 

 

The initiation of the SOS response pathway involves the RecA protein binding form a 

filament on ssDNA upon encountering DNA damage. This is followed by the 

autocatalytic cleavage of LexA which then results in the expression of several genes 

that play critical roles in DNA repair, replication and mutagenesis. 
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Figure 1.3 DNA repair via homologous recombination pathways in E.coli 

 

 

 

DNA repair via the homologous recombination pathway A. RecBCD pathway 

primarily involves the participation of the multi enzyme RecBCD complex which 

facilitates end resection of DNA containing double strand breaks B. RecFOR 

pathway primarily involves proteins RecFOR which facilitate the nucleation of RecA 

on ssDNA gaps encountered during the replication of lesion containing DNA 
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Figure 1.4 RecA filament dynamics and filament assembly 

 

 

A. Dynamics of filament assembly where 5’ end is grows more slowly than the 3’ end 

due to an asymmetry in association rates of RecA monomers B. Filament assembly 

involves proteins that facilitate nucleation (such as RecFOR) and proteins that 

enable filament growth (such as SSB) 
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Figure 1.5 Description of RecA filament structure 

 

A. High resolution structure of RecA-ssDNA complex (Chen et al., 2008) B. RecA 

binding stoichiometry and physical properties C. Structure of ssDNA embedded 

within a RecA filament displays triplets of nucleotides in B-form conformation and the 

RecA mediated extension between adjacent triplets 
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Chapter 2 

Single molecule fluorescence methods
1
 

                                      Groups are capable of being (only) as moral and  

intelligent as the individuals who form them 

adapted from Aldous Huxley (1958) 

 

2.1 Introduction to single molecule methods  

Real time approaches that aid in the detection, visualization and manipulation of 

individual molecules have provided new perspectives on biological processes. In 

contrast to ensemble assays where the read out from the experiment is the average 

behavior of many molecules, single molecule methods allow for: 1) Direct detection 

of sub populations and dynamics 2) Detection of non-synchronizable dynamics 3) 

Detection of molecular heterogeneities 4) Correlation between multiple observables. 

Single molecule fluorescence based methods are widely used in many different 

contexts. Measurements involving localization of a biomolecule tagged with a 

fluorophore can enable detection of protein movements with nanometer precision. In 

a different implementation, a pair of dyes can be used to measure distance changes 

on a short length scale (1-10nm) via FRET.  

Using fluorescence to measure distance changes on a short  distance changes over 

short resol the utilization of two fluorophores to meas to detect individual molecules 

and monitor their behavior.  

2.2 Introduction to fluorescence  

The excitation of fluorophore with an appropriate light source results in a sequence 

of events that leads to the emission of a photon (Figure 2.1). The absorption of a 

photon by a fluorophore present initially in the ground state (S0) results in its 

transition to the excited state (S1). Rapid internal conversion results in the molecule 

                                                            
1 Parts of Chapter 2 have been published  

• Lee, J., S. Lee, K. Ragunathan, C. Joo, T. Ha and S. Hohng, "Single-molecule four-color FRET", 
Angew. Chem. Int. Ed. 49(51), 9922-9925 (2010) • Lee, J., S. Lee, K. Ragunathan, C. Joo, T. Ha and S. Hohng, "Single-molecule four-color FRET", 
Angew. Chem. Int. Ed. 49(51), 9922-9925 (2010) 
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occupying the lowest vibrational level of S1. Eventually the molecule will return to the 

ground state. If this transition from the excited state to the ground state is 

accompanied by the emission of a photon, this process is referred to as 

fluorescence. The emitted photon is red shifted (Stoke’s shift) relative to the 

excitation source. Other possible relaxation pathways exist such as the dissipation of 

energy as heat, collisional quenching or intersystem cross over (ISC). During ISC, 

the electron in the excited state must undergo a spin conversion resulting in its 

transition to a triplet state. The transition to the triplet state is of particular relevance 

to our single molecule studies since it results in intermittency in the fluorescence 

signal arising from a fluorophore. A molecule in the triplet state is also highly reactive 

and may undergo oxidation subsequently resulting in the complete loss of 

fluorescence capability. 

2.2.1 Förster resonance energy transfer 

While a molecule is in the excited state it has the capability to transfer energy in a 

non-radiative manner to a different molecule and subsequently return to its ground 

state. This phenomenon is called Förster resonance energy transfer (FRET) (Figure 

2.2). The efficiency of energy transfer between two fluorophores displays a steep 

distance dependence which is described by the equation, E= 1/[1+ (R/R0)
6], where 

R0 denotes the characteristic length for which the efficiency of energy transfer is 50% 

(Figure 2.3). The value of R0 depends on the dye pair we use. FRET can thus serve 

as a spectroscopic ruler providing a way to measure distance changes on the scale 

of 30-80Ǻ. An important requirement for two molecules to serve as a FRET pair is 

that the emission spectrum of one molecule (donor) overlaps with the excitation of a 

second molecule (acceptor). In this thesis, FRET with two or more than two colors 

will be the strategy used to measure dynamics of individual molecules.  

2.3 Observing single molecules 

The detection of single molecules requires solving three critical issues: 1) the use of 

a detector with high sensitivity to eliminate background arising from thermal noise. 2) 

an excitation method which attenuates background 3) Spatial separation of individual 

molecules. Confocal imaging is one of the methods used to visualize individual 

molecules and it involves the use of a focused laser to excite molecules within a 

diffraction limited spot. Detection of fluorescence emission is achieved by using an 
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avalanche photo diode (APD) and excluding background fluorescence using a 

pinhole. Confocal imaging allows for high time resolution (~100μs) but compromises 

on the ability to observe more than one molecule at a time. Alternatively we could 

use a wide field excitation approach such as total internal reflection where focusing 

light on the imaging surface at an angle beyond the critical angle results in an 

exponentially propagating excitation field allowing us to detect molecules that are 

close to the surface (~200nm). This method allows the simultaneous observation of 

many molecules over a 75 μm x 75 μm area but offers lower time resolution (typically 

8-30ms) compared to confocal imaging.  

2.3.1 Two color FRET instrumentation 

Given our interest in measuring FRET between two fluorophores, it is imperative that 

we setup a detection system to measure the emission intensities of an individual 

donor and acceptor fluorophore (Figure 2.4). The relative ratio of the intensities of 

the two fluorophores provides a read out of the efficiency of energy transfer between 

them with a change in this ratio resulting from changes in distance between the two 

fluorophores barring contributions from other photophysical factors (also see 

Appendix C for details about FRET calculation). We typically immobilize the single 

molecules on a passivated quartz slide which serves as the imaging surface for 

measuring single molecules (see also Appendix A). The slide is mounted on an 

inverted microscope (Olympus, IX71) with a custom made sample holder stage. A 

pellin broca prism is placed on top of the quartz surface and the incoming excitation 

light entering the prism undergoes a change in angle resulting in total internal 

reflection at the interface between the quartz slide and the aqueous imaging solution. 

Three laser lines are available in the setup – 488nm, 532nm and 633nm which excite 

a range of commonly used fluorophores. The emission resulting from the molecules 

is passed through a long pass filter that attenuates the excitation light and only the 

fluorescence emission from the immobilized single molecules (typically Cy3 and 

Cy5) is refocused to the camera. Prior to refocusing the emission, the light is passed 

through a dichroic mirror which splits the total emission into donor and acceptor 

channels. We then map the molecules in the donor channel to the corresponding 

positions in the acceptor channel and record their intensities as a function of time. It 

is this ratio of donor and acceptor intensities which we report as FRET. The choice of 

dichroics depends on the colors being measured. For Cy3 and Cy5 separation of 
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emission is achieved using a dichroic with a cutoff at 630nm which causes a leakage 

of 15% donor signal to the acceptor channel. It is common practice to correct for 

such contributions from leakage during post processing of single molecule traces. 

2.3.2 Expanding the single molecule color palette 

The choice of fluorophores is subject to different experimental needs. I will 

specifically discuss the context in which we would like to obtain multiple distances 

simultaneously from a single experiment. The ability of Cy5 blinking has been 

exploited to enable measurement of multiple distances from a sample labeled with 

more than one Cy5 fluorophore (Uphoff et al., 2010). However given that blinking is 

stochastic, it becomes challenging to estimate the changes in conformation when the 

molecule when is switching between different conformations and we want to discover 

correlations between these changes in conformation.  

The ability to measure multiple distances requires expanding the palette of 

fluorescent dyes beyond what is typically used for single molecule experiments. 

Figure 2.5 lists the emission spectra for some of the dyes typically used for single 

molecule imaging. Dyes which are red shifted to Cy5 (emission max.=667nm) such 

as Cy5.5 (emission max.= 695nm) have been previously employed to design a three 

color FRET measurement where distance changes between a single donor (Cy3) 

and two acceptors (Cy5 and Cy5.5) have been monitored (Hohng et al., 2004; Roy et 

al., 2009). However, such a configuration is limited by the ability to design 

experiments wherein the distance between Cy5 and Cy5.5 is large and the two dyes 

themselves exhibit no significant FRET interaction. This is because of the significant 

spectral overlap between Cy5 and Cy5.5 which does not permit for independent 

excitation of the different dye pairs. We need to use dyes which are spectrally 

separated from each other such that we can excite each dye pair using a unique 

excitation. The use of Cy7 (emission max.= 785nm) as an alternative dye has been 

explored in three color configuration (Lee et al., 2010b). The advantage of using Cy7 

is its large spectral separation relative to Cy5 though the disadvantage is its poor 

detection efficiency using an EM-CCD and also transmission losses arising from 

optical components that are not ideally suited for dyes with far infra-red emission 

(Roy et al., 2008). On the other end of the spectrum, the possibility of using Cy2 and 

Alexa 488 (emission max= 519nm) which are blue shifted relative to Cy3 has also 
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been explored. Cy2 is commercially available only as a bis-NHS ester which poses a 

challenge in terms of single labeling of biomolecules and this is something which one 

should be careful in using this dye for single molecule experiments. On the other 

hand its photophysical characteristics are superior to Alexa 488 which suffers from 

low brightness due to its poor extinction coefficient and also exhibits fast 

photobleaching compared to Cy3 or even Cy5. It is important to note that the 

different dyes also have different overlap in emission and excitation spectra resulting 

in different R0 values allowing for a different range of sensitivity depending on the 

dye pair used (Figure 2.6). 

Given that tagging proteins with a fluorophore at a unique position remains a 

challenge, another option is the use fluorescent proteins such as GFP, YFP, 

mCherry etc. The advantage of fluorescent proteins is the relative ease with which 

the fusions with proteins of interest can be made and the fact that the purified protein 

is obtained in the labeled form. This principle has been utilized to develop 

approaches wherein the cell can be lysed and individual proteins can be readily 

visualized by recruiting them to the single molecule imaging surface by using 

immobilized antibodies (Jain et al., 2011; Yeom et al., 2011). However, the poor 

photophysical features of fluorescent proteins such as frequent blinking and fast 

photobleaching pose a challenge to the measurements of single fluorescent proteins. 

Despite their disadvantages, fluorescent protein fusions have given single molecule 

researchers an opportunity to study biomolecules in their native states of association 

and interaction with other proteins rather than relying only on the use of purified 

components. 

2.3.3 Multicolor single molecule FRET and instrumentation 

The following multicolor FRET scheme and instrumentation was developed in 

Sungchul Hohng’s lab at Seoul National University and I implemented and designed 

an identical setup in the Ha laboratory. Given that we can now reliably estimate 

FRET between different dye pairs, we can simultaneously measure dynamics 

between and within different sections of a molecule and also measure how the 

dynamics may be correlated with each other (Lee et al., 2010a).  

The instrumentation for a multicolor (three or four color) is virtually identical to the 

single molecule two color setup described previously. However, instead of a single 
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dichroic which separates the emission of the dyes into two channels for two color 

FRET implementation, we use two additional dichroics (bringing the total number to 

three dichroics) to create four different emission channels to simultaneously 

measure, for example, Alexa488, Cy3, Cy5 and Cy7 (Figure 2.7). In addition to a 

change in the optical configuration, there is also a change in the excitation 

configuration. There are a total of six inter-dye distances to be determined in four-

color FRET. To recover all the information necessary to calculate the six inter-dye 

distances, we developed an approach that uses three independent excitation lasers: 

a red laser (633-nm or 640-nm) for Cy5, a green laser (532-nm) for Cy3, and a blue 

laser (473-nm) for Cy2 or Alexa488 excitations. The FRET efficiency of Cy5-Cy7 pair 

(E34) is determined via red excitation. Next, FRET efficiencies of Cy3-Cy5 (E23) and 

Cy3-Cy7 (E24) are determined at green excitation on the basis of E34. Finally, the 

remaining three FRET efficiencies (E12, E13, and E14) are determined using blue 

excitation (Figure 2.8). The sequential determination of FRET efficiencies in real time 

was achieved by alternating three excitation lasers on a faster time scale than the 

conformational dynamics of molecules while synchronizing the detection of 

fluorescence signals with laser switching.  

The current implementation in the Ha lab allows for alternating between two laser 

excitations allowing for the determination of three possible FRET efficienices in a 

three color format. However, with a careful experimental design one can still achieve 

four color detection in a scheme which is referred to as ‚‘dual FRET‘ approach (Lee 

et al., 2010a).  

2.3.4 Implementation of alternating laser excitation (ALEX) 

An alternating excitation scheme must acheive synchronization between the 

excitation source and the detector. The EM-CCD camera provides an output TTL 

pulse sequence which provides a readout of completion of data acquisition for each 

successive frame. We use this output as a readout to synchronize the shutters 

(Figure 2.9). We achieve the alternation of lasers by feeding the output TTL pulse 

sequence from the camera to a flip flop circuit. The logic of the flip flop circuit allows 

for alternating between two output 5V signals which can be fed to the shutter 

controller. Integration of the flip flop circuit with a multiplexer allows the user to 

specify whether the shutters are controlled using the computer or the flip flop circuit. 
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While this excitaiton and detection scheme achieves a high precision of 

synchronization between the detector and the excitation sequence, there is no 

flexibility to change the duration between successive frames and hence the utility of 

such a device is narrow. The maximum speed with which one can alternate shutters 

is limited to and fixed by the time scale of data acquisition. The highest time 

resolution we typically use is 30ms which is much slower compared to shutter 

opening time which can be achieved on the μs time scale.  

2.3.5 Perspectives and outlook on multicolor FRET  

Single-molecule FRET (Förster Resonance Energy Transfer) has provided 

unprecedented details on fundamental processes in biology. However, information 

regarding single inter-fluorophore distances in conventional two-color FRET is 

insufficient to completely capture the intrinsic complexity of many biological systems. 

To cope with this challenge, single-molecule multi-color FRET techniques have been 

developed, and the unique capability of three-color detection has been utilized to 

solve a number of important biological problems. However, as single-molecule 

approaches are being expanded to include more complex biological systems, there 

is an ever increasing demand for more advanced FRET techniques. 

Currently the use of multi color approaches has been indispensable for confirming 

sliding dynamics in several biological systems such as RecA (as described in 

Chapter 5), SSB sliding on ssDNA (Roy et al., 2009), Tar binding protein (TRBP) 

sliding on dsRNA substrate (unpublished, in collaboration with Hye Ran Koh) and 

also to study the correlations in dynamics of protein and RNA during ribosome 

assembly (unpublished, in collaboration with Hajin Kim and Sarah Woodson). 
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2.4 Figures 

Figure 2.1 Jablonski diagram indicating the consequences of molecular 

exctiation 

 

Excitaiton of a molecule from the ground state (S0) leads to a transition the excited 

state (S1) following which its decay to the ground state can occur via multiple 

pathways. 
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Figure 2.2 Forster resonance energy transfer involves a non-radiative 

interaction between a donor and acceptor fluorophore 

 

 

Excitation of a donor leads to a transition to the excited state (S1) from which non-

radiative energy transfer can occur leading to subsequent excitation of the acceptor.  
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Figure 2.3 FRET can be used as a spectroscopic molecular ruler 

 

Efficiency of energy transfer between a typical donor acceptor pair (Cy3 and Cy5) 

displays a steep distance dependence with R0 ~ 54Ǻ. 
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Figure 2.4 Single molecule two color FRET detection 

 

A. Excitation and emission scheme where molecules are excited via total internal 

reflection. The resulting emission is refocussed on to a CCD after splitting the 

emission between a donor and acceptor channel B. An example of the image 

acquired using th CCD showing donor and acceptor emission. A mapping function 

allows for determining the spatial locations corresponding to the donor and acceptor 

emissions arising from individual molecules or complexes 
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Figure 2.5 Excitation and emission spectra for typically used fluorophores 

 

 

Emission spectra for a different fluorophores typically used for single molecule 

imaging. The key point is to note the spectral separation between the different 

fluorophores which permits independent excitatation and detection. 
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Figure 2.6 Predicted FRET efficiency curves for typically used fluorophores 

 

The energy transfer efficiency between two flurophores is a function of different 

factors that includes, distance between dyes, relative orientation of the dyes, 

quantum yield, overlap between the donor emission and acceptor excitation spectra. 
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Figure 2.7 Single molecule multi color FRET detection 

 

Excitation and emission scheme to detect more than two colors. In this scheme, we 

can detect four different colors and simultaneous detection of six possible FRET 

efficiencies. 
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Figure 2.8 Possible FRET interactions in a four color scheme 

 

 

Excitation of different colors gives rise to different FRET interactions. Alternating 

between different excitation lines allows us to determine the distances between all 

fluorophores. 
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Figure 2.9 Design of a circuit for two color alternating laser excitation (ALEX) 

 

 

Design of an electrical circuit to synchronize detection via an EM-CCD with 

alternating laser excitation 
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Chapter 3 

 Real time observation of strand exchange2
  

I had felt that recombination was far too  

complex and abstruse a subject for me to master 

Alvin Clark (1996) 

 

3.1 Introduction to the strand exchange reaction 

The isolation of recombination-deficient mutants of E.coli paved the way for the 

identification of RecA (Clark and Margulies, 1965) which catalyzes the strand 

exchange reaction- a key step in the homologous recombination pathway. Strand 

exchange involves pre-synapsis, synapsis and heteroduplex extension via branch 

migration. Presynapsis involves the assembly of RecA monomers on a ssDNA. 

Synapsis results in the interaction between a RecA bound ssDNA with a target 

dsDNA at a homologous site leading to the reciprocal exchange of basepairs (Figure 

3.1).  

We introduce the terms of initiation, propagation and completion to describe the 

three steps that occur during synapsis. (1) Initiation: Search for homology by the 

RecA filament and homologous alignment between the ‘incoming’ dsDNA and the 

RecA bound ‘reference’ ssDNA (2) Propagation: Base pair exchange between the 

reference ssDNA and incoming dsDNA molecule to form a ‘joint molecule’. Joint 

molecules represent a protein bound, three-stranded intermediate state during 

strand exchange wherein basepair exchange may not have proceeded to completion 

(Menetski et al., 1990) (3) Completion: Release of the ‘outgoing’ displaced ssDNA 

from the post-synaptic complex resulting in a RecA bound heteroduplex and free 

ssDNA. Joint molecule formation can be carried out without hydrolyzing ATP 

(Kowalczykowski and Krupp, 1995; Menetski et al., 1990) but the release of RecA 

from the final heteroduplex product requires ATP hydrolysis (Rosselli and Stasiak, 

1990).  

                                                            
2 The work in Chapter 3 has been published 

 • K. Ragunathan, C. Joo and T.Ha, “Real time observation of strand exchange reaction with high  
 spatiotemporal resolution”, Structure 19(8) 1064-73 (2011) 
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From a structural perspective, the RecA filament presents triplets of nucleotides in 

the B-form configuration (Chen et al., 2008) raising the intriguing possibility that 

basepairing exchange between two DNA strands may proceed via Watson-Crick 

pairing involving destabilization of the ‘incoming’ dsDNA in 3bp increments. 

However, until now, there has not been an experimental test of this prediction. 

Following the exchange of base pairs between homologous DNA strands, the 

outgoing ssDNA is thought to remain bound to the RecA filament via weak 

interactions with the RecA secondary binding site (Mazin and Kowalczykowski, 1996, 

1998). Biochemical studies demonstrated that the RecA secondary binding site 

serves as a gateway for strand exchange mediating the exit and the entry of DNA 

strands from the RecA filament (Kurumizaka et al., 1996). There is presently little 

information on the characteristics of DNA bound to the secondary binding site and no 

clear consensus exists on the structural and dynamic properties of the complex 

formed by the three DNA strands and the RecA filament during and after strand 

exchange (Camerini-Otero and Hsieh, 1993; Chiu et al., 1993; Folta-Stogniew et al., 

2004; Jain et al., 1995; Podyminogin et al., 1995; Zhou and Adzuma, 1997). While 

fluorescence and FRET (Fluorescence Resonance Energy Transfer) based 

ensemble measurements have been valuable in establishing the presence of 

multiple kinetic intermediates during strand exchange, the number and identity of 

each of these intermediates remains ambiguous (Bazemore et al., 1997; Folta-

Stogniew et al., 2004; Lee et al., 2006; Xiao and Singleton, 2002).  

Here, we studied the mechanism of RecA-mediated joint molecule formation using 

single molecule FRET (Ha et al., 1996) as described previously in Chapter 2. Our 

single molecule FRET assay can separate the initial docking from the subsequent 

propagation leading to joint molecule formation thereby enabling us to analyze the 

strand exchange kinetics with clarity and precision. We found that the initiation of 

joint molecule formation involves a synaptic complex of <14 bp in length. Our data 

suggests that the propagation of base pairing leading to joint molecule formation 

occurs in 3 bp increments with destabilization of the incoming dsDNA and 

concomitant pairing with the reference ssDNA. Unexpectedly, we discovered the 

formation of a highly dynamic complex between RecA and the displaced outgoing 

ssDNA which remained bound for a few seconds after basepair exchange was 

completed.  
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3.2 Results  

3.2.1 Single molecule fluorescence assay for strand exchange 

A biotinylated dsDNA (18bp) with a free 5’ ssDNA overhang and an acceptor 

fluorophore (Cy5) at the ssDNA-dsDNA junction was immobilized on a polymer-

passivated surface (Figure 3.2). The single stranded portion of a specified homology 

length, Lh (nt), is bound by RecA to form a stable pre-synaptic filament using ATPγS 

as a co-factor. Using ATPγS allowed us to monitor synaptic events without turnover 

of RecA monomers from the DNA during or after reaction completion. We then 

flowed in a solution containing donor (Cy3)-labeled homologous dsDNA (also of 

homology length, Lh (bp)) and ATPγS, while simultaneously washing away free RecA 

in solution. This procedure ensures that the incoming dsDNA interacts solely with the 

immobilized filament. The labeling sites on the incoming dsDNA were chosen so that 

the donor and acceptor fluorophores are in close proximity after joint molecule 

formation. This ‘docking-and-pairing assay’ monitors docking of the incoming dsDNA 

to the RecA filament via fluorescence signal appearance and pairing via FRET 

change (Figure 3.2). The completion of joint molecule formation was confirmed by 

the appearance of a high FRET population with an apparent FRET efficiency E of 

~0.85 (Figure 3.3A).  

A control with non-homologous DNA produced only a low FRET population at E~0.1 

(Figure 3.3A). In addition, the homologous dsDNA case showed a rapid 

accumulation of reaction products (Figure 3.3B) in contrast to the non-homologous 

control thus recapitulating the specificity of the RecA strand exchange reaction. The 

CCD image obtained using homologous and non-homologous dsDNA provides a 

visual cue regarding the specificity of the strand exchange reaction (Figure 3.4). 

In order to verify that the final product formed in the presence of homologous dsDNA 

was the expected heteroduplex, we carried out deproteinization of the joint 

molecules and incubation with a restriction enzyme whose restriction site was 

located between the donor and acceptor dyes in the final product. Over 95% of the 

reaction product could be cleaved off (Figure 3.5A-C) resulting in the loss of donor 

signal and confirming that the end product is the expected heteroduplex.  
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3.2.2 Direct observation of initial pairing and strand exchange 

Real-time single molecule time traces showed the docking of Cy3 labeled 

homologous dsDNA to the RecA filament as an abrupt appearance of fluorescence 

signal (Figure 3.6A). One class of molecules showed a low FRET value (E~0.1) at 

the moment of docking and later transitioned to the high FRET state (E~0.85) (Figure 

3.4.6A (top panel)). This low to high FRET transition signals successful joint 

molecule formation near the labeled end of DNA. The other class of molecules 

showed the high FRET state from the moment of docking (Figure 3.6A (bottom 

panel)), indicating that joint molecule formation initiated near the labeled end. 

Several controls showed that the low FRET state is not due to photophysical effects 

of the fluorophores (Appendix C). 

We defined the term, <∆tdelay>, to represent the mean dwell time of the low FRET 

delay period (∆tdelay) prior to the final high FRET transition. We exclude the 

molecules that directly display high FRET upon binding while calculating the 

<∆tdelay>. The low FRET period cannot be attributed to the homology search process 

because the mean dwell time, <∆tdelay>, among those events showing non-zero 

∆tdelay, did not change appreciably when the ssDNA length was varied while keeping 

the homology length, Lh at 39 nt (Figure 3.6B (inset)). Therefore, homology search 

after docking must be instantaneous within our time resolution (30 ms) so that the 

initial synaptic complex formation essentially coincides with docking. 

It is notable that the ∆tdelay distributions showed a clear shift to longer times with an 

increase in Lh (Figure 3.6B). The average of ∆tdelay, <∆tdelay>, also showed a strong 

dependence on Lh (Figure 3.6C). Therefore, we attribute the initial low FRET period 

(∆tdelay) to the time it takes to propagate basepair exchange from the initial synaptic 

complex to the labeled end of DNA (see diagrams in Figure 3.6A). Consistent with 

this interpretation, the fraction of molecules which exhibit zero delay (Figure 3.6A 

(bottom panel)) decreased with increasing Lh (Figure 3.6C inset). This observation is 

likely due to more initiation sites being available thus decreasing the probability to 

initiate the reaction from the labeled end.  

Furthermore, the histogram of the time delay (∆tdelay ) exhibited by molecules 

showing the initial low FRET state displayed a non-exponential distribution which we 

will analyze in more detail in the following section. 
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3.2.3 Evidence for 3 nt step size of basepair exchange 

Having established that ∆tdelay represents the propagation of joint molecule formation, 

we further analyzed the distribution of ∆tdelay to extract information regarding the 

number and identity of kinetic intermediates prior to reaction completion. If there was 

only one rate limiting step which needed to be overcome to complete the exchange 

of all the basepairs in the incoming dsDNA, we would obtain a distribution of delay 

times described by a single exponential curve. However, the distribution of delay 

times in our measurements is non-exponential and the data displays a rise phase 

followed by a decay (Figure 3.7A). If the time for joint molecule formation involved N 

hidden rate limiting steps prior to reaction completion, we can recapitulate the key 

features of our dwell time distribution plot. This approach to modeling dwell time 

distributions has been useful in estimating the kinetic step size of motor proteins in 

several biophysical studies (Myong et al., 2007; Park et al., 2010; Yildiz et al., 2003; 

Yildiz et al., 2004). Hence, assuming that joint molecule formation involves base 

pairing exchange in well-defined increments, the distribution of ∆tdelay can be used to 

estimate how many basepairs are exchanged per rate-limiting step.  

 

In this model, the histogram of ∆tdelay should follow a gamma distribution, 

delaytkN

delay et



1

. N (the number of steps) and k (the reaction rate per step) are free 

parameters obtained after fitting the dwell time histogram with a gamma distribution 

for each DNA length. From fitting the data for Lh of 31, 39 and 45 nt (Figure 3.7A) we 

found that N increases with increasing Lh while k does not change significantly 

(Figure 3.7B and inset).  

The slope of the linear fit of N vs. Lh, gave ~1/3 (step/bp) (Figure 3.7B) suggesting 

that basepairing occurs in a stepwise manner in 3 bp increments. The non-zero x-

intercept (Figure 3.7B), ~14 bp, specifies the number of base pairs already 

exchanged for N=0, providing an estimate for the upper limit of the initial synaptic 

complex size.  

end begin 

steps N   
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It is important to note that while Figure 3.7A shows the distribution of the delay time 

for Lh=39 nt to be peaked at about 100-120 ms, there are more data points at longer 

times outside of the major peak which are responsible for the inflated averaged delay 

time that we plot in Figure 3.6C. Our step size analysis was restricted to the major 

peak assuming that molecules outside of this distribution may arise from a kinetically 

distinct species. Data from the DNA molecules with larger Lh were not analyzed in 

the same manner since they exhibited broad distributions with long time tails 

possibly due to multiple initiation sites along the DNA (Figure 3.6B).  

3.2.4 Filament dissociation via ATP hydrolysis and heteroduplex formation 

In order to ensure that the kinetics of joint molecule formation is not influenced by 

RecA turnover from the DNA, we carried out identical measurements using ATP as a 

cofactor. The same <∆tdelay> delay was observed when ATP was used as the co-

factor suggesting that the rate of joint molecule formation measured is independent 

of the co-factor used.  

To test if ATP hydrolysis mediated dissociation of RecA from the heteroduplex 

product might affect the rate of joint molecule formation, we modified the donor and 

acceptor positions in the ‘docking and pairing assay. For this measurement, the 

reference ssDNA was labeled at an internal position (position 8 of Lh= 39nt). The 

homologous incoming dsDNA (Lh= 39bp) was also labeled internally such that after 

heteroduplex formation, the dyes are finally separated by 9bp (Figure 3.8A). 

Upon docking, molecules exhibited the initial low FRET delay period (∆tdelay) prior to 

the appearance of a mid-FRET state (E~ 0.4) corresponding to the stretched 

conformation of the heteroduplex product indicating that RecA still remains bound. 

Eventually, when the joint molecule is converted to a protein free heteroduplex due 

to RecA dissociation via ATP hydrolysis (τdissociation), molecules exhibited a high FRET 

state (E ~ 0.7) (Figure 3.8B).  

We first analyzed the delay period between initial docking and FRET change (∆tdelay) 

to obtain a dwell time histogram which after gamma distribution fitting gave us a 

value of N= 4 steps (Figure 3.8C). In this reaction since the reference ssDNA is 

internally labeled, we are monitoring basepair exchange only until position 8 of Lh= 

39nt. After accounting for the initial synaptic complex size of ~ 14 bp, this DNA 
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construct would be effectively measuring propagation over a 17 nt region (i.e. 39 

minus 8 minus 14). This corresponds to ~ 4 nt step size in propagation of joint 

molecule formation which is within 30% of the value supported by the main data of 

the paper obtained from constructs labeled at the terminal ends of the DNA (Figure 

3.7B).  

To measure the time for RecA dissociation via ATP hydrolysis after completion of 

joint molecule formation, we post-synchronized the FRET trajectories followed by 

fitting with a single exponential curve to obtain a dissociation time (τdissociation) of ~ 30s 

(Figure 3.8D). Hence, RecA filament dissociation from the heteroduplex via ATP 

hydrolysis occurs on a much slower time scale than the time for joint molecule 

formation. 

3.2.5 Strand separation and joint molecule formation occur concomitantly  

To test our model further and measure the correlation between the kinetics of strand 

separation and joint molecule formation which was measured using the previous 

assay, we designed an alternative labeling strategy by attaching both fluorophores 

on the incoming dsDNA so that FRET reports on its local strand separation process 

(Figure 3.9A). For this measurement, we immobilized a DNA molecule of homology 

length, Lh= 39nt, with no fluorescent label and formed a RecA filament with ATPγS 

as a co-factor. We observed DNA docking to the RecA filament as an abrupt 

appearance of fluorescence signal in the high FRET state, E~0.85 (Figure 3.9B). 

Surprisingly, the disappearance of high FRET, an indication of strand separation (Ha 

et al., 2002; Myong et al., 2007), was followed by a period of rapid FRET fluctuations 

(marked by t2 in Figure 3.9B) which lasted 3.3 s on average (Figure 3.11). 

Analogous to the docking and pairing assay, the high FRET period where the 

incoming dsDNA binds to the RecA filament in an intact conformation can be 

attributed to events where the initiation of joint molecule formation occurs at a 

position distal to the labeled end. The distance between the dyes is insensitive to the 

propagation of joint molecule formation until the reaction proceeds to the labeled 

end. 

We measured the dwell time of the high FRET period (∆t1) which would represent the 

time taken for strand separation at the labeled end. The dwell time of the initial high 

FRET state upon incoming DNA binding, ∆t1, displayed a narrowly peaked 
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distribution (Figure 3.10A), similar to the ∆tdelay distribution observed in the previous 

docking-and-pairing assay. In addition, Nseparation, the number of rate limiting steps 

present during ∆t1 obtained by a gamma distribution fit and <∆t1> were in agreement 

with those obtained for ∆tdelay (Figure 3.10A-B). The strong correlation between the 

kinetic rates measured in these two assays suggests that strand separation in the 

incoming dsDNA and joint molecule formation with the reference ssDNA proceed 

concomitantly. 

3.3 Conclusions 

3.3.1 Formation of the initial synaptic complex 

Our observations suggest that the formation of the initial synaptic complex is 

coincident with homology recognition. The upper limit to the size of the initial 

synaptic complex, which we estimated as <14 bp, is in good agreement with the 

earlier estimate of ~15 nt as the minimum length required for homology search and 

strand exchange (Hsieh et al., 1992). The size is also consistent with the upper limit 

of 16 bp placed on the synaptic length during homology search (van der Heijden et 

al., 2008).  

Perturbations that destabilize the incoming dsDNA accelerate the formation of the 

initial synaptic complex (Lee et al., 2006). As for oligonucleotide substrates, the 

thermal breathing of duplex ends may provide preferred initiation sites for strand 

exchange. Based on the presence of single molecule time traces which can be 

categorized into two kinetically distinct populations (Figure 3.6A), we propose that 

the reaction primarily initiates from either the proximal or distal end relative to the 

fluorescent labels. Our data also shows that the preference for the ends decreases 

for longer homology lengths (Figure 3.6C inset) consistent with the idea that more 

initiation sites become available with increasing DNA homology length.  

3.3.2 Propagation of basepair exchange 

The kinetic analysis of our data for Lh 45 nt allowed us to propose a model wherein 

joint molecule formation occurs in 3bp steps. This finding provides support for a 

model in which the homologous alignment of the incoming dsDNA with the RecA-

bound ssDNA occurs in increments of 3bp and involves the local exchange of 

basepairs (Adzuma, 1992). Because of the gap between adjacent triplets observed 
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in the RecA crystal structure (Chen et al., 2008), the incoming dsDNA needs to be 

stretched locally to mediate alignment of successive triplets. The gap between 

adjacent triplets in the RecA-DNA complex might provide an explanation for the rate 

limiting step which we propose exists with the periodicity of 3bp. The distortion upon 

stretching the 3bp segment would unstack the bases at the gap and melt three 

basepairs. The newly freed triplet of nucleotides would then basepair with the triplet 

in the reference ssDNA. 

As the DNA becomes longer, the delay time increased nonlinearly (Figure 3.6C) 

indicating that joint molecule formation becomes substantially slower for longer 

homology lengths. The non-linear dependence of the delay period is possibly due to 

the effect of multiple synaptic complexes and/or DNA topology. The current two-color 

FRET assay cannot distinguish between initiation from the end versus initiation in the 

middle of the filament. Previous magnetic tweezers studies on topologically 

constrained DNA could not observe strand exchange without negative supercoiling 

and the apparent rate of strand exchange was much slower, ~2 bp/sec, indicating 

that DNA topology may pose a significant barrier to the propagation of strand 

exchange (van der Heijden et al., 2008). Another possibility for the slower global 

strand exchange rate measured is the effect of torsional stress due to the 

concomitant rotation of dsDNA and the ssDNA-RecA filament complex (Honigberg 

and Radding, 1988; Rosselli and Stasiak, 1990) which could result in the slower joint 

molecule formation rates in the case of longer homology lengths (Figure 3.6B). 

3.3.3 Dynamic interactions between DNA and RecA secondary binding site 

The secondary binding site of RecA binds to the outgoing ssDNA during strand 

exchange (Mazin and Kowalczykowski, 1998). The binding of the outgoing ssDNA to 

the secondary binding site signals the completion of strand exchange (Mazin and 

Kowalczykowski, 1996). Given that our assay can detect the completion of joint 

molecule formation (Figure 3.6A), we propose that the fluctuations in the outgoing 

ssDNA interaction which we detect after strand separation (t2 ,Figure 3.9B) might 

represent the bound state of DNA to the RecA secondary binding site.  

The structure of the three-stranded complex upon joint molecule formation remains 

ambiguous with evidence pointing to the existence of a metastable three-stranded 

structure (Folta-Stogniew et al., 2004; Voloshin and Camerini-Otero, 2004) and an 
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alternative model proposing that the outgoing ssDNA strand is stabilized by the 

RecA secondary binding site where it remains bound until dissociation (Mazin and 

Kowalczykowski, 1998). We can rule out the existence of a stable triplex structure 

since our data demonstrates that the three-stranded structure formed in the 

presence of RecA is highly dynamic with the outgoing ssDNA displaying large 

excursions in FRET. Hence, our data is best explained by a model in which, 

following the separation of the two strands of the incoming dsDNA, the outgoing 

ssDNA is relayed to the secondary binding site of the RecA filament where it remains 

bound until dissociation or until its removal is facilitated by SSB (see Chapter 4 for 

results related to the role of SSB in strand exchange).  

Because strand exchange is nearly isoenthalpic in terms of basepairing with the 

reference ssDNA and the basepairing which is lost in the incoming dsDNA, it 

remains unknown how strand exchange can be irreversible even in the absence of 

ATP hydrolysis. The dynamic nature of the outgoing ssDNA occupying the 

secondary site indicates its high conformational entropy even while it still remains 

bound to the RecA filament. We suggest that the entropy gain from the dynamic 

mode of interaction between the outgoing ssDNA and the RecA secondary binding 

site may provide a driving force for making the propagation of basepair exchange 

irreversible (i.e. unidirectional) in the absence of ATP hydrolysis.  

3.3.4 Broader implications 

Recent structural modeling of Rad51 with DNA proposed that the DNA bases were 

non-uniformly stretched with triplets being maintained in B-form configuration 

(Reymer et al., 2009) suggesting that the mechanism of strand exchange could be 

evolutionarily conserved across different recombinases. The tools and assays 

developed to study RecA mediated strand exchange can be applied to the study of 

Rad51 filaments and its accessory protein partners. Our single molecule approach 

can also be easily extended to other systems where homology or target search 

processes occur. For example, in eukaryotes, RNA interference is executed when 

small RNA-loaded RISC binds to a target mRNA guided by sequence recognition of 

7-8 nt (Ameres et al., 2007; Bartel, 2009; Wang et al., 2009). It should be possible to 

observe the initial complex formation followed by the propagation of basepairing, the 

cleavage of the target mRNA, and the release of the decay products in real time. 
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3.4 Figures 

Figure 3.1 An overview of the RecA mediated strand exchange reaction 

 

 

 

The strand exchange reaction involves multiple steps leading to the exchange of 

DNA strands between a RecA bound ssDNA and a target dsDNA containing a 

homologous site. 
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Figure 3.2 Single molecule assay to study RecA mediated strand exchange 

 

A schematic of the FRET-based strand exchange assay. The final heteroduplex 

product would have the donor (green) and the acceptor (red) in close proximity. 
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Figure 3.3 Single molecule strand exchange assay preserves reaction 

specificity 

 

A. FRET efficiency histograms with immobilized homologous and non-homologous 

DNA (Lh= 39nt) obtained after 10 min reaction. dsDNA of length 39bp was used for 

each measurement. Data was obtained from 15 imaging areas each B. Number of 

Cy3-labeled dsDNA molecules (Lh= 39bp) bound to the RecA filament (Lh= 39nt) per 

imaging area vs. time. dsDNA was added at t=0.  
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Figure 3.4 Images of donor and acceptor emission channels 

 

 

 

The green and red circles show an example of donor and acceptor spots. Scale bar 

= 5 m. 
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Figure 3.5 Confirming heteroduplex formation after strand exchange 

 

 

A. A reference ssDNA (Lh= 39nt) with an acceptor fluorophore (Cy5) internally 

labeled was immobilized. After RecA filament formation, strand exchange reaction 

was carried out using a homologous dsDNA labeled internally with a donor 

fluorophore (Cy3). A restriction site for the enzyme DdeI is present between the 

donor and the acceptor dyes such that the donor dye is released after cleavage of 

the DNA by the restriction enzyme B. CCD image of single molecules after strand 

exchange and RecA protein removal, prior to the addition of restriction enzyme (first 

panel) and after incubation of the strand exchange product with DdeI for 30 mins 

(second panel) C. Comparison of the number of FRET molecules (molecules 

exhibiting Cy5 fluorescence via FRET from Cy3) before and after the restriction 

enzyme reaction. Error bars denote the standard deviation of the number of 

molecules from multiple CCD images.  
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Figure 3.6 Real time observation of strand exchange propagation 

 

A. Single molecule time traces of donor (green) and acceptor (red) intensities 

showing docking and pairing for Lh= 39nt. Homologous dsDNA, Lh= 39bp was used 

in this measurement. In one class of events, a low FRET period of Δtdelay precedes 

the appearance of high FRET (top panel). In the other class of events, high FRET 

appears from the moment of docking (bottom panel). The cartoons above the time 

traces show the proposed reaction stages. The arrow in the bottom panel marks 

acceptor photobleaching. B. Survival probability of the initial low FRET state vs. time 

for Lh = 39 nt, 60 nt, 80 nt. dsDNA of corresponding lengths, Lh (bp), was used in 

each measurement. C. <Δtdelay> vs. Lh. A Power function fit was used as a guide. 

The population of Δtdelay=0 was not included when calculating the average. Inset 

shows fraction of molecules with Δtdelay=0 vs. Lh. Exponential fitting was used as a 

guide. Error bars are standard errors of the mean determined from three 

independent experiments. 
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Figure 3.7 Model for strand exchange propagation involving 3nt steps 

 

A. Gamma distribution fit of Δtdelay histograms for Lh= 39 nt. dsDNA of corresponding 

length, Lh=39bp, was used in this measurement. B. Number of steps, N vs. Lh. A 

linear fit of the data is shown. Inset shows the stepping rate k vs. Lh. Error bars are 

standard errors of the mean determined from three independent experiments.  
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Figure 3.8 ATP hydrolysis mediated dissociation of RecA from the nascent 

heteroduplex  

 

 

A. A schematic of the modified FRET-based docking and pairing assay. Cy3 labeled 

dsDNA (Lh= 39bp) binds to a RecA filament formed on an acceptor labeled reference 

ssDNA (Lh= 39nt) such that the distance between the dyes in the final product is 9bp. 

B. Single molecule time traces of donor (green) and acceptor (red) intensities display 

a low FRET(~0.1) upon initial binding (Δtdelay) corresponding to dsDNA docking 

followed by FRET change to a mid-FRET state (~0.4) indicating the RecA bound 

state of the heteroduplex finally followed by RecA dissociation via ATP hydrolysis 

(τdissociation) leading to a high FRET state (~0.7). The arrow in the top panel marks 

donor photobleaching and loss of FRET. C. Gamma distribution fit for the initial low 

FRET period prior to heteroduplex formation. This construct monitors propagation 

over a 17nt segment of the DNA. D. Averaged FRET trajectory for the time period, 

τdissociation and a single exponential fit for the RecA filament dissociation time. 
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Figure 3.9 Strand separation assay  

 

 

A. A schematic of the FRET-based strand separation assay. A doubly labeled 

dsDNA (Lh= 39bp) binds to a RecA filament formed on an unlabeled reference 

ssDNA (Lh= 39nt). Only the donor-labeled strand remains on the surface after the 

reaction and the acceptor-labeled outgoing ssDNA is eventually released. B. Single 

molecule time traces of donor (green) and acceptor (red) intensities display a high 

FRET period upon binding (Δt1) followed by rapid fluctuations in FRET for a period 

Δt2 as shown until disappearance of acceptor signal.  
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Figure 3.10 Strand separation kinetics  

 

 

A. Histogram of Δt1 and a fit to Gamma distribution. The population of Δtdelay=0 was 

not included when calculating the average. B. Δt1> and <Δtdelay> are similar. Error 

bars are standard errors of the mean determined by bootstrapping. 
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Figure 3.11 Histogram of Δt2 and a single exponential decay fit. 
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Chapter 4 

Protein-protein interactions facilitating DNA 

repair
3
  

No protein is an island entire of itself,  

As a piece of the continent; 

 A part of the main 

adapted from John Donne(1624) 

 

4.1 Protein interactions assist DNA repair 

The orchestration of DNA repair processes engages a variety of proteins that 

coordinate with each other to successfully complete repair at the site of DNA 

damage. In the introductory chapter (Chapter 1), I provided examples of how RecA 

filament interactions with proteins such as LexA influence the response of the cell to 

DNA damage by initiating the SOS response pathway. Here I will outline other 

examples of interactions between proteins involved in DNA repair and show how we 

can use single molecule FRET approaches to study their mechanisms. 

RecA interacts with proteins that assist in filament formation, filament disassembly 

and play key roles in assisting the strand exchange reactions. This chapter will 

provide some insights into a few examples of protein-protein interactions involving 

RecA and other accessory proteins. Most of the observations serve as a platform for 

future work. 1) RecA interactions with SSB after strand exchange completion. which 

can 2) RecA interactions with RecX – a protein involved in RecA disassembly 3) 

Interaction between a helicase (Rep) and SSB 

4.2 SSB interaction with outgoing ssDNA during post-synapsis 

4.2.1 Introduction 

Single Stranded DNA Binding protein (SSB) has both a pre-synaptic and post- 

                                                            
3
 Portions of the work in Chapter 4 have been published 

 • K. Ragunathan, C. Joo and T.Ha, “Real time observation of strand exchange reaction with high  
 spatiotemporal resolution”, Structure 19(8) 1064-73 (2011) 
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synaptic function during strand exchange. During pre-synapsis, SSB binds to single 

stranded (ss) and by virtue of being able diffuse along ssDNA via reptation (Roy et 

al., 2009; Zhou et al., 2011), SSB disrupts secondary structures and allows for 

uninterrupted assembly of RecA filaments. During post-synapsis, SSB is proposed to 

interact with the strand which is poised to depart from the three strand complex after 

basepair exchange and heteroduplex formation (Mazin and Kowalczykowski, 1996, 

1998).  

4.2.2 Single molecule measurements of SSB interaction with outgoing ssDNA 

Rapid FRET fluctuations observed in the strand separation assay persisted long 

after joint molecule formation must have finished, that is ∆t2>>∆t1 (see Chapter 3, 

Figure 3.9). Therefore, the outgoing strand remains associated with the heteroduplex 

product after base pair exchange has been completed. In order to confirm that the 

rapid fluctuations in FRET arise from conformational changes between the outgoing 

ssDNA and the nascent heteroduplex product, we used an alternative labeling 

scheme where the donor is attached to the outgoing strand and the acceptor to the 

reference strand immobilized on the surface (Figure 4.1). We reproduced the 

observation that the outgoing DNA strand remains bound to the RecA filament after 

base pairing exchange. This assay also showed the extended period of FRET 

fluctuations which we observed in the previous strand separation assay implying 

large scale relative motion between the outgoing ssDNA and the heteroduplex 

product (Figure 4.2). In addition, the lifetime of the three-stranded complex was 

identical within error for these two configurations (Figure 4.3). In comparison, 

photobleaching timescale was about an order of magnitude longer (See Appendix 

C). Furthermore, the lifetime of the three-stranded complex decreased substantially 

when SSB was added (Figure 4.4) (Mazin and Kowalczykowski, 1998). To monitor 

the removal of the outgoing ssDNA by SSB, we formed a pre-synaptic filament on a 

reference ssDNA (Lh= 80 nt) and flowed a solution containing homologous dsDNA 

along with SSB protein. Lh of 80 nt was used for the SSB analysis because an SSB 

tetramer requires a minimum of ~65 nt for binding ssDNA under our buffer conditions 

using 10 mM Mg+2 and 100 mM Na+ (Lohman and Overman, 1985).  
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4.3 RecX interacts with RecA to stimulate filament disassembly 

4.3.1 Introduction 

RecX is an E.coli protein that mediates RecA filament disassembly. The protein 

consists three tandem three helix repeats and acts as a negative regulator of the 

homologous recombination pathway. Crystal structures of RecX (Ragone et al., 

2008) and subsequent docking simulations with a RecA filament showed that the 

basic residues within RecX are important for promoting its interaction with the acidic 

portion of the RecA filament. The mechanism of RecX mediated dissociation of the 

RecA filament is not clear. One model proposes that RecX caps the filament ends 

hence promoting filament disassembly (Drees et al., 2004). Alternatively, another 

model posits that RecX can trigger filament disassembly by increasing the number of 

ends available for RecA disassembly (Ragone et al., 2008). In effect, such a model 

proposes that RecX interrupts the coupling between adjacent RecA monomers. 

Alternatively, the faster rate of RecA disassembly could be a consequence of an 

increase in the ATP hydrolysis rate mediated by RecX association with RecA. We 

sought to test these models by using our single molecule FRET platform for which 

several features have been optimized to observe RecA binding and dissociation. 

4.3.2 Preliminary single molecule data 

We first immobilized a DNA with an acceptor fluorophore at the ssDNA/dsDNA 

junction with 3’ polarity and an overhang of length, 17nt. The DNA only on gives a 

FRET value of ~ 0.8 (Figure 4.5A). In the presence of RecA and ATPɣS the FRET 

value shifts to the low FRET state resulting from RecA binding and extension of the 

ssDNA (Figure 4.5B). In control experiments, RecX does not dismantle filaments 

bound with ATPɣS. In order to observe filament formation on a short DNA strand 

(17nt in this experiment) using ATP as a co-factor, we needed to utilize a strategy of 

creating a hybrid filament (Joo et al., 2006). Briefly, we first needed to form a 

filament with RecA and ATPɣS. This results in complete filament formation along the 

ssDNA portion and the dsDNA portion. Then we washed away the excess RecA and 

ATPɣS which results in complete dissociation of the ssDNA portion of the filament 

but preserves the RecA/dsDNA filament (Figure 4.5C). This is intrinsic to the 

property of RecA filament assembly and it is unclear why filaments on duplex DNA 

are relatively more stable compared to those formed on ssDNA. We then add RecA 
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in the presence of ATP which uses the pre-formed dsDNA portion of the RecA 

filament as a nucleation cluster to initiate filament formation (Figure 4.5D).  

After forming filaments on the short DNA substrate, we added RecX together with 

RecA and ATP (since removing free RecA in solution would shift the equilibrium to 

the dissociated state in a RecX independent manner). RecX induces rapid 

disassembly of RecA filaments as evidenced by the presence of a high FRET peak 

(Figure 4.6) similar to the peak observed in the histogram with DNA only (Figure 

4.5A). Single molecule traces provide a very interesting view of the disassembly 

process. The contrast between single molecule time traces in the presence of RecA 

(Figure 4.7A) and those in the presence of RecA and RecX (Figure 4.7B) is striking. 

In the presence of RecA the DNA is maintained in a stretched conformation shifting 

the histogram to a low FRET state. In the presence of RecX, the DNA is mostly in 

the high FRET state with frequent attempts of filament formation (low FRET) and 

subsequent disassembly (high FRET). Further analysis is required to understand the 

mechanistic basis for RecX induced RecA disassembly. The results presented here 

establish a single molecule assay for testing RecX induced RecA disassembly.  

4.4 Interaction between a helicase and SSB 

4.4.1 Introduction 

Helicases play important roles in a variety of physiological contexts that include 

repair and replication. SSB is recruited to bind ssDNA during repair and replication 

and the tight binding of SSB poses barrier to the function of other proteins which 

utilize ssDNA. Rep belongs to the SF1 family of helicases and exhibits 3’->5’ 

translocation activity along ssDNA. We tested the effect of adding Rep to ssDNA in 

the presence of a bound SSB. There is no known functional interaction between Rep 

and SSB. Hence, the mechanisms of a helicase overcoming such a roadblock might 

serve as a canonical example of how a translocase might move along a ssDNA track 

in the presence of bound proteins.  

4.4.2 Preliminary single molecule FRET data 

We utilized a ssDNA with an overhang of length, 80nt and an acceptor fluorophore at 

the ssDNA/dsDNA junction. This length provides an ideal substrate SSB binding 

given that under high salt conditions SSB wraps around 65nt of ssDNA. We first 
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tested the effect of adding Rep labeled with a donor (Cy3) fluorophore. Protein 

binding results in the appearance of FRET changes (Figure 4.8A) which reflect the 

characteristic patterns observed during translocation and snapback as previously 

reported (Myong et al., 2005). We then challenged Rep by providing it with the same 

DNA substrate but this time we pre incubated the ssDNA with SSB. In this case, we 

observed a dramatic decrease in the number of events exhibiting FRET indicating 

that SSB binding to DNA excludes Rep from gaining access to the ssDNA substrate. 

However, a fraction of molecules (~5%) exhibited FRET trajectories indicative of Rep 

translocation (Figure 4.8B). Interestingly the translocation did not involve multiple 

cycles and Rep binding to ssDNA pre bound with SSB seemed exhibit one or few 

translocation events with a larger translocation periods compared to free ssDNA.  

It is likely that the number of events may be increased if we were to use ssDNA 

which is longer than 80nt to provide a docking site for Rep while SSB is still bound. 

Experiments using labeled SSB will also be required to confirm that the translocation 

events observed are bonafide events of translocation of Rep along SSB bound 

ssDNA. It is interesting that even in the presence of a bound SSB, Rep might still 

translocate along ssDNA suggesting that proteins in the path of translocation may 

not have an all or none sort of an effect but may modulate access to ssDNA while 

still permitting protein function (Honda et al., 2009). 
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4.5 Figures  

Figure 4.1 Outgoing strand assay 

 

 

 

 

A schematic shows the binding of a donor-labeled dsDNA (Lh= 39bp) to a RecA 

filament formed around an acceptor-labeled reference ssDNA (Lh= 39nt) and the 

release of the donor-labeled outgoing ssDNA.  
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Figure 4.2 Outgoing ssDNA bound to RecA exhibits rapid FRET fluctuations 

 

Single molecule time traces of donor (green) and acceptor (red) intensities exhibit 

rapid fluctuations in FRET over a period marked by Δt2 until signal disappearance 

likely due to outgoing ssDNA release.  
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Figure 4.3 Dwell time of outgoing ssDNA bound to RecA filament 

 

 

 Histogram of Δt2 and a single exponential decay fit 
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Figure 4.4 SSB assists in removal of outgoing ssDNA bound to RecA 

 

 

 

 SSB (100nM) flowed along with homologous dsDNA facilitates the removal of the 

outgoing DNA strand (Lh= 80 nt).  
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Figure 4.5 Construction of mixed RecA filaments with pre-nucleation cluster 

 

 

 

A. Schematic demonstrating the formation of RecA filaments in the presence of 

ATPɣS. B. DNA with a poly T sequence (17nt) with donor and acceptor dyes was 

immobilized on the surface. FRET histogram indicates a high FRET peak ~ 0.6 in the 

absence of protein C. Addition of RecA and ATPɣS stretches the DNA resulting in a 

shift in the FRET towards the low FRET state ~ 0.1.  
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Figure 4.6 RecX addition triggers RecA disassembly 

 

 

 

A. Schematic demonstrating the formation of hybrid RecA filaments (Joo et al., 2006) 

using a RecA pre-nucleation cluster formed on dsDNA. The presence of a low FRET 

state demonstrates that the DNA is bound by RecA B. Addition of RecX (1μM) with 

RecA (1μM) to the hybrid filament triggers filament disassembly resulting in a shift in 

the FRET histogram to the free DNA only state (Figure 4.5B) 
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Figure 4.7 Single molecule time trace of RecX mediated disassembly of RecA 

filaments 

 

 

 

A. Single molecule time trace with donor (green) and acceptor (red) intensities with 

the corresponding FRET values (blue) with RecA (1μM) and ATP in solution. B. 

Same as A, except with RecX (1μM) in solution in addition to RecA and ATP  
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Figure 4.8 Rep translocation on ssDNA in the presence of bound SSB  

 

 

 

A. Single molecule time trace with donor (green) and acceptor (red) intensities with 

the corresponding FRET values (blue) of Rep translocation along ssDNA B. Same 

as A, except with bound SSB 
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Chapter 5 

Sliding facilitates RecA mediated homology search 

During a search of homology, sliding  

of the PSC along a dsDNA molecule  

does not occur to any significant extent. 

Kenji Adzuma (1998) 

 

5.1 Introduction to the homology search problem 

While the binding affinity of free RecA monomers to ssDNA does not have a strong 

sequence dependence during presynapsis, the formation of a complex between 

ssDNA and RecA results in a sequence specific binding entity which is capable of 

searching and forming complementary basepairs at a homologous site within a 

target dsDNA (Kuzminov, 1999) containing as few as ~ 8 complementary basepairs 

(Hsieh et al., 1992).  

However, whether homology recognition within a target dsDNA occurs by 3-D 

diffusion of the RecA-ssDNA complex and iterative collisions with a target dsDNA or 

whether 1-D sliding of the filament along the target ssDNA can also facilitate 

homology search, remains unclear. Initial studies addressing this question ruled out 

a role for long range 1-D sliding along the dsDNA ( ~ several kb) (Adzuma, 1998). A 

recent study suggested that homology search occurs via intersegmental transfer 

wherein structural properties of the RecA filament allow for weak and iterative 

interactions with non-contiguous sequences of a dsDNA with emphasis on a random 

coil-like conformation for the duplex (Forget and Kowalczykowski, 2012). However, 

this study was restricted to the visualization of the end products after completion of 

strand exchange and no real time information of the homology search process was 

provided.  

Target site search involving sliding has been studied using single molecule 

approaches for a wide variety of DNA binding proteins which includes restriction 

enzymes (Bonnet et al., 2008), transcription factors (Wang et al., 2006), reverse 

transcriptases (Liu et al., 2008) DNA repair proteins such as DNA glycosylase 

(Blainey et al., 2006), mismatch repair complexes (Gorman et al., 2007) and Single 
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Strand DNA Binding (SSB) protein (Roy et al., 2009; Zhou et al., 2011). In addition, 

single molecule approaches have also been utilized to decipher details of the 

structural and functional properties of RecA (Fulconis et al., 2006; Galletto et al., 

2006; Jain et al., 2011; Joo et al., 2006; Mani et al., 2009; Shivashankar et al., 1999; 

van der Heijden et al., 2008; van Loenhout et al., 2009) and Rad51 filaments 

(Modesti et al., 2007; Yeykal and Greene, 2006). In this study we use single 

molecule FRET (Ha et al., 1996) to study the mechanism of RecA-mediated 

homology search. Our ability to observe the interaction between RecA and dsDNA 

with high spatiotemporal resolution revealed an unexpected dynamic mode of 

interaction between the dsDNA and the RecA filament. Using two and three color 

FRET measurements, we show that the dynamics observed are a consequence of 

RecA filament sliding along dsDNA. We show that sliding is primarily mediated by 

the electrostatic interactions between dsDNA and the RecA filament suggesting that 

the same structural features of the RecA filament that are involved in homology 

search via intersegmental transfer may also facilitate 1-D sliding over short length 

scales of dsDNA. Furthermore, by using sequences with short stretches of 

homology, we were able to track repeated events of homology recognition and 

basepairing in real time without full dissociation of dsDNA from the RecA filament. 

Our study demonstrates that RecA-mediated homology search serves as an 

example of how a DNA bound multi protein complex can present a vehicle for 

enabling sliding and target search process. This system could serve as a canonical 

example for other proteins (eg. telomerase and Argonaute) which are bound to 

nucleic acid sequences that act as ‘guide’ strands conferring target site specificity 

analogous to the manner in which a ssDNA within the RecA filament specifies the 

site of homology within a dsDNA.  

5.2 Results 

5.2.1 Dynamic interactions between RecA filament and non-homologous 

dsDNA  

For short (< 80 bp) homologous dsDNA substrates, homology search is rapidly 

completed (within 30 ms) once it encounters a RecA filament . To understand the 

mechanism by which the RecA filament recruits an incoming dsDNA during the 

homology search phase, we diminished the effect of complementary base pair 
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interactions to measure repeated events of homology search in the absence of 

stable product formation.  

We immobilized a partial dsDNA molecule on a passivated quartz surface (Figure 

5.1). The immobilized DNA construct consists of a ssDNA overhang region (Lfilament= 

39 nt) labeled with an acceptor dye (Cy5) at the junction. The DNA is immobilized on 

a polymer-passivated surface via a biotin-neutravidin interaction. The addition of 

RecA and ATPɣS results in the formation of a stable filament allowing us to observe 

the interactions between dsDNA and RecA since RecA dissociation is inhibited by 

the slowly hydrolyzing ATP analogue. After filament formation, we added a solution 

containing non-homologous dsDNA (LdsDNA= 39 bp) and ATPɣS while simultaneously 

removing free RecA from solution which allowed us to observe the interaction solely 

between the incoming non- homologous dsDNA (free of RecA) and single 

immobilized RecA filaments. We previously demonstrated that RecA filaments 

formed under such solution conditions are stable and can carry out the strand 

exchange reaction with a homologous dsDNA. 

Docking of non-homologous dsDNA to the RecA filament is detected as an abrupt 

appearance of fluorescence signal from the background level. After docking, we 

observed large and rapid fluctuations in FRET detected as anti-correlated changes 

of donor and acceptor intensities. The large fluctuations in FRET are indicative of 

extensive distance changes between the donor on the dsDNA and the acceptor on 

the RecA/ssDNA filament. Single molecule time traces show multiple binding and 

dissociation events suggesting that the observed interactions are transient so that 

the binding events do not result in the formation of a stable product (Figure 5.2A). 

The lifetime of the binding events is exponentially distributed with an average of 3.5 

seconds (Figure 5.2B). Filaments formed in the presence of ATP displayed the same 

large fluctuations in FRET upon docking of non-homologous dsDNA and exhibit 

comparable dissociation times to filaments formed in the presence of ATPɣS (Figure 

5.3A-B). Hence, the properties of the RecA filament are independent of the co-factor 

used and the fluctuations observed do not require ATP hydrolysis. Using a different 

length of the immobilized ssDNA (Lfilament= 50 nt or 99 nt) did not significantly change 

the lifetime of the dsDNA interaction (Figure 5.4A) while increasing dsDNA length 

resulted in an increase in the lifetime presumably due to a larger number of contacts 

between the dsDNA and the RecA filament (Figure 5.4B).  
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We measured whether the lifetime of the complex between non-homologous dsDNA 

and the RecA filament depends upon the magnesium or sodium concentration. 

Lowering Mg+2 concentration from 10 mM to 1 mM caused an ~8 fold increase in the 

lifetime of the complex (Figure 5.5A-B). Rapid FRET fluctuations remained under all 

the solution conditions tested. Eliminating negative charge from the RecA C-terminus 

(Lusetti et al., 2003) by deletion of acidic residues resulted in a longer lifetime of the 

complex between RecA filament and non-homologous dsDNA (Figure 5.6A-B). 

Overall, our results suggest that the interaction between dsDNA and the RecA 

filament is likely to be electrostatic. 

Previously, we have shown that the outgoing ssDNA, upon completion of strand 

exchange, exhibits rapid fluctuations in FRET which we attributed to the high entropy 

state of the outgoing ssDNA still remaining bound to the RecA filament. Since the 

dominant mode of interaction between the dsDNA and the RecA filament is 

electrostatic, we hypothesized that non-homologous ssDNA might also interact in the 

same manner as dsDNA bound to RecA filaments. Indeed, when we added non-

homologous ssDNA to a pre-formed RecA filament, we observed multiple binding 

and dissociation events similar to those observed with non-homologous dsDNA 

(Figure 5.7A-B). Each binding event was characterized by large fluctuations in FRET 

with lifetime of the complex between non-homologous ssDNA and the RecA filament 

(  ssDNA
Δt

 non-homologous
= 2.8 sec) was comparable to that using non-homologous dsDNA 

(Figure 5.2B). Thus, the FRET fluctuations observed as a could represent a general 

property of interaction between a DNA molecule and the pre-formed RecA filament.  

5.2.2 Sliding of RecA filament along dsDNA results in rapid FRET fluctuations 

We wanted to address the basis for the large fluctuations in FRET upon docking of 

dsDNA to the RecA filament. We considered two possible models which could 

explain our observations related to non-homologous dsDNA interactions with the 

RecA filament. 

The first model involves limited unwinding of the incoming dsDNA (Bianchi et al., 

1985) by the RecA filament resulting in separation of the duplex ends. Repeated 

melting and annealing transitions at the labeled ends of the dsDNA could in principle 

result in rapid FRET fluctuations. We tested this possibility using a dsDNA (LdsDNA= 
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39bp) labeled at one duplex end (donor and acceptor at the two opposing strands) 

so that local melting would cause FRET decrease and vice versa. Upon interaction 

of the dual labeled non-homologous dsDNA with an unlabeled RecA filament 

immobilized on the surface, we observed stable high FRET (Figure 5.8A-B) 

suggesting that separation of the duplex ends is unlikely to contribute to the large 

fluctuations in FRET that we observed in the previous assay (Figure 5.2A). Thermal 

fraying of the duplex ends, if it occurs, is likely to be faster than the time resolution of 

our measurement (30 ms). 

A second model involves 1-D sliding of the RecA filament along the dsDNA in which 

case the observed FRET changes would result from motion of the non-homologous 

dsDNA relative to the RecA filament. In order to test the sliding model, we measured 

whether changes in the length of the RecA filament would affect the time scale of 

FRET fluctuations since such a change would modulate the encounter frequency 

between the donor and the acceptor fluorophores. In contrast, conformational 

changes either within the dsDNA or the protein would presumably exhibit the same 

time scale of FRET fluctuations independent of the RecA filament length. 

Upon binding of non-homologous dsDNA We found that shorter lengths of the RecA 

filament (Lfilament = 21 nt) exhibited more rapid changes in FRET and of smaller 

amplitudes (Figure 5.9A) compared to longer lengths of immobilized ssDNA (Lfilament 

= 99 nt) which exhibited larger and comparatively slower changes in FRET (Figure 

5.9B). Using cross correlation of the donor and acceptor fluorescence intensities to 

measure the time scale of FRET fluctuations, we tested four different lengths of 

immobilized ssDNA (Lfilament = 21 nt, 39 nt, 69 nt and 99 nt) while using the same 

length of non-homologous dsDNA (LdsDNA= 39bp) for each measurement. We found 

that the average cross correlation time increases with increasing filament lengths 

(Figure 5.10A-B) consistent with a model that involves 1-D sliding motion of dsDNA 

relative to the RecA filament. Furthermore, the histogram of FRET shifted towards 

the low FRET state with increasing filament lengths (Figure 5.10C).  

To estimate the diffusion coefficient of the 1-D sliding process, we performed Monte 

Carlo simulations of dsDNA diffusing along a RecA filament (Figure 5.10D). For the 

purposes of our simulation, we treated the RecA filament as a rigid rod given its 
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large persistence length (persistence length= 784 nm) (Hegner et al., 1999). We then 

simulated time traces of donor and acceptor intensities of dsDNA bound to the 

various RecA filament lengths using different pre-assigned diffusion coefficients 

(Dslide) and then calculated the average cross correlation times for each case. By 

comparing the simulation results with the experimental data we estimated the 

diffusion constant for 1-D sliding of dsDNA relative to the RecA filament to be ~ 0.9 x 

10-3 μm2/sec or 7,700 bp2/sec.  

5.2.3 Three color experiments support sliding during homology search 

To further test the hypothesis of 1-D sliding of the RecA filament, we designed a 

three-color FRET assay. This experimental design involved an immobilized RecA 

filament labeled with two acceptor fluorophores-Cy5 and Cy7 along the ssDNA 

embedded within the filament (Figure 5.11A). The two acceptors are separated by 33 

nt ssDNA, which upon RecA binding results in a large separation and negligible 

FRET between them (Joo et al., 2006). The sliding model predicts that motion of the 

dsDNA relative to the RecA filament would result in anticorrelated changes between 

the two FRET efficiencies, one between Cy3 and Cy5 and the other between Cy3 

and Cy7 because when Cy3 on the dsDNA approaches Cy5, it should move away 

from Cy7 and vice versa. 

Following RecA filament formation on an immobilized ssDNA labeled with the two 

alternative acceptor fluorophores (Cy5 and Cy7), docking of the donor labeled non-

homologous dsDNA to the RecA filament resulted in large and rapid fluctuations in 

FRET from Cy3 to Cy5 (ECy3-Cy5) and FRET from Cy3 to Cy7 (ECy3-Cy7) (Figure 5.11B 

(bottom panel)). Consistent with the sliding model, the time trace of ECy3-Cy5 and ECy3-

Cy7 exhibits anticorrelation between the two FRET efficiencies supporting the idea 

that the Cy3 labeled non-homologous dsDNA moves between the two spatially 

separated acceptor positions. We found the timescale of fluctuations between the 

two FRET efficiencies (Txcorr-3color= 0.04 s) (Figure 5.12A) in the three color 

measurement to be similar to that measured using the previous two color assay and 

an immobilized ssDNA of length 39 nt (Figure 5.10B). The scatter plot of ECy3-Cy5 

versus ECy3-Cy7 and calculation of Pearson’s correlation coefficient for the two 

variables (rpearson= -0.6) provides further evidence for a negative association between 

ECy3-Cy5 and ECy3-Cy7 (Figure 5.12B). Hence, cumulatively the two and three color 
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FRET results support the hypothesis that the rapid changes in FRET observed in our 

assays using non-homologous dsDNA reflects the ability of the dsDNA to slide 

relative to the immobilized RecA filament.  

5.3 Discussion 

Our study establishes that sliding is a possible mechanism which can assist 

homology search mediated by RecA. In contrast to models where diffusion in 

solution alone limits the efficiency of homology search (Adzuma, 1998; Gonda and 

Radding, 1986), a 1-D sliding mechanism serves to enlarge the target site available 

to a protein upon each binding trial. Until now, there has been no example of a multi 

protein complex bound to DNA such as the RecA filament, which can present a 

vehicle for sliding and target search processes. We estimated the diffusion constant, 

Dslide to be ~ 0.9 x 10-3 μm2/sec or 7700 bp2/sec. Our measured value implies that 

under conditions typically used for in vitro strand exchange reactions with high Mg+2 

(10mM Mg+2) and interaction times between the RecA filament and dsDNA (this 

study) ranging from 0.5-10 sec (Forget and Kowalczykowski, 2012; Mani et al., 

2009), sliding would allow homology search to occur over a distance of 60-300bp 

prior to dissociation.  

We showed that the interaction between dsDNA and the RecA filament in the 

absence of stable basepairing and product formation is primarily mediated by 

electrostatics (Cazaux et al., 1998; Gourves et al., 2001). Given that the RecA 

secondary binding site plays a critical role during the initial phase of synapsis where 

it might be involved in recruiting the incoming dsDNA to the RecA filament 

(Kurumizaka et al., 1996; Kurumizaka et al., 1999), we hypothesize that the RecA 

secondary binding site may be involved in mediating 1-D sliding. The fact that the 

secondary binding site is enriched in lysine and arginine residues (Chen et al., 2008) 

is also consistent with our observation that the dsDNA-RecA filament interaction in 

the absence of homology is primarily mediated by electrostatics.  

It is likely that the same structural features of the RecA filament which enable 

intersegmental transfer (Forget and Kowalczykowski, 2012) with dsDNA, may also 

be involved in facilitating homology search via 1-D sliding. Previous reports of the 1-

D sliding motion of Rad51 filaments along dsDNA (Graneli et al., 2006) provides a 

precedent for RecA and its homologs to possess the capability of sliding along DNA. 
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Here, we demonstrate that the sliding activity we observe can have a functional role 

in the context of facilitating homology search. The next chapter (Chapter 6) 

describes how basepairing interactions can occur during sliding of dsDNA relative to 

the RecA filament. 
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5.4 Figures 

Figure 5.1 Single molecule assay to detect interactions between non-

homologous dsDNA and RecA filament 

 

 

A schematic of the single molecule FRET based assay to detect interactions 

between RecA filament and non-homologous dsDNA. After RecA filament formation 

on ssDNA (Lfilament= 39 nt) labeled with an acceptor (red), a non-homologous dsDNA 

(LdsDNA= 39 bp) labeled with a donor was added. DNA docking results in appearance 

of donor(green) signal with FRET reporting on the changes in distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

72 
 

Figure 5.2 Dynamic interactions between RecA filament and non-homologous 

dsDNA 

 

A. Single molecule time traces showing donor (green) and acceptor (red) intensities 

exhibits rapid FRET fluctuations with multiple binding and dissociation events within 

a single time trace (top panel). Corresponding FRET time traces (blue) are shown in 

the bottom panel B. Histogram of the duration of the bound state for non-

homologous dsDNA (                
     ) and a single exponential decay fit.  
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Figure 5.3 Non-homologous DNA interactions with the RecA filament are 

independent of ATP hydrolysis 

 

 

A. Single molecule time trace showing donor (green) and acceptor(red) intensities 

(top panel) and the corresponding FRET values (bottom panel) B. Histogram of the 

dwell time of DNA docking to the RecA filament and a single exponential decay fit  
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Figure 5.4 Non-homologous dsDNA interaction with RecA filament: 

Dependence on filament length, Lfilament (nt) and dsDNA length, LdsDNA (bp) 

 

 

 

A. Off-time of non-homologous dsDNA binding versus ssDNA length. RecA filament 

formation was initiated on ssDNA of different lengths followed by addition of non-

homologous dsDNA (LdsDNA= 39bp). Error bars are standard errors obtained from 

single exponential decay fitting. B. Off time of non-homologous dsDNA versus 

dsDNA length. RecA filament formation was initiated on ssDNA (Lfilament= 39nt) 

followed by addition of non-homologous dsDNA (LdsDNA= 31, 39, 45 and 60bp). Error 

bars are standard errors obtained from single exponential decay fitting. Dwell time 

for LdsDNA= 60bp represents the mean lifetime of all binding events. Exponential fit 

was used as a guide. 
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Figure 5.5 Binding time dependence on magnesium concentration 

 

 

 

A. Single molecule time traces showing donor (green) and acceptor (red) intensities 

exhibits rapid FRET fluctuations with multiple binding and dissociation events within 

a single time trace (top panel). Corresponding FRET time traces (blue) are shown in 

the bottom panel B. Histogram of the duration of the bound state for non-

homologous dsDNA (                
     ) and a single exponential decay fit with 1mM 

Mg+2 in solution.  
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Figure 5.6 Deletion of acidic residues enhances RecA affinity for non-

homologous dsDNA  

 

 

 

A. A ssDNA (Lfilament= 39nt) with an acceptor fluorophore (Cy5) at the junction was 

immobilized. After filament formation using a C terminal deletion mutant of RecA in 

the presence of ATPɣS as a co-factor, non-homologous dsDNA with a donor 

fluorophore (Cy3) was added B. Histogram of the dwell time of DNA docking to the 

RecA filament and a single exponential decay fit  
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Figure 5.7 Non-homologous ssDNA also exhibits sliding dynamics upon 

interaction with RecA filament 

 

A. A ssDNA (Lfilament= 39nt) with an acceptor fluorophore at the junction was 

immobilized. After RecA filament formation in the presence of ATPɣS as a co-factor, 

non-homologous ssDNA labeled with both a donor (Cy3) was added. B. Single 

molecule time trace showing donor (green) and acceptor(red) intensities (top panel) 

and the corresponding FRET values (bottom panel). Docking events of ssDNA to the 

RecA filament are reversible and multiple events can be observed in a single time 

trace. C. Histogram of binding events of non-homologous ssDNA and a single 

exponential decay fit.  
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Figure 5.8 Thermal breathing of DNA ends does not contribute to the observed 

fluctuations in FRET 

 

A. A ssDNA (Lfilament= 39nt) with an no fluorophore was immobilized. After RecA 

filament formation in the presence of ATPɣS as a co-factor, non-homologous dsDNA 

labeled with both a donor (Cy3) and acceptor (Cy5) fluorophores was added. The 

labeling scheme was such that the appearance of high FRET indicates the intact 

nature of the dsDNA. B. (a) and (b) Single molecule time trace showing donor 

(green) and acceptor(red) intensities (top panel) and the corresponding FRET values 

(bottom panel). Arrows represent the time at which non-homologous dsDNA docking 

occurs. FRET remains high (~0.9) until photobleaching of the acceptor. 
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Figure 5.9 Dependence of filament length on time scale of FRET fluctuation 

 

A. Single molecule traces showing donor(green) and acceptor(red) intensities (top 

panel) upon docking of non-homologous dsDNA (LdsDNA= 39bp) to a RecA filament 

assembled on a ssDNA overhang, Lfilament= 21nt. Corresponding FRET time traces 

(blue) are shown in the bottom panel. B. Same as A, except that the RecA filament is 

assembled on a ssDNA, Lfilament= 99nt. 
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Figure 5.10 Cross correlation analysis of FRET fluctuation and Monte Carlo 

simulation

 

A. Single exponential fitting of average cross correlation curves for various filament 

lengths B. Average cross correlation time, versus Lfilament. Error bars are standard 

errors of the mean determined from three independent datasets. C. FRET efficiency 

(E) histograms of single molecule traces for individual docking events of non-

homologous dsDNA to RecA filaments assembled on ssDNA, Lfilament= 21nt, 39nt and 

99nt. D. Monte Carlo simulations of RecA filament sliding were carried out as 

described in the Methods section(     experimental data (same as Figure 5.10B), 

simulation with diffusion coefficient  0.9 x 10-3 μm2/sec (    ), simulation with diffusion 

coefficient  0.09 x 10-3 μm2/sec (    ) and simulation with diffusion coefficient  9 x 10-3 

μm2/sec (    ). 
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Figure 5.11 Three color FRET observations support RecA filament sliding 

 

A. A schematic of the single molecule three color FRET assay to measure RecA 

filament sliding. ssDNA (Lfilament= 99nt) labeled with two acceptor fluorophores (Cy5- 

red and Cy7-black) with a separation of 33nt between the fluorophores, was 

immobilized on the surface. Upon docking of non-homologous donor (Cy3) labeled 

dsDNA to the pre-formed RecA filament formation, sliding predicts anticorrelated 

emissions between the two acceptors. B. Single molecule time traces of Cy3(green), 

Cy5(red) and Cy7(black) intensities (top panel). Corresponding FRET time traces of 

FRET between Cy3 and Cy5 (ECy3-Cy5-blue) and FRET between Cy3 and Cy7 (ECy3-

Cy7-grey). 
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Figure 5.12 Analysis of three color FRET measurements 

 

 

A. Normalized cross correlation plot of ECy3-Cy5 and ECy3-Cy7 averaged over 30 

molecules and a single exponential fit of the data is overlaid (black). B. Scatter plot 

of ECy3-Cy5 and ECy3-Cy7 for 30 molecules showing unique high FRET regions along 

both axes.  
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Chapter 6 

Homology recognition during sliding 

If you can't go home, there is nowhere to  

go, and nowhere is the biggest place in  

the world-indeed, nowhere is the world. 

Aleksandar Hemon (2008) 

 

6.1 Introduction to basepairing within RecA synaptic complex  

The mechanism of basepair recognition during RecA mediated homology search has 

remained enigmatic despite several efforts to understand how RecA senses 

homology. Successful recognition of homology leads to the formation of a synaptic 

complex between a homologous dsDNA and a RecA filament. There are two models 

proposed for basepair recognition 1) a triplex intermediate structure involving RecA-

ssDNA invasion at the major groove of the dsDNA requiring non Watson-Crick base 

contacts to recognize homology (Chiu et al., 1993; Hsieh et al., 1990) 2) Melting- 

annealing transitions which lead to homology recognition via Watson-Crick 

basepairing interactions (Adzuma, 1992). The key difference between the two 

models is whether initial melting of the duplex is a pre-requisite for recognition and 

basepairing.  

Chemical crosslinking methods to detect the position of the outgoing ssDNA were 

the commonly used approach to propose models for homology recognition and 

basepairing within the synaptic complex. The position of the outgoing ssDNA 

following heteroduplex product formation in turn places constraints on the topology of 

the initial interaction between the RecA filament and dsDNA. Interaction with the 

major groove would result in the released ssDNA positioned at the minor groove of 

the heteroduplex (Malkov et al., 2000) while initial interaction with the minor groove 

(or rather the absence of a major groove interaction) places the outgoing ssDNA at 

the major groove of the final heteroduplex product (Baliga et al., 1995; Podyminogin 

et al., 1995; Zhou and Adzuma, 1997). The conclusion regarding the mechanism of 

homology recognition based on the read out of outgoing ssDNA position within the 

heteroduplex product remains ambiguous.  
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Studies based on NMR measurements of the RecA filament in complex with ssDNA 

suggested that RecA induces sugar-base stacking interactions within the bound DNA 

wherein deoxyribose sugars contribute a methylene moiety that stabilizes adjacent 

nucleotides (Nishinaka et al., 1997). A change in the conformation of the sugar (via 

sugar puckering) causes basepairs within the dsDNA to flip outward which primes 

the DNA for basepair interactions with the complementary ssDNA within the RecA 

filament (Nishinaka et al., 1998). A model where basepairs flip outward to test for 

pairing interactions with the ssDNA offers partial support for the second model based 

on melting annealing transitions within the dsDNA as the mechanism that drives 

homology recognition and basepairing.  

The experimental scheme described in this chapter allows us to observe homology 

recognition and basepairing in real time and this assay may serve as a platform for 

asking future questions regarding the nature of the basepairing intermediate formed 

between RecA-ssDNA and a target dsDNA.  

6.2 Results 

6.2.1 Observing homology recognition and basepairing 

Can the sliding of RecA filament on dsDNA be a physiologically relevant activity, that 

is, can the RecA filament recognize a homologous sequence during sliding? We 

tested whether sliding might facilitate recognition and basepairing at a short 

homology site located within a target dsDNA. We embedded two repeats of a 

homologous sequence at positions HS1 and HS2 within an otherwise non-

homologous ssDNA. If the dsDNA containing a sequence complementary to the 

repeat slides back and forth between the two homologous sites (HS1 and HS2) 

present within the RecA bound ssDNA, it would support the proposal that homology 

search may be facilitated by 1-D sliding (Figure 6.1). Both HS1 and HS2 were 

complementary to a sequence in close proximity to the donor labeled end of the 

incoming dsDNA and the location of and spacing between the sites were chosen to 

be within a FRET sensitive regime (~ 20-80Å) relative to the acceptor fluorophore at 

the junction.  

We first confirmed that dsDNA docking to a RecA filament bound to a ssDNA 

homopolymer sequence (poly T, Lfilament= 50 nt) preserved the large and rapid FRET 
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fluctuations as previously observed (Figure 6.2). We then inserted two identical 6 nt 

sequences (Lh= 6 nt) at HS1 and HS2 resulted in the appearance of distinct FRET 

states in the single molecule time traces (Figure 6.3A) and a histogram of molecules 

exhibiting FRET displayed distinct peaks in contrast to the broad distribution 

observed using poly T DNA sequence (Figure 6.3B). We used a statistical approach 

based on Hidden Markov Model (HMM) analysis to make unbiased assignments of 

the various FRET states in the single molecule time traces (Joo et al., 2006). The 

resulting FRET transitions as obtained from HMM analysis of 236 molecules 

exhibiting 13020 transitions were plotted in the form of a transition density plot (TDP) 

which is a two dimensional histogram reflecting the frequency of transitions between 

different FRET states (Figure 6.4A-B). The TDP displays the presence of transitions 

between, three distinct FRET states, E ~ 0.1, 0.5 and 0.9. In order to confirm that the 

observed FRET states arise from basepairing and recognition at HS1 and HS2, we 

performed measurements where the presence of only one homology site- either HS1 

or HS2- leads to the appearance of a distinct FRET peak at either ~0.9 or ~0.5 

respectively (Figure 6.5). Hence, we assigned the highest FRET state (~0.9) 

observed in the TDP (Figure 6.4B) to basepairing and recognition at HS1 and the 

next FRET state (~0.5) to basepairing and recognition at HS2. The lowest FRET 

state, E~ 0.2 (NH) is likely to correspond to a location of the dsDNA along the RecA 

filament outside the boundary of HS1 and HS2 in a FRET insensitive region 

indicating lack of recognition and basepairing at either of the two specific homology 

sites.  

From the TDP, we can extract the transition rates between the various FRET states  

(Figure 6.4C). The use of identical sequences at HS1 and HS2 results in comparable 

dissociation rates ranging between 0.7 s-1–1.4 s-1. In contrast, the lack of homology 

when the dsDNA dwells in the low FRET state (NH) leads to consistently faster 

transition rates from NH to either HS1 or HS2 (2.8 s-1–4 s-1). Surprisingly, transitions 

between NH and the two homology sites, HS1 and HS2 are independent of each 

other indicating that sliding may involve events where the dsDNA can slide across a 

regions of homology (HS2) without engaging in recognition and basepairing. 

Transitions could also be observed between HS1 and HS2 without NH as 

intermediate indicating successful basepair recognition during transitions between 

the two homology sites. Homology recognition and basepairing at either HS1 or HS2 
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appears to be a stochastic process and we can now estimate the recognition 

probability associated with a single 6 bp homology sequence embedded within the 

target dsDNA. The conditional probability that a dsDNA present initially at NH slides 

to the HS1 position without basepairing at HS2 is given by, 

 recognition

HS1
NH->HS1

 HS2 NH  HS1

NH

NH

N
P

N N



 



 

NNH->HS1 and NNH->HS2 denote the number of transitions from NH to HS1 and HS2 

respectively. The conditional probability of recognizing HS1 given the molecule is 

initially present at NH, 
recognition

NH->HS1P  is 45%. Similarly, we can calculate the conditional 

probabilities associated with the recognition of a homology site given the DNA is 

initially bound at HS1 (48%) or HS2 (47%). We can perform the same analysis on 

DNA constructs with only one homology site (either HS1 or HS2). The TDP for single 

homology site constructs indicates the presence of peaks consistent with the FRET 

values corresponding to HS1 and HS2 (Figure 6.6). The same asymmetry in 

transition rates was observed where the rate of transition from NH to a homology site 

(either HS1 or HS2) was faster than the transition rate from HS1 or HS2 to NH due 

to basepairing at that location (Figure 6.7). 

6.2.2 Dependence of sliding on homology length 

Having shown that 6bp homology is sufficient to act as a molecular brake for the 

observed sliding behavior, we tested the effect of changing the length of homology at 

HS1 and HS2. We tested the effect of Lh= 5nt and 8nt at HS1 and HS2. The 

presence of 5bp homology at the two sites did not appear to perturb the sliding 

behavior significantly relative to the case with a homopolymer (poly T) resulting in 

fast FRET fluctuations and a broad FRET histogram which does not exhibit the 

presence of distinct FRET peaks (Figure 6.8A). In contrast 8bp, results in greater 

stability of basepairing at HS1 and HS2 resulting in distinct peaks as seen in the 

case of the 6bp homology DNA construct (Figure 6.8B). However, in contrast to the 

case where the homology length was 6bp, the presence of 8bp of homology results 

in longer dwells and rare transitions between different states precluding accurate 

analysis of the transition rates. Furthermore, the fraction of molecules exhibiting 

sliding increased with a decrease in homology length at each site consistent with the 
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fact that increase in number of complementary basepairs contributes to increased 

stability at each homology site (Figure 6.9). 

6.2.3 Orientation of dsDNA binding to the RecA filament 

Single molecule methods are useful to detect binding orientations of protein-DNA 

complexes (Rasnik et al., 2004). We tested whether labeling the 5’ end of the two 

complementary strands of the duplex (plus strand and minus strand) would result in 

similar scale of FRET fluctuations upon docking of DNA to the RecA filament (Figure 

6.10). In the event that there is no preferred binding orientation, both labeling 

positions must exhibit the same type of FRET dynamics.  

The binding of dsDNA to the RecA filament bound to a poly T (50nt) ssDNA was 

detected as large and rapid FRET fluctuations and labeling of either strand with Cy3 

at the 5’ position resulted in virtually identical FRET histograms indicating that there 

is no preference for DNA binding orientation. We then tested whether the same 

symmetry in binding is also exhibited upon 3’ end labeling of the dsDNA. The binding 

of 3’ end labeled DNA resulted in rapid FRET fluctuations and labeling either the 3’ 

end of the plus or minus strand resulted in similar FRET distributions. 

Surprisingly, the distribution of FRET values for 3’end labeled DNA was different 

from that of 5’ end labeled dsDNA. Interestingly, labeling of the 3’ end resulted in a 

larger fraction of high FRET in the resulting histogram (compared to 5’end labeling) 

implying that 3’end labeling position was in closer proximity to the acceptor dye. 

While overall DNA binding displays symmetry, there is a preferential association of 

RecA filament with the strand which is in parallel conformation relative to the DNA 

embedded within the RecA filament. This preliminary data further suggests that 

some intrinsic feature of the RecA filament bound to ssDNA could dictate the 

orientation preference of dsDNA to bind to the RecA filament.  

6.3 Discussion 

The aforementioned data strongly supports the idea that basepairing interactions can 

occur during sliding. The extended structure of dsDNA upon interaction with the 

RecA filament introduces sugar-base stacking interactions that allows basepairs 

within the dsDNA to flip outward (Shibata et al., 2001) permitting frequent testing for 

homology during the 1-D sliding process. We attribute a physiologically relevant role 
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to the 1-D sliding process by demonstrating the capability of RecA filaments to 

engage in homology recognition and basepairing. Furthermore, we now show that 6 

bp of homology is sufficient to represent the minimum recognition unit for RecA 

mediated homology search thus revising previous estimates of 8bp being the 

minimum unit of homology recognition (Hsieh et al., 1992). In the absence of 

additional homology beyond 6bp, the synaptic complex will quickly disintegrate (after 

~1 sec) and the search for homology continues until full dissociation of dsDNA from 

RecA filament.  

The mechanisms for target search mediated by proteins are not mutually exclusive 

and can involve combinations of sliding and 3-D diffusion based mechanisms 

(Gorman and Greene, 2008). We propose that while intersegmental transfer serves 

to bring non-contiguous segments of dsDNA close to each other, 1-D sliding during 

homology search could help RecA reorganize the initial synaptic complex in cis 

without the need to fully dissociate and rebind to a nearby homology site located 

within a distance of a few hundred basepairs. Given the ability of RecA to slide 

between nearby homology sites (Figure 6.3), sliding could serve as a mechanism to 

rapidly scan neighboring sequences for the existence of an optimal seed sequence 

from which basepair propagation and heteroduplex extension reactions can proceed.  

The asymmetry in FRET between 5’ and 3’ labeling positions suggests that the 

polarity of the ssDNA bound by RecA may dictate the binding orientation of a 

dsDNA. RecA filament might have a preferential interaction with the strand having 

polarity which is parallel to the immobilized ssDNA. The strand with parallel polarity 

to the immobilized ssDNA is the strand that will eventually be the outgoing ssDNA 

after synapse formation at a homologous site. An asymmetric interaction with one of 

the two strands in a duplex has previously reported in the case of a viral packaging 

motor (Φ29) (Aathavan et al., 2009) where charge neutralization along 5’-3’ strand 

stalls dsDNA packaging while the same perturbation along the 3’-5’ strand has no 

significant effect on DNA packaging capabilities. One possible explanation is that the 

asymmetric interaction between the two strands of the dsDNA in the case of RecA 

may serve to stabilize the ‘soon-to-be-released’ outgoing ssDNA. This may result in 

the complementary DNA (incoming ssDNA) being available for basepairing 

interactions with the reference ssDNA embedded within the RecA filament. 
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6.4 Figures  

Figure 6.1 Testing basepairing during RecA filament sliding

 

 

A schematic of the single molecule FRET based assay to detect homology 

recognition between RecA filament and dsDNA. After RecA filament formation on 

ssDNA (Lfilament= 50 nt) labeled with an acceptor (red), a dsDNA (LdsDNA= 39 bp) 

labeled with a donor was added. Docking at an arbitrary location along the RecA 

filament (NH) results in low FRET. Recognition of homology site 1 (HS1) or 

homology site 2 (HS2) results in the appearance distinct FRET states depending on 

their relative distances from the acceptor. Transitions between the three states are 

shown with their corresponding rates. 
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Figure 6.2 Non-homologous dsDNA interaction with a poly T (Lfilament= 50nt) 

coated by RecA 

 

 

 

A. A poly T ssDNA (Lfilament = 50nt) with an acceptor fluorophore (Cy5) at the junction 

was immobilized. After RecA filament formation in the presence of ATPɣS as a co-

factor, non-homologous dsDNA with a donor fluorophore (Cy3) was added. Single 

molecule time trace showing donor (green) and acceptor(red) intensities (top panel) 

and the corresponding FRET values (bottom panel) B. Histogram of the all single 

molecule time traces exhibiting FRET displays a broad distribution 
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Figure 6.3 Non-homologous dsDNA interaction with a HS1 and HS2 (Lh= 6nt) 

coated by RecA 

 

 

 

A. Single molecule time traces showing donor (green), acceptor (red) intensities (top 

panel) and the corresponding FRET trace (blue) (bottom panel) for immobilized 

ssDNA with two identical 6bp homology sequences at HS1 and HS2 in a poly T 

sequence background. Idealized time trajectory obtained from HMM analysis is 

overlaid (black). B. Normalized histograms of time traces exhibiting FRET for 

docking of dsDNA to immobilized ssDNA with two identical 6bp homology sequences 

(HS1 and HS2) 
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Figure 6.4 Testing basepairing during RecA filament sliding 

 

 

A. Schematic of the transitions between different basepairing states with numbers 

denoting the transition rates from one state to another B. Transition density plot 

(TDP) of all FRET transitions for immobilized ssDNA with two 6bp repeat sequences 

(HS1 and HS2) from 236 molecules exhibiting 13020 transitions. C. Forward and 

reverse transition rates between HS1,HS2 and NH states are displayed. Error bars 

denote standard errors of the mean measured for each set of transitions. 
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Figure 6.5 Effect of a single 6bp homology site (HS1or HS2) in a poly T 

sequence background 

 

 

 

A. A ssDNA with a single 6bp homology site HS1 (Lfilament= 50nt) with an acceptor 

fluorophore (Cy5) at the junction was immobilized. Homology recognition and 

basepairing at HS1 would result in high FRET due to the close proximity of the donor 

and acceptor dyes B. Single molecule time indicate FRET transitions (blue) 

predominantly between high and low FRET states with an overlay of the idealized 

time trajectories (black) via HMM analysis. C. Same as A, except that homology 

recognition and basepairing at HS2 would result in FRET lower than HS1 due to its 

distal location from the acceptor fluorophore. D. Same as B except that transitions 

are between medium and low FRET states with an overlay of the idealized time 

trajectories (black) via HMM analysis. E. Histogram of single molecule time traces 

exhibiting FRET displays the presence of a distinct high FRET state due to the 

presence of a single 6bp homology site (HS1) in close proximity to the acceptor. F. 

Same as F, with FRET histogram displaying a distinct mid FRET state due to the 

presence of a single 6bp homology site (HS2) at a position distal to the acceptor. 
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Figure 6.6 Transition density plot for single 6bp homology ssDNA (either HS1 

or HS2) 

 

 

A. A ssDNA with a single 6bp homology site HS1 (Lfilament= 50nt) with an acceptor 

fluorophore (Cy5) at the junction was immobilized. Homology recognition and 

basepairing at HS1 would result in high FRET due to the close proximity of the donor 

and acceptor dyes upon docking of dsDNA. B. Transition density plot (TDP) of all 

FRET transitions for immobilized ssDNA with two 6bp repeat sequences (HS1 and 

HS2) from 236 molecules exhibiting 13020 transitions. C. A ssDNA with a single 6bp 

homology site HS2 (Lfilament= 50nt) with an acceptor fluorophore (Cy5) at the junction 

was immobilized. Homology recognition and basepairing at HS2 would result in 

FRET lower than HS1 due to its distal location from the acceptor fluorophore. D. 

Transition density plot (TDP) of all FRET transitions for immobilized ssDNA with two 

6bp repeat sequences (HS1 and HS2) from 236 molecules exhibiting 13020 

transitions. 

 

 

 

 

A
B

C D



 
 

95 
 

Figure 6.7 Summary of transition rates for single 6bp homology site ssDNA 

 

 

 

Forward and reverse transition rates between HS1 and NH and also HS2 and NH 

states are displayed. Error bars denote standard errors of the mean measured for 

each set of transitions. 
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Figure 6.8 Dependence of homology length at HS1 and HS2 homology sites 

 

 

 

A. Single molecule time traces showing donor (green), acceptor (red) intensities (top 

panel) and the corresponding FRET trace (blue) (bottom panel) for immobilized 

ssDNA with two identical 5bp homology sequences at HS1 and HS2 in a poly T 

sequence background. B. Normalized histograms of time traces exhibiting FRET for 

docking of dsDNA to immobilized ssDNA with two identical 5bp homology sequences 

(HS1 and HS2) C. Single molecule time traces showing donor (green), acceptor 

(red) intensities (top panel) and the corresponding FRET trace (blue) (bottom panel) 

for immobilized ssDNA with two identical 8bp homology sequences at HS1 and HS2 

in a poly T sequence background. D. Normalized histograms of time traces exhibiting 

FRET for docking of dsDNA to immobilized ssDNA with two identical 8bp homology 

sequences (HS1 and HS2)  
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Figure 6.9 Fraction of sliding molecules versus homology length 

 

 

 

 

The fraction of molecules exhibiting at least one FRET fluctuation versus the length 

of homology at HS1 and HS2 homology sites.  
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Figure 6.10 RecA filament exhibits preference for binding parallel strand 

 

 

A. Normalized histogram of FRET events observed upon binding of 5’ donor labeled 

dsDNA. DNA is labeled at the 5’ end of the plus strand or its complementary minus 

strand. B. Normalized histogram of FRET events observed upon binding of 3’ donor 

labeled dsDNA. DNA is labeled at the 3’ end of the plus strand or its complementary 

minus strand 
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Chapter 7 

Four color FRET study of RecA strand exchange4 

The real voyage of discovery consists  

of not in seeking new landscapes  

but in having new eyes. 

Marcel Proust (1913) 

 

7.1 Introduction 

In Chapter 3 of the thesis, the kinetics of strand exchange reaction were measured 

using a two color FRET approach. However, the measurement of the reaction 

kinetics was based on the assumption that strand exchange reactions primarily 

initiated from the ends where partial melting of the dsDNA by thermal fluctuations 

would bias initiation events to primarily initiating from the dsDNA ends. We attributed 

the absence of linearity in the time for longer DNA lengths to complete strand 

exchange to the existence of multiple initiation sites with variable reaction kinetics 

that skew the observed rate distribution. To test whether there is in fact an intrinsic 

preference for an initiation site and measure the correlation of in strand exchange 

reaction between the initiating end of the DNA and the end where the reaction 

proceeds to completion, we performed a four color FRET measurement (see also 

Chapter 2 for detailed description of Experimental Methods).  

7.2 Results 

7.2.1 Correlating reaction completion at both ends of the duplex  

In conventional two color FRET experiments, it was not possible to correlate the 

kinetics of events at the two ends of the dsDNA undergoing strand exchange as they 

are spatially separated by a distance which is well beyond the FRET range (1-

10nm). Hence, we implemented a “dual FRET” scheme, where two independent 

FRET pairs measure the correlation between two spatially separated events. For our 

                                                            
4 Parts of Chapter 7 have been published 

 • Lee, J., S. Lee, K. Ragunathan, C. Joo, T. Ha and S. Hohng, "Single-molecule four-color FRET", 
Angew. Chem. Int. Ed. 49(51), 9922-9925 (2010) 
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measurement, a partial duplex DNA labelled with two acceptors (Cy5 at the junction 

and Cy7 at the terminal end of the ssDNA) of a single-strand region was immobilized 

on a polymer-coated quartz surface. After incubating the sample for 15 minutes with 

RecA and ATPγS to form a RecA filament, we injected a DNA duplex, whose 

homologous strand is labelled with two donor dyes (Alexa488 and Cy3) at both ends. 

Alexa488/Cy5 and Cy3/ Cy7 FRET pairs are expected to report on the completion of 

strand exchange events at both ends (Figure 7.1A). The appearance of high FRET 

(high acceptor signal) at either end indicates the completion of strand exchange at 

the labelled end. 

Molecules that undergo strand exchange could be classified into those which exhibit 

a delay at one or both ends of the DNA and those that exhibit no delay at either end. 

We could broadly classify the molecules we observed into four categories: (Figure 

7.1B) Type I (46 % of molecules) which did not exhibit any delay between docking 

and completion of strand exchange at both ends, Type II (18 %) which showed a 

delay at both ends, and Type III (18 %) and IV (18 %) which showed a delay only at 

one of the two ends. The distribution of dwell times of the delay at either or both 

ends of the dsDNA demonstrates that strand exchange can be initiated either from 

the middle or the ends of the duplex molecule (Figure 7.2A).  

We also plotted the relative distribution of delays at both ends. Events with no delay 

time were arbitrarily assigned to 0.01 s in this plot for displaying the data on a log-log 

plot. Events of type II (molecules which have delays in completing strand exchange 

at both ends) exhibit delay times prior to completion of the reaction. An important 

aspect of this data is the fact that the delay times are correlated with respect to the 

time it takes for the completion of strand exchange at the two DNA ends. It is also 

noteworthy that strand exchange is completed more slowly when it is initiated from 

the middle than when it is initiated from the ends (Figure 7.2B). Our results 

demonstrate that the initiation of strand exchange can occur from the ends of DNA 

(Types II and III), or from the middle (Type IV). This conclusion could not be reached 

from two-color FRET measurements since it was not possible to monitor events at 

the two ends of single RecA synaptic complexes. The existence of Type I species 

where both ends completed strand exchange upon docking was also unexpected.  
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7.3 Discussion 

Dual FRET four color measurements reveal a number of surprising observations 

which two-color FRET cannot provide (Ragunathan et al., 2011) : 1) Events are 

completed more slowly compared to those which initiated from the ends (Figure 

7.2A). 2) Strand exchange events that initiated from the middle showed a strong 

correlation between the two delay times (Figure 7.2B). It is clear that more 

systematic studies varying DNA sequence, length and labelling positions would be 

needed for a complete understanding of this complex process. Our measurements 

demonstrate the power of multi-dimensional analysis offered by four-color 

measurements in probing the complexity of biological processes. 

 

7.4 Future questions 

Four color measurements provide a unique tool to measure the correlation between 

the various processes that occur during strand exchange reaction. 1) Labelling the 

double strand DNA at internal positions can allow for correlation of basepair 

exchange at the ends and then allow us to draw a time line of events of the reaction 

progressing towards the middle.2) Labelling of the outgoing strand can allow us to 

visualize its release while simultaneously monitoring reaction completion. This 

measurement will provide direct conformation for the model proposed in Chapter 3 

where outgoing strand release is uncorrelated from heteroduplex formation 3) The 

same labelling scheme for monitoring the outgoing strand may also help visualize 

the role of SSB in the strand exchange reaction by monitoring the FRET change 

resulting from SSB binding to the outgoing ssDNA. 
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7.5 Figures  

Figure 7.1 RecA strand exchange via four color FRET 

 

 

A. Schematic diagram of the experiments. B. Representative fluorescence intensity 

time traces of strand exchange. In each plot, top panel shows the intensity trace of 

Alexa488 (blue lines), and that of Cy5 (red lines) at 473-nm excitation and bottom 

panel shows Cy3 (green lines), and Cy7 (gray lines) signals at 532-nm excitation. 
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Figure 7.2 Distinct kinetic pathways with different reaction rates 

 

A. Cumulative probabilities of delay times of each type with each delay time being 

fitted by single exponential function. B. Relative distribution of delay times at both 

ends of the synaptic complex. Each data point is represented by Gaussian peak, 

each line is represented as the population distribution of data point.  
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Appendix A 

Experimental procedures 

Listed below are experimental procedures used during the course of this thesis. 

A.1 Strand exchange measurements 

Acceptor labeled reference ssDNA molecules were immobilized on the passivated 

surface by means of a biotin-neutravidin interaction. After washing away excess of 

acceptor molecules, the reference ssDNA was incubated with 1μM RecA (New 

England Biolabs) and 1mM ATPγS (Calbiochem) in an incubation buffer containing 

25mM Tris Acetate pH 7.5, 100mM Sodium Acetate and 1mM Magnesium Acetate. 

In some cases, 1mM ATP was used instead of ATPγS. After incubation for 15 

minutes to ensure complete filament formation on the reference ssDNA molecules, 

the buffer in the chamber was exchanged with a solution of homologous 500pM 

dsDNA and 1mM ATPγS in a strand exchange buffer (25mM Tris Acetate pH 7.5, 

100mM Sodium Acetate, 10mM Magnesium Acetate) supplemented with an oxygen 

scavenging system (1mg/mL glucose oxidase, 0.8% glucose, 0.04mg/mL catalase 

and 3mM Trolox). Imaging was initiated as soon as the buffer exchange was 

complete. All measurements were carried out at room temperature (23±1°C). In 

addition to the above components, we also added SSB (a generous gift from Dr. 

T.M. Lohman, Washington University) depending on the experimental scheme. 

A.2 Restriction enzyme assay to test for heteroduplex formation 

After joint molecule formation (Lh= 39nt), we removed RecA from the DNA by 

exchanging the solution in the imaging chamber with a buffer containing no 

magnesium (10mM Tris-Cl, 50mM NaCl, pH 8.0). The restriction enzyme DdeI (New 

England Biolabs) was suspended in the vendor supplied reaction buffer and flowed 

into the channel containing the DNA. After an incubation period of 30 mins at 37ºC, 

we counted the number of molecules that remained bound to the surface. 

Appropriate controls were carried out to ensure that there was no non- specific 

cleavage activity under the conditions used. 
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A.3 DNA preparation 

DNA oligos used in our measurements were purchased from Integrated DNA 

Technologies (IDT). The oligos were suspended in T50 buffer (10mM Tris-Cl, 50mM 

NaCl, pH 8.0). Double strand DNA was prepared by mixing complementary DNA 

molecules and heating to 90⁰C followed by slow cooling to room temperature over a 

period of 2 hours. dsDNA was purified from free ssDNA using a 12% native PAGE 

gel to ensure the absence of free ssDNA in our DNA preparations. The partial duplex 

DNA molecules for immobilization were prepared by annealing with the biotin_DNA 

sequence All DNA molecules were labeled at the terminal ends (5’ or 3’) with Cy3 or 

Cy5 (labeling performed by IDT) as specified in the experimental scheme. For 

internally labeled DNA oligos, Cy3 N-hydroxysuccinimido (NHS) ester and Cy5 NHS 

ester (GE Healthcare) were internally labeled to dT of ssDNA via a C6 amino linker 

(IDT).  

A.4 Cleaning and passivation of quartz and glass slides 

Visualizing single molecules in a reliable way requires the preparation of slides which 

are free of auto fluorescent impurities and also are passivated to repel the non-

specific binding of labeled protein and nucleic acids. 

Methods for passivation of slides involve the use of Bovine Serum Albumin (BSA) 

(Figure A.1A) or Polyethylene glycol (PEG) (Figure A.1B). In general, PEG surfaces 

are more hydrophobic and suppress non-specific binding to a larger degree 

compared to BSA coated surfaces (A.6.1A). However, the preparation of BSA coated 

surfaces is convenient and may be used in the case of experiments involving the 

visualization of nucleic acids which in general do not non-specifically adsorb to the 

surface as much as proteins. 

Cleaning slides involves the use of acetone and a high molar solution (>1M) of 

potassium hydroxide to strip the quartz surface of impurities and also activate 

functional moieties on the glass surface for subsequent chemistry with PEG for 

surface passivation. There are several variations of this protocol primarily arising 

from differences in the molarity of KOH used and at least one procedure to my 

knowledge recommends the use of saturated KOH solution in ethanol as a cleaning 

agent. 
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The procedure to clean slides is as follows: 

1. Sonicate slides in a Teflon container with acetone for 20 mins.  

2. Take the container out. Dispose of acetone. Rinse with MilliQ water 

3. Fill containers with 1M KOH and sonicate for 20 mins 

4. Rinse slides with MilliQ water and sonicate with water for 10 mins. 

5. Burn slides thoroughly for about one minute to ensure that residual impurities are 

completely eliminated.  

6. Cool it down by blowing nitrogen in or let it sit at room temperature for about 10 

mins. 

The same sequence of steps needs to be followed to clean glass coverslips. 

If using BSA to passivated slides, the slides can be assembled and BSA labeled with 

biotin can be flowed into imaging chambers and it will non-specifically coat the slide 

surface.  

If using PEG to passivated slides, subsequent procedures to activate the quartz 

surface for subsequent reaction with a PEG-NHS ester need to be followed. 

1. Sonicate cleaned quartz slides and coverslips in methanol for ~ 20 mins 

2. Incubate with a 1% (v/v) solution of amino silane in methanol and acetic acid 

which serves to functionalize the quartz surface with amine groups. 

3. After 20 mins, rinse the surface with water and methanol. 

4. Prepare a solution of mPEG and biotin PEG which are both modified with reactive 

NHS ester groups that form a covalent linkage with the amine coated quartz surface. 

The ratio of biotin PEG is typically 1-3% of the mPEG used. 

5. Coat the desired area of the quartz imaging surface slide with the solution 

prepared in step 4 and incubate for 3-4 hours 

6. Wash slides and store in vacuum at -20⁰C. Assemble slide and coverslip prior to 

use. 
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A.5 Figures and Tables 

Figure A.1 Passivation of single molecule imaging surface 

 

A. Glass slide after cleaning is coated with BSA tagged with biotin. This is followed 

by addition of neutravidin and immobilization of the biotin tagged molecule of interest 

B. In the case of slides passivated with polyethylene glycol (PEG), slides are 

activated with an amine modifier following which a reaction with NHS ester modified 

PEG, leads to passivation of the imaging surface. Addition of neutravidin is followed 

by immobilization of biotin tagged molecules of interest 
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Table A.1 DNA sequences used for strand exchange experiments 

Name DNA sequence (5’ -> 3’) Experiment 

biotin_DNA 
/Biotin/TGG CGA CGG CAG CGA 
GGC/Cy5/ 

For Reference 
ssDNA 
immobilization 

21+_ reference 
CTT TTC ATC ACG TTG TTA GAT GCC 
TCG CTG CCG TCG CCA 

Lh= 21 

21- ATC TAA CAA CGT GAT GAA AAG  Incoming DNA 

21+ CTT TTC ATC ACG TTG TTA GAT Outgoing DNA  

31+_ reference 

ATG AGC GCC ACT TTT CAT CAC GTT 
GTT AGA TGC CTC GCT GCC GTC GCC 
A 

Lh= 31 

31+ 
ATG AGC GCC ACT TTT CAT CAC GTT 
GTT AGA T 

Incoming DNA 

31- 
ATC TAA CAA CGT GAT GAA AAG TGG 
CGC TCA T 

Outgoing DNA 

C39+_reference 

TTT ACT TGT ACT TCA TTC ATT CAC 
ATT CCT ATC ATG TTT GCC TCG CTG 
CCG TCG CCA 

Lh= 39  
(sequence 1) 

T30 
C39+_reference 

T30 TTT ACT TGT ACT TCA TTC ATT 
CAC ATT CCT ATC ATG TTT GCC TCG 
CTG CCG TCG CCA 

For template 
DNA length 
effect, 69nt 

T60 
C39+_reference 

T60 TTT ACT TGT ACT TCA TTC ATT 
CAC ATT CCT ATC ATG TTT GCC TCG 
CTG CCG TCG CCA 

For template 
DNA length 
effect, 99nt 

172 
C39+_reference 

T78 GAG ACT ACG TAC CAG GTA GTT 
ACG T31 TTT ACT TGT ACT TCA TTC 
ATT CAC ATT CCT ATC ATG TTT GCC 
TCG CTG CCG TCG CCA 

For template 
DNA length 
effect, 172nt 

C39+ 
TTT ACT TGT ACT TCA TTC ATT CAC 
ATT CCT ATC ATG TTT 

Incoming DNA 

C39- 
AAA CAT GAT AGG AAT GTG AAT GAA 
TGA AGT ACA AGT AAA 

Outgoing DNA  

K39+_reference 

ATG AAC GTC GCG GGT GAT CTG AAT 
ATC AAT CTC TAA GCT GCC TCG CTG 
CCG TCG CCA 

Lh= 39 
(sequence 2) 

K39+ 
ATG AAC GTC GCG GGT GAT CTG AAT 
ATC AAT CTC TAA GCT 

Incoming DNA 

K39- 
AGC TTA GAG ATT GAT ATT CAG ATC 
ACC CGC GAC GTT CAT 

Outgoing DNA  

K39+ dissociation 

TGG CGA CGG CAG CGA GGC T20 ATG 
AAC G/Cy5-dT/C GCG GGT GAT CTG AAT 
ATC AAT CTC TAA GCT T5 

ATP mediated 
RecA 
dissociation 

K39- dissociation 
AGC TTA GAG ATT GAT ATT CAG A/Cy3-
dT/C ACC CGC GAC GTT CAT 

ATP mediated 
RecA 
dissociation 



 
 

117 
 

Table A.1 cont. 

45+_reference 

GCA TAC ATG AAC GTC GCG GGT GAT 
CTG AAT ATC AAT CTC TAA GCT GCC 
TCG CTG CCG TCG CCA 

Lh= 45 

45+ 
GCA TAC ATG AAC GTC GCG GGT GAT 
CTG AAT ATC AAT CTC TAA GCT 

Incoming DNA 

45- 
AGC TTA GAG ATT GAT ATT CAG ATC 
ACC CGC GAC GTT CAT GTA TGC 

Outgoing DNA  

60+_reference 

ATC TAA CAA CCT GAT GAA AAG ATG 
AAC GTC GCG GGT GAT CTG AAT ATC 
AAT CTC TAA GCT GCC TCG CTG CCG 
TCG CCA 

Lh= 60  

60+ 

ATC TAA CAA CCT GAT GAA AAG ATG 
AAC GTC GCG GGT GAT CTG AAT ATC 
AAT CTC TAA GCT 

Incoming DNA 

60- 

AGC TTA GAG ATT GAT ATT CAG ATC 
ACC CGC GAC GTT CAT CTT TTC ATC 
AGG TTG TTA GAT 

Outgoing DNA  

70+_reference 

CTT ACC GAA CTG AAC TCT GGC TAA 
TGT CTA AAT GAA CGT CGC GGG TGA 
TCT GAA TAT CAA TCT CTA AGC TGC 
CTC GCT GCC GTC GCC A 

Lh= 70 

70- 

AGC TTA GAG ATT GAT ATT CAG ATC 
ACC CGC GAC GTT CAT TTA GAC ATT 
AGC CAG AGT TCA GTT CGG TAA G 

Incoming DNA 

70+ 

CTT ACC GAA CTG AAC TCT GGC TAA 
TGT CTA AAT GAA CGT CGC GGG TGA 
TCT GAA TAT CAA TCT CTA AGC T 

Outgoing DNA  

80+_reference 

TTC ACC TTT AAT CTT TAT ACA CGT 
TCT TCT CAC CAG CCA GTT CTT ATC 
CGT CAA TAT TTA CTT CTC TAT CAA 
CTA CCA ATG CCT CGC TGC CGT CGC 
CA 

Lh= 80 

80- 

ATT GGT AGT TGA TAG AGA AGT AAA 
TAT TGA CGG ATA AGA ACT GGC TGG 
TGA GAA GAA CGT GTA TAA AGA TTA 
AAG GTG AA 

Incoming DNA 

80+  

TTC ACC TTT AAT CTT TAT ACA CGT 
TCT TCT CAC CAG CCA GTT CTT ATC 
CGT CAA TAT TTA CTT CTC TAT CAA 
CTA CCA AT 

Outgoing DNA  

2X 6bp pdT 

TTT TTT TTT TTT TTT TTT TTT TTT TTT 
TTT TTT GTT CAT TTT TTG TTC ATG 
CCT CGC TGC CGT CGC CA 

HS1 and HS2 
6bp homology 

1X 6bp end pdT 

TTT TTT TTT TTT TTT TTT TTT TTT TTT 
TTT TTT TTT TTT TTT TTG TTC ATG CCT 
CGCTGC CGT CGC CA 

HS1 6bp 
homolology 
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Table A.1 cont. 

1X 6bp mid pdT 

TTT TTT TTT TTT TTT TTT TTT TTT TTT 
TTT TTT GTT CAT TTT TTT TTT TTG CCT 
CGCTGC CGT CGC CA 

HS2 6bp 
homolology 

2X 5bp pdT 

TTT TTT TTT TTT TTT TTT TTT TTT TTT 
TTT TTT TTT TTC ATT TTT TTC ATG CCT 
CGCTGC CGT CGC CA 

HS1 and HS2 
5bp homology 

2X 8bp pdT 

TTT TTT TTT TTT TTT TTT TTT TTT TTT 
TTA CGT TCA TTT TTT ACGTTC ATG 
CCT CGC TGC CGT CGC CA 

HS1 and HS2 
8bp homology 

poly T50 T50 GCC TCG CTG CCG TCG CCA poly T DNA 
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Appendix B 

Analysis methods 

B.1 FRET calculation 

FRET between two fluorophores serves as a spectroscopic ruler to measure relative 

distance changes within or between two molecules. The efficiency of energy transfer 

(E) displays a distance dependence given by,  

6

0

1

1















R

R
E  

where R is the separation between the donor and the acceptor, and R0 is known as 

Förster radius which depends on the fluorophore pair which is used. This value can 

be independently calculated by knowledge of the fluorophore properties .  

  nmJnR D
6

1
4217

0 )()10785.8(    

where D is the donor quantum yield in the absence of the acceptor, n is the 

refractive index of the medium and  is the orientation factor for the dipole-dipole 

interaction. 2 is estimated to be 2/3 for freely rotating dipoles. J() is the integral of 

the spectral overlap between the donor emission and the acceptor absorption.  

For the typical fluorophores we use, Cy3 and Cy5, the value of R0 is ~ 54Ǻ. 

In our single molecule measurements however, the information which we have is the 

donor and acceptor intensities and their ratio provides an approximation for the 

energy transfer efficiency,  

DA

A

II

I
E
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where, IA and ID represent the intensities of the donor and acceptor fluorophores 

respectively.  



 
 

120 
 

B.2 Corrections for single molecule FRET data 

When we measure the intensities of the donor and acceptor fluorophores there are 

different contributions which we need to account for.  

B.2.1 Leakage correction from donor to acceptor channel 

 Depending on the dichroic used, there may be leakage from the donor channel to 

the acceptor channel which needs to be subtracted. The leakage can be measured 

as the remaining signal in the acceptor channel after acceptor photobleaching. 

Donor leakage correction factor (ΔID->A), 

D

A
AD

I

I
I  

 

We can then correct the raw acceptor intensity obtained through the measurement in 

the following manner,  

DADAcorrectedA IIII  )(

 

For the typical fluorophores, Cy3 and Cy5 and the dichroics we use, the leakage 

correction factor is ~ 15-18%. 

B.2.2 Gamma factor correction 

In order to correct for differences in quantum yields between fluorophores, 

differences in transmission efficiencies in the optics and difference in detection 

efficiency of the emissions from the various dyes, we use a scaling factor referred to 

as gamma correction factor.  

j

i
ij

I

I




  

DI  and AI  represents the change in donor and acceptor intensity when the 

molecule undergoes photobleaching or a change in conformation which produces a 

change in FRET. 
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B.2.3 Measuring FRET for more than two fluorophores 

The approximation mentioned above for calculating FRET is valid when there is only 

one donor and one acceptor. However, in the event that there are three fluorophores 

in close proximity with three possible FRET interactions (see Chapter 2 for more 

details), we need to modify our scheme for FRET calculation (Lee et al., 2010a). This 

situation involves using an alternating laser excitation scheme to independently 

excite different FRET pairs.  

 

We can obtain 34E  as follows: 

43
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At green excitation, we can measure the fluorescence intensities of Cy3, Cy5, and 

Cy7 and using 34E  obtained at 633-nm laser excitation, we obtain 23E  and 24E  as 

follows: 
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Further modification of the above equation is required in the case where there are 

four fluorophores. In the event that Cy5 and Cy7 dyes are far away from each other 

with no significant FRET interaction (E34 ~0), then E24 and E23 can be simply 

calculated as the ratio of acceptor intensity for each fluorophore divided by the total 

intensity.  

B.3 Gamma distribution fitting 

One of the analysis methods used for single molecule data to describe the 

distribution of rates from kinetics measurements is the gamma distribution fit (Moffitt 

et al., 2010). This method of analysis has been useful to extract information 

regarding the fundamental step size for different translocases (Myong et al., 2007; 

Yildiz et al., 2003; Yildiz et al., 2004).  
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This equation can be used under the assumption that the reaction consists of N 

steps from start to finish of the form: 

and the distribution of rates for the N irreversible steps in this process can be 

described by the equation, 

delay
tk

eN
delay

ty


 1

 

This equation is constrained by two free parameters, N and k which provide 

information regarding the number of steps in the reaction and the rate for each step 

(which by definition must be identical).  

B.4 Dwell time analysis and Hidden Markov Models 

Proteins and nucleic acids undergo conformational changes which translate into 

changes in FRET efficiency. We can observe the transitions between the different 

FRET states in real time. To learn about mechanistic details of a system we can 

measure the time that a molecule spends in each state and measure how the dwell 

times in each state change as a function of different parameters such as salt, 

temperature etc. For example, if a molecule undergoes transitions between two 

states A and B we can measure the lifetime of a molecule in state A and state B 

which provides us with information about the transition rate from A to B (kA->B) and 

the reverse transition rate from B to A (kB->A). While it is possible to measure the 

kinetics for a two state system by manually measuring the lifetime in each state or by 

some sort of a threshold analysis, biological systems can be more complicated and 

can exhibit multiple states. 

 

In the case of a multi-state system, it is difficult to use the aforementioned methods 

to analyze the data. In this case, we can use Hidden Markov Model (HMM) analysis 

which uses a probabilistic framework to make FRET state assignments and calculate 

the dwell times of each state in an unbiased manner (Joo et al., 2006; McKinney et 

al., 2006). The data from the HMM analysis can be represented in the form of a 

transition density plot (TDP) which provides a visual cue of the possible transitions 

end begin 

steps N   
  kkkk
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between states and their relative probability. HMM can be applied in cases where the 

data exhibits discrete FRET states (see Chapter 6 for implementation). 

B.5 Cross correlation analysis 

In many cases, proteins or nucleic acids may undergo rapid changes in conformation 

which results in fast changes in FRET between different states that cannot be easily 

characterized using a simple dwell time analysis (see Chapter 5 for implementation). 

In such a situation, it is still possible to quantify the data by obtaining a measure of 

the time scale of fluctuations. The cross correlation of two signals (donor and 

acceptor): 

dttItICC AD )()()(    

The cross correlation can be fit by a single exponential curve providing a 

characteristic time scale for the fluctuations. This curve typically decays from a 

negative value to zero. Given a two state system with states A and B, then the 

inverse of the characteristic time obtained via exponential fitting is equal to the sum 

of transition rates between states A and B i.e. kB->A + kA->B. Also, the relative 

population of state A versus state B is given by the ratio of the two transition rates. 

The two equations can be used to compute the individual transition rates between 

the two states. 

B.6 Histogram analysis 

While single molecule time traces provide interesting insights into the behavior of 

individual molecules, it is difficult to objectively gauge the existence of distinct FRET 

states between molecules and also measure their FRET values. To eliminate bias in 

this process and also to obtain an ensemble type view of the system under study, we 

accumulate brief movies of several thousands of molecules to build a histogram 

which provides an unbiased representation of the state of the molecules within a 

particular time window. The histogram provides a rapid way to sample trends in the 

behavior of molecules both as a function of time and as a function of change in 

solution conditions.
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Appendix C 

RecA filament stability and photophysical effects 

C.1 Filament stability during solution exchange 

Strand exchange measurements were carried out by first forming RecA filaments in 

the presence of ATPɣS followed by which a solution containing dsDNA and ATPɣS 

and no RecA in solution was added. To test that the absence of RecA in solution 

does not induce filament disassembly we utilized a ssDNA capture assay where the 

presence of ssDNA can be rapidly detected by the presence of a protein such as 

SSB which binds with high affinity to ssDNA. We tested the effect of adding SSB to a 

39nt ssDNA with a donor at the ssDNA end and an acceptor at the ssDNA/dsDNA 

junction (Figure C.1). ssDNA alone produces a FRET peak which is lower in value 

compared to SSB bound ssDNA which induces tight wrapping of the ssDNA thus 

resulting in a high FRET state (Figure C.1). 

For the same DNA we added RecA and ATPɣS which resulted in a shift towards the 

low FRET state due to the stretched conformation of ssDNA induced by RecA 

binding (Figure C.2). During our procedure for solution exchange, we added ATPɣS 

and SSB. There was no change in FRET upon exchanging the solution thus 

validating our experimental procedure for ensuring the presence of stable RecA 

filaments on the immobilized DNA (Figure C.2). This procedure of eliminating RecA 

in solution when adding dsDNA ensures that the dsDNA is capable of interacting 

only with the immobilized RecA filament. 

C.2 Photophysical effects during RecA strand exchange 

In Chapter 3, single molecule measurements indicate the existence of a low FRET 

state upon dsDNA docking followed by an abrupt transition to the high FRET state. 

The abrupt nature of the FRET transition arising from the propagation of strand 

exchange prompted us to question possible photophysical origins for the initial low 

FRET state (Figure C.3). The reason for raising such a concern lies in the fact that 

Cy5 has an increased propensity for transitioning to a dark non-emitting state. 

However, the presence of a donor can quickly trigger its transition to an emitting 

state resulting in red fluorescence emission. Our concern was related to the fact that 
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our assay of bringing the donor in close proximity to the acceptor may recapitulate 

such a scenario. This principle has been used to make the dyes blink stochastically 

and with subsequent localization and detection leading to the reconstruction of a 

high resolution image (Rust et al., 2006).  

We first formed RecA filaments following which we counted the number of acceptor 

molecules before and after RecA filament formation. However, the number of Cy5 

molecules upon direct excitation remains relatively unchanged pointing to the fact 

that the presence of a RecA filament does not lead to Cy5 quenching.  

Given that blinking can be modulated by changing solution conditions or by changing 

laser power (532nm laser), we tested for both effects by first changing the reductant 

in our imaging buffer from β-mercaptoethanol (BME) to Trolox. Trolox has been 

shown to strongly suppress the effect of fluorophore blinking. Using BME or Trolox 

did not significantly affect the kinetics of strand exchange. Similarly, changing laser 

power did not affect the lifetime of the low FRET state indicating that the low to high 

FRET change was not a consequence of donor mediated activation of acceptor 

emission. 

C.3 Using alternating excitation to detect acceptor status 

We used alternating laser excitation (ALEX) to continuously monitor the intensity of 

Cy5 during the course of the strand exchange reaction thus enabling us to precisely 

assign whether the acceptor is in the active emitting state prior to strand exchange 

reaction. Figure C.4A and C.4B present examples of molecules where the top panel 

represents the typical single molecule time traces observed upon docking and 

subsequent pairing of homologous dsDNA with the RecA-ssDNA complex. The 

bottom panel presents the intensity of the acceptor (Cy5) and in both examples, it is 

clear that Cy5 is in the emitting state at the moment of reaction. It is interesting to 

note that the completion of strand exchange which brings Cy3 and Cy5 in close 

proximity results in the quenching of Cy5 dye as seen from a decrease in Cy5 

emission (which is different from photobleaching of the acceptor fluorophore where 

the intensity level reaches that of the background). 

C.4 Effect of dye photobleaching on dissociation times  

In Chapter 3, we estimated that the outgoing ssDNA remains bound for ~3s prior to                              
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its release from the RecA filament. To test the contribution of dye photobleaching to 

the estimation of dissociation rates, we performed concurrent measurements of the 

binding time for DNA (39nt) at the secondary binding site in one imaging chamber 

and that of photobleaching time for a RecA filament coated DNA labeled with a 

donor fluorophore in a second chamber. The measurement was performed under 

identical conditions where the laser power remains unaltered. The photobleaching 

time for the donor under our solution conditions was ~ 23s which was 8 times slower 

than the dissociation time of ssDNA from the RecA secondary binding site (Figure 

C.5). A note of caution does emerge from this measurement. Estimation of binding 

time for longer DNA (80nt) bound to the RecA filament after completion of strand 

exchange may be underestimated by dye photobleaching prior to DNA dissociation.  
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C.5 Figures  

Figure C.1 SSB interaction with ssDNA 

 

 

 

A. Schematic showing a 39nt ssDNA overhang with Cy3 at the terminal end of the 

ssDNA overhang and Cy5 present at the ssDNA/dsDNA junction position. SSB 

binding induces a tightly wrapped state of the ssDNA B. FRET histogram with and 

without SSB indicating FRET change upon SSB binding 
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Figure C.2 Stability of RecA filament during solution exchange 

 

 

A. Schematic showing a 39nt ssDNA overhang with Cy3 at the terminal end of the 

ssDNA overhang and Cy5 present at the ssDNA/dsDNA junction position. RecA 

binding induces a stretched conformation of the ssDNA. SSB was added to 

challenge the RecA filament wherein SSB could compete for free ssDNA if RecA 

were to dissociate during solution exchange B. FRET histogram demonstrating the 

shift in FRET induced upon RecA binding relative to protein free ssDNA. The 

histogram remains unchanged upon altering solution conditions. 
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Figure C.3 Photophysical considerations during RecA strand exchange 

 

A. Number of acceptor labeled DNA (at 633nm excitation) vs. time after addition of 

RecA and ATPS. Error bars are the standard deviation of the number of molecules 

from multiple CCD images. B. Comparison of mean initial low FRET delay time 

(<Δtdelay>) for strand exchange measurements with BME or Trolox as the triplet state 

quencher. Error bars are the standard error of the mean determined by 

bootstrapping. C. Comparison of initial low FRET delay time (<Δtdelay>) for strand 

exchange measurements at different laser excitation intensities (excitation 

wavelength= 532nm). Error bars are the standard error of the mean determined by 

bootstrapping. 
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Figure C.4 Alternating excitation allows simultaneous Cy5 detection during 

strand exchange reaction 

 

 

 

A. Donor and acceptor intensities indicating the docking and subsequent completion 

of strand exchange reaction with a resulting high FRET state (top panel- 532nm 

excitation) Acceptor (Cy5) intensity upon direct excitation indicating the active state 

of Cy5 dye prior to and after strand exchange (bottom panel- 633nm excitation). B. 

Same as in A. 

 

 

 

 

 

 

 

 

 

A B



 
 

131 
 

Figure C.5 Comparing the Cy3 photobleaching time to DNA dissociation from 

the heteroduplex product 

 

Measurement of the photobleaching time of an immobilized donor fluorophore (Cy3) 

in the presence of a RecA filament bound to a reference ssDNA. The photobleaching 

time was 8 times slower than the dissociation of DNA from the heteroduplex product. 

 


