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Abstract

Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks

within the Roche limits of their WDs, and a large dust disk around the hot central WD

of the Helix planetary nebula (PN), possibly produced by collisions among Kuiper Belt-like

objects.To search for more dust disks of the latter type, we have carried out a Spitzer MIPS

24 µm survey of 71 hot WDs or pre-WDs, and found nine WDs with excess 24 µm emission,

seven of which are still central stars of planetary nebulae (CSPNs). We have therefore used

archival Spitzer IRAC and MIPS observations of PNe to search for CSPNs with excess IR

emission, and found five additional IR excesses likely originating from dust disks. For some

of these CSPNs, we have acquired follow-up Spitzer MIPS images and IRS spectra, and

Gemini NIRI and Michelle spectroscopic observations.

The spectral energy distributions show great diversity in the emission characteristics of

the IR excesses, which may imply different mechanisms responsible for the excess emission.

The two most likely dust production mechanisms are: (1) breakup of bodies in planetesimal

belts through collisions, (2) formation of circumstellar dust disks through binary interactions.

In addition, we have derived basic dust disk parameters using simple blackbody approxima-

tions, or optically thin dust disk models with realistic grain and disk properties. The dust

disk physical parameters for CSPNs without near-IR excesses appear consistent with the

origin as collisionally disrupted planetesimals. The dust disks around CSPNs with near-IR

excesses are likely optically thick, and possibly descended from binary post-AGB stars. The

Helix Nebula’s CSPN is also associated with a hard X-ray point source, whose origin is not

known. We have correlated the Galactic WD catalog with the XMM-Newton and ROSAT
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point source catalogs to search for more single WDs with hard X-ray emission. Apart from

the central WD of the Helix Nebula, none of the single WDs with hard X-ray emission are

known to have excess IR emission.

A better understanding of post-AGB binary evolution as well as debris disk evolution

along with its parent star is needed to distinguish between these different origins.Future

observations to better establish the physical parameters of the dust disks and the presence

of companions are needed for models to discern between the possible dust production mech-

anisms.
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In memory of my grandparents.
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Chapter 1

Introduction

1.1 Search for Planets around Main-sequence and

Evolved Stars

The search for planets or planetary systems around stars other than our Sun is an integral

part of the scientific quest for life’s origin. It has been found that planets commonly exist

around solar-type stars (Butler et al. 2006; Borucki et al. 2011). The evolution of planetary

systems through post-main-sequence stages of their parent star’s life has been investigated

by many groups (e.g., Villaver & Livio 2007; Debes & Sigurdsson 2002; Duncan & Lissauer

1998; Sackmann et al. 1993). The general consensus is that planets within ∼1 AU will be

engulfed in the stellar envelope during the Red Giant Branch (RGB) and the Asymptotic

Giant Branch (AGB) phases. Beyond 1 AU, some planets may spiral into the stellar envelope,

depending on simulation details, such as the strength of stellar wind. Planets beyond ∼5 AU

are expected to survive and migrate outwards in response to the mass loss of their parent

star. As the star ejects its envelope and forms a planetary nebula (PN), the planets can

undergo evaporation due to photoionization by stellar UV flux, ram pressure stripping by

the stellar winds, and heating in the PN interior (Villaver & Livio 2007). Overall, if a planet

is massive and distant enough, it is expected to survive the post-main-sequence evolution.

Observations support planets’ survival through at least some post-main-sequence stages

of their parent stars. Radial velocity measurements have been used to find massive planets

around evolved intermediate-mass red giants (Setiawan et al. 2005; Sato et al. 2007; Hatzes
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et al. 2005; Johnson et al. 2007; Lovis & Mayor 2007; Niedzielski et al. 2007; Liu et al. 2008).

However, planets around WDs, the final products of stellar evolution, cannot be detected

with the radial velocity technique, as WDs have few spectral lines and the lines are highly

pressure-broadened, precluding high-precision measurements of radial velocities.

1.2 Infrared Excesses of White Dwarfs

Infrared (IR) observations with ground-based telescopes offer an alternative way to detect

planetary systems around WDs. Single WDs with effective temperatures (Teff) greater than a

few 103 K have well-behaved and understandable spectral properties, and their spectra at IR

wavelengths can be approximated by the Rayleigh-Jeans tail of blackbody radiation at the

stellar Teff . If the observed IR flux from a WD exceeds its expected photospheric emission,

the WD possesses an “IR excess”, which indicates the presence of an external body that is

cooler and dimmer/undetectable at optical wavelengths, such as a low-mass companion, a

planet, or a dust disk.

The emission from late-type stellar and substellar companions, such as MLT dwarfs,

peaks in the near-IR (∼ 1–3 µm). Even though these late-type stars, at Teff∼ 1,000–3,000

K, are cooler than WDs, their radii are ∼10–30 times larger, and thus they may outshine

the WDs at IR wavelengths.

Near-IR observations have been commonly used to diagnose late-type companions of

WDs and to search for planets, either through direct detection of common-proper-motion

companions (Hogan et al. 2009; Farihi et al. 2005), or through IR excesses (Farihi et al. 2005;

Hoard et al. 2007). While these searches found many late-type stellar companions, mostly

with M4-5 spectral types, only a few (<0.5%) brown dwarfs were found, and no planets were

discovered. However, an L8 dwarf substellar companion was found through spectroscopic

analysis of the IR excess of WD SDSS J121209.31+013627.7 (Farihi et al. 2008).
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1.3 Spitzer Space Telescope and Planet Searches.

The Spitzer Space Telescope (Werner et al. 2004) has provided a new opportunity to search

for stellar and substellar companions around WDs, thanks to its unprecedented ∼µJy-level

sensitivity and coverage at longer wavelengths, which are more challenging or impossible

to observe from the ground. Spitzer has three instruments, the Infra-Red Array Camera

(IRAC, Fazio et al. 2004), the Multi-Band Imaging Photometer for Spitzer (MIPS, Rieke et

al. 2004), and the Infrared Spectrograph (IRS, Houck et al. 2004). The IRAC camera is a

near- to mid-IR imager at 3.6, 4.5, 5.8, and 8.0 µm; MIPS provides imaging at 24, 70, and

160 µm; and IRS takes ∼5–40 µm spectra with low or high spectral resolution.

IRAC is well-suited for finding IR excesses of WDs due to unresolved low-mass late-type

stars, brown dwarfs, and planets. I have computed the IR excess expected from these WDs,

expressed as the companion-to-WD flux density ratio at different wavelength bands, and

summarized the results in Table 1. To derive these expected IR excesses, I use the WD

flux densities calculated for three different temperatures (100,000 K, 50,000 K, and 10,000

K), approximating the WD with an Earth-sized blackbody. For the companion’s emission,

I use the JHK and IRAC photometry of M and L dwarfs from Patten et al. (2006). P0.5

and P1.0 in the first column of the table denote Jupiter-sized planets at orbital radii of 0.5

and 1.0 AU; their emission approximated by blackbodies at their corresponding equilibrium

temperatures. These approximate planet flux densities should be treated as lower limits,

as planets often emit more energy than the amount incident from their parent stars. From

Table 1, I conclude:

1. IR excesses are larger in IRAC bands than in JHK, and thus IRAC observations are

ideal for searches of M and L dwarf companions and planets around WDs.

2. M and L dwarf companions produce more IR excesses for cool WDs than hot WDs,

and thus are easier to detect around cool WDs.

3. Planets produce negligible IR excesses, unless heated by the hottest WDs at small
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orbital radii. Note, however, that more sophisticated models that evolve a planet’s

spectrum to Gyr-order ages predict detections of M>5–10 MJupiter planets around

WDs (Baraffe et al. 2003; Kilic et al. 2010).

A number of Spitzer surveys for brown dwarf companions and planets around WDs have

been carried out (e.g., Farihi et al. 2008; Kilic et al. 2009; Mullally et al. 2007; Kilic et

al. 2010; Burleigh et al. 2008; Mullally et al. 2009). These surveys find the detection rate

for L and T-type dwarf companions to be very low (<0.6%). No planets have been found,

although, if present, planets with masses >5–10MJupiter should have been detected. Such low

detection rates may imply that the planets or brown dwarfs have been altered or destroyed

during post-main-sequence evolution, or are too cold for detection with current facilities.

Efforts to search for planets around WDs using the timing of pulsating WDs and time-series

Spitzer IRAC photometry have also been carried out, but with only a controversial detection

to date (Mullally et al. 2008, 2009).

1.4 Debris Disks

Even though planets were not found directly around WDs, the detection of debris disks

provide strong indirect evidence for the survival of planetary systems into the latest stages

of stellar evolution. Debris disks, produced by collisions of small bodies in a planetary

system, are composed of all sub-planetary objects, from µm-sized dust grains to km-sized

planetesimals. As their emitting surface areas are generally much larger than those of their

host WDs, the IR emission of debris disk can be several orders of magnitude brighter than

the WDs’ photospheric emission, and thus easily detectable.

Debris disks are detected around low- and intermediate-mass main sequence stars, but

their dust content dissipates and IR luminosities decline with time (Rieke et al. 2005; Su et

al. 2006; Carpenter et al. 2009; Trilling et al. 2008). By the time a star evolves into a WD,

the dust grains in its debris disk have been removed by gas drag, Poynting-Robertson drag,
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radiation pressure, stellar wind, etc.

Nevertheless, dust around WDs has been detected. The first two WDs with dust disks

found through their IR excess emission were G29-38 and GD 362 (Becklin et al. 2005; Kilic

et al. 2005; Reach et al. 2005a; Zuckerman & Becklin 1987). The excess emission around

the first one, G29-38, was initially attributed to an unresolved brown dwarf companion,

but subsequent studies provided evidence that the IR emitter is a dust disk. The lack

of absorption lines in the IR spectrum’s continuum, the significant 10 µm emission, the

echoing of stellar optical pulsations in the IR are all properties inconsistent with a brown

dwarf emitter (Farihi 2011, and references therein). Furthermore, the spectrum of this cool,

(∼11,500 K) WD was found to exhibit metal absorption lines. These are not expected for

such a cool, old (∼Gyr) WD, as the gravitational settling of heavy elements occurs rapidly

(days to 104 yrs), unless material is being accreted onto the WD photosphere.

All of the above facts point to the presence of a dust disk around G29-38. The results

of main-sequence debris disk studies suggest that the dust in this system cannot be the

remnant of main-sequence evolution. The dust around such old WDs must have been recently

replenished. Jura (2003) has suggested that an asteroid entering within the WD’s Roche

limit would be tidally disrupted, and generate dust around the WD, as well as pollute its

atmosphere with metals. The subsequent Spitzer spectrum of G29-38 has also revealed a

dusty 10 µm silicate feature that is similar to that seen in the zodiacal dust of our Solar

System (Reach et al. 2005a), further supporting this disrupted-asteroid scenario.

The general mechanism that propels the asteroids within the WD’s Roche limit is pre-

sumedly the following: as a star evolves into a WD and loses a significant fraction of its

initial mass, the orbits of surviving planets can become unstable due to planet-planet per-

turbations, and close encounters between planets can lead to new stable orbits, ejection out

of the system, or planet collisions (Debes & Sigurdsson 2002). Likewise, close encounters

and orbital resonances between planets and sub-planetary objects dynamically rejuvenate

the planetary system, leading to orbital eccentricity increases and frequent collisions among
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sub-planetary objects, such as the Kuiper Belt-like Objects (KBOs, Debes & Sigurdsson

2002). The small sub-planetary bodies can be scattered into the inner system. If an asteroid

is scattered within the Roche limit, it will generate dust that can be observed as an IR

excess.

1.5 Surveys of WDs for Dust Disks

Several surveys have been made to search for similar dust disks around WDs. A Spitzer

Space Telescope IRAC 4.5 and 8.0 µm survey of 124 WDs found only one additional dust

disk, around WD 2115−560 (Mullally et al. 2007; von Hippel et al. 2007). Surveys targeting

WDs with atmospheric absorption lines of heavy elements, i.e., DAZ/DBZ WDs, have had

better success: Kilic et al.’s (2006) near-IR spectroscopic survey of 20 DAZ WDs confirmed

the dust disks around G29-38 and GD 362, and found an additional disk around GD 56; Kilic

& Redfield (2007) predicted and confirmed the presence of a dust disk around the metal-rich

DAZ WD 1150−153, which has a calcium abundance too high for its effective temperature;

Jura et al. (2007) analyzed Spitzer photometric observations of 11 DAZ/DBZ WDs and

discovered dust disks around GD 40, GD 133, and PG 1015+161. Similar dust disks have

been discovered at an increasing rate: 14 were discovered before 2010 (Farihi et al. 2009),

and another 14 were discovered in 2010–2011 alone, as summarized in Table 1 of Xu & Jura

(2011). Yet more are being discovered, e.g., PG 1541+651 (Kilic et al. 2011), and 52 dust

disk candidates around WDs from the Wide-field Infrared Survey Explorer survey of WDs

(Debes et al. 2011).

All these dust disks lie within <0.01 AU from their central WDs, which are all relatively

cool (< 24,000 K) and have anomalously high metal content in their atmospheres (when

high-quality spectroscopic data are available). The dust disks’ being within their central

WDs’ Roche limits fully supports their origin as tidally crushed asteroids and the metal

enrichments in the WD atmospheres are also consistent with accretion of material from
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the disrupted asteroids (e.g., Jura et al. 2007; Farihi et al. 2010a,b). Three dust disks are

accompanied by metal-rich gaseous debris (Gänsicke et al. 2008; Brinkworth et al. 2009;

Farihi et al. 2010b; Melis et al. 2010). These dust disks provide the best indirect evidence

to date for the presence of surviving sub-planetary bodies around stellar corpses.

Figure 1.1a demonstrates why these dust disks are found only around relatively cool WDs.

The temperature of the dust depends on the luminosity of the WD and the dust’s orbital

radius. Since the range of WD radii is relatively small, the main parameter determining the

WD luminosity is the stellar Teff . For purposes of this calculation, we assume a WD radius

of 1 R⊕. The figure shows the curves of constant dust temperature as a function of orbital

radius and stellar effective temperature, where the dust equilibrium temperature (Tdust) is

calculated via

Tdust = (1 − a)
1
4

√

R⋆

2D
T⋆ , (1.1)

where D is the orbital distance of the dust, a is the dust’s albedo, R⋆ is the stellar radius, and

T⋆ is the stellar effective temperature. The inner edge of the dust disk is limited by dust’s

sublimation temperature, typically ∼1,500 K, so ultimately, the stellar effective temperature

(T⋆) determines the inner sublimation radius, assuming a constant stellar radius of 1 R⊕.

The outer edge of the dust disk is determined by the Roche limit, given by

r ≈ 2.456

(

ρ̄⋆

ρ̄a

)
1
3

R⋆, (1.2)

where ρ̄⋆ and ρ̄a are the average densities of the star and the asteroid, respectively.

The region of the parameter space in Figure 1.1a inside which these dust disks can be

detected is bounded by the Roche limit on the top and dust sublimation temperature to

the right. It is evident that these dust disks can only be present around cool WDs, because

all of the dust inside the Roche limit will sublimate for WDs hotter than ∼30,000 K. The

permitted disk radii and stellar temperatures derived from our analysis are consistent with

observed disk properties. Furthermore, the similarity of abundances in these dust disks
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and in asteroidal material found in our inner solar system reinforces this scenario, and thus

provides the best indirect evidence to date for the presence of surviving planetary bodies

around stellar corpses.

1.6 Dust Disk around the Helix CSPN

An entirely different kind of dust disk has been discovered around the central star of the Helix

Nebula (Figure 1.2a), WD 2226−210, a hot WD with an effective temperature of 110,000 K

(Su et al. 2007). Spitzer MIPS images reveal a bright compact source coincident with the star

at 24 and 70 µm. A follow-up IRS spectrum of the point source, after the nebular background

subtraction, has verified that the mid-IR emission originates from dust continuum (Figure

1.2b). The spectral energy distribution (SED) of this IR-emitter (Figure 1.2c) indicates a

temperature of 90 – 130 K, too cold to be a star. The luminosity of this IR source, 5 –

11×1031 ergs s−1, requires an emitting area of 4 – 40 AU2, too large for planets. Only an

extended object, such as a dust disk, can explain these properties.

The location of the disk, ∼ 40 – 100 AU from the star, corresponds to that of the Kuiper

Belt in the solar system. Any primordial circumstellar gas and dust at such radial distances

would have been blown away by the stellar wind; thus, the dust in this disk must also be

freshly generated. The dust was suggested to be produced by collisions among Kuiper-Belt-

like objects (KBOs) that were dynamically rejuvenated in AGB and post-AGB phases (Su

et al. 2007).

This origin of the Helix dust disk is in line with that of small dust disks around cool WDs.

Due to enhanced collisions, some of the remaining asteroids’ orbits may be perturbed such

that their periastron passages are within the Roche limit, leading to their tidal destruction.

The reservoirs of these asteroids around the cool, old WDs would not be heated sufficiently

to be detected in IR. If the dust around the central star of planetary nebula (CSPN) Helix

is indeed generated by collisions of KBOs or comets, and if KBOs and comets orbiting at
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40 – 100 AU are common among intermediate- and low-mass stars, dust disks around WDs

could also be common.

Figure 1.1b shows curves of constant dust temperature similar to Figure 1.1a except over

a larger range of orbital distances and stellar temperatures. Based on the distances of KBOs

in the Solar System (30 – 50 AU) and the expected expansion of orbits due to mass loss

of the central star, KBOs may orbit around WDs at greater distances. Therefore, I have

plotted the curves for orbital distances up to 100 AU and stellar temperatures up to 200,000

K. The dust temperature and the corresponding wavelength for blackbody emission peaks

are labeled. The figure demonstrates that only the hottest WDs’ dust disks can be heated

to temperatures high enough for their SEDs to peak in the mid- to far-IR wavelength range.

As the WDs cool, the dust temperatures drop, shifting the emission peaks out of the Spitzer

wavelength range. Thus, such dust disks may be detectable only for a limited period of time.

Furthermore, as the KBOs and comets expand away from the central star, the collisional

rate drops, and the dust disk will dissipate below the detection limit.

1.7 Hard X-ray Emission of the Helix CSPN

The central star of the Helix Nebula presents a surprise at X-ray wavelengths as well. ROSAT

observations of this WD show not only a soft (≪0.5 keV) X-ray emission component, as

expected from its photosphere, but also an additional unexpected harder component peaking

at 0.8–0.9 keV (Leahy et al. 1996). Chandra observations with ∼50 times better resolution

than ROSAT confirmed this hard X-ray emission, and further showed it to be a point source

(Guerrero et al. 2001). This emission cannot be due to stellar wind shocks as in the case

of massive O stars because Far Ultraviolet Spectroscopic Explorer (FUSE) observations of

WD 2226−210 do not show P Cygni line profiles that are indicative of the presence of a

fast stellar wind (Chu et al. 2004b). Hard X-ray emission from WDs is usually produced

externally by the corona of a late-type companion or the accretion of a companion’s material

9



onto the WD’s surface. Based on the hard X-ray luminosity and variations, as well as the

variations in the stellar Hα line prole, it has been suggested that WD 2226−210 has a late-

type companion (Guerrero et al. 2001; Gruendl et al. 2001). WD 2226−210 is, however, not

known to have a binary companion. A sensitive search using HST images has ruled out

any companion with a spectral type earlier than M5, and 2MASS JHK and Spitzer IRAC

photometry have ruled out even T-type companions (Ciardullo et al. 1999; O’Dwyer et al.

2003; Su et al. 2007). The 1 keV emission from WD 2226−210 thus remains puzzling.

It is possible that KBOs collide with one another to produce dust and some may have

gone astray and hit WD 2226−210; the impact would shock-heat gas to X-ray-emitting tem-

peratures. Alternatively, it is possible that CSPN Helix possesses a very low-mass companion

that has escaped detection. If the WD’s progenitor is in a close binary system, as the primary

evolves into the hot WD, some of the stellar envelope material forms a circumstellar or a

circum-binary disk. The companion may accrete material and gain angular momentum, and

the faster rotation leads to a more active X-ray-emitting corona, similar to that suggested for

common envelope binaries (Soker & Kastner 2002). The two stars may even have undergone

a merger, a scenario suggested to explain the hard X-ray emission of another single WD,

KPD 0005+5106 (=WD 0005+511, Wassermann et al. 2010).

However, no observational evidence gives strong support for either of these two scenarios

explaining the hard X-rays of the Helix CSPN, and further study of hard X-ray and mid-

IR emission of WDs is needed to understand the physical processes responsible for these

phenomena.

1.8 Thesis Outline

This thesis addresses the exciting new phenomenon of dust disks detected around hot WDs

and CSPNs. Chapter 2 describes a Spitzer MIPS 24 µm survey of hot WDs to search for

dust disks similar to that of the Helix CSPN. This work has been published (Chu et al.
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2011) and portions of it are reproduced by permission of the AAS. As most of the WDs

with dust disks found in this survey were still surrounded by PNe, I have also searched the

Spitzer archive for CSPNs with IR excesses indicative of dust disks. This archival search is

described in Chapter 3, and its results are presented in Chapter 4, in which I also discuss the

possible physical origins of these disks. This work is published by Biĺıková et al. (2012), and

is reproduced by permission of the AAS. In Chapter 5, I present refined modeling of some

of the dust disks from these two surveys. Chapter 6 describes my search for additional WDs

with hard X-ray emission in the XMM and ROSAT archives, which has been published in

Biĺıková et al. (2010), and is reproduced by permission of the AAS. In Chapter 7, I present

the summary and conclusions, and discuss the future directions of this research.
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Table 1.1. Expected IR Excesses Due to Low-Mass Companions or Planets

Spec. WD J H K IRAC1 IRAC2 IRAC3 IRAC4
Type Teff (K) 1.2 µm 1.66 µm 2.16 µm 3.6 µm 4.5 µm 5.8 µm 8.0 µm

M5 100,000 0.98 2.04 3.00 5.09 5.07 5.64 6.25
M8 100,000 0.26 0.56 0.93 1.74 1.64 1.96 2.16
L1 100,000 0.11 0.25 0.43 0.93 0.87 1.01 1.26
L5 100,000 0.03 0.08 0.14 0.45 0.60 0.51 0.63
L8 100,000 0.01 0.04 0.07 0.30 0.32 0.47 0.58
P0.5 100,000 0.00 0.00 0.00 0.01 0.03 0.07 0.15
P1.0 100,000 0.00 0.00 0.00 0.00 0.00 0.01 0.05
M5 50,000 2.09 4.26 6.21 10. 10.30 11.43 12.61
M8 50,000 0.55 1.16 1.92 3.55 3.33 3.96 4.37
L1 50,000 0.24 0.53 0.89 1.89 1.78 2.04 2.54
L5 50,000 0.06 0.16 0.29 0.92 1.22 1.02 1.27
L8 50,000 0.02 0.07 0.14 0.61 0.64 0.95 1.16
P0.5 50,000 0.00 0.00 0.00 0.00 0.00 0.00 0.02
P1.0 50,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M5 10,000 17.58 31.02 41.29 61.31 58.74 63.27 67.85
M8 10,000 4.64 8.49 12.75 20.95 18.99 21.92 23.51
L1 10,000 2.02 3.82 5.92 11.19 10.14 11.28 13.64
L5 10,000 0.51 1.17 1.96 5.41 6.97 5.67 6.82
L8 10,000 0.21 0.54 0.92 3.58 3.67 5.26 6.25
P0.5 10,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P1.0 10,000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 1.1: Curves of constant dust temperature in the D – T⋆ (distance - effective temperature) parameter
space, assuming an albedo of 0.1. The dust temperatures and corresponding blackbody peak wavelengths
are labelled. (a) Dust disks formed by tidal disruption of asteroids. The horizontal lines at 0.006 and 0.004
AU mark Roche limits for a WD with a mass of ∼0.6 M⊙ and a radius of ∼1 R⊕, and asteroid densities of 1
and 3 g cm−3, respectively (range of most Solar System asteroids, (Britt et al. 2005). These represent rough
upper limits to the outer extent of the disk. The curve for the dust sublimation temperature of 1,500 K marks
the inner boundary of the orbital distance for dust to survive. (b) Curves of constant dust temperature, but
over a larger range of orbital distances and stellar temperatures. The dust at distances of 30-100 AU from
the star will peak in mid-IR (24-70 µm) only if its central star is very hot (>80,000 K).
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Figure 1.2: The image, IR spectrum and the SED of the Helix CSPN from Su et al. (2007). (a) A color
composite of Spitzer images of the Helix Nebula with 3.6-4.5 µm in blue, 5.8-8.0 µm in green, and 24 µm in
red (FOV = 31′.5×23′.7). The central diffuse emission in the 24 µm band is dominated by the [O IV] 25.89
µm line with some contribution from the [Ne V] 24.32 µm line. The central point-like source, coincident
with WD2226−210, is dominated by dust continuum in the 24 µm band. (b) Spectral energy distribution
of the Helix central star. The WD photospheric model is plotted in gray. The excess mid-IR emission is
consistent with a blackbody emission for a temperature (BBT) ranging from 86 K to 128 K. The spectral
energy distribution of a dusty ring (35-150 AU) is plotted in a red long-dashed line. (c) Spitzer IRS spectrum
of the Helix central star before (top panel) and after (bottom panel) the nebular background subtraction.
The MIPS 24 µm bandpass is plotted with a dotted line in the upper panel, and the MIPS 24 µm photometry
is shown as a blue square in the bottom panel. A 102 K blackbody curve is plotted in red dashed line in the
bottom panel. See Su et al. (2007) for a detailed explanation of this figure.
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Chapter 2

Spitzer 24 µm Survey of White
Dwarfs for Dust Disks

2.1 Introduction

Spitzer MIPS 24 and 70 µm observations of the Helix Nebula show a compact source coin-

cident with its CSPN, WD 2226−210. This IR emission originates from a 90 – 130 K dust

continuum with an emitting area of ∼ 4 – 40 AU2. This dust is likely located in a disk, as

opposed to a cloud, because the extinction towards the CSPN is very low (Su et al. 2007). A

simple optically thin model of the dust disk places it between 35 and 150 AU, and yields a

dust mass of ∼0.13 M⊕. The dust must have been generated recently, because any remnant

dust from the main-sequence evolution has been blown out by the stellar wind in the AGB

and post-AGB stages. Since the location of the disk is similar to that of the Kuiper Belt

in the Solar System, the dust was suggested to be produced by collisions among KBOs or

break-up of comets (Su et al. 2007).

Theoretical simulations of debris disk evolution past the main sequence (e.g., Bonsor &

Wyatt 2010; Dong et al. 2010) were able to produce similar amount of dust through KBO

collisions. If the dust around the Helix CSPN was indeed produced by this mechanism, other

WDs should also possess similar dust disks. Therefore, to assess the frequency of occurrence

of these dust disks, we have conducted a Spitzer MIPS 24 µm survey of hot WDs and pre-

WDs for IR excesses indicative of circumstellar dust (Chu et al. 2011). In this chapter, I

report the results of this survey, with emphasis on my contributions to the project: the SED

modeling and the reduction and analysis of follow-up spectroscopic observations.
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2.2 Observations and Data Reduction

In order to detect a dust disk at a distance of few tens of AU, the central WD must be

sufficiently luminous. In general, stellar luminosity is a function of both radius and effective

temperature. However, the range of WD radii is small, and thus stellar effective temperature

is the main factor in determining the luminosity of a WD, and, consequently, the detectability

of a Helix-like dust disk around it (see Fig. 1.1). Therefore, the 24 µm survey target list

included 71 hot WDs and pre-WDs with Teff∼100,000 K; of these, 36 were still surrounded

by a planetary nebula (PN).

The 24 µm survey was carried out in Spitzer Program 40953 (PI: Chu). For some of

the WDs in this survey, we have also obtained follow-up IRAC and MIPS images, and IRS

spectroscopic observations in Program 50629 (PI: Chu). These observations are described

below. Note that only a brief summary is given for the imaging observations; for full details,

see Chu et al. (2011).

2.2.1 MIPS Observations

The 71 WDs in the Spitzer MIPS 24 µm survey were imaged in the small-field photometry

mode with a total exposure time of 420 s. The depth of the survey reached a 1-σ point-source

sensitivity of 33.6 µJy in typical background conditions. The data were reduced with the

Data Analysis Tool (Gordon et al. 2007), and the final images were constructed with a pixel

size of 1.′′245, half the original resolution.

Nine WDs/pre-WDs were detected at 24 µm. Both aperture photometry and point spread

function (PSF) fitting were used to measure the 24 µm flux densities for detected sources,

and when the measurements with these two different methods differed, the best appropriate

method was selected. We have adopted the results from PSF photometry for all detections

except for WD 0439+466, for which the result from aperture photometry was adopted. The

final flux densities are listed in Table 2.1.
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For three objects, CSPN K1-22, WD 0103+732, and WD 0439+466, we have obtained

Spitzer MIPS 70 µm observations, each with a total effective integration time of 960 s. The

detailed description of these observations is given in Chu et al. (2011). The images of these

three observed objects are shown in Figure 2.1, along with their 24 µm counterparts.

Two of the WDs, WD 0103+732 and WD 0439+466 were detected at 70 µm. The mea-

sured 70 µm flux densities and upper limits are listed in Table 2.1. Note that WD 0103+732

is superposed on a diffuse nebular emission. Since this emission may significantly contami-

nate the measured 70 µm point source flux density, we list our photometric measurement as

an upper limit.

2.2.2 IRAC observations

For CSPN K1-22, WD 0103+732, and WD 0127+581, we have obtained IRAC 3.6, 4.5, 5.8

and 8.0 µm observations with a total integration time of 150 s. Three additional objects,

WD 0439+466, WD 0726+133, and CSPN NGC2438, have IRAC observations in the Spitzer

archive, in Programs 30432 (PI: Burleigh), 30285 (PI: Fazio), and 68 (PI: Fazio), respectively.

The data from all these observations were reduced with the MOPEX package. Aperture

photometry was carried out using the IRAF task phot, and appropriate aperture corrections

from the IRAC Data Handbook (ver 3.0) were applied. The measured IRAC flux densities

are listed in Table 2.1.

2.2.3 IRS Observations

We have also obtained follow-up spectroscopic observations of CSPN K1-22, WD 0103+732,

WD 0127+581, and WD 0439+466 in our Program 50629, using the IRS instrument on

Spitzer (Houck et al. 2004). All sources were observed using the low-resolution modules

SL1 (7.4–14.5 µm), SL2 (5.2–7.7 µm), LL1 (19.5–38.0 µm), and LL2 (14.0–21.3 µm). CSPN

K1-22 and WD 0103+732 were observed in the IRS staring mode.WD 0127+581, the faintest
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target, was observed in mapping mode where the target was sequentially stepped along the

slit to facilitate an improved background subtraction. The SL1 and SL2 observations of

WD 0127+581 used 8 pointings spaced by 3′′ while the LL1 and LL2 observations used 12

pointings spaced by 6′′. The observations of WD 0439+466 were also made in the mapping

mode, with slit positions centered on the WD and sequentially offset in the direction perpen-

dicular to the slit. Nine pointings separated by 3.′′6 were taken in SL1 and SL2 modules, and

5 pointings spaced by 10.′′6 were obtained in LL1 and LL2 modules. The IRS observations

are summarized in Table 2.2.

All spectra were reduced using the CUBISM software (Smith et al. 2007) with the latest

pipeline processing of the data and most recent calibration set (irs 2009 05 20-pb-pfc-trim-

omeg-lhllbiasfork.cal). Each low-resolution module contains two subslits that are exposed at

the same time, e.g., SL1 on-source and SL2 off-source, and vice versa. I examine the off-source

frames, select the ones free of any source contamination, trim the maxima and minima, and

use the average to produce a background frame. This 2D background frame is then subtracted

from all on-source frames in the corresponding module to remove astrophysical background

and to alleviate bad pixels contaminating the IRS data. After 2D background subtraction,

I flag global and record-level bad pixels first using the default CUBISM parameters for

automatic bad pixel detection, and then through manual inspection of each BCD record, as

well as by backtracking pixels that contribute to a given cube pixel.

The spectra are extracted with aperture sizes large enough to enclose the 24 µm source.

See Table 2.3 for the aperture sizes used for the spectral extractions. For the LL orders,

two local background spectra on either side of the source are extracted and averaged for a

1D subtraction of the local background. For the SL orders, a single background spectrum is

used for the local 1D background subtraction.

Special notes for spectral reduction of individual objects are given below:

WD 0103+732. The frames used for the construction of LL1 background contain a very

faint point source. As the WD is bright and the point source is practically removed in the
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min/max trimming and averaging process, I choose to ignore this faint source so that I can

perform the 2D background subtraction to maximize the quality of the final data cube. In

addition, the frames used for the construction of the LL2 background show a small knot of

H2 line emission at 17 µm. This H2 emission knot is near the center of one slit position,

and at the edge of the other slit position. I therefore use only the latter slit position for

background subtraction. Pixels of the on-source BCD frames affected by over-subtraction of

the emission knot are flagged as record-level bad pixels, and not used for cube construction.

Furthermore, this H2 knot is far enough from the WD position that both a target spectrum

and a local background spectrum can be extracted outside the position of the H2 emission

knot in the slit. The spectrum of WD 0103+732 is not detected in the SL2 observations.

WD 0127+581. This WD is faint, with F24 = 0.34 mJy. The orientation of the IRS slit,

determined by the roll angle of the spacecraft, was such that a very bright neighboring star

was included in the slit. Consequently, the weak emission of WD 0127+581 was overwhelmed

by the elevated background from the neighboring star. The spectrum of the WD is not

unambiguously detected in the background-subtracted frame; the signal-to-noise ratio is too

low for meaningful spectral extraction.

WD 0439+466. In its SL2 order, the BCD frames from the three final mapping positions

show an abrupt jump in brightness across the center of each frame. Since these slit positions

do not contain the target WD, I do not use them for the SL2 cube construction or the SL1

background construction.

2.2.4 Echelle Spectroscopic Observations

For WD 0950+139, I have obtained high-dispersion (R∼30,000) spectra with the echelle spec-

trograph on the Mayall 4 m telescope at Kitt Peak National Observatory (KPNO) on 2010

January 3. The observations were carried out with the red long-focus camera and the T2KB

CCD. We used the 79 lines mm−1 (79-63) echelle grating in the multi-order configuration,

with the GG-420 filter and the 226 lines mm−1 (226-1) cross-disperser. We chose a slit length

19



of 10′′ to include adequate coverage of the extended PN and sky for background subtraction,

while avoiding overlap between adjacent orders. The spectral dispersion and wavelength

were calibrated with a Th-Ar lamp exposure taken after the target observation. The 24 µm

CCD pixel size corresponds to ∼0.078 Å and ∼0.254′′ along the dispersion and spatial axes,

respectively. The instrumental profile had a FWHM of 0.275 ± 0.036 Å measured from the

telluric lines. The exposure time for each frame was 1800 s.

Bias subtraction and bad pixel removal were carried out using standard tasks within

IRAF. Multiple exposures of WD 0950+139 were compared to eliminate cosmic ray hits.

The spectra were calibrated and extracted with the task doecslit. The observing conditions

were not photometric; however, we calibrated the relative fluxes between orders using a 600 s

exposure of the standard star Feige 34 from the following night.

2.3 Results

Nine out of the 71 objects from our Spitzer MIPS survey show a source coincident with

the WD at 24 µm. To assess whether the detected emission is in excess of the expected

photospheric emission, we have collected optical and near-IR photometric measurements for

each WD, using the McCook and Sion WD catalog, the SIMBAD database, the Sloan Digital

Sky Survey (SDSS) and the 2MASS Point Source Catalog (Skrutskie et al. 2006). Since the

effective temperatures of our program WDs are very high, it is reasonable to approximate

their photospheric emission in the IR with the Rayleigh-Jeans blackbody tail. The amounts

of extinction toward most of these WDs are unknown, but will have smaller impact at

longer wavelengths. We therefore extrapolate the flux density in the 24 µm band from the

photometric measurement at the longest wavelength, using the Rayleigh-Jeans blackbody

tail and no extinction correction.

All nine detections are at least two orders of magnitude higher than the expected photo-

spheric emission, and thus represent IR excesses. Note that even for non-detections, the 3-σ
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upper limits are one to two orders of magnitude above the expected photospheric emission;

thus, it is possible that some of these objects also possess a low-level IR excesses.

We have combined all available photometric measurements of the nine WDs and pre-

WDs with 24 µm excesses to produce the SEDs plotted in Figure 2.2. The Spitzer IRAC

and MIPS photometric measurements of these nine hot WDs are listed in Table 2.1. The

data points in the SEDs are corrected for interstellar extinction, using values found in the

literature, and listed in Table 2.4.

Table 2.4 also lists basic physical parameters of the hot WDs and their IR excesses. The

effective temperatures and distances are from the literature, and the references for these are

given in the last column. The radius of the WD, R⋆, is calculated from the distance and

the blackbody fit to the optical flux densities. Note that all values are within the range

expected for WDs. The luminosity fraction, LIR/L∗, is calculated from the blackbody fits to

the optical and IR SEDs. For WDs without excesses in IRAC bands, or WDs without IRAC

data, we approximate the IR emitter with a 150 K blackbody, normalized to the 24 µm flux

density. For WDs with IRAC excesses, the IRAC flux densities are used to constrain the

temperature of the blackbody emitter. Where necessary, an additional blackbody component

is used to fit the IR flux density measurements. Below we individually describe the nine hot

WDs and pre-WDs with 24 µm excesses.

2.3.1 CSPN K1-22

Figure 2.3 shows images of CSPN K 1-22 at optical and IR wavelengths. The field of view

towards K 1-22 is crowded. A red source is seen 2′′ north of the CSPN in the DSS2 Red

image, but not in any other images; the origin of this red source is unclear. Ciardullo et al.

(1999) have resolved a red ∼K2V companion to the CSPN in the Hubble Space Telescope

(HST) observations. A source coincident with this pair of stars is seen in 2MASS, IRAC

and MIPS images, but the resolution is not sufficient to separate these two sources in the IR

images.
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The SED in Figure 2.2 shows the V and I magnitudes for the two stars separately;

the remaining flux densities in the 1 – 24 µm range are for the two stars combined. The

downward arrow at 70 µm indicates the upper flux density limit. The optical and near-IR

flux densities in the SED plot have been corrected for extinction using E(B − V ) = 0.076

(Ciardullo et al. 1999). The physical parameters used to model the WD and IR emission of

CSPN K1-22 and the other WDs with IR excesses are listed in Table 2.4. The WD emission

of CSPN K1-22 is approximated by a 141,000 K blackbody; for its red companion, we use

Kurucz atmospheric model for a K2V star’s. The IRAC and MIPS flux densities are above

the combined atmospheric emission from these two stars. Two blackbody components, at

700 and 150 K, are needed to approximate the excess IR emission in the IRAC and MIPS

24 µm bands. The sum of all emission components, the two stars and the two blackbody IR

emitters, is shown in Figure 2.2 as a thin solid line.

The IRS spectra of CSPN K1-22 and local background are shown in Figure 2.4. The plots

were made with two different scales to show the relative contribution of line emission and

continuum. The spectra of CSPN K1-22 and the local background both show [Ne III] 15.55

µm, [S III] 18.71 µm, [O IV] 25.89 µm, and [S III] 33.48 µm line emission. After background

subtraction, the IRS spectrum of CSPN K1-22 shows a weak continuum component and

residual line emission, especially in the [O IV] line.

To assess whether the residual line emission is associated with an unresolved source, or

whether it is a result of incomplete background subtraction, I construct the surface brightness

profiles along the slit, extracted from the spectral Spitzer IRS data cube. The surface

brightness profile is extracted at the wavelength of the high-ionization [O IV] 25.89 µm line,

the lower-ionization [S III] 18.71 µm line and the continuum emission in the LL module. The

surface brightness profiles, and a raw spectral image are shown in Figure 2.5. It is evident

that the continuum originates from a point source, the CSPN, while the line emission from

the PN is extended.

The [S III] 18.71 µm line is a lower-excitation line and its profile is extended and relatively
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flat, whereas the [O IV] 25.89 µmline, a high-excitation line, shows a centrally peaked surface

brightness profile. Such surface brightness distribution agrees with the expected ionization

stratification in a PN. Since the spectrum for local background subtraction is extracted

±20′′ away from the CSPN, the [O IV] 25.89 µm emission in the background spectrum is

∼1/3 weaker than that at the CSPN. Indeed, the residual [O IV] emission is about a 1/3 of

the peak emission in the [O IV] line prior to local background subtraction. Therefore, the

[O IV] emission in the background-subtracted spectrum of CSPN K1-22 is due to imperfect

background subtraction.

The open diamonds in Figure 2.4 display the IRAC and MIPS photometric measurements.

While the IRAC data points agree with the spectrum within the error bars, the MIPS 24 µm

measurement is above the error bars. This discrepancy is likely due to [O IV] contamination

in the MIPS 24 µm band.

The raw spectral image, as well as the extracted background-subtracted spectrum of

CSPN K1-22 show continuum emission; this emission is well above the expected combined

photospheric emission of the CSPN and its red companion (∼0.011 mJy). CSPN K1-22

clearly has an IR excess due to dust emission; however, it is unclear whether this dust

emission is associated with the CSPN or its red companion. High-resolution mid-IR imaging

is necessary to resolve the two stars.

2.3.2 CSPN NGC2438

CSPN NGC2438 (Figure 4.9) shows bright 24 µm emission more than four orders of mag-

nitude above the expected photospheric emission. In addition, IR excess is found in Spitzer

IRAC bands (see Chapter 4). I have obtained the Spitzer IRS ∼5 – 15 µm spectrum of

CSPN NGC 2438 in Program 50793 (PI: Bilikova). The background-subtracted spectrum

of the CSPN shows weak but rising continuum emission. The SED of CSPN NGC2438 is

displayed in Figure 2.2. The IR excesses in the IRAC bands and the MIPS 24 µm band is

approximated by two blackbody emitters at temperatures of 1200 K and 150 K, respectively.
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A more detailed discussion of the SED and IRS spectrum of CSPN NGC 2438 is given in

chapters 3 and 4.

2.3.3 WD0103+732 (CSPN EGB1)

WD 0103+732 is the central star of the PN EGB1. Its optical and IR images are shown in

Figure 2.7. Ciardullo et al. (1999) have used the HST to search for resolved companions of

CSPNs, but no companion has been found for WD 0103+732

The SED of CSPN EGB 1 is displayed in Figure 2.2. The flux densities at optical wave-

lengths follow the blackbody curve closely. However, the I and J band flux densities, as

well as the H band upper limit from 2MASS are below the expected photospheric emission.

Note also that the light curve of WD 0103+732 exhibits sinusoidal variations in the BV R

bands, but the nature of these variations is not yet known (Hillwig et al. 2012, in prepara-

tion). The IRAC fluxes at 3.6, 4.5 and 5.8 µm are close, but slightly below the expected

photospheric emission. The 8 µm flux is above the blackbody curve, and a bright excess

∼3 orders of magnitude above the expected WD’s photospheric emission is seen at 24 µm.

A source coincident with the CSPN is also seen at 70 µm, but due to the bright nebulosity

and lower angular resolution of the MIPS 70 µm camera, there may be a significant nebular

contamination in our 70 µm photometric measurement; we therefore consider the measured

value to be the 70 µm flux density upper limit.

The 24 µm point source coincident with WD 0103+732 is superposed on diffuse emission

(Chu et al. 2009, see Figure 2.7). The IRS spectrum extracted at the CSPN and adjacent

local background is shown in Figure 2.8. The spectrum of the background is dominated

by line emission, but a weak rising continuum is seen at wavelengths longer than ∼ 20

µm. Both the CSPN and the background spectrum show weak molecular hydrogen (H2)

emission features at 17 and 28 µm; this emission is extended and uniform across the slit, and

is removed after the local background subtraction. The background-subtracted spectrum

of the CSPN is dominated by continuum emission, but some residual line emission is seen
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in [O IV] 25.89 µm line, and a deficit is seen at the [Ne III] 15.55 µm and [S III] 18.31

and 33.48 µm lines. These features are caused by imperfect background subtraction. The

raw spectral images, as well as a surface brightness profile extracted in [O IV] and [S III]

lines and the continuum from the IRS data cube are shown in Figure 2.9. From the raw

spectral images, it is evident that the line emission is extended compared to the continuum.

The surface brightness profiles of emission lines are also more extended than that of the

continuum emission. Furthermore, the surface brightness profiles are consistent with the

ionization stratification of the PN, with the higher-excitation [O IV] line concentrated closer

to the CSPN and the lower-excitation [S III] line more extended. The variations of these

lines along the slit are responsible for the over- and under-subtractions of background for

these emission lines.

The SED and the IRS spectrum of CSPN EGB 1 are similar to those of the Helix CSPN,

but the effective temperature of WD 0103+732, ∼150,000 K, is higher than that of the Helix

CSPN. Therefore, the physical properties of the dust disk around CSPN EGB 1 may differ

from those of the disk around the Helix CSPN. A more detailed dust disk model is presented

in Chapter 5.

2.3.4 WD0109+111

Unlike most of the WDs with 24 µm excesses, WD 0109+111 (Figure 2.10) is not surrounded

by a PN. There is a good (1-2′′) positional coincidence for the WD in optical, near-IR and 24

µm images. The MIPS 24 µm image contains a number of faint background sources, likely

associated with background galaxies. We find that the chance of random superposition of

one of these sources within 2′′ of WD 0109+111 is very low, ∼4 × 10−4.

The SED of WD 0109+111 is shown in Figure 2.2. The optical and near-IR flux densities

follow the blackbody curve closely, but a clear excess is seen at 24 µm. Unfortunately, no

IRS spectra were obtained to determine the nature of the excess 24 µm emission.

25



2.3.5 WD0127+581 (CSPN Sh2-188)

WD 0127+581 (Figure 2.11) is the CSPN Sh2-188. This WD is faint, and is not detected

in 2MASS. The J = 17.03±0.13 and Ks = 16.18±0.13 magnitudes were obtained using the

FLAMINGOS detector on the KPNO 2.1 m telescope. The CSPN is faint and superposed

on a bright background in IRAC images; therefore, the photometric errors are large; in fact,

the 5.8 and 8.0 µm band detections are not very convincing. The IRS spectrum of this WD

is compromised by the presence of a very bright source in the slit. Only an extremely weak

continuum is seen at the position of the WD; no meaningful spectrum can be extracted.

The SED of WD 0127+581 (Figure 2.2) shows excess emission in all IR wavelength bands,

from 1 to 24 µm, but the excess SED is not continuous. The J and Ks excesses may

indicate a low-mass companion. Two temperature components, 900 and 150 K, are needed

to approximate the excess emission in the IRAC and MIPS bands, respectively.

2.3.6 WD0439+466 (CSPN Sh2-216)

Sh 2-216, at a distance of 129±6 pc (Harris et al. 2007), is the nearest PN. The optical and

IR images of its CSPN, WD 0439+466, are shown in Figure 2.12. A point source coincident

with the central WD, surrounded by diffuse emission, is seen in the MIPS 24 µm image.

The optical and IR flux densities in the SED of this WD (Figure 2.2) follow the blackbody

curve up to 8 µm, but the 24 µm flux density is ∼ 2 orders of magnitude above the expected

photospheric emission of the WD.

Figure 2.13 displays the raw IRS spectral image, and the extracted spectra of WD 0439+466

and its local background. The spectrum extracted at the CSPN shows rising continuum emis-

sion, and [O IV] 25.89 µm and the H2 17 µm emission lines. These emission lines originate

from the local nebular background, and they are removed after the local background sub-

traction. The background-subtracted spectrum is dominated by continuum emission, and

the flux densities in the spectrum are in good agreement with Spitzer IRAC and MIPS pho-
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tometric measurements, plotted as open diamonds. This spectrum is very similar to that of

the Helix CSPN.

2.3.7 WD0726+133 (CSPN Abell 21)

WD 0726+133 is the central star of the PN Abell 21. Its optical and IR images are presented

in Figure 2.14. At 24 µm, a point source coincident with the CSPN is seen superposed on a

diffuse emission (Chu et al. 2009). The SED in Figure 2.2 shows that the flux densities in

the optical, 2MASS JHK and IRAC bands follow the blackbody curve expected from the

photospheric emission of the WD. At 24 µm, a significant excess, ∼3 orders of magnitude

above the expected photospheric emission, is seen. For this CSPN, high-resolution HST

images are available, but no companion of CSPN A21 is found (Ciardullo et al. 1999). The

SED for this CSPN is similar to that of the Helix CSPN, but no IRS spectrum is available

to assess the nature of the excess 24 µm emission.

2.3.8 WD0950+139 (CSPN EGB6)

WD 0950+139 is the central star of PN EGB6. Optical observations of this CSPN showed

an unresolved emission line source in [O III] and [Ne III] lines (Liebert et al. 1989), and the

CSPN also exhibits a near-IR excess (Fulbright & Liebert 1993).

High-resolution HST Faint Object Camera emission-line images revealed that the emis-

sion actually originates from a point-like source that is offset from the PN nucleus by 0.′′18,

and subsequent continuum images confirmed the presence of a dM companion (Bond 1994,

2009). It has been suggested that the dM companion has accreted material from the progen-

itor of WD 0950+139 and that this accretion disk is responsible for the excess IR emission

as well as the nebular line emission (Bond 1994). Optical and IR images of WD 0950+139

are presented in Figure 2.15.

Using high-resolution echelle spectroscopic observations of WD 0950+139, we detect the
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emission-line source in a number of lines: He I 7065 Å, Hα 6563 Å, He I 5875 Å, [N II] 5754

Å, [O III] 5007 Å, [O III] 4959 Å, and Hβ 4861 Å. The full width at half maximum (FWHM)

of these lines are 30–50 km s−1, and their base extends between -50 km s−1 and 50 km s−1.

The profiles of some of these lines are shown in Figure 2.16. The [O III] 4959 and 5007 lines

exhibit a double-peaked profile, which is consistent with a rotating gaseous disk. The raw

spectral image of the [O III] 5007 emission line can be seen in Figure 2.16. Fitting the [O III]

line profiles with two Gaussian components yields the separation between the two peaks of

∼22 km s−1, or ±11 km s−1. Assuming Keplerian rotation, such velocity corresponds to an

orbital radius 0.5 AU around a 0.06 M⊙ star, and 1.5 AU around a 0.2 M⊙ star (Su et al.

2011).

The 24 µm image of EGB 6 shows a bright point source coincident with WD0950+139.

The SED (Figure 2.2) demonstrates that emission in excess of the expected WD photospheric

emission can be seen starting from the J-band to longer wavelengths. A dM (T∼2000 K)

companion can account for the near-IR excess, but not the IRAC and MIPS excesses. The

SED in the IRAC and MIPS 24 µm bands is approximated by two blackbody emitters at

temperatures of 500 and 150 K. A Spitzer IRS spectrum of WD 0950+139, obtained through

Guaranteed Time Observations, shows that the excess IR emission originates from a dust

continuum (Su et al. 2012, in preparation). Unfortunately, it is unclear whether the dust

emission seen at 24 µm is associated with WD 0950+139, or its low-mass companion.

2.3.9 WD1342+443

WD 1342+443 is a faint WD discovered in the SDSS. Its optical and IR images are presented

in Figure 2.17. Its SED in Figure 2.2 displays the photometric measurements from the SDSS;

the WD was not detected in 2MASS. The flux densities follow the blackbody approximation

of the WD’s photospheric emission, but the 24 µm flux density is more than 2 orders of

magnitude higher than the expected photospheric emission of the WD. The 24 µm excess of

this WD is the weakest among the nine WDs with IR excesses. No IRS spectrum is available
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to investigate the nature of this excess 24 µm emission.

2.4 Discussion

2.4.1 Statistical Properties

Nine out of the 71 hot WDs and pre-WDs from our sample exhibit excess 24 µm emission,

corresponding to a detection rate of ∼13%. Correlation of the 24 µm excess and the J-

band magnitudes, indicative of WD distances, shows that the detection of 24 µm excesses in

more distant objects is limited by the sensitivity of the MIPS 24 µm survey, and thus, the

true percentage of WDs with 24 µm excesses is likely higher than 13% (Chu et al. 2011).

Interestingly, seven out nine hot WDs/pre-WDs with 24 µm excesses are still surrounded by

PNe: CSPN K1-22, CSPN NGC2438, WD 0103+732 in EGB1, WD 0127+581 in Sh 2-188,

WD 0439+466 in Sh 2-216, WD 0726+133 in Abell 21 (YM29), and WD0950+139 in EGB6.

The two WDs not surrounded by PNe, WD 0109+111 and WD 1342+443, have the faintest

24 µm emission and the lowest 24 µm excesses. While the detection rate of 24 µm excesses

among CSPNs in our sample is 20%, the detection rate of 24 µm excesses among hot WDs

not surrounded by PNe is much lower, 5–6%. The higher incidence rate of 24 µm excesses

among CSPNs, which are less evolved than bare WDs, could indicate an evolutionary effect

of excess diminishing with age. Such evolutionary effect is however not seen among PNe,

if the PN size is assumed to reflect its evolutionary status (Chu et al. 2009). On the other

hand, the sample size is too small to see a clear evolutionary trend.

2.4.2 Nature of the 24 µm Excesses

The SEDs of hot WDs with 24 µm excesses fall into two broad categories, those without

near-IR excess, and those with near-IR excess.

The SEDs of three WDs, WD 0103+732 (CSPN EGB1), WD 0439+466 (CSPN Sh2-
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216) and WD 0726+133 (CSPN Abell 21), show only 8 and 24 µm excesses and are therefore

similar to the SED of the Helix CSPN. Their SEDs, lacking near-IR excesses, do not indicate

the presence of a late-type companion. Four hot WDs with 24 µm excesses also exhibit excess

emission in the IRAC bands: CSPN K1-22, CSPN NGC2438, WD 0127+581 (CSPN Sh2-

188), and WD 0950+139 (CSPN EGB 6). Their IRS spectra indicate that the origin of the

excess emission is a continuum, and the emitting areas required to account for the excess

emission are too large for the emission to originate from a brown dwarf companion. The IR

emitters in these cases are most likely dust disks. Two out of these CSPNs, CSPN K1-22

and WD 0950+139, have known late-type companions (Ciardullo et al. 1999; Bond 2009). It

may be possible that the IR excesses of these CSPNs is associated with a companion. Two

WDs with 24 µm excesses lack IRAC observations, therefore, it is not known whether an IR

excess at these wavelengths is present.

Even though the IR emission is very likely to originate from dust disks, it is not certain

that these dust disks are all produced by collisions among KBOs, as proposed for the Helix

CSPN by Su et al. (2007). It is possible that some of these dust disks have formed through

binary interactions. Keplerian-rotating dust disks around post-AGB binaries are common,

and since the CSPN stage immediately follows that of post-AGB stars, the dust disks around

some of the CSPNs may be connected to those of post-AGB binaries. The covering fractions

listed in Table 2.4 and those of post-AGB binaries of de Ruyter et al. (2006) are very

different; however, and it is not known whether this is due to a different physical origins, or

evolutionary effects. For further discussion of the origin of dust disks around these hot WDs

and CSPNs, see Chu et al. (2011) and Chapter 4.

2.5 Summary

Inspired by the discovery of a dust disk around the CSPN of the Helix Nebula, we have

carried out a 24 µm Spitzer MIPS survey of hot WDs and pre-WDs for similar dust disks.
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We find nine cases of 24 µm excesses; in seven of these, the hot star is still surrounded by a

PN. The detection rate ∼13% is likely a lower limit to the true fraction of hot WDs with dust

disks, since the detection of more distant disks is precluded by inadequate sensitivity. The

detection rate of 24 µm excesses, 20%, is much higher than that of hot WDs not surrounded

by PNe, 5%.

In four cases, the 24 µm excess is accompanied by JHK or IRAC excess as well. In two

of these cases, the excess JHK emission is caused by a known companion, but the IRAC

excesses are still above the expected emission from both these components.

Spitzer IRS spectra are available for 6 of the hot WDs/pre-WDs. In five cases, the spectra

clearly show that the IR excesses originate from a dust continuum. In one case, an extremely

faint continuum is seen, but the contamination from a nearby very bright source precludes

any spectral extraction. Blackbody fits of the IR excesses indicate that the IR emitters must

have large emitting areas, which can only be provided by dust disks.

The dust around the Helix CSPN was suggested to be produced by collisions among

KBOs objects in the surviving planetesimal belts. The near-IR excesses, as well as known

companions for some of these sources, may indicate another physical origin for these dust

disks. These dust disks could have been produced in binary interactions, and correspond

to remnants of the commonly-observed disks around post-AGB binaries. The luminosity

fractions, LIR/L∗, are similar to those of dust disks around main-sequence stars and lower

than those of dust disks around post-AGB stars, but this may be due to evolutionary effects.
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Figure 2.1: Spitzer MIPS 24 and 70 µm images of CSPN K1-22, WD 0103+732 (CSPN
EGB1), and WD 0439+466 (CSPN Sh2-216).
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Figure 2.2: cont. on next page
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Figure 2.2: Spectral energy distribution plots for WDs detected in the MIPS 24 µm band.
The photometric measurements include published optical magnitudes (blue diamonds),
2MASS JHK (green diamonds), Spitzer IRAC bands (yellow diamonds), and MIPS 24 and
70 µm bands (red diamonds). Solid blackbody lines in the optical wavelengths represent the
WD photospheric emission, while dashed lines represent the blackbody-like excess emission
with the best-fit dust temperatures (see Table 2.4). For the four objects with excess emission
in the IRAC bands, the sum of the stellar emission and two blackbody components is plotted
in thin black line.
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Figure 2.3: Optical and IR images of CSPN K1-22. The field of view of each panel is
40′′×40′′. The inset in the HST images is 2′′×2′′.
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Figure 2.4: Spitzer IRS spectrum of CSPN K1-22 plotted with different stretches to illustrate
the relative intensity of lines and continuum. The spectrum extracted at CSPN K1-22 is
plotted in a thin solid line, the local background spectrum in a dotted line, the background-
subtracted spectrum of CSPN K1-22 in pixels with error bars, and the smoothed background-
subtracted spectrum in a thick line.
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[O IV] 25.89 μm

[S III] 33.48 μm

[Si II] 34.81 μm

[Ne III] 36.01 μm

Figure 2.5: Raw spectral image (top) and surface brightness profile plots (bottom) of CSPN
K1-22 extracted from the Spitzer IRS data cube in the continuum (dash-dotted curve),
[O IV] 25.89 µm line (solid curve), and [S III] 18.71 µm line (dashed curve).
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Figure 2.6: Hα and IR images of NGC2438. The field of view of each panel is 40′′×40′′.
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Figure 2.7: Optical and IR mages of WD 0103+732. The field of view of each panel is
40′′×40′′. The inset in the HST images is 2′′×2′′.

Figure 2.8: Spitzer IRS spectrum of WD 0103+732. The spectrum extracted at
WD 0103+732 is plotted in a thin solid line, the local background spectrum in a dotted
line, the background-subtracted spectrum of WD 0103+732 in pixels with error bars, and
the smoothed background-subtracted spectrum in a thick line.
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H2 28 μm

[O IV] 25.89 μm

[S III] 33.48 μm

[Si II] 34.81 μm

Figure 2.9: Raw spectral image (top) and surface brightness profile plots (bottom) of
WD 0103+732 extracted from the Spitzer IRS data cube in the continuum (dash-dotted
curve), [O IV] 25.89 µm line (solid curve), and [S III] 18.71 µm line (dashed curve).
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Figure 2.10: Optical and IR images of WD 0109+111. The field of view of each panel is
40′′×40′′.

Figure 2.11: Optical and IR images of WD 0127+581. The field of view of each panel is
40′′×40′′.
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Figure 2.12: Optical and IR images of WD 0439+466. The field of view of each panel is
40′′×40′′.
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[O IV] 25.89 μm

Figure 2.13: Raw spectral image (top) and the Spitzer IRS spectrum (bottom) of
WD 0439+466. The spectrum extracted at WD 0439+466 is plotted in a thin solid line,
the local background spectrum in a dotted line, the background-subtracted spectrum of
WD 0439+466 in pixels with error bars, and the smoothed background-subtracted spectrum
in a thick line.
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Figure 2.14: Optical and IR images of WD 0726+133. The field of view of each panel is
40′′×40′′. The inset in the HST images is 2′′×2′′.
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Figure 2.15: Top: Optical and IR images of WD 0950+139. The field of view of each panel
is 40′′×40′′. The inset in the HST images is 2′′×2′′. Bottom: Narrow-band HST F501N
([OIII]) image of CSPN EGB 6.
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EGB 6

[O III] 5007 Å 

Figure 2.16: Top: Emission line profiles extracted from the echelle spectrum of
WD 0950+139. Bottom: Raw spectral image of WD 0950+139 at the position of [O III]
5007 Å.

Figure 2.17: Optical and IR images of WD 1342+443. The field of view of each panel is
40′′×40′′.
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Table 2.1. Spitzer Photometry of Hot White Dwarfs with 24 µm Excesses

f3.6µm f4.5µm f5.8µm f8.0µm f24µm f70µm

WD Name (µJy) (µJy) (µJy) (µJy) (µJy) (µJy)

CSPN K1-22 829±42 706±36 681±38 808±42 1,070±143 <12,000
CSPN NGC2438 103±40 91±57 82±58 117±95 12,410±13,700a ...
WD 0103+732 88±15 71±19 58±20 132±35 2,760±141 <55,000
WD 0109+111 ... ... ... ... 269±55 ...
WD 0127+581 76±47 56±26 185±161 92±45 338±142 ...
WD 0439+466 862±44 514±26 336±22 180±14 9,200±157 9,200 ±8,400
WD 0726+133 37.7±2.5 22.8±2.0 <19.8 <17.0 916±114 ...
WD 0950+139 977±15b 1176±15b 1773±36b 3772±37b 11,740±66 ...
WD 1342+443 ... ... ... ... 218±41 ...

aThe photometric uncertainty is dominated by the bright nebular emission.

bSu et al. 2011, in preparation.
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Table 2.2. Summary of the IRS Follow-up Observations

Date IRS SL1 SL2 LL1 LL2
Star Name Observed Mode 5.2–8.7 µm 7.4–14.5 µm 14.0–21.3 µm 19.5–38.0 µm

CSPN K1-22 2009 Feb 26 staring 7×60 s 7×60 s 8×120 s 8×120 s
WD 0103+732 2008 Sep 13 staring 8×60 s 8×60 s 4×120 s 8×120 s
WD 0127+581 2008 Oct 09 mappinga 2×60 s 2×60 s 2×120 s 2×120 s
WD 0439+466 2008 Sep 7 mappinga 8×60 s 16×60 s 4×120 s 4×120 s

aExposure times given are for each pointing in the map.

Table 2.3. Source and Background Apertures for IRS Spectral Extractions

WD LL1 & LL2 SL1 & SL2 LL1 & LL2 SL1 & SL2
Name Aperture (arcsec2) Aperture (arcsec2) Offset (arcsec) Offset (arcsec)

CSPN K1-22 156 35 20 9.3
WD 0103+732 155 41 20 13.0
WD 0439+466 413 96 25.4 16.7
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Table 2.4. LIR/L∗ of Hot White Dwarfs with 24 µm Excesses

WD Spec Teff Distance R∗ Tdust SED
Name Type (K) E(B − V ) (pc) (R⊕) (K) LIR/L∗ Typea Referencesb

CSPN K 1-22 CSPN 141,000 0.076 1,330 3.3 700+150 1.1×10−4 EGB 6-like 1, 2
CSPN NGC 2438 CSPN 114,000 0.25 1,200 4.1 1200+150 4.7×10−4 EGB 6-like 1, 3
WD 0103+732 (CSPN EGB 1) DA.34 150,000 0.58 650 3.7 190 1.4×10−5 Helix-like 4, 5
WD 0109+111 DOZ.46 110,000 0.065 280 2.3 150 4.9×10−6 Helix-like 6, 7, 8
WD 0127+581 (CSPN Sh 2-188) DAO.49 102,000 0.27 600 1.7 900+150 6.6×10−5 EGB 6-like 4, 9
WD 0439+466 (CSPN Sh 2-216) DA.61 83,000 0.065 129 2.4 150 2.4×10−5 Helix-like 10, 11
WD 0726+133 (CSPN Abell 21) PG1159 130,000 0.13 541 2.0 150 1.6×10−5 Helix-like 2, 11, 12
WD 0950+139 (CSPN EGB 6) DA.46 110,000 0.21 645 3.0 500+150 4.7×10−4 EGB 6-like 5, 13
WD 1342+443 DA.7 79,000 — 437 1.4 150 5.1×10−5 Helix-like 13
WD 2226−210 (CSPN Helix) DAO.49 110,000 0.03 210 2.6 120 2.5×10−4 Helix-like 11, 14

aEGB 6-like SEDs show excesses in the IRAC bands as well as the MIPS 24 µm band. Helix-like SEDs show no excess emission at wavelengths
shorter than ∼8 µm.

bReferences for stellar temperature, extinction, and distance: (1) Rauch et al. (1999), (2) Ciardullo et al. (1999), (3) Phillips (2004), (4)
Napiwotzki (2001), (5) Tylenda et al. (1992), (6) Dreizler & Werner (1996), (7) Werner et al. (1997), (8) Wesemael et al. (1985), (9) Kwitter &
Jacoby (1989), (10) Rauch et al. (2007), (11) Harris et al. (2007), (12) Phillips (2003), (13) Liebert et al. (2005), (14) Napiwotzki (1999).
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Chapter 3

Spitzer Search for Dust Disks around
Central Stars of Planetary Nebulae -
Methods and Observations

3.1 Introduction

Debris disks have been detected around low- and intermediate-mass main sequence stars

through their excess IR emission, but these dust disks dissipate and fade away before stars

evolve off the main sequence (Rieke et al. 2005; Su et al. 2006; Carpenter et al. 2009; Trilling

et al. 2008). As a star loses mass and evolves into a WD, its planetary system can become

dynamically rejuvenated and increased collisions among subplanetary bodies may replenish

the system with dust.

Indeed, two types of dust disks have been observed around WDs. Small (r<0.01 AU) dust

disks were found around cool (T< 25,000 K) WDs, for example, G 29-38 (Reach et al. 2005a)

and GD 362 (Becklin et al. 2005). These dust disks have been suggested to be produced by

tidally disrupted asteroids, and the supporting evidence includes dust’s location within the

Roche limit, the silicate feature superposed on the dust continuum, and high metal content

in WD atmospheres (Jura et al. 2007). Some dust disks are accompanied by metal-rich

gaseous disks, for example SDSS 1228+1040 (Gänsicke et al. 2008).

A large dust disk was discovered around the hot (T=110,000 K) CSPN of the Helix

nebula (Su et al. 2007). Spitzer observations of Helix CSPN detect dust continuum with

a color temperature of 90–130 K at orbital distances of 35–150 AU. This location suggests

that the dust is likely produced by collisions among Kuiper-Belt-like objects.

To search for more dust disks similar to that around Helix’s CSPN, we have conducted

a Spitzer MIPS 24 µm survey of 71 hot, young WDs and pre-WDs in Cycle 4 (PID 40953).
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About 50% of these are still CSPNs, and are the closest analogs of the Helix Nebula and its

central hot WD. Out of 71 targets observed, unresolved 24 µm emission coincident with the

WD is convincingly detected in 9 cases, 7 of them still surrounded by PNe (Chu et al. 2011).

Inspired by the prevalence of PN environments for hot WDs showing mid-IR excesses,

we have used archival Spitzer IRAC and MIPS observations of PNe to search for CSPNs

with IR excesses and to investigate possible evolutionary effects. The following two chapters

report the results of this archival survey.

3.2 Spitzer Archival Data and Flux Measurement

3.2.1 Archival Search

We have searched the Spitzer archive for programs that target PNe as of January 2011. The

following nine programs contain imaging observations in IRAC (3.6, 4.5, 5.8 and 8.0 µm)

and/or MIPS (24, 70 and 160 µm) bands, and have been selected for closer examination:

programs 68 (PI: Fazio), 77 (PI: Rieke), 1052 (PI: Hora), 3362 (PI: Evans), 3668 (PI: Morris),

30285 (PI: Fazio), 40020 (PI: Fazio), 40115 (PI: Fazio), and 50530 (PI: Burleigh). In additon,

program 50793 (PI: Bilikova) contains our follow-up MIPS observations of some PNe with

IR excesses from this archival study; these observations are included in this paper.

We do not include programs 30029, 30036, 30077 and 40061 in this study, because the

targets in these programs are either evolved stars surrounded by dusty stellar ejecta, such

as R Coronae Borealis (RCrB) stars and post-AGB stars, or proto- and very young PNe

that are not well resolved. Note that we may have missed some PNe observed in programs

targeting WDs that are also CSPNs. We also do not include PNe serendipitously observed

in surveys of the Galactic plane or high-latitude extragalactic surveys. We do not repeat the

analysis of MIPS 24 µm observations of the 36 PNe from program 40953 (PI: Chu), a 24 µm

survey of hot WDs for IR excesses, and follow-up IRS and IRAC observations from program

50629 (PI: Chu), as these have been reported by Chu et al. (2011). This paper and Chu

51



et al. (2011), together, represent a more complete Spitzer sample of CSPNs in well-resolved

PNe.

We have examined the target lists of the nine selected programs, and further eliminated

targets such as RCrB stars, proto-PNe, post-AGB stars, and supernova remnants. The

remaining sample comprises imaging observations of 72 PNe in IRAC and/or MIPS bands.

The full sample of PNe considered in this paper is presented in Table 3.1, along with the

instruments and modes used for the observations, the observation IDs (AORs) and the

program IDs.

We have retrieved all archival Spitzer images of PNe and identified their CSPNs by

comparing their coordinates from the literature (Kerber et al. 2003) to those of the stars in

the central region of each PN, as well as by visual comparison with images from Digitized

Sky Survey (DSS), 2-Micron All Sky Survey (2MASS) and from the Planetary Nebula Image

Catalogue1. CSPNs not suitable for photometric measurements are eliminated from further

study. These include (1) small PNe in which the CSPNs were not resolved from the nebula,

e.g., Hb 5, Hb 12, PB6 and PB8; (2) PNe whose nebular emission dominates the central

region and overwhelms the stellar emission, e.g., NGC6072 and NGC6302; (3) PNe in which

the CSPN is too faint and not detected, e.g., He 2-119 and NGC2818. Remarks concerning

the visual examination of the PNe are also given in Table 3.1. Out of the 72 PNe examined,

42 detected CSPNs were selected for photometric measurements.

For the 42 targets selected for photometry, we have searched the Spitzer archive again

to find additional imaging observations from programs that did not specifically target PNe.

One PN, DeHt 5, has additional IRAC images available from program 30432 (PI: Burleigh);

these IRAC images have been included in our study. Seven PNe, A21, JnEr 1, NGC 246,

NGC 1360, NGC 2438, NGC 2610, and NGC 3587, have MIPS 24 µm observations from

program 40953; photometric measurements of these CSPNs have been reported by Chu et al.

(2011), and only CSPNs of A21 and NGC 2438 are detected. The PN NGC 2346 has MIPS

1http://www.astro.washington.edu/users/balick/PNIC/
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observations from a calibration campaign, program 715 (PI: Rieke); these data have been

included in our photometric measurements. NGC 7354 has additional MIPS images available

from program 50398 (PI: Carey), but they are not suited for photometric measurements

because the CSPN is not visible against the very bright nebular emission. MIPS 24 µm

images of NGC 6804 and NGC 7139 are from our follow-up program (see Section 3.1); of

these, only CSPN NGC 6804 is detected and measured. These additional observations are

also listed in Table 3.1.

In summary, we have selected 42 CSPNs for IRAC photometric measurements, and four

CSPNs for MIPS 24 µm measurements (DeHt 5, NGC 2346, NGC 6804, and NGC 6853);

we adopt the MIPS 24 µm fluxes or upper limits from Chu et al. (2011) for seven CSPNs.

The CSPNs of NGC 7293, the Helix Nebula, and A21 have been analyzed by Su et al. (2007)

and Chu et al. (2011) and will be included here for completeness, but will not be discussed

in detail in this paper.

3.2.2 IRAC Photometry

For the 42 sources selected for IRAC photometry, we use the phot task in IRAF2 to carry out

aperture photometry on post-Basic Calibrated Data (post-BCD) files that were processed

with pipeline version S18.18.0. The pixel size in the post-BCD data is 0.′′6, half the native

IRAC pixel size. For images saturated at the CSPNs that were observed in the high dynamic

range mode, we use the short-exposure images for photometric measurements.

We use the smallest aperture radius that encloses the central source but is sufficiently

larger than the instrumental resolution (FWHM 1.5–2′′ for IRAC), in order to minimize the

nebular contamination in the aperture. As most sources are faint, a source aperture of 4-pixel

(or 2.′′4) radius is used. For brighter CSPNs, NGC 1360 and NGC 6804, we use a 6-pixel

(or 3.′′6) radius for the source aperture, and for the brightest sources, NGC2346, M 2-9 and

2IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Asso-
ciation of Universities for Research in Astronomy (AURA) under cooperative agreement with the National
Science Foundation.
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Mz3, we use a 10-pixel (or 6.′′0) radius source aperture. The aperture was centered at the

peak of CSPN emission by using a centering algorithm where possible; for faint sources or

sources with nearby nebular background fluctuations, the source aperture was forced at the

CSPN position established from the detection in the shorter-wavelength IRAC channels.

Estimating the background level for aperture photometry requires closer examination

of each PN, because the nebular emission can be irregular, or vary radially outwards. To

identify the PNe with radial variations in their emission, we have produced and examined

radial profiles of central regions of all selected PNe. To construct the radial profiles, we use

the median of the pixel flux densities for a succession of annuli with increasing radii and a

width of 1 pixel.

For CSPNs with a uniform nebular background in the central region, we use annuli of

radii 4−12 (2.′′4−7.′′2), 6−14 (3.′′6−8.′′4), and 10−20 (6′′−12′′) pixels for source apertures of

4, 6, and 10 pixels, respectively, to estimate the background level. After carrying out a 3σ

trimming algorithm to reject the outlying pixel flux densities, such as those corresponding to

stars within the background annulus, we adopt the median of the pixel flux densities as the

background to calculate CSPN fluxes. Appropriate aperture corrections are applied using

values provided in the IRAC data handbook (version 3.0), but no color correction is made.

Photometric uncertainty is estimated using the prescription in Reach et al. (2005b), and an

additional 5% of the CSPN flux is added in quadrature to account for random variations in

the instruments and the errors resulting from calibration. For CSPNs with a background

that does not have radial variations but is non-uniform and clumpy, we perform aperture

photometry for a set of different sky annuli, and adopt the standard deviation in the measured

flux densities as the measurement error, combined in quadrature with 5% of CSPN flux.

For non-detections, we perform 4-pixel-radius aperture photometry at the position of the

CSPN established from detections in shorter-wavelength channels, and add 3σ to estimate

upper limits on the CSPN fluxes, where σ is the estimated measurement error. For cases

where background-subtracted flux inside the aperture is negative, the upper limits are equal
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to 3σ.

In cases where strong radial variation is present, we use the radial profiles to estimate

the background level. For a PN with a shell-like morphology, the nebular surface brightness

is the lowest in the central region, and increases outward from the CSPN. The radial profile

plots show the sum of the emission from the CSPN and from the nebular background. We

adopt the local minimum value in the radial profile plot as the background level. Since

not all of the CSPN emission is included in the aperture, and some of it contributes to the

flux at the radial profile minimum, we apply the same aperture corrections as we do for the

uniform background case. Since the adopted radial profile minimum is off-center from the

CSPN, the central nebular background is still overestimated; however, the background is

overestimated by no more than ∼10% for the range of observed shell thicknesses and the

locations where the nebular backgrounds are sampled. To estimate the flux measurement

error, we first subtract the median flux per pixel at each annulus, and estimate the errors

using the formulae from Reach et al. (2005b) on the median-subtracted background pixels.

Two PNe, NGC 6629 and PMR 2 are centrally peaked; therefore, both techniques dis-

cussed above underestimate the background and overestimate the CSPN flux. For NGC 6629,

we examine the radial profiles and assess conservative upper and lower limits to the nebular

background to estimate the lower and upper limits to CSPN flux densities, respectively. The

reported flux density is the average value, and the reported error is half the difference be-

tween upper and lower CSPN flux density estimates. The other centrally peaked PN, PMR 2,

is very compact (diameter<15′′ in IRAC images). For this CSPN, we carry out standard

aperture photometry with 4-pixel aperture radius and 4-12 pixel background annulus, and

report the resulting flux densities as upper limits.

For eight PNe, even though the CSPNs are seen, the nearby nebular or stellar emission

is too bright, irregular, and/or blended with the CSPN, rendering the measured CSPN flux

densities inaccurate. We do not report the flux densities for these CSPNs - A30, IC 4593,

NGC 6153, NGC 6781, NGC 7009, NGC 7026, NGC 7048, NGC 7354. See section 3.4 for
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further description.

Figure 3.1 illustrates the different background estimation techniques used for different

PN morphologies. It shows images, histograms of pixel flux densities in the background

annuli, and radial profiles for NGC 3587 and NGC 2392, and NGC 6629. For the case

of NGC 3587, the nebular background is uniform, and the median flux density value of

the pixels in the background annulus gives an accurate estimate of the background level.

NGC 2392, on the other hand, has a shell-like morphology, and using the median value in

the background annulus would over-estimate the background, and hence underestimate the

CSPN flux. Using the background estimate from the radial profile, we are able to compute

CSPN fluxes more accurately. For example, assuming a fractional shell thickness (∆R/R)

of 0.3, the adopted nebular background at a distance ∼1/3 of the radius overestimates the

central nebular background by ∼7%. NGC 6629 is centrally peaked, and both the histogram

median and the minimum in the radial profile underestimate the nebular background. In

this case, we estimate the limits to the nebular contamination using the range of values seen

in the radial profile.

We have examined the radial profiles of all PNe, and, based on radial trends and stellar

contamination, chosen the most reliable way to determine CSPN fluxes. A flux conversion

error has been identified for data processed with the S18.18 pipeline, resulting in overestimate

of the 5.8 and 8.0 µm fluxes. Our measured CSPN flux densities at 5.8 and 8.0 µm were thus

multiplied by factors of 0.968 and 0.973, respectively, to account for this calibration error,

as suggested by Spitzer Science User Support. The notes on individual objects, including a

summary of the method used to estimate the background, are provided in section 3.4 .

The final fluxes and errors are listed in Table 3.2.

3.2.3 MIPS Photometry

Four targets are selected for photometric measurements in the MIPS 24 band: DeHt 5,

NGC 2346, NGC 6804, and NGC 6853. At MIPS 70 and 160 µm, these sources are not
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observed, undetected, or overwhelmed by the nebular emission; therefore, we only report the

24 µm fluxes. Our measured MIPS 24 µm fluxes, as well as those taken from Chu et al.

(2011), are listed in Table 3.2.

We construct new 24 µm image mosaics with a pixel size of 1.′′245 (∼half the native pixel

size) by combining the available BCD frames using the MOPEX3 software. As in the case of

IRAC observations, we construct the radial profiles of the central regions of these PNe. We

examine the images and the radial profiles to select the appropriate photometry parameters.

We apply the aperture corrections provided in the MIPS data handbook (version 3.3.1).

In the case of DeHt5, the nebular background is not uniform. The nebular emission is

brighter on the east side of the CSPN, and is partially blended with the central source. A

gaussian fit to the central source gives a FWHM of ∼6.5 pixels, slightly larger than that of

the point source (∼6′′, or ∼5 pixels); however, this is likely due to the contamination by the

nearby nebulosity, and the central source is likely a point source. To minimize the nebular

contamination, we choose the smallest source aperture (3.′′5 radius) and background annulus

(6–8′′ radii) combination for which aperture corrections are available.

The central sources of NGC 2346 and NGC 6853 are slightly extended, with FWHMs

of ∼7.5 and ∼9 pixels, respectively. Su et al. (2004), indeed report that the central star of

NGC 2346 is surrounded by extended dust emission, which is seen at 24 µm. To estimate

the 24 µm flux of these two CSPNs, we again use a 3.′′5 source aperture and a 6-8′′ annular

background. NGC 6853 is surrounded by centrally peaked nebular background which may

be contributing to the CSPN flux. We estimate the error due to the nebular emission by

performing aperture photometry for a set of diferent sky annuli, and adopt the standard devi-

ation in the measured ux densities as the photometric error. For the above three CSPNs, we

add 5% of the CSPN flux to the photometric errors in quadrature, to account for instrument

and calibration inaccuracies.

The FWHM of the central source of NGC 6804 is ∼5 pixels, the same as that of a point

3http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/mopex/
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source. The CSPN is surrounded by a bright nebular shell, the emission from which is

enhanced in the southern portion of the shell. We therefore use the radial profile to estimate

the background level (see Section 2.2). Despite the absence of background point sources,

the background estimated from the average radial profile and that of the median radial

profile differ considerably, likely due to the enhancement in the nebular emission toward the

south. Since this southern enhancement contributes to the aperture contamination, we use

background value from median as well as average radial profiles. We report the average of

the computed fluxes as the final flux value, and use half the difference between these two

flux estimates as our measurement error.

3.2.4 Spectral Energy Distributions

To assess the presence of mid-IR excesses, the measured fluxes in IRAC and MIPS bands

need to be compared to those at shorter wavelengths. We have searched the literature for

CSPN flux values shortward of the IRAC 3.6 µm band. Available UBV RIJHK fluxes

and extinction values are listed in Table 3.3, along with references. Some of the optical

magnitudes that we found appear suspect, as they are inconsistent with other measurements

or originate from astrometric catalogs that are not well calibrated photometrically. These are

listed in parentheses in Table 3.3. The JHK fluxes are from the 2MASS catalog (Skrutskie

et al. 2006), except for some CSPNs whose 2MASS photometry is evidently compromised

by nebular emission. In these cases, we made our own JHK measurements using smaller

source apertures to exclude the nebulae, these magnitudes are marked with an asterisk in

Table 3.3, and the details of each photometric measurement are given in section 3.4 .

Supplemented by the optical and near-IR fluxes, we construct the spectral energy distri-

butions (SEDs) for the 34 CSPNs with photometric measurements in the IRAC and MIPS

bands. The fluxes are corrected for interstellar extinction based on the values from the liter-

ature. For cases that do not have an extinction value available in the literature, or where a

different value gave a better fit to the optical fluxes, we list our adopted extinction correction
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in Table 3.3 and mark it with a plus sign.

We approximate the photospheric emission of the CSPNs at IR wavelengths by the

Rayleigh-Jeans tail of a blackbody function. Since the slope of this Rayleigh-Jeans approxi-

mation in a log-log plot is independent of temperature, we initially model the photospheric

emission in all SEDs with a 100,000 K blackbody curve, normalized to the optical and/or

near-IR fluxes.

We examine the SEDs and find that they can be divided into four categories:

(1) Clear IR excess. The CSPNs in this category have IR flux densities as well as their

associated errors well above the expected photospheric emission. Nineteen CSPNs belong to

this category: A21, A66, DeHt 5, He 2-99, M 2-9, Mz 3, NGC 1501, NGC 2346, NGC 2438,

NGC 40, NGC 6369, NGC 650, NGC 6751, NGC 6804, NGC 6853, NGC 6905, NGC 7139,

NGC 7293, and PMR 1. These will be further discussed in Section 4.

(2) Likely IR excess. Only one CSPN, that of PMR 2, belongs to this category. It is very

likely that it does have an IR excess since it is well detected in all IRAC bands; however,

it is difficult to establish accurate fluxes because the PN is very small. We only report the

upper limits, but all of the upper limits lie well above the expected photospheric emission.

(3) Unlikely/uncertain IR excess. For CSPNs in this category, the IR data points are

only slightly above the blackbody curve, and some error bars lie on the blackbody curve.

For these CSPNs, there is a suspicion that the flux measurements may be contaminated by a

nebular filament and/or a nearby star, or the lack/scatter of optical data points complicates

the estimation of the expected photospheric emission. Three CSPNs belong to this category:

NGC 246, NGC 2371 and NGC 6772.

(4) No IR excess. The data points closely follow the blackbody curve. Eleven CSPNs

belong to this category: DS 2, IC 5148, JnEr 1, NGC 1360, NGC 2392, NGC 2610, NGC 3242,

NGC 3587, NGC 6543, NGC 6629, and NGC 6720.

For a more detailed description of the SEDs of each CSPN, see section 3.4 . The SEDs

with no or uncertain/unlikely IR excesses are presented in Figure 3.2, and the SEDs with
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probable and clear IR excesses are presented in Figures 4.1-4.4.

3.3 New Follow-up Observations

3.3.1 Spitzer MIPS imaging

To extend the wavelength coverage of the SED, we have obtained follow-up 24 µm observa-

tions of NGC 7139 and NGC 6804 with the MIPS camera onboard Spitzer (Rieke et al. 2004)

in our program 50793 (PI: Bilikova). Each target was observed in the small-field photometry

mode, which obtained a sequence of 14 exposures dithered in a preset pattern (for details,

see the Spitzer Space Telescope Observer’s Manual). The observations used an exposure time

of 10 s and cycled through the pattern 5 times, yielding a total exposure time of 700 s in the

central 3.′2×3.′2 region. The BCD frames were combined using the MOPEX software and

photometric measurements carried out as described in Section 2.3.

3.3.2 Spitzer IRS spectra

To assess the line and continuum contribution to the IR excesses, we have obtained follow-

up Spitzer IRS spectra for CSPNs NGC 2438 and NGC 7139 in our program 50793. The

sources were observed using the low-resolution short wavelength modules SL1 (7.4–14.5 µm)

and SL2 (5.2–7.7 µm). See Houck et al. (2004) for a more detailed description of the IRS and

its capabilities. Because both sources are faint, the observations were taken in the mapping

mode where the source position is stepped along the slit to facilitate an improved background

subtraction. For NGC 7139, we have obtained 2×60 s exposures at eight pointings with the

CSPN stepping along the slit at 4′′ intervals. For NGC 2438, we have obtained 3×60 s

exposures at eight pointings with successive of 4′′ offsets along the slit.

In addition to our follow-up observations, NGC 2346 has IRS spectral mapping observa-

tions available in the Spitzer archive, as part of the program 30482 (PI: Houck). The source
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was observed in the low-resolution modules SL1 and SL2, and high-resolution modules SH

(10-19.5 µm) and LH (19-37 µm). In the SL modules, 3×15 s exposures were taken at 17

positions, each successive position offset by 1.′′85 in the direction perpendicular to the slit.

In the SH module, 3×6 s exposures were taken at 114 positions, consisting of 6 steps parallel

to the slit with 5′′ step size, and 19 positions perpendicular to the slit with 2.′′3 step size. In

the LH module, 3×6 s exposures were taken at 32 positions, consisting of 4 steps along the

slit with step size of 10′′, and 8 steps perpendicular to the slit with a 4.′′5 step size.

All spectra were reduced using the CUBISM software (Smith et al. 2007), with the

latest pipeline processing of the data and the most recent calibration set (irs 2009 05 20-pb-

pfc-trim-omeg-lhllbiasfork.cal). Each low-resolution module contains two subslits that are

exposed at the same time, e.g., SL1 on-source and SL2 off-source, and vice versa.

For NGC 7139, all off-source frames appear free of any source contamination. We average

these BCD records while trimming the maxima and minima at each pixel to produce a 2D

background frame, which is then subtracted from all on-source frames in the corresponding

module. Subtracting a 2D background frame of nearby sky from our target observations

removes astronomical background and alleviates the bad pixels in the IRS data. After the

2D background subtraction, we flag the global and record-level bad pixels first using the

default CUBISM parameters for automatic bad pixel detection, and then through manual

inspection of each BCD record, as well as by backtracking the pixels contributing to a given

cube pixel. The spectrum is then extracted with an aperture size 5.′′5×3.′′7, large enough to

enclose the source. Two local background spectra on either side of the source offset by ∼7.′′5

are extracted and averaged for 1D subtraction of the local background.

The background subtraction in the case of NGC 2438 is complicated by the fact that

the off-source frames are still within the PN. Lacking a suitable local 2D background, it is

recommended to use an observation that is close to the target’s RA, DEC, and observation

time. After experimenting with various backgrounds, the best results appear to be achieved

by using the off-source frames of NGC 7139, which, albeit not close to NGC 2438 in position,
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were observed in a similar setup within a day from NGC 2438’s observations. This however

causes over-subtraction in some emission lines that are present in the spectrum of NGC 7139

but not NGC 2438; however, this problem is alleviated after local 1D background subtraction.

In the SL2 (5.2–7.7 µm) module, the spectrum of the CSPN NGC 2438 is not detected

in the background-subtracted frame; therefore, we do not extract the spectrum from this

module. In SL1 (7.4–14.5 µm) module, the background-subtracted frame does show the

CSPN spectrum, and we proceed with flagging the bad pixels and extracting the spectra in

the same way as we did for NGC 7139. We extract the CSPN spectrum using an aperture

area of 3.′′7×3.′′7, and two background spectra offset from the CSPN by ∼5.′′6 on either side

of the source, which are then averaged for 1D local background subtraction.

NGC 2346 has dedicated background observations in each module; we use these for the

2D background subtraction. In the SL modules, we extract the CSPN spectrum using a

11′′×13′′ aperture, and two local background spectra offset 15′′ from the CSPN. In the SH

module, the CSPN spectrum is extracted using a 6.′′8×6.′′8 aperture, and two background

spectra are extracted at two positions offset from the CSPN by ∼11′′. In the LH module,

the CSPN spectrum is extracted using a 13.′′4×8.′′9 rectangular aperture, and the background

spectra are offset from the CSPN by ∼18′′. The two background spectra extracted for each

module are averaged for 1D local background subtraction. All Spitzer IRS spectra will be

presented in Section 4.

3.3.3 Gemini - NIRI

We have obtained JHK ∼1–2.5 µm spectra for 5 CSPNs and LM ∼2.9–6 µm spectra for

NGC 6804 using the NIRI instrument on the Gemini-North 8-m Telescope on Mauna Kea

in Hawaii. The observations were carried out in the classical observing mode on UTC 2009

June 5-6 in our program GN-2009A-C-7.

In all cases but one we have used the f/6 camera (0.′′12 pixel−1) with a 4-pixel slit (0.′′47),

and the appropriate JHKLM order-sorting filter (G0209, G0210, G0211, G0212, G0213)
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and grism (G5202, G5203, G5204, G5205, G5206). The resolving powers are 610, 825, 780,

690, and 770; and the inverse dispersions are 3.625, 5.203, 7.064, 11.39, and 16.51 Å pixel−1

for the JHKLM bands, respectively. NGC 7139, the only exception, was observed with the

same setup but using a 6-pixel slit; the resolving powers are 460, 520 and 520 in the JHK

bands, respectively.

To facilitate background subtraction, the targets were nodded along the slit, usually

in 10 steps within 20–30′′ from the central slit position. Flat-fields and Argon arcs were

taken immediately after each science observation. For the L and M bands, the wavelength

calibration is carried out using the sky lines. Telluric standards were taken before or after the

observation of each target at a similar airmass. The observing conditions were photometric

the first night and slightly less so the second night. The targets, exposure times, and telluric

standard stars are summarized in Table 3.4.

The spectra were reduced using the tasks within the Gemini IRAF package developed

for the reduction of NIRI and GNIRS slit spectra. Sky frames, generated by combining

suitable frames from other nod positions, were subtracted from each image to remove the

background and dark current. The frames were then flat-fielded and combined to produce a

single spectral image. The spectral image was wavelength-calibrated using either an Argon

arc (JHK) or sky lines (LM), traced, and extracted. The residual and local background was

subtracted during the spectral extraction, using two background apertures on either side of

the target.

Telluric corrections were performed with the general version of the IDL routine xtellcor

(Vacca et al. 2003), using the spectra of telluric standard stars. This IDL routine in principle

removes the hydrogen absorption lines present in the telluric standard’s spectrum and then

divides out the atmospheric and instrumental features from the target spectrum. The hydro-

gen line removal is complicated at wavelengths where the atmospheric transmission varies

strongly, making it difficult to separate the hydrogen lines from the telluric absorption lines.

Therefore, we check the spectral images to verify the presence of emission lines. The routine
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also performs a rough flux calibration, based on the standard stars’ B and V magnitudes,

extrapolated to IR wavelengths using the model spectrum of Vega. Since our standard stars

are not A0V-type stars like Vega, this method renders the flux calibration inaccurate. Thus,

we normalize the final JHK spectra to the known JHK magnitudes, and LM spectra to

IRAC 3.6 and 4.5 µm flux densities. The obtained spectra will be presented and described

in Section 4.

3.3.4 Gemini - MICHELLE

We have obtained low-resolution N -band 8–14 µm spectroscopy for the CSPN of NGC6804,

using the Michelle spectrometer on the Gemini-North 8-m Telescope atop Mauna Kea,

Hawaii. The observations were performed on UTC 2009 September 19 under our program

GN-2009B-Q-74.

For this observation we use the 2-pixel (0.′′402) wide slit in the focal plane and the Low

Resolution 10 µm (lowN) grating, resulting in an inverse dispersion of 0.024 µm pixel−1 and

a resolving power of R∼200. A standard chop and nod technique was employed in order

to reduce the time-variable sky background and telescope thermal emission. The slit was

oriented N-S, and the chop throw was 6′′ in the direction 55◦ E of N. Two observations with

450 s on-source integration time were taken, but in one of these observations, the CSPN was

not well-centered in the slit, and the observation was of lower quality. The mean airmass

during the two observations was 1.035 and 1.018.

The acquisition images were taken through the Si-5 11.6 µm filter (∆λ=1.1 µm) with an

on-source integration time of 1 s. The detector scale of Michelle is 0.′′1005 pixel−1 in imaging

mode and 0.′′201 pixel−1 in spectroscopic mode. The weather was good and the FWHM of

the standard star image was measured to be ≤0.′′42. The diffraction limit of the telescope is

0.′′34.

The data were reduced using the spectral reduction task msreduce in the Gemini midir

package in IRAF. The reduction process in general involves bias subtraction and flat-fielding,
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background frames subtraction, wavelength calibration using the sky lines in the spectrum,

spectral extraction, and the application of the telluric correction. The telluric correction and

flux calibration were carried out using the standard star HD 188310; this star was observed

at a mean airmass of 1.054. The final Michelle spectrum of NGC 6804 will be presented and

discussed in Section 4.

3.4 Notes on Individual targets

A21 – We use the B magnitude from Acker et al. (1992), V I and extinction from Ciardullo

et al. (1999) and JHK magnitudes from 2MASS. The R magnitude listed in SIMBAD and

shown in the SED as an open diamond is not from a photometric catalog, and is thus

unreliable. We use standard aperture photometry for IRAC flux density measurement, since

the background is uniform. The CSPN is detected in IRAC ch1 and ch2, but not ch3 and

ch4, for which upper limits are determined. For MIPS 24 µm flux density we use the value

from Chu et al. (2011). The optical and IR flux densities follow a blackbody curve up to

8 µm, but the CSPN has a significant 24 µm excess. For the SED image, as well as the

discussion of the IR excess of A21, see Chu et al. (2011).

A30 – a born-again PN with dusty H-poor knots in the central region (Cohen & Barlow

1974; Jacoby & Ford 1983). The CSPN is detected in IRAC ch1 and ch2, but it is faint and

blended with an irregularly varying background. In ch3 and ch4, the CSPN is not clearly

seen against the bright nebular background. The inadequate spatial resolution precludes

accurate flux measurement; high-resolution images are needed to establish accurate fluxes

and to determine whether the CSPN has excess IR emission. No SED is constructed.

A66 – We use the UB magnitudes from Acker et al. (1992), and V I magnitudes from

Ciardullo et al. (1999), who reported a nearby visual companion that is unlikely to be a

physical binary companion. The CSPN is too faint to be detected in 2MASS. Since Ciardullo

et al. (1999) did not provide an extinction value, we use an E(B − V ) of 0.2, so that UV I
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flux densities lie on a blackbody curve. We use standard aperture photometry to measure

IRAC fluxes in ch1 and ch2, since the background is uniform. The CSPN is not detected in

ch3 and ch4; for these, we plot upper flux limits. Clear excess emission is seen in IRAC ch1

and ch2, and the upper flux limits in ch3 and ch4 also lie above the expected photospheric

emission. The companion is responsible for the excess IR emission.

DeHt 5 – We use the B magnitude from Passy et al. (in preparation) and JHK magnitudes

from 2MASS and the extinction E(B − V )=0.16 from Good et al. (2005a) to construct the

SED. The V magnitude is from SIMBAD, but since the original reference is not provided,

we plot it on the SED as an open diamond. The CSPN is detected in all IRAC bands and at

MIPS 24 µm. We use standard aperture photometry for photometric measurements in the

IRAC bands. Clear IR excess is seen at 8 and 24 µm. This object may be a mimic and not

a true PN (Frew 2008).

DS 2 – The SED presents extinction-corrected UBV magnitudes from Acker et al. (1992)

and JHK magnitudes from from 2MASS. We adopt an E(B − V ) of 0.25 to correct for

extinction so that the optical data points follow the Rayleigh-Jeans tail. CSPN is seen in all

IRAC bands, and we use standard aperture photometry for IRAC flux measurements. All

data points follow the blackbody curve, no IR excess is seen in the SED.

He 2-99 – The SED uses the UBV magnitudes from Reed (2003), and JHK magnitudes from

2MASS. Acker et al. (1992) list fainter B and V magnitudes of 14.22 and 14.00, respectively;

these are plotted as open diamonds for comparison. To correct for interstellar extinction, we

use E(B−V ) value of 0.6, for which the UBV JH flux densities lie along the Rayleigh-Jeans

tail. The CSPN is detected in all IRAC channels, and we use standard aperture photometry

to measure the CSPN fluxes. The CSPN shows excess emission starting at ∼2 µm, and it is

a [WC]-type star.

IC 4593 – This PN is centrally peaked in IRAC images; the emission peak in IRAC ch4 is

offset by ∼1.′′5 from the emission peak in IRAC ch1-3. An Hα image (Manchado et al. 1996)

reveals that the CSPN is surrounded by a shell with a diameter <5′′. The emission from
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this shell is blended with that of the CSPN. The off-center emission peak in ch4 indicates

that the emission is dominated by the nebular shell. Due to the blending of the CSPN and

nebular emission, accurate photometry cannot be carried out. No SED is constructed.

IC 5148 – We use the V I magnitudes from Ciardullo et al. (1999) to produce the SED. Note

that Acker et al. (1992) gives a fainter V magnitude of 16.5, plotted as an open diamond.

Standard aperture photometry is used to measure CSPN IRAC fluxes in ch1-3. The CSPN is

not detected in ch4; thus, we plot the upper limit for this band. Ciardullo et al. (1999) give

an extinction value of c=0.38 (or E(B−V )∼0.26). This extinction appears too high, as both

the I and the IRAC flux densities would lie below the expected photospheric emission. The

optical and IR flux densities lie on the blackbody curve for an extinction of 0; we therefore

adopt zero extinction in the SED construction. The CSPN of IC 5148 does not show any IR

excess.

JnEr 1 – To construct the SED, we use the UB magnitudes from Acker et al. (1992), and

V I and c=0 from Ciardullo et al. (1999). We use standard aperture photometry to measure

IRAC fluxes in ch1 and ch2; in ch3 and ch4 the CSPN is not detected and we plot the upper

flux limits. The CSPN is not detected at 24 µm and we plot the upper limit from Chu et

al. (2011). The IRAC fluxes lie along the blackbody curve, no IR excess is detected. The

CSPN is a PG1159 star.

M2-9 – To construct the SED, we use the V I magnitudes and extinction from Ciardullo

et al. (1999), JHK magnitude from 2MASS. The B magnitude is from the Guide Star

Catalog and is inaccurate; we plot it on the SED as an open diamond. The IRAC images are

saturated at the CSPN; therefore, we use the short-exposure frames, and carry out standard

aperture photometry. The SED also shows mid-IR fluxes from Smith & Gehrz (2005) as

open black diamonds. Prominent IR excess is seen starting from the I band. The CSPN of

M2-9 is a symbiotic star.

Mz 3 – We use the B magnitude from Acker et al. (1992), JHK magnitudes from 2MASS,

and an extinction c = 2.11 from Tylenda et al. (1992). Standard aperture photometry is
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carried out on the short-exposure frames for all four IRAC bands, as the long exposure

frames are saturated at the CSPN. The SED also shows mid-IR fluxes from Smith & Gehrz

(2005) as open black diamonds. Prominent and rising IR excess is seen starting from J band

through all IRAC bands. The CSPN of Mz 3 is a symbiotic star.

NGC 40 – The SED is constructed using the UB magnitudes from Acker et al. (1992), V I

magnitudes and extinction from Ciardullo et al. (1999), and JHK magnitudes from 2MASS.

The CSPN is detected in all IRAC bands. Since the background varies radially outward, we

use the radial profiles to measure the IRAC flux densities. Clear excess is seen from K band

throughout all IRAC bands. CSPN NGC 40 is a [WC] star.

NGC 246 – We use the UBV magnitudes from Reed (2003) and JHK from 2MASS. The

extinction toward the nebula is likely very low (Hoogerwerf et al. 2007); therefore, we do

not correct our fluxes for extinction. This appears justified, as the flux densities follow the

blackbody curve very closely. The CSPN is detected in all IRAC channels, we use standard

aperture photometry to measure the fluxes. A small flux enhancement is seen in ch3 and ch4.

NGC 246 has a K-dwarf V ∼14 visual companion 3.′′8 away (Cudworth 1973). In addition, the

neighboring nebular emission is bright in ch3 and ch4. Both of these may be contaminating

the CSPN flux. Higher resolution imaging is necessary to separate the nebular emission

and the companion’s emission for accurate photometric measurements in IRAC ch3 and ch4,

although we do not see strong evidence for an IR excess.

NGC 650 – The SED uses V I magnitudes and extinction from Ciardullo et al. (1999). The

B magnitude from SIMBAD appears inaccurate, we plot it on the SED as an open diamond.

The CSPN is detected in IRAC ch1-3 and very faintly in ch4. We use standard aperture

photometry for IRAC photometric measurements. A nebular clump near the CSPN becomes

increasingly brighter at longer wavelengths and may be contaminating the source aperture

in ch3 and ch4. To estimate the measurement error, we carry out aperture photometry with

multiple sky annuli, and adopt the standard deviation of resulting CSPN flux densities as

the uncertainty. Clear IR excess is seen in the IRAC channels. NGC 650 has a companion
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which is itself a binary. The companion can account for the IR excess.

NGC 1360 – We use the UB magnitudes from Acker et al. (1992), V I and extinction (c = 0)

from Ciardullo et al. (1999), and JHK from 2MASS to construct the SED. The CSPN is

detected in all four IRAC bands, and we use standard aperture photometry to measure the

IRAC flux densities. The star is not detected at 24 µm; the SED shows the upper limit

from Chu et al. (2011). All data points closely follow the blackbody curve, no IR excess is

detected.

NGC 1501 – We use the UB magnitudes from Acker et al. (1992), V I magnitudes and

extinction from Ciardullo et al. (1999), and JHK from 2MASS. The R magnitude given in

SIMBAD plotted as an open diamond, is not from a photometric catalog and appears too

bright for the photospheric emission. This may be caused by the contribution of strong line

emission in the R band, since CSPN NGC 1501 is a [WC]-type star. If the blackbody curve is

normalized to the V magnitude, the UB flux densities would lie slightly below the blackbody

curve. We choose to normalize to the brighter magnitudes in order to conservatively assess

the presence of IR excess. The nebular background near the CSPN is uniform in IRAC ch1-

ch3 images; thus, standard aperture photometry is used for these flux measurements. At 8.0

µm, the background is clumpy and shows slight radial variations in the central region but

not a shell-like morphology. We report the 8 µm flux as an average of the two measurements

from standard photometry and radial profile methods, and use half the difference between

these two as the measurement error. Excess emission is seen starting from the J band and

throughout all IRAC bands. The CSPN NGC 1501 is a [WC]-type star.

NGC 2346 – The SED is constructed using the B magnitude from Acker et al. (1992), V I

magnitudes and extinction from Ciardullo et al. (1999), and JHK from 2MASS. NGC 2346

is a bipolar nebula, and the nebular background is not uniform, but the CSPN is much

brighter than the nebular background, and standard aperture photometry is suitable for flux

measurement. The image of the CSPN is saturated in long exposure frames, so we use the

short-exposure images for flux measurement in all IRAC bands. Clear IR excess is seen
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from J band, through all IRAC channels to the MIPS 24 µm band. The CSPN is a known

spectroscopic binary.

NGC 2371 – The SED uses the UB magnitudes from Acker et al. (1992), V I magnitudes and

extinction c=0.21 from Ciardullo et al. (1999), and JHK from 2MASS. The R magnitude

given by SIMBAD is not from a photometric catalog and is plotted in the SED as an open

diamond. The nebular background increases outward from the CSPN, but the morphology

is not shell-like. In addition, the nebular emission toward the south is potentially included

the aperture. We use the radial profile method to measure the CSPN IRAC fluxes, since the

standard aperture photometry would overestimate the background at the CSPN. Despite the

absence of background point sources, the background estimated from the average and the

median radial profile differ, likely due to the enhancement in the nebular emission toward

the south. Since this enhancement may be contaminating the aperture, we use background

values from median as well as average radial profiles to measure the CSPN flux density. We

report the average of the computed fluxes as the final flux value, and use errors to cover

the whole range of possible flux density values. The IRAC data points lie close, but slightly

above the expected photospheric emission. This is likely caused by nebular contamination

in the aperture. The CSPN is a [WO]-type star; therefore, line emission may contribute to

the IR photometry. Higher-resolution imaging is necessary to separate the extended nebular

emission from the CSPN.

NGC 2392 – We construct the SED using the UB magnitudes from Acker et al. (1992),

the V I magnitudes from Ciardullo et al. (1999), and E(B − V )=0.252 from Tylenda et

al. (1992). Note that Ciardullo et al. (1999) give a lower extinction value of c=0.19 (or

E(B − V )∼0.13), but an E(B − V ) of 0.252 appears to better deredden the optical fluxes

to fit a blackbody curve. The PN has a shell-like morphology, and we use the radial profiles

to estimate the nebular background and the CSPN fluxes. All IRAC flux densities closely

follow the blackbody curve, no IR excess is seen.

NGC 2438 – Few optical photometric measurements are available for this CSPN. SIMBAD
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lists B and R magnitudes of 11.7 and 10.2, respectively, but these are too bright for the

faint CSPN and likely correspond to a bright star that is projected near the CSPN. Gathier

& Pottasch (1988) report their own V magnitude measurement of 17.22 and compare it to

other measurements in the literature. We plot Gathier & Pottasch (1988) value as a filled

diamond and others (e.g., Frew 2008) as open diamonds for comparison. We also use the B

magnitude from Acker et al. (1992) in the SED, and 2MASS J magnitude, and HK upper

limits. The extinction values are also varied, for example, Gathier & Pottasch (1988) lists

E(B − V )=0.25, and Frew (2008) gives E(B − V )=0.46. The reported V magnitudes and

extinctions are so varied that it is difficult to normalize the blackbody flux and estimate the

expected photospheric emission in the IR portion of the SED. To conservatively assess the

presence of IR excess, we normalize the blackbody emission to the brightest visual magnitude

in Gathier & Pottasch (1988), and use the higher of the extinction values (0.46). The CSPN

is detected in all IRAC bands as well as at MIPS 24 µm (Chu et al. 2011). The background

estimation is complicated by a bright star that is projected close to the faint CSPN, which

likely affects the median radial profile. We do see radial variation in the nebular background,

however. We use both standard aperture photometry and radial profile method with their

respective errors to estimate the CSPN fluxes, we report the average of these two results

as the final CSPN flux, and give an uncertainty that covers the whole error range of both

results. Despite the uncertainties in the optical and IR portions of the SED, all IRAC fluxes

are above the expected photospheric emission, and we see a strong IR excess in the MIPS

24 µm band.

NGC 2610 – The SED is made using B from Acker et al. (1992), V I and extinction from

Ciardullo et al. (1999), JH magnitude and K upper limit from 2MASS. The BR magnitudes

listed in SIMBAD are from the Guide star Catalogue v.2.2 and are thus unreliable; they are

not used for the SED construction. The CSPN is detected in IRAC ch1-ch3. The PN has

a shell-like morphology, we therefore use radial profiles for flux measurements. The IRAC

flux densities lie on the blackbody curve, and the CSPN is not detected at 24 µm (Chu et
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al. 2011). No IR excess is seen.

NGC 3242 – We construct the SED using B from Acker et al. (1992) and V I and extinction

from Ciardullo et al. (1999). The JHK magnitudes given in 2MASS are too bright, likely

affected by the near nebular emission. We measure our own 2MASS fluxes via comparative

photometry, using a 3′′ aperture and 3-5′′ background annulus on the CSPN, as well as

a nearby star in the field of view, 2MASS J10245259-1837594, which is well-detected, not

surrounded by a nebula, and appears similar in brightness to the CSPN. The background

annulus is chosen to be close to the CSPN but still outside of the bright nebular shell. Our

measured JHK fluxes listed in Table 3.3 are marked by an asterisk. The CSPN is detected

in IRAC ch1-ch3; in ch4 the CSPN is not detected against the bright nebular background.

The PN has a shell-like morphology; we therefore use the radial profile method to measure

CSPN fluxes. The fluxes lie along the expected blackbody tail, no IR excess is seen.

NGC 3587 – We use UBV from Acker et al. (1992), and I and extinction from Ciardullo et

al. (1999) to construct the SED. The CSPN is detected in IRAC ch1 and ch2, and standard

aperture photometry is used to measure the flux densities. For IRAC ch3 and ch4, we give

upper flux limits. The IRAC data points follow the blackbody curve. The CSPN is not

detected at 24 µm (Chu et al. 2011). No IR excess is detected.

NGC 6153 – This CSPN is faintly seen in IRAC ch 1 and ch2, but the nebular background is

bright and irregular. This precludes accurate photometry; high-resolution imaging is needed

for flux measurement. No SED is constructed.

NGC 6369 – We use the V magnitude and extinction from Ciardullo et al. (1999), and

JHK magnitudes from 2MASS to construct the SED. The B magnitude is from SIMBAD,

but since the original reference is not provided, we plot in on the SED as an open diamond.

The blackbody curve is normalized to the V magnitude. The CSPN is detected in all

IRAC bands. The background varies radially outward, we therefore use the radial profiles to

estimate the nebular background. At 8 µm we use the short-exposure frame to create radial

profile, because the image is saturated at the bright PN shell. The measurement error in
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ch4 is similar to the flux value, we therefore report the sum of the measured flux and the

uncertainty as an upper limit at 8 µm. Clear IR excess is seen starting from J band through

the IRAC channels. CSPN NGC 6369 is a [WC]-type star.

NGC 6543 – For the SED, we use the B magnitude from Acker et al. (1992), and V I

magnitudes and extinction from Ciardullo et al. (1999). In the JHK bands, the bright

nebula has compromised the automated 2MASS point-spread-function fitting and the 2MASS

point source catalog lists fluxes for the CSPN that are too high. We carry out our own

photometric measurements on the CSPN and a nearby star in the field of view, 2MASS

J17591354+6636083, which is not surrounded by a nebula, and appears similar in brightness

to the CSPN. We use a 3′′-radius source aperture and a 3-5′′annulus background annulus for

both stars. A small background annulus is chosen in order to avoid the bright nebular shell.

The JHK magnitudes for the CSPN are listed in Table 3.3, marked with an asterisk. We

measure fluxes in IRAC ch1-3 using the radial profile method; in ch4 the nebular emission

is too strong for photometric measurements. The fluxes follow the blackbody curve, no IR

excess is seen.

NGC 6629 – We use the B magnitude from Acker et al. (1992), and V I magnitudes and

extinction from Ciardullo et al. (1999) to construct the SED. The JHK magnitudes from

2MASS are compromised by the bright nebula, we therefore perform comparative photom-

etry referencing to the star 2MASS J18253988-2312559. We perform the photometry on

both the CSPN and the reference star using a 3′′-radius source aperture and a 3-5′′ annular

background. The CSPN is detected in IRAC ch1-3; in ch4 the nebular emission is too strong

for photometric measurements. The PN has a centrally peaked morphology; we therefore

use the radial profiles to estimate lower and upper limits for the background emission, and

use these values to estimate CSPN flux. The upper and lower flux limits are shown as the

error bars, and the data points show the average flux for each band. The SED shows slight

JHK excess, this is likely due to imperfect background subtraction, since using standard

aperture photometry underestimates the background if the PN is centrally peaked. No IR
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excess is seen in the IRAC bands.

NGC 6720 – The SED is constructed using the BV RI magnitudes from Passy et al. (in

preparation), and E(B-V)=0.04 from Frew (2008). The CSPN is detected only in IRAC ch1,

we use the radial profile to estimate the background for flux measurement. For ch2-4, we

report flux upper limits. The SED does not show any IR excess.

NGC 6751 – To construct the SED, we use the V magnitude and extinction from Acker

& Neiner (2003). The magnitudes from SIMBAD and Acker et al. (1992), shown as open

diamonds, are significantly fainter; therefore, the SED is difficult to constrain. To assess the

IR excess conservatively, we normalize the blackbody curve to the highest optical magnitude.

The JHK magnitudes from 2MASS are compromised by nebular emission, we therefore

measure our own 2MASS fluxes by comparative photometry using the nearby star 2MASS

J19055916-0559003 as a reference. We perform aperture photometry on both the CSPN and

the reference star using a 3′′-radius source aperture and a 3-5′′ annular background. Our

JHK fluxes are listed in Table 3.3, marked with an asterisk. The CSPN is detected in

IRAC ch 1-3, but in ch4 the nebular emission is too bright for photometric measurements of

the CSPN. Since the background varies radially outward, we use the radial profile method

to measure IRAC fluxes. Regardless of the optical flux chosen to normalize the blackbody

emission, there is IR excess present from the near-IR through all IRAC bands. The JHK

images show a nearby star that might contaminate the JHK flux measurement slightly, this

star is however much fainter than the CSPN and unlikely to be responsible for the entire

IR excess. Furthermore, it fades at longer wavelengths and is not seen in any of the IRAC

images. The CSPN is a [WC]-type star and the broad emission lines and free-free emission

from the stellar wind are likely responsible for the observed IR excess.

NGC 6772 – The SED shows the B and V magnitudes from Acker et al. (1992), corrected

for extinction using E(B − V ) from Gathier & Pottasch (1988), who also report V =18.63,

18.9, similar to V =18.68 listed in Acker et al. (1992). The B magnitude listed SIMBAD is

from the Guide Star Catalog v.2.2 and is thus unreliable; we display it on the SED as an open
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diamond. The CSPN is faintly detected in IRAC ch1 and ch2; for ch3 and ch4 we report the

upper limits. The nebular background varies radially outward; therefore, we use the radial

profile method to measure CSPN fluxes. The fluxes in IRAC ch1 and ch2 are slightly above

the expected photospheric emission. The CSPN is faint and appears slightly elongated in

the IRAC images. This elongation may be due to an underlying nebular emission or a faint

not well resolved visual companion, either of which may contaminate the measured CSPN

flux. There is no convincing evidence that the central star itself has an IR excess.

NGC 6781 – The CSPN is detected in IRAC ch1-2, but not in ch3-4. As it is very faint and

blended with a much brighter nearby star and underlying nebular emission, the CSPN fluxes

cannot be measured accurately. A higher resolution image with better signal to noise ratio

is needed to measure the fluxes and assess the presence of IR excess. No SED is constructed.

NGC 6804 – To construct the SED, we use the B magnitude from Acker et al. (1992), V I

magnitudes and extinction from Ciardullo et al. (1999), and JHK magnitudes from 2MASS.

Note that the optical flux densities follow the blackbody curve better for a slightly higher

extinction E(B − V )∼0.7. The CSPN is bright and well detected in all IRAC bands. Even

though the background does vary radially outward, the variation is insignificant compared to

the brightness of the CSPN, and both standard aperture photometry and the radial profile

technique give the same flux values. In ch4, the long exposure image is saturated at the

CSPN; therefore, we use the short-exposure frame for flux measurement. The CSPN is also

detected at 24 µm. Clear and rising excess emission is seen starting from the J band.

NGC 6853 – We use the U magnitude from Acker et al. (1992), BV RI from Passy et

al. (in preparation), JHK from 2MASS, and extinction E(B-V)=0.03 from Frew (2008)

to construct the SED. The CSPN is detected in all IRAC bands. The nebular background

gradually decreases outward, but it is clumpy, and there is a bright star near the CSPN

which affects the radial profiles. We estimate the measurement error by carrying out aperture

photometry with multiple sky annuli, and adopting the standard deviation of resulting CSPN

flux densities as the uncertainty. The CSPN is also detected at 24 µm, and the measurement
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error is estimated in a similar fashion as for the IRAC flux densities. The SED shows slight

excess emission from J to IRAC 4.5 µm, and a strong IR excess from 5.8 µm band up to

MIPS 24 µm. The near-IR excess up to 4.5 µm is due to a faint companion reported by

Ciardullo et al. (1999), which cannot be resolved in IRAC images.

NGC 6905 – The SED is constructed using V from van Altena et al. (1995), and I and

extinction from Ciardullo et al. (1999). The B magnitude from Acker et al. (1992) and

R from Cutri et al. (2003) depart significantly from the blackbody curve and are likely

affected by line emission, they are shown on the SED as open diamonds. The 2MASS JHK

magnitudes are too bright, the flux measurement is likely compromised by the bright nebular

emission. We therefore carry out comparative photometry referencing to the star 2MASS

J20222230+2005127. We use a 3′′ radius source aperture, and a 3-5′′ annular background for

both the CSPN and the reference star. The resulting 2MASS JHK magnitudes are listed

in Table 3.3 and marked with an asterisk. The CSPN is detected in IRAC ch 1-3 and we

use standard aperture photometry to measure the flux densities. A nearby nebular clump

is seen in ch3, and may affect the photometry; therefore, we carry out aperture photometry

with multiple sky annuli, and adopt the standard deviation of resulting CSPN flux densities

as the measurement uncertainty. In ch4, the star is not detected against the bright nebular

background. Clear excess emission is seen from near-IR through the IRAC wavelengths.

CSPN NGC 6905 is a [WC]-type star, and the excess emission is likely caused by the free-

free emission from the fast stellar wind, and broad emission lines.

NGC 7009 – The CSPN is detected in IRAC ch1-3, but is not seen in ch4 against the

bright nebular background. The nebular emission is strong, nonuniform and blended with

the CSPN emission, therefore, accurate fluxes cannot be measured. Higher resolution images

are necessary to resolve the CSPN from the nebular emission and measure accurate fluxes.

No SED is constructed.

NGC 7026 – The CSPN can be seen in IRAC ch1 and very faintly in ch2, but is not seen

against the bright nebular emission in ch3 and ch4. NGC 7026 is bipolar and has a bright
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waist whose emission is blended with the CSPN. Accurate fluxes cannot be measured with

such bright and nonuniform nebular background. No SED is constructed.

NGC 7048 – The CSPN is seen only in IRAC ch1 and ch2, but it is very faint and blended

with the surrounding nebular and stellar emission. Accurate fluxes cannot be measured. No

SED is constructed.

NGC 7139 – Only the B and V magnitudes of this CSPN are found in the literature.

Piliugin & Khromov (1979) report B of 18.3, while Jacoby & Kaler (1989) report 18.72,

both of which are already extinction-corrected. For consistency, we report the uncorrected

magnitudes in the Table 3.3, and list the extinction for c=0.76 (i.e., E(B −V )∼0.521) given

by Jacoby & Kaler (1989). The CSPN does not have magnitudes listed in 2MASS; however,

the CSPN is faintly seen in 2MASS JHK images. We therefore carry out comparative

photometry using nearby stars 2MASS J21461639+6347122 for measurements in J and H

band, and 2MASS J21460448+6348299 for K band, using a 3′′-radius source aperture and a

3-5′′ annular background for photometry. The measurement uncertainty is estimated from

the standard deviation of the pixels in the sky annulus multiplied by the source aperture area.

In the J and K bands, CSPN NGC 7139 is detected at 1.4σ and 1.7σ level, respectively. In

H band, the CSPN flux is below 1σ; we report the sum of background-subtracted flux in the

aperture and 2σ as the H band flux upper limit. The JHK fluxes are listed in Table 3.3 and

are marked with an asterisk. The CSPN is seen in all IRAC bands. The nebular background

is uniform, and the flux densities are obtained via standard aperture photometry. The SED

shows clear excess emission in all IRAC bands, and the excess may be starting from the J

band.

NGC 7293 – The mid-IR excess of this CSPN has been analyzed in detail by Su et al.

(2007).

NGC 7354 – The CSPN is detected only in IRAC ch1, but it is very faint and blended with

the bright nebular background. Therefore, accurate flux measurements cannot be made. No

SED is constructed.
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PMR 1 – The V R magnitudes and the extinction are from Morgan et al. (2001). The

CSPN is detected in all IRAC bands, and we use standard aperture photometry to make

photometric measurements. Clear IR excess is seen in all IRAC channels. CSPN PMR 1 is

a [WC]-type star with strong stellar wind, which is likely responsible for the IR excess.

PMR 2 – To construct the SED, we use optical magnitudes as well as the extinction correc-

tion of Morgan et al. (2001). PMR 2 is a small, centrally peaked nebula, and it is difficult

to de-blend the stellar and nebular emission, even though the central source is clearly seen

in all IRAC bands. We perform standard aperture photometry and report the measured

fluxes as upper limits. All upper limits are well above the expected photospheric emission,

and the CSPN likely does have IR excess since it is a [WC]-type star, but higher-resolution

images are needed to separate the stellar and nebular emission and measure the CSPN fluxes

accurately.

78



Table 3.1. Archive of Spitzer Observations of Planetary Nebulae

PN Name Instr./Mode AOR PID(s) Remarks Phot.a

A21 IRAC Map 17595136 30285 CSPN detected in ch1-2, not ch3-4 phot
MIPS Phot 40953 CSPN detected in ch1 Chu

A30 IRAC Map 21967616 40115 CSPN seen in ch1-2, in ch3-4 the nebula is too bright phot:
A66 IRAC Map 17594624 30285 CSPN detected in ch1-4, has a visual companion phot
A58 MIPS Scan 10838528 3362 nova
A78 MIPS Scan 10838016 3362 not well resolved from the nebula
DeHt 5 IRAC Map 18230272 30432 CSPN detected in ch1-4 phot

MIPS Phot 26345728 50530 CSPN detected in ch1 phot
DS 2 IRAC Map 17593856 30285 CSPN detected in ch1-4, nearby visual comp phot
Hb 5 IRAC Map 4413696 68 PN too small, CSPN not seen against the bright nebula
Hb 12 IRAC Map 4413952 68 PN too small

MIPS Phot 4617728 77 PN too small
He 2-119 IRAC Map 17594112 30285 CSPN not seen
He 2-459 IRAC Map 21978880 40115 PN too small
He 2-99 IRAC Map 21978112 40115 CSPN detected in ch1-4 phot
IC 4406 IRAC Map 4414208 68 CSPN not seen against the bright nebular background
IC 4593 IRAC Map 21641472 40020 CSPN seen in ch1-3, emission peak offset in ch4 phot:
IC 5148 IRAC Map 4414464 68 CSPN detected in ch1-3, not in ch4 phot
JnEr 1 IRAC Map 17594880 30285 detected in ch1-2, barely seen in ch3, not in ch4 phot

MIPS Phot 40953 CSPN not detected Chu
M2-9 IRAC Map 4414720 68 CSPN detected in ch1-4, very bright, symbiotic
M2-20 IRAC Map 21975040 40115 PN too small, crowded field
M2-31 IRAC Map 21973248 40115 PN too small
M4-18 IRAC Map 21979648 40115 PN too small
Mz 1 IRAC Map 4414976 68 CSPN not detected
Mz 3 IRAC Map 4415232 68 CSPN detected in ch1-4, very bright, symbiotic phot
NGC 40 IRAC Map 21976576 40115 CSPN detected in ch1-4 phot
NGC 246 IRAC Map 4416256 68 CSPN detected in ch1-4 phot

MIPS Phot 40953 CSPN not detected Chu
NGC 650 IRAC Map 4421120 68 CSPN detected in ch1-4 phot

MIPS Scan 9548032 77 CSPN not seen
NGC 1360 IRAC Map 21641728 40020 CSPN detected in ch1-4, spectroscopic binary phot

MIPS Phot 40953 CSPN not detected Chu
NGC 1501 IRAC Map 21971712 40115 CSPN detected in ch1-4 phot
NGC 2346 IRAC Map 4415488 68 CSPN detected in ch1-4 phot
NGC 2371 IRAC Map 17589760 30285 CSPN detected in ch1-4 phot
NGC 2392 IRAC Map 17589504 30285 CSPN detected in ch1-4 phot
NGC 2438 IRAC Map 4415744 68 CSPN detected in ch1-4 phot

MIPS Phot 40953 CSPN detected in ch1 Chu
NGC 2440 IRAC Map 6621440 1052 CSPN not seen against the bright nebular background

MIPS Scan 4619264 77 CSPN not seen against the bright nebular background
NGC 2610 IRAC Map 17590016 30285 CSPN detected in ch1-2, faintly in ch3, not in ch4 phot

MIPS Phot 40953 CSPN not detected Chu
NGC 2818 IRAC Map 4416512 68 CSPN not seen against the bright nebular background
NGC 2867 IRAC Map 21969664 40115 CSPN not seen against the bright nebular background
NGC 3132 IRAC Map 4416768 68 unresolved companion >5 mag brighter than the CSPN
NGC 3195 IRAC Map 17590272 30285 CSPN not seen against the bright nebular background
NGC 3242 IRAC Map 17590528 30285 CSPN detected in ch1-3, bright PN in ch4 phot
NGC 3587 IRAC Map 4417024 68 CSPN detected in ch1-2, not in ch3-4 phot

MIPS Phot 40953 CSPN not detected Chu
NGC 3699 IRAC Map 17594368 30285 CSPN not seen against the bright nebular background
NGC 3918 IRAC Map 21639936 40020 CSPN not seen against the bright nebular background
NGC 5315 IRAC Map 21972480 40115 PN too small
NGC 6072 IRAC Map 4417280 68 CSPN not seen against the bright nebular background
NGC 6153 IRAC Map 21640448 40020 CSPN seen very faintly in ch1-2, not ch3-4 phot:
NGC 6302 IRAC Map 4417536 68 CSPN not seen against the bright nebular background
NGC 6309 IRAC Map 4417792 68 CSPN not seen against the bright nebular background
NGC 6369 IRAC Map 4418048 68 CSPN detected in ch1-4 phot
NGC 6445 IRAC Map 4418304 68 CSPN not detected
NGC 6537 IRAC Map 4418560 68 CSPN not seen against the bright nebular background
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Table 3.1 (cont’d)

PN Name Instr./Mode AOR PID(s) Remarks Phot.a

NGC 6543 IRAC Map 4418816 68 CSPN detected in ch1-3, not in ch4, bright PN phot
MIPS Phot 11412736 3668 MIPS 1,3 observations, CSPN outside FOV
MIPS Phot 11412480 3668 MIPS 1,2 - CSPN unresolved from PN, or outside FOV

NGC 6563 IRAC Map 4419072 68 CSPN not detected
NGC 6572 IRAC Map 21640192 40020 PN too small
NGC 6629 IRAC Map 4419328 68 CSPN seen in ch1-3, not in ch4, bright nebula phot
NGC 6720 IRAC Map 4419584 68 CSPN detected in ch1, blended with PN/unseen in ch2-4 phot

IRAC Map 21642496 40020
MIPS Scan 12646400 77 CSPN not seen against the bright nebular background

NGC 6751 IRAC Map 4419840 68 CSPN detected in ch1-3, not in , bright nebula phot
NGC 6772 IRAC Map 4420096 68 CSPN detected in ch1-2, not in ch3-4 phot
NGC 6781 IRAC Map 4420352 68 CSPN faintly seen in ch1-2, not in ch3-4 phot:
NGC 6804 IRAC Map 4420608 68 CSPN detected in ch1-4 phot

MIPS Phot 50793b CSPN detected phot
NGC 6853 IRAC Map 4420864 68 CSPN detected in ch1-4 phot

MIPS Scan 4620032 77 CSPN detected in m1, not in m2-3, bright nebula phot
MIPS Scan 4620288 77

NGC 6905 IRAC Map 4421376 68 detected in ch1-3, in ch4 a nearby nebular bright clump phot
NGC 7009 IRAC Map 4421632 68 CSPN detected in IRAC 1-3, strong nebular emission phot:
NGC 7026 IRAC Map 21970432 40115 CSPN seen in ch1-2, not in ch3-4, bright nebula phot:
NGC 7027 IRAC Map 4421888 68 PN too small, CSPN not seen against the bright nebula

IRAC Map 4422656 68
MIPS Phot 4618752 77 PN too small

NGC 7048 IRAC Map 17592064 30285 faintly seen in ch1-2, not in ch3-4 phot:
NGC 7139 IRAC Map 4422144 68 CSPN detected in ch1-4 phot

MIPS Phot 50793b CSPN not seen against the bright nebular background
NGC 7293 IRAC Map 4422400 68 CSPN detected in ch1-4, reported by Su et al. (2007) Su

IRAC Map 17591040 30285
IRAC Map 17591296 30285
IRAC Map 17591552 30285
IRAC Map 17591808 30285
IRAC Map 21641984 40020 halo
IRAC Map 21642240 40020 halo
MIPS Scan 4620544 77 CSPN detected in ch1-2 Su
MIPS Scan 4620800 77
MIPS Scan 4621056 77

NGC 7354 IRAC Map 17590784 30285 CSPN seen in ch1, not in ch2-4, bright nebula phot:
IRAC Map 28960512 50398
IRAC Map 28966656 50398
IRAC Map 28966912 50398
IRAC Map 28965120 50398
MIPS Scan 28079104 50398 CSPN not seen against bright nebular background
MIPS Scan 28090368 50398

PB 6 IRAC Map 21968384 40115 PN too small
PB 8 IRAC Map 21975808 40115 PN too small
PM 1-310 IRAC Map 21980416 40115 PN too small
PMR 1 IRAC Map 21974016 40115 CSPN seen in ch1-4, [WC]-type phot
PMR 2 IRAC Map 21977344 40115 CSPN seen in ch1-4, [WC]-type, centrally peaked PN phot

aphot=CSPN is selected for photometry, phot:=CSPN detected but photometry may be uncertain, Chu= we use flux
densities or upper limits reported by Chu et al. (2011), Su= flux densities from Su et al. (2007) are used.

bOur follow-up program
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Table 3.2. Spitzer Photometric Measurements of Resolved CSPNs

PN Name IRAC 3.6 µm IRAC 4.5 µm IRAC 5.2 µm IRAC 8.0 µm MIPS 24 µm
µJy µJy µJy µJy mJy

A21 36 ± 2 22 ± 1 < 37 <31 0.916 ± 0.114a

A66 79 ± 4 58 ± 3 <33 <49 ...
DeHt 5 135 ± 7 87 ± 4 62 ± 4 84 ± 5 1.565 ± 0.093
DS2 1734 ± 87 1130 ± 57 633 ± 34 339 ± 19 ...
He 2-99 6488 ± 327 7786 ± 392 7968 ± 432 9801 ± 857 ...
IC 5148 33 ± 2 21 ± 1 15 ± 4 <16 ...
JnEr 1 12 ± 1 7 ± 1 <10 <29 < 0.68a

M2-9 9.2×106 ± 4.6×105 1.6×107 ± 8.0×105 2.6×107 ± 1.3×106 3.9×107 ± 2.0×106 ...
Mz 3 2.0×107 ± 1.0×106 2.9×107 ± 1.5×106 3.4×107 ± 1.7×106 5.1×107 ± 2.6×106 ...
NGC 40 21853 ± 1095 19694 ± 988 16295 ± 833 15162 ± 940 ...
NGC 246 1956 ± 98 1259 ± 63 956 ± 49 517 ± 32 < 26.25a

NGC 650 159 ± 9 103 ± 7 47 ± 8 38 ± 11 ...
NGC 1360 2717 ± 136 1693 ± 85 1043 ± 53 558 ± 29 < 4.651a

NGC 1501 3435 ± 173 3036 ± 154 2113 ± 128 1711 ± 539 ...
NGC 2346 344967 ± 17254 380063 ± 19009 378285 ± 18936 356819 ± 17849 170 ± 9
NGC 2371 241 ± 21 174 ± 100 100 ± 22 115 ± 52 ...
NGC 2392 11241 ± 568 7320 ± 388 4922 ± 261 2198 ± 218 ...
NGC 2438 111 ± 20 108 ± 23 100 ± 18 107 ± 12 12.4 ± 13.7a

NGC 2610 34 ± 2 19 ± 7 12 ± 6 ... <149.0a

NGC 3242 1238 ± 108 873 ± 198 374 ± 111 ... ...
NGC 3587 42 ± 2 24 ± 2 <57 <21 < 6.15a

NGC 6369 10629 ± 816 10311 ± 839 4882 ± 1785 <8475 ...
NGC 6543 3851 ± 472 1935 ± 760 1163 ± 475 ... ...
NGC 6629 5494 ± 2600 2689 ± 1317 1960 ± 1380 ... ...
NGC 6720 55 ± 9 < 130 <69 <66 ...
NGC 6751 2202 ± 135 1799 ± 128 840 ± 317 ... ...
NGC 6772 43 ± 5 30 ± 7 <27 <33 ...
NGC 6804 38429 ± 1923 49567 ± 2480 69173 ± 3460 116539 ± 5836 170 ± 38
NGC 6853 376 ± 25 293 ± 28 363 ± 121 738 ± 181 23.1 ± 5.1
NGC 6905 869 ± 48 783 ± 57 755 ± 35 ... ...
NGC 7139 299 ± 15 276 ± 14 240 ± 14 220 ± 14 ...
NGC 7293b 374 ± 19 241 ± 24 171 ± 26 174 ± 17 48.4 ± 7.3
PMR 1 3008 ± 151 2933 ± 147 2299 ± 118 2185 ± 144 ...
PMR 2 <4479 <4994 <6064 <17107 ...

aFrom Chu et al. (2011)

bAll values are from Su et al. (2007)
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Table 3.3. Complementary Optical and Near-IR Photometry of CSPNs

PN Name U B V R I J H K E(B − V ) Ref.a

A21 ... 15.7 16.05 (17.4) 16.38 16.58 >17.21 >16.14 0.12 1,2,3
A66 16.8 17.7 18.17 ... 18.29 ... ... ... 0.2+ 1,2
DeHt 5 ... 15.27 (15.5) ... ... 15.57 15.96 15.58 0.16 3,4,11
DS 2 11.3 12.4 12.4 ... ... 12.68 12.797 12.93 0.25+ 2
He 2-99 12.57 13.26 13.18 ... ... 12.63 12.55 12.10 0.6+ 3
IC 5148 ... ... 16.16 ... 16.59 ... ... ... 0.0+ 1
JnEr 1 15.3 16.5 17.16 ... 17.56 ... ... ... 0.0 1,2
M2-9 ... ... 14.45 ... 13.16 11.20 9.18 7.00 0.76 1
Mz 3 ... 17.6 ... ... ... 9.35 7.36 5.61 2.11 2,5
NGC 40 11.1 11.8 11.55 ... 11.28 10.89 10.80 10.38 0.55 1,2
NGC 246 10.15 11.43 11.78 ... ... 12.61 12.80 12.87 0.0+ 3
NGC 650 ... (16.1) 17.57 ... 17.73 ... ... ... 0.13 1,3
NGC 1360 9.6 11.0 11.34 ... 11.75 12.08 12.29 12.37 0.0 1,2
NGC 1501 14.3 15.2 14.36 (12) 13.80 13.20 12.92 12.79 0.76 1,2,3
NGC 2346 ... 11.8 11.27 ... 11.01 10.26 9.44 8.41 0.51 1,2
NGC 2371 13.3 14.5 14.85 (12) 15.16 15.21 15.50 15.49 0.14 1,2,3
NGC 2392 9.3 10.4 10.63 ... 10.77 10.87 10.92 10.94 0.25 1,2,5
NGC 2438 ... (17.7) 17.22 ... ... 17.02 >16.42 >16.56 0.25 2,6
NGC 2610 ... 15.6 15.97 ... 16.32 16.71 16.29 >15.94 0.07 1,2
NGC 3242 ... 12.0 12.32 ... 12.66 13.08∗ 13.29∗ 13.44∗ 0.08 1,2
NGC 3587 14.4 15.7 16.0 ... 17.15 ... ... ... 0.05 1,2
NGC 6369 ... (16.6) 15.13 ... ... 12.45 11.87 11.48 1.33 1,3
NGC 6543 ... 11.2 11.29 ... 11.47 11.98∗ 11.97∗ 12.39∗ 0.08 1,2
NGC 6629 ... 13.3 12.87 ... 12.36 11.88∗ 11.88∗ 11.62∗ 0.62 1,2
NGC 6720 ... 15.41 15.77 15.90 16.06 ... ... ... 0.04 11,12
NGC 6751 ... (15.8) 14.6 ... ... 13.55∗ 13.33∗ 12.95∗ 0.34 2,3,7
NGC 6772 ... 19.0 18.7 ... ... ... ... ... 0.75 2,6
NGC 6804 ... 14.5 14.17 ... 13.64 13.23 12.45 11.28 0.60 1,2
NGC 6853 12.4 13.75 14.09 14.25 14.41 14.75 14.70 14.61 0.03 2,11,12
NGC 6905 ... (16.3) 14.5 (11.8) 14.74 14.64∗ 14.63∗ 14.33∗ 0.13 1,2,3
NGC 7139 ... 20.38 20.29 ... ... 17.72∗ >16.21∗ 15.54∗ 0.52 8
NGC 7293 11.894 13.158 13.524 13.689 14.03 14.33 14.49 14.55 0.0 3,9
PMR 1 ... ... 18.80 17.94 ... ... ... ... 1.3 10
PMR 2 ... 13.48 13.30 13.12 ... ... ... ... 0.5 10

a References: 1. Ciardullo et al. (1999), 2. Acker et al. (1992), 3. SIMBAD, 4. Good et al. (2005b), 5. Tylenda
et al. (1992), 6. Gathier & Pottasch (1988), 7. Acker & Neiner (2003), 8. Jacoby & Kaler (1989) and references
therein, 9. Su et al. (2007) and references therein, 10. Morgan et al. (2001), 11. Passy et al, in prep., 12. Frew
(2008). Note that values in parentheses are unreliable (see section 3.4 for more details) and are displayed in SEDs
as open diamonds.

∗JHK magnitudes are from 2MASS catalog, those marked with asterisk denote our own measurements using
comparative photometry (see section 3.4 for notes on individual targets).

+Extinctions marked with a + are adopted based on the optical portion of the SED.
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Table 3.4. Gemini Observations Summary

PN Name Filter Exp. Time Coadds Repeats UT Date Telluric Standard

NGC 6369 J 10 1 20 07/05/09 HIP 87003
H 10 1 20 07/05/09 HIP 87003
K 10 1 20 07/05/09 HIP 87003

NGC 6751 J 10 1 10 07/06/09 HIP 91038
H 10 1 10 07/06/09 HIP 91038
K 10 1 10 07/06/09 HIP 91038

NGC 6905 J 20 1 10 07/06/09 HIP 98428
H 20 1 10 07/06/09 HIP 98428
K 20 1 10 07/06/09 HIP 98428

NGC 6804 J 10 1 30 07/05/09 HIP 95002
H 10 1 30 07/05/09 HIP 95002
K 10 1 30 07/05/09 HIP 95002
L 1 10 10 07/05/09 HIP 95002
M 0.4,0.2 50,100 10,10 07/05/09 HIP 99742

NGC 7139 J 120 1 30 07/05/09 HIP 114309
H 120 1 30 07/05/09 HIP 114309
K 120 1 50 07/06/09 HIP 107276
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Figure 3.1: Images (left), histograms of pixel flux densities in the background annulus used for photometry
(center), and radial profiles (right) of NGC 3587 (top) and NGC 2392 (bottom). The median of the pixel
values is shown as a solid vertical line. The radial profiles show the median of the pixel fluxes as a thick
solid curve, and the average value as a dot-dashed curve. For NGC 3587, the background is uniform, and
the median in the background annulus gives a good estimate. On the other hand, for NGC 2392, the
background increases radially outward from the CSPN Thus, using the median value from the histogram
would result in over-subtraction of the background; using the minimum in the radial profiles gives a more
accurate background level estimate. NGC 6629 is centrally peaked, and using the median value from the
histogram would result in under-subtraction of the background; we estimate the range of background values
based on the radial profile to find CSPN flux density. Note that using the median is better than using the
average pixel fluxes for the radial profiles, because it avoids peaks caused by stars within the background
annulus.
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Figure 3.2: cont. on next page
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Figure 3.2: SEDs of CSPNs with no, unlikely, or uncertain IR excesses. The blue and green
diamonds represent extinction-corrected optical and near-IR flux densities from literature
and from the 2MASS catalog, which are listed in Table 3.3. IRAC and MIPS flux densities
are shown as red diamonds, their values are listed in Table 3.2. Downward arrows represent
the upper limits. A blackbody curve for the temperature of 100,000 K, normalized to optical
or IR fluxes, is shown to guide the eye. For further details on each target, see section 3.4 .
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Chapter 4

Spitzer Search for Dust Disks around
Central Stars of Planetary Nebulae -
Results and Discussion

4.1 CSPNs with IR Excesses

The CSPNs with IR excesses can be divided into four categories: (1) A companion accounts

for all of the excess IR emission. (2) Free-free and line emission from stellar winds of [WC]-

type CSPNs account for the IR excess, (3) The CSPN is a symbiotic star with a dusty disk,

(4) An extended IR emitter, such as a dusty disk, is required to produce the observed excess

emission. These four types will be described more closely in the following subsections.

4.1.1 Companions

Two CSPNs with IR excesses, A66 and NGC 650, have been previously reported to possess

visual companions, and these companions can contribute to the excess IR emission. The

visual companion of CSPN A66 was noted from ground-based observations, but Ciardullo et

al. (1999) measured the surface density of field stars detected in their HST observation and

concluded a rather high probability, 21%, for a random superposition of these two stars. The

spectral type of the visual companion is unknown. To assess whether this companion can

account for the observed excess, we estimate its V and I magnitudes from its mF555W =18.424

and mF814W =18.091 given in the Hubble Legacy Archive source catalog. The CSPN has

V =18.17, I=18.29, mF555W =18.287, and mF814W =18.870. As the F555W and F814W bands

are similar to V and I, respectively, we use ∆mF555W between the two stars to approximate

the ∆V , and ∆mF814W to approximate the ∆I. Thus, the V and I magnitudes of the
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companion are estimated to be V =18.3 and I=17.5.

Figure 4.1 shows the SED of CSPN A66. The extinction-corrected V and I magnitudes

for the CSPN and its visual companion are plotted separately as filled diamonds and open

triangles, respectively, and their sum is plotted as plus symbols. We have determined the

extinction to the CSPN from the blackbody model fit to the SED (see section 3.4 ), and

apply the same extinction correction for both sources1. A blackbody model of the CSPN’s

photospheric emission is shown in a black solid curve. We approximate the companion’s

photospheric emission with a T∼7000 K blackbody, scaled to fit the V and I flux densities;

shown in the SED as a dotted line. The sum of the CSPN’s and companion’s emission is

plotted in a dashed curve. The combined SED fits the IRAC data points well; furthermore,

the emission in IRAC bands is dominated by the companion.

The CSPN of NGC 650 has a visual companion which is itself a double. While the

double might be a physical pair, it is unlikely to be associated with the CSPN (Ciardullo et

al. 1999). The SED of CSPN NGC 650 is shown in Figure 4.1. The V and I magnitudes

for the CSPN and its visual companions are plotted separately as filled diamonds and open

triangles, respectively. A blackbody model of the CSPN’s photospheric emission is shown

in a black solid curve. As the spectral types, reddening, and the distance of the companion

double are unknown, we model the SEDs of these two stars by blackbodies with a range of

temperatures, and find that models with a temperature of ∼5800 K can simultaneously fit

the V and I magnitudes of the companions. The blackbody curve for each companion is

shown in the SED as a dotted curve. The sum of all three components, the CSPN and the

binary companions, is shown as a dashed curve. It can be seen that the IRAC data points

follow this dashed curve closely, suggesting that the excess IR emission can be accounted for

by the photospheric emission of the CSPN’s visual companions.

1The extinction of the companion is unknown. We have experimented with different extinction values and
fitted a blackbody curve to the fluxes. In all cases, if we assume that the companion is a main-sequence star,
the distance needed to produce the fluxes is always significantly higher than the CSPN distance. Therefore,
the extinction is most likely similar to or higher than that of the CSPN A66.
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4.1.2 [WC] Stars

Seven of our CSPNs with clear IR excesses (He 2-99, NGC 40, NGC 1501, NGC 6369,

NGC 6751, NGC 6905, PMR 1) and one CSPN with probable IR excess (PMR 2) are [WC]-

type stars (Fig. 4.2). They have prominent broad He and C emission lines in their optical

spectra (e.g., Gorny & Stasińska 1995), which originate from the stars’ strong, fast (∼103 km

s−1), optically thick stellar winds, which also give rise to free-free emission at IR wavelengths

(Abbott & Conti 1987; Cohen et al. 1975). IR excesses of these stars are expected, as both

the free-free emission and the strong emission lines contribute considerably to the emission

at IR wavelengths. Furthermore, IR excesses due to circumstellar dust have been observed

around late-type WC stars (Cohen et al. 1975). We expect the IR excesses of [WC]-type

CSPNs to be combinations of free-free and line emission, and dust continuum.

Figure 4.5 shows Gemini near-IR (JHK) spectra of three [WC]-type CSPNs - NGC 6369,

NGC 6751, and NGC 6905. The spectra show emission lines from, e.g., He II, C III, and

C IV, many of which are blended together. The JHK bands contain many lines of these

elements that are in common with those found in NIR line lists from Wolf-Rayet stars (e.g.,

Nishimaki et al. 2008). The most prominent lines in the three [WC] spectra in Figure 4.5

are at Si V 1.078 µm, He II 1.16 µm, C IV 1.19 µm, He II + C IV 1.736 µm, C IV 2.078

µm, C III 2.108 µm, and C IV 2.43 µm. In all three cases, a continuum component is clearly

present. As these stars are not late-type WCs, this continuum is most likely dominated by

free-free emission from the optically thick winds.

4.1.3 Symbiotic PNe

Two CSPNs from our archival study, M 2-9 and Mz 3, have very prominent IR excesses (Fig.

4.3). Corradi et al. (2010) characterize these as objects borderline between symbiotic stars

and young PNe. They possess colors and some spectral features very similar to those of

symbiotic stars, but lack others, preventing their classification as true symbiotics. Viironen

89



et al. (2009) characterize them as young PNe. We include these objects for comparisons of

their IR excesses with those of other CSPNs.

Mz 3

Mz 3 is the Ant Nebula, a bipolar nebula known for its stunning and complex morphology,

consisting of three pairs of nested bipolar lobes and an elliptical equatorial ring. Guerrero et

al. (2004) have carried out a kinematical study of the different morphological components.

The kinematics and morphology of Mz 3 is likely a result of recurrent outbursts, which can

be produced in nova-like eruptions of symbiotic stars.

The high density of the nebular core, the IR colors and spectrum of the central star all

suggest that Mz 3 is a symbiotic star (Zhang & Liu 2002; Schmeja & Kimeswenger 2001).

Mid-IR observations of Mz 3 show an unresolved hot dust core component with a range of

temperatures, likely originating from a circumstellar disk (Smith & Gehrz 2005); further-

more, silicate emission has been detected from this unresolved disk component (Chesneau et

al. 2007). We approximate the central star with a blackbody of 35,000 K (Chesneau et al.

2007) normalized to the extinction-corrected B magnitude. The IR emission needs at least

three blackbody components to reproduce the spectral shape. If we adopt the 360, 700 and

1400 K components, as plotted in Figure 5, the resulting luminosity fraction, LIR/LCSPN, is

∼0.55. The luminosity fraction is lower, ∼0.25, if we adopt the stellar luminosity of 104 L⊙

and a distance of 1.4 kpc given by Chesneau et al. (2007).

M 2-9

M2-9, the Butterfly Nebula, is considered a spectroscopic twin of Mz 3 (Smith & Gehrz

2005). Both nebulae have a bipolar morphology with a dense core, and their SEDs are also

very similar, with IR emission rising sharply from the near-IR. Lykou et al. (2011) report a

disk inside this PN, similar to that in Mz 3.

The temperature of the CSPN is not well constrained, values between 15,000 and 42,000 K
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have been reported (Gorny et al. 1997; Lykou et al. 2011). Furthermore, the distance to M2-9

is not well known, ranging from 0.65 to 3.7 kpc in the literature. We thus calculate only the

luminosity fraction for comparison with other CSPNs with IR excesses, but do not report

any distance-dependent parameters for M 2-9. Approximating the CSPN with a 35,000 K

blackbody scaled to the V magnitude, we find a luminosity fraction of ∼4. If the IR emission

is powered by stellar radiation, the IR luminosity clearly cannot exceed the stellar luminosity;

thus there must be missing stellar flux unaccounted for by the small extinction reported by

Ciardullo et al. (1999). Alternatively, if we adopt a central star temperature of 15,000 K,

luminosity of 2500 L⊙, and a distance of 1.2 kpc given by Lykou et al. (2011), the luminosity

fraction becomes 0.33.

4.1.4 Dust Disks

Eight CSPNs, A21, DeHt 5, NGC2346, NGC2438, NGC6804, NGC6853, NGC7139, and

NGC 7293 have IR excesses that cannot be accounted for by a known or putative companion’s

photospheric emission (Fig. 4.4). An extended emitter, such as a dust disk, is required to

account for the excess emission in the IR. While the SED does not provide constraints on

the geometry of the IR emitter and a spherical dust shell can reproduce the SED as well as

a dust disk, the small extinctions toward the majority of the CSPNs suggest that the dust

is more likely to be distributed in a disk rather than a shell. Therefore, we assume that

the IR emitters are all dust disks, and model their SEDs and determine their basic physical

parameters.

For the CSPNs’ photospheric emission, we use a blackbody model with observationally

determined stellar effective temperatures from the literature. The normalization factor for

matching the spectral model to optical and near-IR flux densities is (stellar radius/distance)2.

The stellar radii, determined from the normalization factors and distances reported in the

literature, are mostly a few R⊕, consistent with the expectations for CSPNs. To match

the excess emission in the IR SED, we use a single or multiple blackbody components (the
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smallest number of components needed) with the dust temperatures (Td), emitting areas

(A), and PN distances listed in Table 4.3. We further calculate the dust’s equilibrium-

temperature distance (rd) from the CSPN luminosity (LCSPN) and the dust temperature,

and determine the fractional luminosity, LIR/LCSPN, where LIR is the luminosity of the IR

emitter.

The following subsections discuss individual CSPNs in detail, except for NGC 7293,

which has been reported by Su et al. (2007), and A21, which has been reported by Chu et

al. (2011).

DeHt 5

DeHt 5 (Fig. 4.6) is an old PN that shows evidence of interaction with the ISM (Tweedy

& Kwitter 1996). Its morphology is dominated by bright filaments toward the north of the

CSPN, surrounded by fainter diffuse material. In the MIPS 24 µm image, the morphology

is dominated by a bright filament near the central WD and extended diffuse material. Good

et al. (2005b) carried out UV spectroscopy to search for radial velocity variations indicative

of a companion, but none were found.

The SED (Fig. 4.4) shows excess IR emission at 8 and 24 µm. We approximate the WD

photospheric emission by a blackbody with an effective temperature of 76,500 K (Napiwotzki

1999), at a distance of 345 pc (Benedict et al. 2009). The WD radius required for the emission

to fit the optical and near-IR fluxes is ∼2.37 R⊕, within the range expected for WDs. The

excess emission can be modeled with a single blackbody component with a temperature

Td of 190 K and an emitting area of 0.25 AU2, and rd of 8.2 AU. The temperature and

the emitting area cannot be accounted for by any stellar or substellar object; therefore, an

extended object, such as a dust disk, is required to produce the observed excess emission. The

fractional luminosity, 7.3×10−5, is similar to those of dust disks around hot WDs reported

by Chu et al. (2011).
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NGC2346

NGC2346 (Fig. 4.7) is a bipolar PN, well-known for harboring a single-line spectroscopic

binary at its center (Mendez & Niemela 1981). The CSPN has also been observed to vary

photometrically at optical (Mendez et al. 1982) and near-IR (JH) wavelengths (Roth et al.

1984). The IR excess of this CSPN in the 1–10 µm range has been reported by Cohen &

Barlow (1975), and the MIPS 24 µm observations were presented by Su et al. (2004). The

24 µm image shows an unresolved hot dust component at the central source, and this hot

dust cloud has been suggested to cause the fading events of the CSPN in 1981-1985 and

1996-1997 (Costero et al. 1986; Kato et al. 2001). In addition, Su et al. (2004) report a

dusty torus-like structure, with r∼20′′, surrounding the central source.

Due to the changes in optical and IR fluxes, sometimes by almost ∼3 magnitudes (Mendez

et al. 1982), the SED is complex and difficult to model. For comparison, we plot the lowest

flux densities from Mendez et al. (1982) and Roth et al. (1984) as open diamonds in the

SED (Figure 4.4). The SED is simulated with a blackbody curve for a hot subdwarf with

an effective temperature of 100,000 K and a radius of 0.03 R⊙ (or 3.3 R⊕) and an A-type

main sequence companion with an effective temperature of 8200 K and radius of 1.9 R⊙, at

a distance of 800 pc (Acker et al. 1998; Su et al. 2004). The data points do not follow the

combined curve well, but it is without doubt that the CSPN shows excess emission in the

near-IR, in all IRAC bands, and at 24 µm.

We approximate the excess emission by two blackbody components at different temper-

atures. The warmer component has a Td of ∼1000 K, A of 2.2 AU2, and corresponding rd of

0.7 AU. The cooler component has a temperature Td of 250 , emitting area A of 37 AU2, and

rd of 11 AU. The total luminosity fraction, calculated using both stellar components and

both dust components, is ∼0.08, much higher than those of dust disks reported by Chu et

al. (2011). The IR excess is likely due to the dust cloud proposed to have caused the fading

of the CSPN, and the torus reported by Su et al. (2004). The separation of the binary is
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small (∼0.16 AU) compared to the dust’s rd; therefore, the dust is likely circumbinary.

The IRS spectra of the CSPN is shown in Figure 4.8. The low-resolution spectra are

multiplied by a factor of 1.15 to join smoothly the high-resolution spectra. This adjustment

is necessary because the central source is slightly extended (Su et al. 2004), and the spectra

in different modules are extracted with different aperture areas.

At wavelengths ≤15 µm, the background-subtracted spectrum is dominated by contin-

uum, with some residual line emission. The spectral image in Figure 4.8b shows clearly

that the continuum emission is dominant and that the line emission is more extended than

the continuum emission. Figure 4.8c shows the surface brightness profiles of the continuum

emission (8–13 µm), and at [S IV] 10.51 µm and [Ne II] 12.81 µm lines, extracted from the

IRS SL1 data cube. Note that the surface brightness profiles at spectral lines also contain

the underlying continuum emission at their respective wavelengths. The continuum emission

in fact dominates the shapes of the surface brightness profiles at the spectral lines, and the

diffuse nebular line emission is evident only in the extended wings of these profiles.

At wavelengths >15 µm, the background-subtracted spectrum shows a continuum weaker

than that at shorter wavelengths, and very strong residual line emission of [Ne III] 15.55 µm

and [O IV] 25.89 µm; and moderately strong residual line emission of [S III] 18.71 µm, [Ne V]

24.32 µm, and [S III] 33.48 µm. The raw spectral image, presented in Figure 4.8c, shows that

the line emission is more extended than the continuum, with higher-ionization line emission

more concentrated toward the center than the lower-ionization line emission. To illustrate

the spatial distribution quantitatively, normalized surface brightness profiles of [S III] 33.48

µm, [O IV] 25.89 µm, [Ne V] 24.32 µm and continuum emission (20–35 µm) are shown in

Figure 4.8d. This relative distribution of high- and low-ionization lines is expected in the

ionization stratification of the PN.
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NGC2438

NGC 2438 (Fig. 4.9) is a multiple-shell PN superposed on the star cluster M46. The outer

halo with angular diameter of ∼5′ is clearly seen in the IRAC 8 µm image (Chu et al. 2009).

It is difficult to assess whether the SED shows excess emission in the J band, because the

optical data points reported in the literature are varied (see section 3.4 ). Furthermore, the

CSPN is near a bright star, which may be contaminating the CSPN’s J-band photometry.

Excess emission in the IRAC bands is nevertheless evident, and the flux density at 24 µm

is several orders of magnitude higher than the expected CSPN’s contribution (Chu et al.

2011).

To assess the nature of the IR excess, we have obtained Spitzer IRS 7–14.5 µm spectrum

of the PN. The IRS spectra extracted at the position of CSPN NGC 2438 and adjacent

background regions are shown in Figure 4.10a,b. Both spectra are dominated by nebular

emission lines of [Ar III] 8.99 µm, [S IV] 10.51 µm, [Ne II] 12.81 µm, [Ar V] 13.10 µm, and

[Ne V] 14.32 µm. The background-subtracted spectrum shows weak but rising continuum

emission, in addition to dips at the wavelengths of [Ar III], [S IV] and [Ne II], and residual

line emission at [Ar V] and [Ne V]. These residual line features stem from imperfect back-

ground subtraction, as can be seen from the surface brightness profiles of the continuum and

line emission along the slit (Fig. 4.10c). The emission line surface brightness profiles are

consistent with the ionization stratification in the nebula: the high ionization lines such as

[Ne V] and [Ar V] peak near the center of the nebula, and the lower ionization lines peak

further away from the CSPN; thus, the high ionization lines are under-subtracted, while the

low ionization lines are over-subtracted. The continuum emission peaks at the CSPN and

is not extended (FWHM∼5′′); therefore, it likely originates from an unresolved source. The

surface brightness profiles thus suggest that the unresolved IR excess is continuum in na-

ture, whereas the emission lines originate from the extended nebula. The surface brightness

profiles do not reveal an unresolved emission-line source at the CSPN.
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To estimate the physical parameters and the origin of the the IR emitter, we model the

SED using the CSPN’s effective temperature of 114,000 K (Rauch et al. 1999), and a distance

of 1200 pc (Phillips 2004). For this blackbody emission to fit the V magnitude, the required

radius of the CSPN is ∼4.5 R⊕; this is within the range of radii expected for CSPNs. The

excess IR emission cannot be modeled by a single blackbody component; two temperature

components are needed. The excess emission in the IRAC bands needs a warm component

with a temperature of ∼1200 K, rd of 0.9 AU, and an emitting area of ∼5×10−4AU2, or

∼24 R2
⊙. Brown dwarfs may have such effective temperatures, but their surface areas are

considerably smaller; therefore, an extended dust cloud or disk is needed to account for the

excess emission seen in the IRAC bands. However, if we normalize the CSPN’s photospheric

emission to one of the fainter V magnitudes, then the excess emission in the J and IRAC 3.6

– 4.5 µm bands may be provided by a late M dwarf, but the excess in 5.8–8.0 µm would still

persist. The excess emission from these wavelengths up to 24 µm requires a cooler component

with a temperature of ∼150 K and an emitting area of ∼57 AU2. Such temperature and

area cannot be provided by any stellar or substellar object; only an extended emitter, such

as a dust disk can produce this emission. The equilibrium-temperature distance rd for 150

K is ∼56 AU from the CSPN. Note that the dust continuum at 24 µm may be overestimated

because of the contamination of the [O IV] 25.89 µm line, in which case, the dust parameters

need to be adjusted accordingly. The combined luminosity fraction, ∼3.7×10−4, is slightly

smaller than that of the IR emitter in the Helix Nebula.

While it is unclear whether the warm component originates from a stellar companion or

a warm dust disk close to the CSPN, an extended disk of cooler dust is needed to explain the

24 µm emission. Better sampling of the fluxes at optical and near-IR wavelengths is needed

to establish the CSPN’s photospheric emission so that more accurate modeling of the SED

can be performed.
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NGC6804

NGC6804 (Fig. 4.11) is a multiple-shell PN with ansae protruding from the middle shell

along the shell’s major axis. Spatially resolved kinematic information suggests that the

nebula is moving toward southwest, and is interacting with the ISM (Guerrero et al. 1998).

Prominent IR excess is seen in the entire 1 – 8 µm JHK and IRAC range as well as in our

follow-up MIPS 24 µm photometric measurements.

Our follow-up Gemini NIRI 1–5 µm and Michelle 7–14 µm spectra are shown in Fig 4.12.

The spectra in individual bands are scaled so that the continuum varies smoothly across

the different bands and follows the JHK and IRAC flux densities. The spectrum reveals

a rising continuum, as well as emission lines from this compact source. In the J band, the

most prominent line is a He I 1.08 µm line; we also detect He I + He II 1.09 µm line, He II

1.16 µm line, and H I + He II 1.28 µm line. The line emission in the H band is considerably

weaker than that in the J band. The H band spectrum shows the H Brackett series, and

the He I 1.701 µm line. The K band shows only one prominent emission line, H I 2.166

µm (Brγ). In the L band, we detect H I 3.74 µm (Pfγ) and H I 4.05 µm (Brα) line. The

M band spectrum in Fig. 4.12 is smoothed; it only shows one emission line at ∼4.51 µm,

probably corresponding to He II 4.508 µm line. This line is near the edge of the filter, where

the transmission is lower and the noise is higher, however, the line appears weak but real

in the raw image of the spectrum. The Michelle 7–14 µm spectrum is also smoothed, and

exhibits a 10 µm silicate emission feature.

In Section 2.3, we have examined the FWHM of the central source in the MIPS 24 µm

image and determined that it is an unresolved point source. This conclusion is supported

by the Michelle acquisition images, in which the Gaussian fit to the CSPN’s profile has a

FWHM of ∼3.8 pixels (∼0.′′38), whereas the FWHM of the standard star is ≤0.′′42, and the

telescope diffraction limit 0.′′34.

The CSPN’s photospheric emission was modeled using a 86,000 K blackbody at a distance
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of 1320 pc (Phillips 2003, 2004). The stellar radius required to fit the optical fluxes is ∼0.1

R⊙ (or 28 R⊕), rather large, but within the range expected for CSPNs. Model fits of the

IR excess require three components with Td of ∼1400 K, ∼550 K, ∼250 K, A of 0.1, 6 and

155 AU2, and rd of 2.5, 16 and 77 AU, respectively. The need for multiple temperature

components indicates that there is likely a range of dust temperatures present. The hottest

of the three components reaches a temperature of a brown dwarf; however, the required

emitting area corresponds to a spherical surface area for R ∼21 R⊙, too large for a brown

dwarf. Furthermore, HST imaging has not revealed any companion (Ciardullo et al. 1999).

NGC6853

NGC6853 (Fig. 4.13) is the well-known Dumbbell Nebula. Its 8 µm image shows an impres-

sive morphology of radial spokes of molecular hydrogen emission (Manchado et al. 2007).

Its CSPN is WD 1957+225. Cudworth (1973) has reported a faint visual companion at 6.′′5

from the CSPN and suggested a physical association between them based on their common

proper motion. The field of view towards NGC 6853 is crowded, and, based on star counts,

Ciardullo et al. (1999) estimate a likelihood of 90% that a field star would be projected at

that distance. In addition, Ciardullo et al. (1999) identify a V ≈18.7 star 1.′′1 from the CSPN

to be a more likely candidate for a companion based on star counts, although the chance for

a random superposition is still as high as 12%. The physical association between the CSPN

and any stars projected in the vicinity has not been proven to date, and additional radial

velocity observations are suggested to support the association of the two stars. Benedict et

al. (2009) have analyzed the HST Fine Guider Sensor imaging fringes, but have not resolved

any close companions.

The IR SED shows slight excess from 1–4.5 µm, and the flux densities rise sharply at

5.8 – 24 µm. The near-IR excess is due to the above-mentioned star 1.′′1 from the CSPN

(Ciardullo et al. 1999), which is not resolved by IRAC. We model the CSPN’s photospheric

emission by a blackbody with an effective temperature of 108,000 K (Napiwotzki 1999) at
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a distance of 405 pc (Benedict et al. 2009). The IR emitter responsible for the emission

longward of 4.8 µm has a temperature of 190 K and an emitting area of ∼5 AU2. This area

can only be provided by an extended object, such as a dust disk. The equilibrium distance

is ∼25 AU, which corresponds to 0.′′062 at the PN’s distance and cannot be resolved by

Spitzer. The central source appears to be slightly extended at 24 µm, with a FWHM of

∼11.′′2, about twice the FWHM of a point source. At 70 µm, no point source at the CSPN

can be recognized against the bright nebular background. High-resolution images at 24 µm

are needed to determine whether the central source consists of an unresolved point source

superposed on an extended component. Furthermore, spectral observations are needed to

determine the relative contributions of line emission and continuum to the IR excess.

NGC7139

NGC 7139 is a roughly spherical PN with an inner bipolar core (Stanghellini et al. 2002). As

shown in Fig. 4.14, the round nebular rim has a fainter bipolar extension along the NE-SW

direction. The MIPS 24 µm image shows clearly the bipolar structure in the core and two

additional ansae. None of the axes of these bipolar features are aligned. The SED shows

excess emission in all of the JHK and IRAC bands with a declining slope in the IRAC

wavelengths. The CSPN is not detected at 24 µm, as the bipolar nebular emission by far

dominates the flux in the central region.

We have obtained Gemini NIRI 1–2.5 µm spectra and Spitzer IRS 5–15 µm spectra of the

PN in order to determine the nature of the IR emitter. The Gemini NIRI spectra of CSPN

NGC 7139 are shown in Figure 4.15e. Note that the flux calibration of Gemini long-slit data

is not absolute, and it is recommended to flux-calibrate the spectra using complementary

photometric measurements. We use our own JHK measurements (see section 3.4 ) to per-

form flux calibration, but this calibration is rough, as the S/N ratio for 2MASS photometry

is less than 3σ. The near-IR spectrum is dominated by continuum in all bands; the contin-

uum rises in the J and H bands, and is flat in the K band. In the J band, He I 1.08 µm,
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H I + He II 1.282 µm lines are detected; no emission lines are detected in the H band; and

in the K band, a very weak line at 2.16 µm can be attributed to H I and He II emission.

The IRS spectra extracted from CSPN NGC 7139 and adjacent background regions are

shown in Figures 4.15a,b. The most dominant features in all these spectra are the emission

lines of [Ar III] 8.99 µm, [S IV] 10.51 µm, and [Ne II] 12.81 µm. The background-subtracted

IRS spectrum of NGC 7139 shows a weak continuum component, and residual line emission

in the [Ne II] 12.81 µm line.

To examine the nature of the residual line emission, we compare the spatial distribution

of the continuum and line emission. Figure 4.15d shows surface brightness profiles along the

slit for the continuum, [Ne II], [Ar III] and [S IV] lines. It is evident that the continuum

originates from a point source, the CSPN. The line emission shows an extended component

that originates from the PN, as well as a small peak near the CSPN. For the [Ar III] and

[S IV] lines, the width of the small peaks is the same as the width of the continuum emission

(FWHM∼5′′), and the height of the peaks above the underlying extended background is

similar to that of the continuum component. It is probable that this small peak is caused by

the continuum contribution at the wavelengths of the [Ar III] and [S IV] lines. The [Ne II]

line also shows a centrally peaked component in addition to the extended PN emission, but

its height and width (FWHM∼10′′) are greater than those of the continuum. In addition,

the peak of the central [Ne II] emission appears slightly offset from the position of the CSPN.

The [Ne II] residual emission is therefore due to a real enhancement near the CSPN, and not

the result of imperfect background subtraction or from the continuum’s contribution. The

CSPN of NGC 7139 is a hot (Teff∼117,000 K, Gorny et al. 1997) star, and this low-ionization

line emission is not expected to be detected so close to the CSPN. It is possible that the

[Ne II] emission originates from the circumstellar material of a cooler companion. High-

resolution images in continuum and low-ionization lines are needed to confirm the existence

of this companion and determine the origin of the [Ne II] emission.

To model the SED, we adopt a distance of 2400 pc (Frew 2008) and a stellar effective
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temperature of 117,000 K (Gorny et al. 1997). A ∼1650 K blackbody with emitting area of

∼0.004 AU2, or 186 R2
⊙, and rd of 0.25 AU can fit the JHK and IRAC fluxes. While brown

dwarfs may have such effective temperature, the required radius of the star is ∼4 R⊙, much

higher than the range expected for brown dwarfs. The temperature of 1650 K is near the

dust sublimation temperature (∼1500–1700 K, depending on composition). It is possible

that the excess is a combination of the emission from a companion and a dust disk near

the sublimation temperature. No companion star of CSPN NGC 7139 has been reported to

date.

4.2 Discussion

4.2.1 Statistical Properties

We have examined 72 PNe in this paper. Of these, 56 were extended enough to allow visual

inspection whether the CSPN is detected against the nebular background. In 42 cases, the

CSPN is visible and selected for photometric measurements. Therefore, we use the sample of

56 PNe to assess the IR excess detection rate. A summary of the statistics of our detections is

presented in Table 4.1. Out of the 56 PNe, we find 19 cases, or 34%, with IR excess. Seven

of these excesses are from [WC] CSPNs, six of which were observed in a single program

targeting these stars. Two of the excesses were due to projected companions and were not

physically associated with the CSPNs. Excluding the [WC] CSPNs from our sample, the

detection rate of dusty IR excesses is 20% (=(8+2)/(56-7)). This rate includes the excesses

of CSPNs Mz 3 and M2-9, whose status as PNe may be controversial. Without these two

targets, the detection rate of dusty IR excesses is 17% (=8/(56-7-2)).

The detection rate of the IR excesses of CSPNs from Chu et al. (2011) is similar, 7 out of

35, or 20%, all of which are likely from dust disks. Table 4.1 also summarizes the statistics

of the two surveys combined, taking into account the overlaps between the two samples. For

the combined sample of 84 PNe (and excluding the [WC] stars), the total detection rate of
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dusty IR excesses is 17–19%, depending on whether the two symbiotic PNe are included.

Figure 4.16 shows the distribution of the distances of CSPNs from this archival search

with dusty IR excesses, [WC] CSPNs and the CSPNs without IR excesses. While equal

numbers of dust disk excesses are found in each distance bin, the [WC]s and CSPNs without

IR excesses are distributed at distances greater than 500 pc, almost half of them farther than

1500 pc. The median distance of CSPNs with IR excesses due to dust disks, ∼900 pc, is

smaller than that of CSPNs without IR excesses, ∼1300 pc. The distribution of CSPNs with

dusty IR excesses being closer compared to those without IR excesses may indicate that the

detection of IR excesses at greater distances is limited by sensitivity.

4.2.2 Physical Parameters of CSPN with IR Excesses

The goal of our Spitzer archival survey of CSPNs is to search for dust disks that could

potentially be formed through collisions, sublimation, or tidal disruption of subplanetary

bodies. We therefore do not further discuss the IR excesses of [WC] CSPNs or the symbiotic

CSPNs Mz 3 and M2-9, as the origins of these are known to be different. We also will not

discuss the CSPNs A 66 and NGC 650 for which the IR excesses can be explained by visual

companions. The remaining CSPNs with IR excesses are indicative of circumstellar dust

emission. For completeness, we will discuss these objects in conjunction with those reported

by Chu et al. (2011) and Su et al. (2007).

All of the above CSPNs with IR excesses originating from circumstellar dust are listed

in Table 4.2, which summarizes their SED and spectral properties. Checkmarks in columns

2–7 indicate the presence of excess IR emission in any of the JHK bands, the four IRAC

bands, and the MIPS 24 µm band. Columns 8–11 remark on the spectral features exhibited

in four spectral ranges observed with different instruments. Column 12 notes known close

or wide binary companions of the CSPNs. The SED characteristics of this group of CSPNs

are varied. First, the onset of the excess can occur at different wavelengths, indicating

different upper limits to the IR emitters’ temperatures. For example, some SEDs display IR
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excess starting from >5 µm (e.g., DeHt 5 and NGC 6853), while others show excess emission

starting from shorter wavelengths, even from JHK bands (e.g., NGC 6804 and NGC 7139).

Second, the IR excess may peak at different wavelengths, for instance, the IR emission of

NGC 7139 peaks near 2–3 µm, and that of DeHt 5 peaks at wavelengths ≥24 µm. Third,

the slope of the IR excess can vary continuously (e.g., NGC 6804), or abruptly, indicating

the presence of more than one distinct IR emission component (e.g., NGC 2438).

Ten CSPNs with dusty IR excesses have spectra available, taken in one or more of the

following wavelength bands: Gemini NIRI JHK 1–2.5 µm, LM 3–5.5 µm, Michelle N 7–

14 µm, Spitzer IRS 5–15 µm, IRS 15–35 µm. In all cases, the spectrum is dominated by

continuum emission. No unresolved circumstellar line emission is seen in the IRS spectra,

except in the case of NGC 7139, where the slightly resolved [Ne II] line emission may contain

a compact off-center circumstellar component. Unresolved H and He line emission is also

seen in NIRI JHK and LM spectra of NGC 6804 and weakly in NGC 7139, in addition to

the continuum emission. NGC 6804 exhibits a 10 µm silicate feature (which appears to be

crystalline), but none of the other CSPNs exhibit any mineralogical features.

To investigate the origin of the IR excesses and possible relationship among IR excesses

with varied SED shapes and spectral characteristics, we compare the physical characteristics

of the CSPNs with the physical parameters of the IR emitters (see Table 4.3, which is ordered

based on the luminosity fraction LIR/LCSPN). The effective temperatures, surface gravities,

masses and distances are from literature, while the the stellar radii (RCSPN) are computed

from the SEDs, based on the distances, effective temperatures and available optical flux

densities. Stellar luminosities (LCSPN) are computed using distances, effective temperatures,

and RCSPN, while LIR values are derived from the IR flux densities and distances. The table

also lists LIR/LCSPN, the luminosity fractions. Where available, we also list the dynamical

and/or evolutionary ages of the PNe from the literature.

In Figure 4.17, the physical parameters of the CSPNs (temperature, dynamical age, lu-

minosity) are plotted against the physical parameters of the IR excess emitters (luminosity
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fraction, IR luminosity). We do not see any obvious correlations between the physical pa-

rameters of the CSPNs and the IR emitters. We do however see that NGC 6804 and NGC

2346, with their high IR luminosities, are outliers to the loci of the remaining CSPNs on the

LIR versus LCSPN plot. Their luminosity fractions are still 1–3 orders of magnitude lower

than those of the two symbiotic CSPNs. NGC 2346’s central star is known to be a close

binary and it also possesses a circumstellar dust cloud, and possibly a dust disk, which all

contribute to the high IR excess. NGC 6804 is an outlier in many ways. First, unlike most

of the CSPNs, it shows strong unresolved H and He lines coincident with the CSPN, and,

unlike any of the CSPNs, its spectrum displays a 10 µm silicate dust feature. Its CSPN

has the largest radius and the highest luminosity, and the lowest evolutionary age, ∼6200

years, among all CSPNs with IR excesses. Its Teff and LCSPN place it on the bend of the

evolutionary track in the HR diagram, before the WD cooling track, unlike the remaining

CSPNs, which are all on the WD cooling track.

NGC 6804 is clearly the least evolved CSPN in our sample, and it has the second highest

luminosity fraction. It is worth noting that Chu et al. (2011) have detected 24 µm excesses

of, in addition to CSPNs, two hot WDs that are not surrounded by known PNe, and are thus

the most evolved. These were found to have the the lowest LIR/LWD ratios in the sample.

While these extreme cases suggest that the luminosity and luminosity fraction of the IR

emitter decrease with age, there is no obvious correlation between ages and IR luminosities

or luminosity fractions and the CSPN ages from the literature for the intermediate cases. It

should be cautioned, however, that the age estimates may be quite uncertain because they

require known distances.

The uncertainty in PN distances also affects the determination of CSPN’s and IR emit-

ter’s physical characteristics. Distances derived from parallaxes are least controversial; thus,

we adopt the parallax distances for A21, Sh 2-216, DeHt 5, NGC 6853, and NGC 7293. The

remaining distances are derived from the following methods: statistical distance, spectro-

scopic distance of the CSPN, Shklovski method, interstellar NaD absorption and galactic
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rotation, and spectroscopic parallax of a CSPN’s main sequence companion. Each of these

methods may have significant uncertainties and often the various reported values differ by

a factor of 2 or more; furthermore, spectroscopic distances are known to be systematically

greater than the parallax distances. For a discussion of distance measurements of PNe, see

e.g. Napiwotzki (2001). The uncertainty in the distance is propagated into the calculation of

radius and luminosity of the CSPN, as well as the luminosity of the IR emitter. The stellar

mass determination depends on the quality of spectroscopic data and the accuracy of model

atmosphere fits. The physical parameters listed in Table 4.3 are taken from various sources

and are determined with different techniques and data sets. A set of physical parameters

derived from a uniform data set and using a common method (see e.g., Frew 2008) would

allow for a more meaningful comparison.

4.2.3 Origins of IR excesses

The IR excess of the Helix CSPN was suggested to originate from collisions among planetesi-

mals (Su et al. 2007). With a larger sample of CSPN excesses and their varied characteristics,

one needs to consider other possible mechanisms that could be responsible for producing the

excess IR emission. It is unclear whether the observed differences in SED and spectral char-

acteristics of CSPNs’ IR excesses are due to different physical origins, different evolutionary

stages, or a combination of both. We present two most likely scenarios for the origins of IR

excesses in the following subsections.

Subplanetary Bodies

The destruction of subplanetary bodies has been proposed as dust generation mechanism

for disks around old, cool WDs via tidal disruption of asteroids, and for the disk around the

Helix Nebula’s CSPN via collisions among KBOs (see Section 1). Tidally crushed asteroids

are unlikely to have produced IR excesses of CSPNs. The Roche radii for a density of 2.5 g

cm−3, typical for asteroids, (e.g., Britt et al. 2005), are <0.01 AU for our stars, whereas the
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equilibrium distances for the hottest temperature components are all greater than 0.25 AU

(see Table 4.3). Furthermore, the effective temperatures of CSPNs are significantly higher

(>80,000 K) than those of the cool WDs, and dust within the Roche limit would sublimate.

The fact that some very old WDs (age∼Gyr) have disks of tidally shredded asteroids does

support the survival of planetesimal bodies, because a reservoir is needed to supply material

that is eventually disrupted by tidal forces. While the presence of planetesimal bodies is

likely, the question whether enough collisions occur to account for the observed dust and

reproduce the observed SEDs is not yet fully answered.

Collisions among subplanetary objects provide a feasible mechanism to produce dust

around CSPNs. Dusty debris disks have been observed around main sequence stars, and

the dust was suggested to be produced by collisional cascades within planetesimal belts

(e.g., Rieke et al. 2005). The mid-IR spectra of the majority of debris disks around main-

sequence stars are featureless (Chen et al. 2006), similar to the mid-IR spectra of most

CSPNs with IR excesses in our sample. Bonsor & Wyatt (2010) simulated the steady-state

collisional evolution of a debris disk around a main-sequence A-type star into the late stages

of stellar evolution, considering the effects of collisions, radiation pressure, stellar wind drag,

sublimation, and Poynting-Robertson drag on the debris disk. In general, collisional lifetime

increases as the star loses mass, and thus the dust generation rate, and consequently the

detectability, decreases. They investigate the detectability of such disks and find that only

the youngest WDs which are relatively close (∼200 pc) should have disks luminous enough

to be detected. While their models are in line with the detection of the Helix CSPNs dust

disk, most of our targets are much further than 200 pc. On the other hand, many of our

targets are not yet WDs.

Dong et al. (2010) examine the dynamical evolution of a debris disk along with its parent

star’s evolution past the main sequence for a case in which the star also possesses a gas

giant planet. According to their models, as the star loses mass, the planet’s orbit expands,

and it may sweep up sub-km-size planetesimals onto mean-motion resonance orbits, and
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the planetesimal orbits become slightly eccentric. Disruptive collisions among planetesimals

can then produce dust grains that may be observable in the IR. Their models are able to

reproduce the amount of dust around the CSPN of the Helix Nebula.

To investigate the evolution of dust disks’ frequency of occurence, better knowledge of

CSPN’s evolutionary status is necessary. Further modeling of the SEDs and better estimates

of the disks’ physical parameters, such as dust mass, grain sizes, and radial location will also

be needed to compare to the model predictions. We defer this work to a later paper.

Binary Interactions

Another possible scenario is that the dust disks around CSPNs are associated with a binary

companion. Many post-AGB stars exhibit IR excesses that imply the presence of hot, 500–

1300 K dust, in addition to the cooler, 100–200 K, expanding dust shell (Trams et al. 1991;

Waters 1993; Van Winckel et al. 1999). Radial velocity observations of these stars show

that the presence of hot dust component is tightly correlated with the presence of a binary

companion (Waters et al. 1997; Van Winckel et al. 1999), suggesting that hot dust disk

remains in the system because it is trapped in a stable circumstellar or circumbinary orbit,

and this dust disk was probably formed in binary interactions. Such stable Keplerian-rotating

dust disks seem to be very common among binary post-AGB stars (de Ruyter et al. 2006).

It may be possible that the dust trapped in post-AGB binary system persists into the

CSPN stage, which immediately follows the post-AGB. Interestingly, the 24 µm survey of

Chu et al. (2011) targeted hot WDs with and without PNe, and they found that seven of

the nine showing 24 µm excess are still in PNe, and two without PNe have the weakest 24

µm excess. Moreover, the IR emitter of CSPN NGC 2346, a known close binary, has the

highest luminosity among our targets, and its luminosity fraction, ∼0.09, approaches that

of post-AGB binaries of de Ruyter et al. (2006) and the symbiotic CSPNs. The CSPN with

the second highest IR luminosity, NGC 6804, is the least evolved in our sample. Similar to

those of post-AGB binaries, its disk is gas-rich, as evidenced by the near-IR spectra. The
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10 µm silicate feature seen in its mid-IR spectrum is commonly seen in post-AGB binaries

(Gielen et al. 2008).

It is thus possible that dust disks around CSPNs may be related to those around post-

AGB stars, and the differences between post-AGB disks and those of CSPNs could be at-

tributed to different evolutionary stages. However, it is not yet known how and whether the

post-AGB binaries with dust disks evolve into the PN stage. Taam & Ricker (2010) model

the common-envelope binary evolution, in which a circumbinary disk is indeed formed, but

the evolution of the system into later stages has not yet been modeled. Passy et al. (2011)

also carried out common envelope simulations and determined that the envelopes are not

fully ejected. This sub-escape-velocity gas will return to the binary system, spin up, and

form a rotating self-supported circumbinary disk. However, the central binary of these sys-

tems is a very close one (separation of a few solar radii) and not one of the typical post-AGB

binaries observed in the middle of circumbinary disks which have periods of 100-2000 days

(van Winckel 2003).

In the case of CSPN EGB 6 (WD 0950+139), a strong emission line component was

found superposed on the stellar continuum emission (Liebert et al. 1989). High-resolution

HST emission-line images revealed that the emission actually originates from a point-like

source that is offset from the PN nucleus by 0.18′′ (∼120 AU), and later continuum images

confirmed the presence of a dM companion (Bond 1994). It has been suggested that the

dM companion has accreted material from the progenitor of WD0950+139 and that this

accretion disk is responsible for the nebular line emission (Bond 2009). CSPN EGB 6 also

shows dusty mid-IR excess. It is unclear whether this mid-IR excess is associated with the

CSPN, or its companion (Chu et al. 2011). NGC 6804 is similar to EGB 6 in having an

unresolved nebular emission component coincident with the CSPN. Such unresolved nebular

emission has also been found in PNe M2-29 (Gesicki et al. 2010; Frew & Parker 2010), and

JaFu 1 (De Marco et al. 2011) NGC 7139 also shows weak enhancement in emission lines

at the CSPN. It is possible that these phenomena might be associated with an unresolved
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companion.

The difficulty in confirming the association of dust disks with binary CSPNs is the fact

that the binarity of a CSPN is difficult to verify. Close companions have been detected by

photometric variability (Bond et al. 1992), and distant ones by direct imaging (e.g., Ciardullo

et al. 1999). Companions at ∼0.1-10 AU can currently only be detected by radial velocity

variations, but the detection is hampered by irregular spectral variations due to winds (de

Marco et al. 2007). Near-IR excess could in principle reveal a companion at any separation,

enabling us to find the elusive intermediate separation binaries. However, this is in practice

a difficult task as the expected companions are faint: the spectral type distribution for

companions of WDs, which should be representative of CSPNs, peaks at M3-4 (Farihi et al.

2005). Most of the systems in our sample, in particular those that have hot disks, would

successfully hide such companions even with photometry more accurate than that collected

for the current work. We leave the determination of companion mass limits implied by the

non-detections to a future paper. If a dust disk trapped in a stable orbit around a binary

system can persist throughout the PN phase, its presence could serve as a powerful diagnostic

for the binarity of the CSPN.

Further theoretical studies are necessary to understand the evolution of post-AGB bi-

naries and their disks into the PN stage. From the observational point of view, a search

for companions (see e.g. De Marco 2009) would allow us to strengthen or weaken the link

between dusty IR excesses and binary companions, and to help us distinguish between the

two proposed origins. Better modeling of the SEDs that includes parameters such as dust

distances, grain sizes, location, and dust mass, will also help us evaluate the likelihood of

different possible origins. We defer the more detailed modeling for a future paper.
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4.3 Summary

We have conducted a survey of 72 available resolved PNe in the Spitzer archive, 56 of which

were large enough for CSPN photometric measurements, and 42 of which were detected in at

least one Spitzer IRAC and/or MIPS band. We find 19 cases with clear IR excesses, of these,

seven are [WC] stars, two have apparent visual companions that account for the observed

excess emission, two are borderline between young PNe and symbiotic stars, and in eight

cases, the IR excess originates from an extended emitter, likely a dust disk. Combined with

the survey of Chu et al. (2011), the incidence of dust disks among CSPNs is &17%.

The SEDs show a great diversity in the emission characteristics of the IR excesses. For

some of the CSPNs, we have acquired follow-up spectra using Spitzer IRS, Gemini NIRI and

Michelle spectrographs. For NGC 6804, a rising dust continuum is seen in addition to H

and He lines, and a 10 µm silicate feature. For NGC 7139, the IRS spectra are dominated

by continuum emission, but a small slightly resolved nebular emission is also seen. For

NGC 2346, the continuum is dominant at wavelengths ≤15 µm; at longer wavelengths the

continuum weakens and the line emission becomes prominent.

The varied SEDs and spectral properties of the IR emission may imply multiple mecha-

nisms responsible for the IR excesses. We discuss two possible mechanisms for producing the

observed dust emission. The first is the breakup of bodies in planetesimal belts, similar to the

origin of dust disks observed in main sequence stars and proposed for the dusty disk of the

Helix Nebula. The second possibility is that the dust disk is formed in binary interactions,

and descends from the commonly-observed dust disks around post-AGB binaries.

Further understanding of post-AGB binary evolution as well as debris disk evolution

along its parent star is needed to distinguish between these different origins. Spectroscopic

observations for CSPNs lacking mid-IR spectra, and observations at longer wavelengths are

needed to better constrain the extent and properties of the dust disks. A more detailed SED

modeling will allow us to to derive physical properties of the dust disks and compare them to
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the properties of disks arising from the different proposed scenarios. Finally, a careful search

for companions will also help to discern between the possible dust production mechanisms.
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Table 4.1. Detections of IR excesses of CSPNs

Survey No. Targets Total Excesses Dust Symbiotic [WC]-type Companions

This paper 56 19 8 2 7 2
Chu et al. (2011) 35 7 7 0 0 0
Combineda 84 24 13 2 7 2

aThe combined sample takes into account the overlaps between the two samples.
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Table 4.2. Summary of Observational Results of Dusty IR Excesses of CSPNs

EXCESSES SPECTRUMa

CSPN JHK I1 I2 I3 I4 M1 JHK LM Mich/IRSbc IRSc Known
name 1–2.5 µm 3.6 µm 4.5 µm 5.8 µm 8.0 µm 24 µm 1–2.5 µm 2.5–5.5 µm ∼5–15 µm 15–35 µm Comp.d

EGB 1 X X ... ... cont cont
A 21 X ... ... ... ...
Sh 2-216 X ... ... cont cont
DeHt 5 X X ... ... ... ...
Sh 2-188 X X X X X X ... ... contd conte

K1-22 X X X X X X ... ... cont cont W
NGC 6853 X X X ... ... ... ...
NGC 7293 X X ... ... cont cont
EGB 6 X X X X X X ... ... cont cont W
NGC 2438 Xf X X X X X ... ... cont ...
NGC 7139 X X X X X - H I, He I+II, cont ... cont, [Ne II] ...
NGC 6804 X X X X X X H I, He I+II, cont H I, He II, cont cont, silicate ...
NGC 2346 X X X X X X ... ... cont, lines? ... C

acont=continuum, silicate=silicate feature

bThe spectrum of NGC 6804 was obtained with the Gemini Michelle, and the others were all obtained with the Spitzer IRS SL module.

cFrom our spectra, Chu et al. (2011), or Su et al., in preparation.

dW stands for a wide companion, C stands for a close companion

eCSPN near a bright star in the slit, spectral extraction is impossible but image shows a very weak continuum

fThe optical SED is not certain, there may or may not be J-band excess, CSPN not detected in HK
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Table 4.3. Physical Parameters

Literature SED Dynam Evol
CSPN Teff log g M Dist Rcspn Lcspn TIR AIR rd LIR LIR/Lcspn Age Age
Name (K) (cm s−2) (M⊙) (pc) (R⊕) (L⊙) (K) (AU2) (AU) (L⊙) (103yr) (103yr) Refa

EGB 1 147,000 7.34 0.65 650 3.68 479 190 1.55 25 0.0067 1.40×10−5 20 ... 1
A21 140,000 6.5 0.58 541 1.92 107 150 0.85 32 0.0014 1.33×10−5 44,17.7 ... 2,3,4
Sh 2-216 95,000 6.9 0.53 129 2.36 34 150 0.48 19 0.00081 2.37×10−5 <460 ... 6,4
DeHt 5 76,500 6.65* 0.44* 345 2.37 15 190 0.25 8.2 0.001 7.30×10−5 130 ... 1,7
Sh 2-188 102,000 6.82 0.56 800 2.26 42 900 0.0008 0.61 0.0017 4.02×10−5 12.1, 22 ... 1,5,18

150 0.68 22 0.001 2.73×10−5

K 1-22 141,000 6.73 0.59 1330 3.29 325 700 0.034 2.7 0.027 8.29×10−5 55 12 8,9
150 5.92 58 0.0099 3.06×10−5

NGC 6853 108,600 6.72 0.56 405 3.64 140 190 5.33 28 0.023 1.65×10−4 13 ... 1,7
NGC 7293 110,000 7.0 0.58 216 2.50 69 100 105 57 0.0347 5.00×10−4 ... 22.2 1,7,10
EGB 6 108,400 7.39 0.64 645 3.04 97 500 0.12 1.7 0.025 2.60×10−5 135 ... 11

150 15 19 0.026 2.68×10−4

NGC 2438 114,000 6.62 0.56 1200 4.52 260 1200 0.0005 0.87 0.0035 1.34×10−5 110 20 8,12
150 57 56 0.095 3.64×10−4

NGC 7139 117,200 7.46 0.642 2400 2.38 81 1650 0.004 0.25 0.1 1.22×10−3 ... 14.7 13,14,18
NGC 6804 90,000 5.37 0.596 1320 28 3885 1400 0.12 2.46 1.49 3.84×10−5 7.9b 6.2 12,13,15

550 6.2 16 1.87 4.84×10−4

250 155 77 2.01 5.16×10−4

NGC 2346c 100,000 7.7 0.39 800 3.27 81 1000 2.2 0.7 7.31 9.0 ×10−2 ... ... 16,17
250 37 11 0.48 5.9×10−3

M2-9 35,000d 1400+700+360 4.12e

Mz 3 35,000d 1400+700+360 0.55e

a References: 1. Napiwotzki (2001), 2. Werner et al. (2004), 3. Werner & Herwig (2006), 4. Harris et al. (2007), 5. Napiwotzki & Schoenberner (1995), 6. Rauch et
al. (2007), 7. Benedict et al. (2009), 8. Rauch et al. (1999), 9. Ciardullo et al. (1999), 10. Su et al. (2007), 11. Liebert et al. (2005), 12. Phillips (2004), 13. Mal’Kov
(1997), 14. Gorny et al. (1997), 15. Stanghellini et al. (2002), 16. Smalley (1997), 17. Su et al. (2004) 18. Frew (2008).

∗Benedict et al. (2009) gives g=7.41, M=0.57 M⊙

bCalculated using Table 4 of Stanghellini & Pasquali (1995)

cCSPN has a close companion; we model its emission using Teff=9520 K and R=1.9 R⊙

dAssumed CSPN effective temperature.

dA 35,000 K blackbody model scaled to the optical fluxes of the CSPN is assumed for the stellar luminosity.
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Figure 4.1: SEDs of CSPNs with IR excesses caused by companion’s photospheric emis-
sion. The symbols are the same as in Figure 3.2, in addition, the triangles represent the
flux densities of the companions, and the plus symbols show the sum of all components.
The dotted blackbody curves approximate the companions’ photospheric emission, and the
dashed curves represent the sum of all emission components. For further details, see sections
4.1.1 and 3.4 .
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Figure 4.2: The SEDs of [WC]-type CSPNs. The symbols are the same as in Figure 3.2.
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Figure 4.3: SEDs of CSPNs of symbiotic PNe. The symbols are the same as in Figure 3.2. In addition,
the different components of model dust emission are shown as dotted curves, and the sum of all emission
components is shown as a dashed curve.
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Figure 4.4: SEDs of CSPNs with IR excesses indicative of dust disks. The symbols are the same as in
Figure 3.2. The CSPN’s photospheres are approximated by a blackbodies with effective temperatures listed
in Table 4.3. In addition, the different components of model dust emission are shown as dotted curves, and
the sum of all emission component is shown as a dashed curve. For further details, see sections 4.1.4 and
3.4.
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Figure 4.5: Gemini NIRI spectra of three [WC]-type CSPNs, NGC 6369, NGC 6751, and
NGC 6905. The JHK flux densities are shown as open green diamonds.
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Figure 4.6: Optical and IR images of DeHt 5. The field of view of each panel is 90′′×90′′,
with north at the top and east to the left.

Figure 4.7: Optical and IR images of NGC 2346. The field of view of each panel is 90′′×90′′,
with north at the top and east to the left.
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Figure 4.8: (a) Spitzer IRS spectrum of CSPN NGC 2346. The smoothed spectrum extracted at the CSPN
is plotted in solid thin line, the smoothed local background in a dotted line, the background-subtracted
spectrum in gray error bars, and the smoothed background-subtracted spectrum in a thick solid line. The
IRAC and MIPS flux densities are shown as open diamonds. (b) The raw IRS spectral image in the SL1
(7.4 – 14.5 µm) module, with emission lines labeled. The spectrum is dominated by continuum emission.
(c) Surface brightness profile plots extracted from the IRS SL1 module data cube in the continuum (dotted
curve), at [S IV] 10.51 µm line (dashed curve) and at [Ne II] 12.81 µm line (solid curve). (d) The raw IRS
spectral image extracted in the LH (19–37 µm) module, with emission lines labeled. (e) Normalized surface
brightness profiles extracted from the LH module data cube of continuum (dotted curve), at [Ne V] 24.32
µm line (dashed curve), [O IV] 25.89 µm line (dash-dotted curve), and [S III] 33.48 µm line (solid curve).
Note that all surface brightness profiles at spectral lines contain both the line and continuum emission.
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Figure 4.9: Optical and IR images of NGC 2438. The field of view of each panel is 90′′×90′′,
with north at the top and east to the left.
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[Ar III] 8.99 μm

[S IV] 10.51 μm

[Ne II] 12.81 μm

[Ar V] 13.10 μm

[Ne V] 14.32 μm

c

Figure 4.10: (a,b) Spitzer IRS spectrum of CSPN NGC 2438 plotted with different scales to illustrate the
relative intensity of lines and continuum. The spectrum extracted at the CSPN is shown in solid thin line,
the local background in a dotted line, the background-subtracted spectrum in gray pixels with error bars,
and the smoothed background-subtracted spectrum in a thick solid line. The IRAC flux densities are shown
as open diamonds. (c) The spectral image extracted in the SL1 (7.4 – 14.5 µm) module, with emission lines
labeled. The slit length is 57′′. (d) Surface brightness profile plots extracted from the IRS data cube in the
continuum (dotted curve), [Ne V] 14.32 µm line (dashed curve), [S IV] 10.51 µm line (dash-dotted curve),
and [Ar III] 8.99 µm line (solid curve).
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Figure 4.11: Optical and IR images of NGC 6804. The field of view of each panel is 90′′×90′′,
with north at the top and east to the left.

Figure 4.12: Gemini NIRI and Michelle spectra of CSPN NGC 6804. The JHK and IRAC
flux densities are shown as green diamonds.
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Figure 4.13: Optical and IR images of NGC 6853. The field of view of each panel is 90′′×90′′,
with north at the top and east to the left. The Hα+[N II] image was taken from the The
IAC morphological catalog of northern galactic planetary nebulae (Manchado et al. 1996).

Figure 4.14: Optical and IR images of NGC 7139. The field of view of each panel is 90′′×90′′,
with north at the top and east to the left. The inset in the 24 µm panel is made from the
same image, using a different stretch to show the central torus.
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Figure 4.15: (a,b) Spitzer IRS spectrum of CSPN NGC 7139 plotted with different scales to illustrate the
relative intensity of lines and continuum. The spectrum extracted at the CSPN is plotted in solid thin line,
the local background in a dotted line, the background-subtracted spectrum in gray pixels with error bars,
and the smoothed background-subtracted spectrum in a thick solid line. The IRAC flux densities are shown
as open diamonds. (c) The spectral image extracted in the SL1 (7.4 – 14.5 µm) module, with emission lines
labeled. (d) Surface brightness profile plots extracted from the IRS data cube in the continuum (dotted
curve), [S IV] 10.51 µm line (dash-dotted curve), [Ar III] 8.99 µm line (dashed curve), and [Ne II] 12.81 µm
line (solid curve). (e) Gemini NIRI JHK spectra of CSPN NGC 7139. The JK flux densities are shown as
green open diamonds, and the H-band upper limit is plotted as a green downward arrow.
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Figure 4.16: Distributions of distances of [WC] CSPNs (top), CSPNs with dusty IR excess
(middle) and CSPNs without IR excess (bottom).

Figure 4.17: Relationships between physical parameters of the CSPNs and their IR excesses.
LIR/LCSPN is shown as a sum of all temperature components used to fit the IR SED. The
targets with parallax distances are shown as filled diamonds. The values used for construction
of these plots are listed in Table 4.3.
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Chapter 5

Dust Modeling

5.1 Introduction

The CSPN of the Helix Nebula exhibits excess IR emission at ∼8–70 µm that originates from

a dust disk located between ∼35 and 150 AU from the central WD. It has been suggested that

this dust disk was produced by collisions among KBOs that were dynamically rejuvenated

during the post-AGB evolution (Su et al. 2007). To search for additional dust disks similar

to that around the Helix CSPN, we have carried out a Spitzer MIPS 24 µm survey of hot

WDs/pre-WDs, and discovered nine objects with 24 µm excesses that likely originate from

dust disks (Chu et al. 2011). Interestingly, seven of these are still CSPNs. We have therefore

examined the images of PNe in the Spitzer archive and analyzed the SEDs of their CSPNs

to find five additional objects with IR excesses indicative of dusty disks. Together with the

CSPN of the Helix Nebula, we have a sample of 15 WDs/CSPNs with excess IR emission

likely originating from dust disks.

The SEDs of these objects are diverse. While some have excess emission only at wave-

lengths longer than 8 µm, others’ IR excesses start in the near-IR. For some CSPNs, we have

acquired follow-up Spitzer IRS, and Gemini NIRI and Michelle spectroscopic observations.

All spectra indicate the presence of dust continuum, but they vary in the spectral shape and

the strength of gas or dust emission features superposed on the continuum.

Unlike the dust disk around Helix’s CSPN which has been suggested to be produced by

collisions among surviving planetesimals, some of our disks may have formed through binary

interactions, and are descendants of the dust disks observed around binary post-AGB stars
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(de Ruyter et al. 2006).

To assess the origin of the excess IR emission, it is necessary to establish the physical

parameters of these dust disks. For objects with few data points to constrain their mid-

IR excesses, we use the blackbody models established in previous chapters to estimate the

basic disk properties, such as masses, grain sizes, and lifetimes. For objects with adequate

IR spectral coverage, we model the excess emission with a more realistic dust disk. We

evaluate the properties of these disks against those of main-sequence debris disks produced

by collisions among planetesimals and dust disks observed in binary post-AGB stars.

5.2 Simple Model

For the dust disks without available mid-IR spectra, we estimate the basic physical disk

properties using simple blackbody approximations, assuming optically thin disks. The as-

sumption of optical thinness is reasonable for stars with low internal extinction, but may

not be appropriate if the extinction is high. Blackbody models of IR SEDs, combined with

distances from the literature allow us to estimate the dust disks’ emitting areas, and hence

the areas of the disks intercepting the starlight. With assumptions on the size distribution

and density of grains in the disk, we are able to estimate dust masses.

5.2.1 Grain Sizes and Distribution

For a collision-dominated disk, the grain size distribution is a power law with an index of

-3.5, i.e., n(a) ∝ a−3.5 (Dohnanyi 1969). The minimum grain size in a disk is determined by

β, the ratio of radiation pressure force (Frad) to the gravitational force (Fg) exerted on the

grain by the central WD. The radiation pressure force is given by

Frad =
< S > σgr

c
=

L∗πa2

4πr2c
, (5.1)

129



where < S >= L∗

4πr2 is the time-averaged Poynting vector, σgr is the dust grain cross-section,

L∗ is the WD luminosity, a is the dust grain radius, and r is the distance of the grain from

the star, and c is the speed of light. The gravitational force exerted on the dust grain is

Fg =
GM∗mgrain

r2
=

GM∗

r2

4πa3ρ

3
, (5.2)

where M∗ is the mass of the WD, mgrain is the mass of the dust grain, and ρ is the grain

density. Thus,

Frad

Fg
= β =

3L∗

16πGM∗aρc
. (5.3)

The parameter β determines the minimum grain size, acrit, below which the grains are blown

out.

acrit =
3L∗

16πGM∗ρcβ
. (5.4)

Artymowicz & Clampin (1997) show that for a dust grain produced by a collision, the

daughter grain is at the periastron of an elliptic orbit with an eccentricity e(β) = β/(1−β).

For a β = 0.5, the eccentricity becomes 1, and the orbit becomes unbounded (parabolic).

Therefore, dust grains with β ≥ 0.5 wil escape the system.

Using equation 5.4 with β = 0.5, the luminosities of WDs determined from published

distances and optical photometry, and WD masses from the literature, we calculate the

blowout grain radius for each object. For our calculation, we adopt a dust grain density of 2.5

g cm−3. The masses and luminosities of all WDs/CSPNs, along with the calculated minimum

grain sizes, are presented in Table 5.1. For references for CSPN physical parameters, see

Table 4.3. The maximum grain size within a dust disk is hard to determine, because the

large grains’ contribution to the IR emission is very small. For our models, we adopt a

largest grain size of 1 mm.
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5.2.2 Mass in a Disk

For a simplistic calculation of dust disk masses, we assume spherical dust grains with a

power-law size distribution of n(a) ∝ a−3.5 between the minimum and maximum grain sizes

amin and amax, radiating as blackbodies at temperatures determined by the SED fits. The

dust mass in the disk (Mdisk) is given by

Mdisk =

∫ amax

amin

4

3
πa3ρgN(a)da, (5.5)

where ρg is the grain density and N(a) is the total number of grains of size a within the disk.

The sum of the grains’ cross sections must add up to the total cross section (σtot) determined

from the SED fits:

σtot =

∫ amax

amin

N(a)πa2da, (5.6)

Since n(a) ∝ a−3.5, the same proportionality applies to N(a). Calling the constant of pro-

portionality η, we have

σtot =

∫ amax

amin

ηa−3.5πa2da = πη

∫ amax

amin

a−1.5da. (5.7)

Hence,

η =
σtot

2π(a−0.5
min − a−0.5

max )
. (5.8)

With a known σtot, amin, and amax, we can evaluate η and use it to calculate the dust disk

masses. We carry out this mass calculation for each of the hot WDs/pre-WDs with IR

excesses, and list the results in Table 5.1.

5.2.3 Poynting-Robertson Lifetime

While the small grains in the disk will be blown out of the system due to radiation pressure,

the larger grains will slowly spiral in toward the central star due to the Poynting-Robertson
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effect. The star radiates energy isotropically outward, but in the moving particle’s reference

frame, the light is arriving slightly from the forward direction, thus acting as a damping

force. The loss of angular momentum causes the particle’s orbit to decay and spiral toward

the star.

For a grain of size a orbiting at a distance r from the WD, the time τPR it takes for the

dust to spiral into its central star can be estimated by:

τPR ∼
πmgrc

2

σgrL∗

r2, (5.9)

where mgr is the grain mass, σgr is the grain cross-section, L∗ is the star’s luminosity, and r

is the dust’s orbital radius.

Since the smallest grains in the system dominate the IR emission, in order to assess

the lifetimes of our dust disks, we calculate τPR for the smallest grain sizes not blown out

by radiation pressure, located at the blackbody equilibrium temperature distance. For the

calculation of grain masses, we adopt a density of 2.5 g cm−3.

The computed PR lifetimes are listed in Table 5.1. These values help us assess whether

the dust in a given disk is likely to be optically thick or optically thin. If the PR lifetime

of a disk around a very evolved object is short, the dust in the disk may be shielded from

the stellar radiation to remain in the system for a long time, and the disk could be optically

thick. On the other hand, long PR timescales are consistent with the assumption of optical

thinness.

5.3 Simple Model Results

For objects without spectroscopic observations, there are not enough data points to trace

the IR excess SED, and dust models with a greater number of free parameters would not be

meaningful. Therefore, we only use the simple modeling to estimate the dust disk properties
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of these WDs/pre-WDs. Generally, they can be separated into two categories: five CSPNs

exhibit excess emission only at wavelengths longer than ∼ 6 µm, and one CSPN shows excess

emission starting from the near-IR. The physical parameters of these disks are summarized

in Table 5.1.

For the 5 CSPNs with mid-IR excesses only, the disk masses are between ∼10−5 and

10−2 M⊕, in line with the observations of debris disks around main-sequence stars. The

PR lifetimes are estimated to be between ∼105 and 106 years. These timescales are greater

or comparable to the age estimates of these objects, which are ∼104 – 105 years. The

equilibrium-temperature distances of these disks are between ∼10 – 30 AU. The ∼30 AU

distance is consistent with distances of KBO objects in the Solar System or the main-sequence

stars’ debris disks. The ∼10 AU distances may correspond to asteroids’ orbits expanded

further from the central star due to its mass loss, or they may have been scattered inward

during post-AGB and PN evolution. Alternatively, since the spectral coverage of the SEDs is

low, the emission from these disks may be peaking at longer wavelengths that correspond to

lower temperatures and greater equilibrium-temperature distances. A better SED coverage

is necessary to establish firmer limits on the location of dust.

The results of these simple models for WDs/CSPNs with mid-IR excesses are consistent

with the origin of collisionally disrupted planetesimals. However, spectroscopic observations

to confirm the nature of the excess emission as dust continuum is needed, and better spectral

coverage to constrain the extent and the temperatures within the disks are necessary to

further examine this hypothesis.

One WD, CSPN Sh2-188, shows excess emission starting in the near-IR. Few data points

exist to constrain the optical portion of the SED, the IRAC data points have large error

bars, and the detection in IRAC 5.8 and 8.0 bands is questionable. It is thus difficult to

constrain the origin of this near-IR excess. The CSPN may have an unresolved companion

or a hot dust disk in addition to the cooler dust detected at 24 µm. This WD has been

observed with Spitzer’s IRS, but unfortunately a bright star within the slit precludes the
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extraction of a meaningful spectrum. The simple SED modeling requires two temperature

components, ∼ 150 and ∼ 900 K. The dust mass and the PR lifetime is computed for each

component separately. The cooler ∼150 K component contains a dust mass of ∼10−4 M⊕

comparable to dust disks around main-sequence stars. The PR lifetime calculated for this

component is ∼106 yr, longer than the age of the nebula, ∼104 years. The warmer 900 K

component has a low dust mass ∼10−7 M⊕ and the PR lifetime of this dust is only ∼500

years, considerably shorter than the age of the PN. If the dust has remained in such warm

disk around this CSPN throughout its PN evolution, the disk must be optically thick. More

precise flux measurements and a better spectral coverage are necessary to model the IR

excess of this WD, and to decipher its origin.

5.4 Optically Thin Dust Model

For WDs and CSPNs with available spectroscopic observations to constrain the IR emission,

we assess whether their disks are likely optically thick or thin, and, where appropriate, model

the IR emission with a more realistic dust model. The dust disk model and the modeling

results of individual objects are described in the following sections. The modeling of disks

that are likely optically thick is left for future work.

In our dust disk model, we discard the blackbody approximation for the disk, and calcu-

late the grain temperatures based on their composition, sizes, and distances from the heating

source. The dust temperature of a given grain is determined by the balance between the

absorbed and emitted energy. The energy absorbed by a dust grain depends on the incident

flux, grain cross section, and the absorption efficiency at a given wavelength, via

Eabs =

∫

4πR2
sFs,λ

4πd2
πa2Qabs,λdλ, (5.10)

where Rs is parent star’s radius, Fs is the flux from the parent star (in case of a blackbody
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π× Planck function), d is the orbital distance of the dust, a is the radius of the dust grain,

and Qabs is the absorption coefficient of the dust grain with a given composition and size, at

wavelength λ.

The energy emitted by a dust grain is a blackbody modified by the wavelength-dependent

absorption coefficient Qabs:

Eem =

∫

4πa2Qabs,λFd,λdλ, (5.11)

where Fd is the flux from the dust grain (i.e., π× Planck function), which is determined by

the dust grain temperature. In thermal equilibrium, the energy absorbed by a dust grain is

equal to the energy emitted by it. Therefore,

R2
s

4d2

∫

Qabs,λFs,λ,Tdλ =

∫

Qabs,λFd,λ,T dλ. (5.12)

The absorption coefficients for a given grain size and composition can be calculated or found

in the literature (e.g., Draine & Lee 1984; Laor & Draine 1993). For known stellar parameters

and a given orbital distance, the only remaining unknown is the dust temperature that enters

into Fd,λ,T . The dust temperature can be found by numerically evaluating the right-hand

side of equation 5.12 and adjusting the dust temperature, until both sides match. In our

models, we have used Qabs coefficients calculated for astronomical silicates and amorphous

carbon grains with radii 0.1–1000 µm using Mie theory with additional modifications for

large grain sizes (a >10 µm).

5.4.1 Dust Disk Parameters

A number of parameters are used as inputs into our disk models. Most of them are described

in detail by Wolf & Hillenbrand (2003), and all are reviewed briefly below. Since there can

be degeneracies in the disk models, we also discuss the constraints we place on some of these

parameters, based on observations and our understanding of debris disks.
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1. Grain Composition: The composition of the dust grains affects the absorption prop-

erties of the dust. The only CSPN whose mid-IR spectrum exhibits any dust features

is NGC 6804, which has a 10 µm silicate feature. The spectra of dust disks detected in

our Spitzer 24 µm survey are featureless; therefore, the dust composition is not known.

We adopt the dust grain composition of either astronomical silicates or amorphous

carbon.

2. Minimum and Maximum Grain Size: We assume that the grain sizes in the dust

disks are between the blowout radius due to radiation pressure (see Section 5.2.1) and

1 mm. Note that grains larger than 1 mm are likely present, but they do not contribute

significantly to IR emission.

3. Grain Size Distribution: For the distribution of grain sizes, we adopt a power-law,

where n(a) ∝ ap. For an infinite collisional cascade, the power-law index is theoretically

derived to be -3.5 (Dohnanyi 1969; Tanaka et al. 1996). This power-law index agrees

well with the dust SED of, e.g., Formalhaut’s disk (Wyatt & Dent 2002). Note that as

smaller grains are depleted from the system, the index p may change with time (Wolf

& Hillenbrand 2003).

4. Surface Density Distribution: The surface density distribution is a power law which

can have a range of power-law indices. Various dust disk observations find an index

ranging from 0 up to ∼2.5 (see e.g. Wolf & Hillenbrand 2003). For our models, since we

do not have any observational constraints, we use a uniform surface brightness. Such

distribution would be expected for tenuous PR drag-dominated disks (Wyatt 2005).

5. Inner and Outer Disk Radius The inner and outer radius of the disk determine the

range of temperatures within it. The inner and outer radii are left as free parameters

in our disk models, and will be determined for each system individually.
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6. Grain Density: The density of the dust grains affects the mass of the dust disk, as

well as the minimum grain size that remains around the WD. For our models, we use

the dust grain density of 2.5 g cm−3, which is within the range observed for asteroids

in the Solar System (e.g., Britt et al. 2005).

7. Stellar Properties: The heating star clearly has a strong effect on the light detected

from the debris disk surrounding it, since the luminosity of the star determines the

temperatures of the dust grains. The mass and luminosity of the star also set the

minimum grain size inside the disk, and since the greatest portion of the emission

comes from the smaller grains, the minimum grain radius can have large effects on the

resulting total disk mass. In general, the greater the stellar luminosity, the larger the

minimum grain size, and the larger the derived dust mass.

To find the luminosity of the star, one needs to know its distance. Unfortunately,

distances are often very uncertain, and this uncertainty, propagated into the luminosity

and minimum grain size values, can strongly affect the derived physical properties of

the disk.

The detailed spectral shape of the stellar radiation affects the grain temperatures.

While the IR part of hot white dwarf spectra is very similar to that of a blackbody,

the UV part differs from it greatly. The UV spectrum can vary with different effective

temperatures and elemental abundances. Therefore, wherever possible, we use appro-

priate synthetic spectra for WDs’ atmospheres. If these are not available, then we use

blackbody approximations for WDs’ atmospheres.
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5.5 Individual Objects

5.5.1 CSPN Sh 2-216

Sh 2-216 is the closest PN to the Earth, at a distance of 129 pc. Its SED in Figure 5.1 shows

optical and IR photometric measurements as filled diamonds. The Spitzer IRS spectrum

is presented as open purple diamonds, and the the thick red line represents the smoothed

IRS spectrum. The SED follows the expected WD’s photospheric emission up to ∼10 µm.

Beyond this wavelength, the SED rises, and peaks near ∼40 µm.

For the radiation from the WD, we adopt the synthetic spectral model from Rauch et al.

(2007), the associated WD effective temperature of 95,000 K and log g of 6.9. The WD model

spectrum was calculated using the Tuebingen non-Local Thermodynamic Equilibrium Model

Atmosphere Package (TMAP, Werner et al. 2003; Rauch & Deetjen 2003), considering the

atoms of H, He, C, N, O, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co and Ni, based on observed UV

spectra from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the HST. The detailed

model atmosphere of this WD is presented by Rauch et al. (2007), and it is displayed in the

SED as a black solid curve.

We model the dust emission using the optically thin dust model and assume that the

dust is heated only by the central WD. Since the spectrum does not show any mineralogical

features, we consider composition of both astronomical silicates and amorphous carbon.

We calculate the total flux from the WD by integrating the synthetic spectrum normalized

to the optical and near-IR photometry, and use a distance of 129 pc, derived from WD’s

parallax (Harris et al. 2007), to estimate the WD luminosity of ∼44 L⊙. Note that this

value is lower than that derived by Rauch et al. (2007), 158.5 L⊙, because of their larger

spectroscopic distance, 224 pc. Using the WD luminosity of 44 L⊙, a mass of 0.55 M⊙

(Rauch et al. 2007), and a dust grain density of 2.5 g cm−3, we find the minimum grain size

to be ∼35 µm. We adopt the maximum grain size of 1 mm. We also assume a power-law

grain size distribution with a power index of -3.5, i.e., n(a) ∝ a−3.5, typical of collisionally
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produced dust, and a uniform disk surface density.

The observed mid-IR fluxes and IRS spectrum can be approximated by emission from a

dust disk at radii ∼30-35 AU, with a dust mass of ∼0.001 M⊕. For comparison, adopting

a dust composition of amorphous carbon gives a best fit for a disk between 24 and 25 AU,

and a dust mass of ∼0.001 M⊕.

The dust around this WD appears to originate from a narrow ring. This is consistent

with the fact that the IR spectrum and SED can be very well approximated by a blackbody

with a single Teff of 120 K. Indeed, the ∼50 µm grains which dominate the IR emission

have a temperature of 120 K at ∼33 AU for silicate and ∼25 AU for amorphous carbon

composition.

The PR lifetime for 35 µm grains at ∼30 AU is ∼106 yr, greater than the upper limit

to the dynamical age of the nebula, 4.6×105 yr, or typical post-AGB timescales, ∼104 yr.

Therefore, collisionally produced dust can remain in the system on timescales similar to the

PN age. The inner hole in the disk, whose presence is evidenced by lack of excess emission

below 8 µm, may imply an object that is clearing the dust in the inner system.

5.5.2 CSPN EGB 1

The SED of CSPN EGB 1 (Figure 5.2) is similar to those of CSPN Sh 2-216 and Helix. The

optical and IR data points are at or below expected photospheric emission for wavelengths up

to ∼10 µm. The IRS spectrum, displayed in the SED as a thick purple line, is a featureless

continuum that rises at wavelengths longer than ∼10 µm.

To model the emission from the WD itself, we use the synthetic TMAP spectrum provided

by T. Rauch, scaled to the WD’s optical photometric measurements. The model atmosphere

calculation was carried out for an effective temperature of 147,000 K and log(g) of 7.34

(Napiwotzki 2001), and included the atoms of H, He, C, N, O, F, Ne, Mg, Ar, Ca, Fe and

Ni. It is displayed in the SED as a thick solid curve.

Assuming a distance of 650+290
−210 pc (Napiwotzki 2001) and integrating the synthetic spec-
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trum scaled to WD’s photometric measurements yields a WD luminosity of 521 L⊙. With

the WD mass of 0.65 M⊙ (Napiwotzki 2001), the calculated WD luminosity, and adopting

a dust grain density of 2.5 g cm−3, we find that dust grains smaller than ∼360 µm will be

blown out. Therefore, for our modeling, we adopt the grain sizes between 360 and 1000

µm. We consider an optically thin dust disk, heated only by WD 0103+732, with a constant

surface number density, and a power law grain size distribution, where n(a) ∝ a−3.5.

We use the 24 µm data point, the IRS spectrum, and the 70 µm upper limit to produce

the best fit. Note that the portion of the IRS spectrum containing atomic line emission is

excluded from the χ2 calculation. The best χ2 is achieved for a narrow dust disk between

∼170–173 AU with a mass of 0.05 M⊕ for grains composed of astronomical silicates, and

∼82-84 AU with a mass of ∼0.07 M⊕ for amorphous carbon grains. The disk around WD

0103+732 appears to be a narrow ring. The IRS spectrum can be well fit by a blackbody of

∼110 K, which is the temperature of ∼360 µm silicate grains at ∼170 AU, and carbonaceous

grains at ∼80 AU. Note, however, that the outer radius of the disk is not well constrained.

The IRS spectrum is rising, but beyond ∼35 µm, other than the 70 µm upper limit, no data

point constrains the IR emission. Photometric and spectroscopic measurements at longer

wavelengths would be useful in constraining the outer radius of the dust disk.

The distance estimate to the WD carries a large uncertainty, and this uncertainty has a

significant effect on the estimation of dust disk parameters. To demonstrate the uncertainty

resulting from the lack of precision in the distance measurement, we repeat the modeling for

the lower and upper distance limits from Napiwotzki (2001). For a distance of 440 pc, the

luminosity of the WD is 240 L⊙, the minimum grain size is 168 µm, the dust disk is located

near ∼100 AU, and the dust mass is 0.012 M⊕. On the other hand, if the distance is 940 AU,

the WD luminosity is 1090 L⊙ and the minimum grain size is 770 µm. The disk is located

near ∼ 230 AU and has a mass of 0.12 M⊕.

Adopting the model for the distance of 650 pc, the PR lifetime for dust at 80 or 170

AU is on the order of 107 yr, a timescale much longer than the dynamical age of the nebula
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(20,000 yr) or typical post-AGB evolutionary timescales (∼104 yr). Therefore, the scenario

of collisionally produced dust is feasible. If the dust is slowly spiraling in due to PR drag,

one would expect the disk to extend to the sublimation radius. The clear inner hole may be

implying an object that truncates the dust’s inspiral, such as a large planet. The presence

of an unseen body near the WD is also supported by the periodic variability in optical

magnitudes (T. Hillwig, personal communication), but the nature of this body is not yet

well understood.

5.5.3 CSPN K 1-22

CSPN K 1-22 has a distant companion at a projected distance 0.′′35, or 470 AU (Ciardullo et

al. 1999). It is unclear whether the excess IR emission, starting at the J-band, is associated

with the WD, or its distant companion; high-resolution IR observations are needed to verify

the positional coincidence of the dust disk and the CSPN. For purposes of our modeling, we

consider the case where the dust surrounds the CSPN. Since the companion is too far and

too cool to contribute significantly to the heating of the dust around the CSPN, we consider

the CSPN as the only heating source.

The SED in Figure 5.3 shows V and I magnitudes from each star individually (Ciardullo

et al. 1999), the remaining magnitudes are for the two stars combined. For the atmospheric

model of CSPN K 1-22, we adopt the synthetic spectrum provided by T. Rauch, scaled to

the WD’s optical photometric measurements. The model atmosphere was calculated using

TMAP for a WD with an effective temperature of 140,000 K and log g of 6.70 (Rauch et al.

1999), considering the atoms of H, He, C, N, O, F, Ne, Mg, Ar, Ca, Fe and Ni. The emission

from the companion is approximated by a Kurucz model for an M0V star. The two solid

curves show contributions from the two components. The sum of these components and the

best-fit dust model is plotted as a thin solid curve.

We adopt the CSPN distance of 1.33 kpc (Ciardullo et al. 1999), and integrate the

synthetic spectrum scaled to optical magnitudes to find CSPN luminosity of ∼300 L⊙. For

141



the stellar mass of 0.59 M⊙ (Rauch et al. 1999) and grain density of 2.5 g cm−3, all grains

smaller than 210 µm will be blown out of the system. Thus, we carry out the dust modeling

for grain sizes between 210 and 1000 µm, assuming constant surface number density and a

power law (n(a) ∝ a−3.5) grain size distribution.

We use the IRS spectrum of CSPN K 1-22 to calculate χ2, but exclude the portions that

are affected by imperfect nebular subtraction. The best fit for silicate grain composition is

achieved for a disk extending from sublimation temperature up to ∼43 AU, with a dust mass

of 0.001 M⊕. For carbon grains, the best-fit disk also starts at sublimation radius, extends

to ∼20 AU, and also has a mass of 0.001 M⊕. The SED of the best fit for silicate grains is

presented in Figure 5.3.

The distance to CSPN K 1-22 has a large uncertainty, and different authors cite values

between 1.33 and 3.43 kpc (e.g., Ciardullo et al. 1999; Rauch et al. 1999). This uncertainty

can have a large impact on the derived disk parameters. Due to the near-IR excess, the

model’s inner radius will start at disk sublimation temperature, but the minimum grain

sizes, outer radii and disk masses will be affected by the uncertain distance.

The PR lifetime for 210 µm dust grains at 40 AU is ∼3×106 yr. This is longer than the

dynamical age of the nebula, ∼55,000 yr, or the timescale of post-AGB evolution, ∼104 yr.

Hence, it is feasible that dust produced in collisions that was not blown out of the system is

now observed as the excess IR emission.

5.5.4 CSPN NGC 2438

SED modeling of CSPN NGC 2438 is complicated. First, the optical photometric measure-

ments of the CSPN in the literature are varied, thus precluding a good grasp on the WD’s

photospheric contribution. The near-IR emission is not well constrained, with only the J

measurement available, and both IRAC and MIPS data points have large uncertainties, es-

pecially the MIPS 24 µm flux density. Furthermore, the IR spectrum has low signal to noise

ratio, and is affected by strong emission lines.
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For the CSPN’s photospheric emission, we use a blackbody approximation for an effective

temperature of 114,000 K, a distance of 1200 pc, radius of 4.5 R⊕, luminosity of 260 L⊙ and

mass of 0.56 M⊙. For this configuration, grains smaller than 213 µm will be blown out of the

system by radiation pressure. To trace the shape of the excess emission, we use the IRAC

data points, the MIPS data point, and three data points from the Spitzer IRS spectrum to

capture the overall SED shape between 7.5 and 15 µm. These data points were chosen at

portions of the spectrum not affected by line emission.

The SED of the excess emission is not well fit by a single disk component, even if we

experiment with a non-uniform surface density distribution. In fact, there appear to be

three distinct components in the spectrum - the flat component between 1 and 8 µm, the

rising spectrum between 8 and 15 µm, and even more sharply rising emission between 15

and 24 µm. The 24 µm flux density is likely contaminated by emission lines, because the

source is surrounded by diffuse nebulosity. A spectrum near 24 µm is necessary to assess the

continuity of the 15–24 µm spectral shape.

The spectrum at 7–15 µm can be approximated by a dust disk between 10 and 90 AU,

with a mass of ∼0.003 M⊕. The PR lifetime for dust at 10 and 90 AU is (0.14 – 11.6) ×

106 yr, longer than the estimated age of the CSPN. The inner hot dust component can be

approximated by a disk between the sublimation temperature and ∼2 AU with a mass of ∼

10 −6 M⊕. However, the PR lifetime for dust at such distances is ∼103 yr, much less than

the estimated age of the CSPN, (20–110) × 103 yr. Such a hot dust disk is therefore likely

optically thick.

Note that these models are approximate, and that the total number of model parameters

is greater than the number of data points. Therefore, there can be many degeneracies in the

dust disk model. Better constraints on the optical WD spectrum and the spectral shape near

24 µm are needed to model the IR excess of CSPN NGC 2438 more accurately. Furthermore,

a search for a companion would help decipher whether the IR excess around this CSPN

originates from collisions, or is more likely to be associated with a binary phenomenon. In
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addition, an optically thick model will be necessary for the modeling of the hot dust near

the sublimation radius.

5.5.5 CSPN NGC 7139

CSPN NGC 7139 has an IR excess starting from the J band, but the signal to noise ratio

in JK are below 3, and only an upper limit is established for the H band. The 7–15 µm

spectrum in the IRAC bands is flat.

We approximate the CSPN’s atmospheric emission by a blackbody with the parameters

listed in Table 5.1: Teff of 117,000 K, luminosity of 81 L⊙, and mass of 0.64 M⊙. For these

parameters, dust grains with radii smaller than 57 µm will be blown out of the system by

radiation pressure.

We trace the IR SED with 10 points chosen between 1 and 15 µm - four points in

the JHK Gemini NIRI spectrum, four IRAC photometric measurements, and two points

from the emission line-free portion of the IRS spectrum. A very narrow (<0.1 AU) disk at

the sublimation temperature radius ∼0.3 AU can roughly approximate the IR excess SED,

and it yields a dust mass of ∼10−6 M⊕. Note however that the PR lifetime for 57 µm

dust around this CSPN is ∼110 yr, significantly shorter than the CSPN’s evolutionary age,

14,700 yr. Therefore, the dust disk must be optically thick to remain around the CSPN for

long periods. The optically thick nature of the disk is also supported by the high extinction

toward the CSPN, E(B − V )∼0.52. Most likely, the observed near-IR emission comes from

the inner optically thin sublimating layer of an optically thick disk, similar to the case of

disks commonly seen around post-AGB binaries (de Ruyter et al. 2006). Future observations

aiming to detect a binary companion of the CSPN are needed to strengthen or weaken the

link between the disk near NGC 7139 and that of post-AGB binaries.
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5.5.6 CSPN NGC 6804

NGC 6804 is the least evolved CSPN in our sample. We approximate the CSPN’s atmosphere

by a blackbody with Teff of 90,000 K, luminosity of 3885 L⊙, and mass of 0.6 M⊙. For these

CSPN parameters, all grains with radii smaller than ∼3 mm should be blown out of the

system. For the ∼3 mm grains are to produce the observed IR emission, the dust mass in

the disk must be ∼1.5 M⊕. This value is very high and not consistent with mass estimates

for main-sequence stars’ debris disks. Furthermore, the silicate spectral feature at 10 µm

evidences the presence of small ∼µm-sized grains within the dust disk. The dust disk must

be optically thick for such small grains to remain in the system with such a strong radiation

field. An appropriate optically thick model is needed to simulate this dust disk.

The disk around NGC 6804 is very similar to those around post-AGB binaries. Unresolved

emission-line source coincident with the CSPN implies that the disk is gas-rich, as are the

circumbinary post-AGB dust disks. They also exhibit the 10 µm silicate emission, which has,

like NGC 6804, features of crystalline silicates. The post-AGB dust disks are optically thick,

with an optically thin inner layer, which is responsible for the silicate emission. Because the

disk is optically thick, the grains inside are shielded from the strong radiation, and thus can

be stable over longer periods of time.

The evolution of post-AGB dust disks into the PN stage is not well understood. The

dust disk around NGC 6804 may be a glimpse into the future of post-AGB circumbinary

disks. However, no binary companion of CSPN NGC 6804 has been reported to date. Future

photometric or radial-velocity monitoring is necessary to examine the presence of a binary

companion to this CSPN.

5.5.7 CSPN NGC 2346

CSPN NGC 2346 is a complex system that contains a close binary in which most light is

provided by the main-sequence companion. It is a photometric and spectroscopic variable
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with a period of ∼16 days (Mendez & Niemela 1981; Mendez et al. 1982). This system is

surrounded by a dust disk and/or cloud, and the cloud was suggested to be responsible for

CSPN fading in 1981-1985 and 1996-1997 (Costero et al. 1986; Kato et al. 2001). The short

PR lifetime (1–100) × 103 yr (considering only the CSPN’s radiation), the high extinction

toward the CSPN, and the presence of gas in the disk all suggest that the dust surrounding

the binary system is optically thick. Therefore, an optically thick dust model is needed to

simulate the disk around CSPN NGC 2346.

5.5.8 CSPN EGB 6

As described in section 2.3.8, EGB 6 has a distant companion, surrounded by a dense gaseous

disk. The IRS spectrum of CSPN EGB 6 shows rising continuum emission, but it is not clear

whether this continuum is associated with the CSPN or its companion. The SED of the

mid-IR excess can be approximated by two blackbody components with the temperatures

of 500 and 150 K, respectively. For the WD parameters listed in Table 4.3 (0.64 M⊙, 97

L⊙ star), dust smaller than ∼70 µm will be blown out of the system. The PR lifetime for

such dust grains is ∼103 and ∼105 yr for the equilibrium-temperature distances of the two

temperature components. The dynamical age of the nebula, 135,000 yr, is between these two

lifetime estimates. It is not clear whether the dust around CSPN EGB 6 is optically thick or

thin. Detailed modeling of this dust disk is carried out by Su et al. (2012, in preparation).

5.6 Summary

We have constructed simple models of the dust disks surrounding hot WDs with excess IR

emission. For WDs/CSPNs without spectroscopic observations, the basic disk parameters

are derived based on blackbody approximations to the IR SEDs. For cases with available

spectroscopic observations, where appropriate, we use optically thin dust disk models with

realistic grain properties and distributions to match the IR spectral shapes and derive the
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disk properties.

For cases with IR excesses at wavelengths longer than ∼6 µm (e.g., CSPN Sh 2-216,

CSPN EGB 1), the dust is located a few tens of AUs from the central stars, consistent

with the expected general location of planetesimals. The lack of near-IR excess does not

lend support to the presence of a binary companion. The PR lifetimes for dust grains that

dominate the emission are long enough for the dust to remain in the system for timescales

comparable to the estimates of the WD/CSPN ages. In these cases, the origin of dust as

collisionally disrupted planetesimals is consistent with the derived disk properties.

Some CSPNs exhibit not only mid-IR, but also near-IR excesses (e.g., CSPN NGC 6804,

CSPN NGC 2438). While the dust disk around CSPN K 1-22 can be modeled by a single

disk component extending from sublimation radius to ∼ 40 AU, in other cases, like that of

NGC 2438, a single disk component is not sufficient to fit the data. Furthermore, short PR

lifetimes imply that some of the disks must be optically thick, and further modeling with

an appropriate disk model is needed. These optically thick disks may not originate from

collisionally disrupted planetesimals, but may instead be remnants of circumbinary post-

AGB dust disks (de Ruyter et al. 2006). The dust disk around CSPN NGC 6804 in particular

resembles those around post-AGB stars. It is gas-rich, optically thick, and exhibits a 10 µm

crystalline silicate feature, just like the dust disks around post-AGB binaries. However, only

a few of these CSPNs are known to have binary companions, and except for NGC 2346,

they are wide, separated by few hundred AU from the CSPN. Future photometric or RV

monitoring, as well as high-resolution imaging is needed to search for binary companions of

these CSPNs.

More data are needed to constrain the parameters of dust disks around these hot WDs.

Wavelength coverage over a large range would help constrain the locations of the disks; ob-

servations at wavelengths >24 µm would be especially useful in constraining the disks’ outer

radii. IR spectra, especially for stars still surrounded by PNe, are necessary to measure the

dust continuum level, assess the nebular contamination, and reveal mineralogical features of
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the dust. Resolving the dust disk with interferometric observations and measuring the disks’

surface brightnesses and outer radii would be very useful for constraining the parameters in

the debris disk models. Better theoretical understanding of post-AGB binary dust disks, and

their evolution into the PN stage, as well as debris disk evolution past the main sequence,

would help us compare the derived disk properties to the theoretical predictions.
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Table 5.1. Physical Parameters of Dust Disks

L∗ M∗ amin Tdust EA rdust Mdust τPR,amin

Name [L⊙] [M⊙] [µm] [K] [AU2] [AU] [M⊕] [yr]

CSPN EGB 1 479 0.65 338 190 1.55 25 2.8×10−3 7.7×105

CSPN A21 107 0.58 85 150 0.85 32 7.7×10−4 1.4×106

CSPN Sh 2-216 34 0.53 29 150 0.48 19 2.6×10−4 5.5×105

CSPN DeHt 5 15 0.44 16 190 0.25 8.2 9.8×10−5 1.2×105

CSPN Sh 2-188 42 0.56 34 900 0.0008 0.6 4.6×10−7 5.3×102

150 0.68 22 3.9×10−4 6.9×105

CSPN K 1-22 325 0.59 253 700 0.034 2.7 5.3×10−5 9.9×103

150 5.92 58 9.3×10−3 4.6×106

CSPN NGC 6853 140 0.56 115 190 5.33 28 5.6×10−3 1.1×106

CSPN NGC 7293 69 0.58 55 100 105 57 7.7×10−2 4.5×106

CSPN EGB 6 97 0.64 70 500 0.12 1.7 9.9×10−5 3.6×103

150 15. 19 1.2×10−2 4.5×105

CSPN NGC 2438 260 0.56 213 1200 0.0005 0.87 7.2×10−7 1.1×103

150 57 56 8.2×10−2 4.5×106

CSPN NGC 7139 81 0.64 58 1650 0.004 0.3 3.0×10−6 7.8×101

CSPN NGC 6804 3885 0.60 2994 1400 0.12 2.5 6.5×10−4 8.1×103

550 6.2 16 3.3×10−2 3.4×105

250 155 77 8.4×10−1 8.0×106

CSPN NGC 2346 81 0.39 95 1000 2.2 0.7 2.1×10−3 1.0×103

250 37 11 3.6×10−2 2.5×105

WD 0109+111 23 0.74 14 150 0.067 25 2.5×10−5 6.9×105

WD 1342+443 6 0.69 4 150 0.13 13 2.5×10−5 2.0×105
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Figure 5.1: The SED and dust disk model for WD 0439+466. The SED is constructed with
optical photometry from the literature, 2MASS JHK flux densities, our Spitzer IRAC and
MIPS 24 and 70 µm photometric measurements, displayed as solid diamonds. The TMAP
model atmosphere for the WD is displayed as black solid curve. The Spitzer IRS spectrum
is shown in purple open diamonds, and the smoothed spectrum is shown in red solid line.
The dotted curve represents the best-fit dust disk model for silicate grains located between
∼30 and 35 AU from the CSPN.
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Figure 5.2: The SED and dust disk model for WD 0103+732. The SED is constructed with
optical photometry from the literature, 2MASS JHK flux densities, our Spitzer IRAC and
MIPS 24 µm photometric measurements, displayed as solid diamonds; the HK and 70 µm
upper limit are displayed as downward arrows. The TMAP model atmosphere for the WD
is presented as black solid curve. The smoothed Spitzer IRS spectrum is shown in purple
thick line. The dotted curve represents the best-fit dust disk model for silicate grains located
between ∼170 and 173 AU from the CSPN.
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Figure 5.3: The SED and dust disk model for CSPN K1-22. The CSPN has a wide com-
panion, and the V I photometric measurements are shown for each star individually as blue
diamonds. The 2MASS JHK flux densities, our Spitzer IRAC and MIPS 24 µm photometric
measurements, displayed as solid diamonds are for the two stars combined. The downward
arrow represents the 70 µm upper limit. The TMAP model atmosphere for the WD and a
Kurucz model for the companion’s emission are displayed as black solid curve. The Spitzer
IRS spectrum is shown in purple open diamonds, and the smoothed spectrum in red solid line.
The dotted curve represents the best-fit dust disk model for silicate grains located between
the sublimation radius and ∼40 AU from the CSPN. The sum of all emission components is
displayed as a thin solid curve.
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Chapter 6

Hard X-ray Emission Associated with
White Dwarfs. III.

6.1 Introduction

White dwarfs (WDs) represent the final evolutionary stage of intermediate- and low-mass

stars. Depending on their effective temperature (Teff) and composition, or opacity, their

photospheric emission can be observed from near-infrared (IR) up to soft X-rays (λ &25 Å,

hν .0.5 keV), but no detectable hard X-ray emission (>0.5 keV) is expected from single

WDs.

Many WDs are associated with hard X-ray emission. Almost all of them are in binary

systems with a late-type companion, and the hard X-rays originate either from the compan-

ion’s active corona, or from the accretion of the companion’s material onto the WD’s surface,

as in a cataclysmic variable. Using the ROSAT All-Sky Survey, Fleming et al. (1996) found

nine WDs with hard X-ray emission due to late-type companions. O’Dwyer et al. (2003,

hereafter Paper I) and Chu et al. (2004b, hereafter Paper II) conducted systematic searches

for hard X-ray emission from WDs in the McCook & Sion (1999) catalog, using ROSAT

WGA point source catalog (WGACAT, White et al. 2000), and catalogs of ROSAT Results

Archive Sources for the Position Sensitive Proportional Counter observed with and with-

out the boron filter (ROSPSPCFCAT1, and ROSPSPCCAT2, respectively). They found 12

additional WDs in binary systems that are associated with hard X-ray emission.

Few apparently single WDs with hard X-ray emission are known. The soft X-ray emission

1Available at ftp://ftp.xray.mpe.mpg.de/rosat/catalogues/2rxf/pub/
2Available at ftp://ftp.xray.mpe.mpg.de/rosat/catalogues/2rxp/pub/, can be browsed at

http://heasarc.gsfc.nasa.gov/docs/archive.html
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of KPD 0005+5106 was detected in the ROSAT All-Sky Survey by Fleming et al. (1993),

but an additional component of hard X-ray emission peaking near 1 keV was later detected

in a pointed PSPC observation made with the boron filter (Paper I). For a canonical LX/Lbol

of late-type coronal stars, the observed hard X-ray luminosity of KPD 0005+5106 requires

a companion that is bright in the IR; the lack of IR excess thus excludes the existence

of a coronal companion (Chu et al. 2004a). The origin of the hard X-ray emission of KPD

0005+5106 is still unknown. Another apparently single WD with hard X-ray emission is WD

2226−210, the central star of the Helix Nebula. Its hard X-ray emission peaks at 0.8-0.9 keV

(Leahy et al. 1994) and appears unresolved in Chandra observations (Guerrero et al. 2001).

Based on the hard X-ray luminosity and variations, as well as the variations in the stellar Hα

line profile, it has been suggested that WD 2226−210 has a late-type companion (Guerrero et

al. 2001; Gruendl et al. 2001); however, HST images do not show any companion (Ciardullo

et al. 1999), and the near- to mid-IR photometry of WD 2226−210 excludes the existence of

a companion down to brown dwarfs (Paper I; Su et al. 2007). A less publicized single WD

with hard X-ray emission is WD 1159−034 (PG 1159); its hard X-ray emission is detected

at a 3σ level (Paper I).

Since the systematic searches reported in Paper I and Paper II, the number of spectro-

scopically confirmed WDs in McCook & Sion’s catalog has increased from 2,449 to 12,456

(as of September 2009), mainly due to the release of the Sloan Digital Sky Survey data

(Eisenstein et al. 2006). In addition, the XMM-Newton satellite, launched in 1999, provided

observations with much higher angular resolution (6′′ on-axis) and ∼6 times higher effective

area at 1 keV than ROSAT. The latest version of XMM-Newton’s Serendipitous Source Cat-

alog (XMMSSC, or 2XMMi) as of September 2009 contains ∼290,000 X-ray sources. With

a significantly larger number of known WDs as well as new X-ray data available, we have

made another systematic search for hard X-ray emission from WDs, using the updated list of

WDs from McCook & Sion (2006) and X-ray catalogs of ROSPSPCCAT, ROSPSPCFCAT,

and XMMSSC. The aim is twofold: (1) to search for single WDs with hard X-ray emission
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similar to WD 2226−210 in the Helix Nebula or KPD 0005+511, and (2) to diagnose WDs

with late-type companions through hard X-ray emission. The results of these searches are

reported in this paper. In Section 2, we describe the search for WDs with hard X-ray emis-

sion, in Section 3, we briefly describe the WDs with hard X-ray emission not previously

reported in Papers I and II, and in Section 4, we present a summary and conclusions.

6.2 Search for Hard X-ray Sources associated with

White Dwarfs

We use the J2000 coordinates from the latest text version of the McCook & Sion’s WD

catalog (McCook & Sion 2006) for WD coordinates. However, some WDs only have 1950

coordinates listed; for these WDs, we search for the coordinates in SIMBAD, or convert

1950 coordinates to J2000 values using the IRAF task precess. We adopt the positional

uncertainty based on the given precision of the coordinates.

Next, we cross-correlate the WD coordinate list with ROSPSPCCAT, ROSPSPCFCAT,

and XMMSSC catalogs. For WDs with positional uncertainty smaller than 1′, we search

for X-ray sources within 1′ from the WD coordinates; for WDs with positional uncertainty

greater than 1′, we search for X-ray sources within 2′. These search radii should sufficiently

account for positional uncertainties and changes of WD coordinates due to high proper

motions. Only 12 WDs in McCook & Sion (2006) are known to have proper motions that

exceed 1′′yr−1; the WD with the highest proper motion, ∼4′′yr−1, is WD 0413-077. As we

are searching for hard X-ray emission associated with WDs, we select only sources detected

with ≥3σ significance at energies between 0.5 and 2 keV, i.e., band B for ROSPSPCCAT

and ROSPSPCFCAT, and the sum of bands 2 (0.5-1 keV) and 3 (1-2 keV) for XMMSSC.

XMMSSC reports source counts separately for the three detectors onboard XMM-Newton,

i.e., European Photon Imaging Camera (EPIC) PN, MOS1 and MOS2. As long as a source is

detected in hard X-rays by any one of these detectors, it is selected for further examination.
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This initial search has yielded 72 WDs from XMMSSC, 48 WDs from ROSPSPCCAT, and

6 WDs from ROSPSPCFCAT.

Although our search included ∼10,000 more WDs than that of Papers I and II, no new

hard X-ray sources associated with WDs are detected in ROSPSPCFCAT (i.e., observa-

tions made with the boron filter). The 6 candidate WDs with hard X-ray emission from

ROSPSPCFCAT have been previously discussed in Paper I or Paper II. Among these, WD

0512+326, WD 1314+293 and WD 1631+781 are in binary systems with late-type coronal

companions, WD 0005+511 (=KPD 0005+5106) and WD 2226−210 are apparently single,

and WD 1821+643 is contaminated by an adjacent background source. These sources will

not be further discussed in this paper.

For the candidate WDs with hard X-ray emission found in ROSPSPCCAT (i.e., ob-

servations made without the boron filter), we download data product images in the soft

(0.11−0.41 keV) and hard (0.5−2.02 keV) bands. For XMMSSC sources, we download data

product images in bands 2 (0.5−1 keV) and 3 (1−2 keV) for the EPIC MOS1, MOS2, and

PN detectors, and spectra, when available. We supplement the X-ray images with the Dig-

itized Sky Survey (DSS2) red and blue images, as well as the Two Micron All Sky Survey

(2MASS) JHK images, to examine the positional coincidence between the X-ray sources

and WDs. We use the coordinates supplied by McCook & Sion (2006) as well as the finding

charts provided in the web version of the catalog to identify the WDs. We overlay gaussian-

smoothed hard X-ray contours on the optical and near-IR images and examine the positional

coincidence of the hard X-ray contours with the optical and near-IR images. We eliminate

spurious detections of sources where (1) hard X-ray contours are coincident with an optical

counterpart in the search cone that is not the WD; (2) the WD is in a crowded field (e.g.,

globular cluster), and the exact counterpart of the X-ray source cannot be identified; (3)

X-ray source is offset from the WD by more than ∼40′′; (4) the WD is near a very bright

X-ray source, and the variations within the point-spread function (PSF) are misidentified as

a separate point source; or (5) faint sources marginally identified in the catalog that are not
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confirmed in the visual inspection.

Among the 48 ROSPSPCCAT sources, we find 22 hard X-ray sources associated with

WDs; of these, 13 were reported in Papers I or II, but not the other 9. We also find 4 WDs

with nearby (within ∼40′′) hard X-ray sources that are not associated with the WDs, 3 of

which were discussed in Paper I. The remaining 22 sources were spurious detections. Using

XMMSSC, we find 20 hard X-ray sources associated with WDs; of these, 9 were reported

in Papers I or II, but not the other 11. We also find 8 hard X-ray sources that are near

(within ∼30′′), but not associated with the WDs; of these, one has been discussed in Paper

I. Another 44 sources were spurious detections.

The WDs coincident with hard X-ray sources detected in XMMSSC, ROSPSPCCAT,

and ROSPSPCFCAT are listed in Tables 6.1−6.3. The previously reported cases are also

included in the tables; spurious sources within ∼40′′ are also included, but listed separately

in the bottom sections. Columns (1)−(3) give the WD number, spectral type and common

names; columns (4)−(6) give the X-ray source name, observation ID, and exposure time;

column (7) describes the positional coincidence of the WD and hard X-ray source; columns

(8)−(10) list the counts in the soft, medium, and hard energy bands, i.e., 0.2−0.5, 0.5−1.0,

and 1.0−2.0 keV for XMMSSC, and 0.11−0.41, 0.52−0.9, and 0.9−2.01 keV for ROSP-

SPCCAT/ROSPSPCFCAT, respectively. The EPIC-PN counts are listed for the XMMSSC

sources, unless noted in the remarks. Column (11) lists remarks on individual X-ray sources,

where P1 marks sources discussed in Paper I, P2 marks sources discussed in Paper II, N

marks the new sources, M1 and M2 label sources for which the table lists MOS1 and MOS2

fluxes, respectively, and EP indicates that the source is detected with 3σ significance only

after summing all of XMM-Newton’s EPIC instruments.

To further examine the spectral properties of the XMM-Newton detections, we have

obtained the preprocessed event files from the HEASARC archive. We have used XSELECT

to extract the source and background spectra; the background spectra were taken from a

blank sky region near the source. Each spectrum was then binned in GRPPHA so that each
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energy bin has at least 25 photons over the whole energy range. Instrumental response and

effective area were calculated using the rmfgen and arfgen commands in the XMM-Newton

Science Analysis System suite. Spectral analysis was performed in XSPEC (v. 12.6.0). No

single component model was sufficient to fit any of the WD spectra in our sample. All of

the models presented are multi-component fits consisting of combinations of a Raymond

& Smith (1977) thermal plasma (raymond) with solar abundances, and a power law photon

spectrum (powerlaw). Fits were either a two temperature plasma, or a power law and plasma

emission. The χ2 fitting statistics were used to select the best fits.

Figures 6.1 and 6.2 show the X-ray spectra for WDs with hard X-ray emission in XMM-

Newton that were sufficiently bright but not piled up. Figure 6.1 shows spectra for sources

previously reported in Papers I or II, where the origin of the hard X-ray emission has been

discussed. The spectral characteristics of these different sources help assess the nature of the

new detections of WDs with hard X-ray emission. Figure 6.2 shows spectra and models for

the new XMM-Newton detections of WDs not previously reported in Papers I and II.

6.3 Description of Individual white Dwarfs with Hard

X-ray Emission

Here we describe individual WDs with hard X-ray emission that were not reported in Papers

I and II. We also include descriptions of cases in which an X-ray source is near the WD, but

is not associated with it.

6.3.1 XMM: Convincing Associations

WD 0232+035, also known as Feige 24, is a post-common envelope binary and a pre-

cataclysmic variable (CV) with a period of 4.23 days (Vennes & Thorstensen 1994). The
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effective temperature and mass of the WD are 57,000 K and 0.57 M⊙, respectively, and

the derived secondary mass of 0.39 M⊙ corresponds to a dM1.5–2 spectral type (Vennes &

Lanz 2001; Kawka et al. 2008). The X-ray spectrum cannot be fitted by a single blackbody

model or a single thermal plasma model. Even a two-component model with a 57,000 K

blackbody (representing the WD’s photospheric emission) and a thermal plasma cannot fit

the spectrum well. The best fits from the two-plasma model and the plasma + power law

model are given in Table 6.4 and shown in Figure 6.2. The two-plasma model gives a better

fit (reduced χ2 = 1.5), with plasma temperatures of 0.05 and 0.8 keV for the two components,

respectively. The best-fit plasma + power law model gives a plasma temperature of 0.8 keV,

similar to the hotter component of the two-plasma model. To assess whether the hard X-ray

emission is attributed to the coronal emission of the dM companion, we have computed and

listed in Table 6.5 the ratio of LX/Lbol, where LX is the X-ray luminosity in the 0.3-10.0

keV band derived from the best-fit 2-plasma model and a distance of 69 pc (Benedict et

al. 2000), assuming no foreground absorption, and Lbol is the bolometric luminosity of a

dM1.5–2 star. The computed LX/Lbol, 2–2.5×10−4, is in the range expected for coronal

emssion from dM stars (Fleming et al. 1995). It is thus likely that the hard X-ray emission

associated with WD 0232+035 originates from its dM companian. The soft X-ray emission

may consist of contributions from the dM companion’s corona and the WD’s photospheric

emission. To further analyze the nature of WD 0232+035’s X-ray emission, high-quality

spectra at different orbital phases are needed in the future.

WD 0419−487, also known as RR Caeli, is a pre-CV and an eclipsing binary with

an orbital period of ∼7.3 hours (Bruch & Diaz 1998; Bruch 1999). Maxted et al. (2007)

analyzed the light curve and spectrum of this binary, and derived an effective temperature

of 7,540 K and a mass of 0.44 M⊙ for the WD, and a mass of 0.182-0.183 M⊙ for the

companion, corresponding to an M4 dwarf. The X-ray spectrum falls off more slowly on the

high-energy side than those of the coronal emission from a dM companion. The spectrum is

better fitted by a 0.35 keV thermal plasma + photon power law with photon power index
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of 1.8 (reduced χ2=1.017), than a two-plasma model with temperatures of 0.31 and 4.4 keV

(reduced χ2=1.17). Using these models and a distance of 11 pc (Bruch 1999) and an Lbol of a

dM4 star, we calculate the LX/Lbol ratio to be 4.10 ×10−5. WD 0419−487 was also detected

in ROSPSPCCAT. For comparison, we estimate LX/Lbol using observed PSPC count rates,

the distance, and assuming a 0.3 keV plasma, yielding LX/Lbol of 6.41×10−4. The two

LX/Lbol differ by a factor of ∼4, partially caused by the more limited energy response of

ROSAT PSPC, only up to 2.4 keV. Both LX/Lbol estimates are within the range expected

for dM stars. Although the dMe companion may be able to account for the bulk of the

hard X-ray emission, the high-energy tail and the short orbital period indicate that some

accretion may be occurring.

WD 0905−724 is a binary companion to HR 3643 identified by Landsman et al. (1996).

No evidence of radial velocity variation has been found, and the binary is not resolved by

the HST, thus constraining the upper limit of the period to ∼21 years (Barstow et al. 2001).

From the International Ultraviolet Explorer UV spectra, Holberg et al. (2003) derived the

companion’s spectral type of F9 II. The X-ray spectrum of this WD is severely piled up, so

no spectral modeling could be carried out.

WD 1026+002 was discovered in the Palomar Green Survey (Green et al. 1986). This

post-common envelope short-period (P≈0.597 days) binary consists of a DA WD with

17,600K effective temperature and 0.65 M⊙ mass, and a dM4e companion with a mass

of 0.22 M⊙ (Saffer et al. 1993). Too few counts are detected for a meaningful spectrum.

We therefore estimate the LX value with WebPIMMS3, using the observed count rates, a

distance of 38 pc (Liebert et al. 2005), and assuming a plasma temperature of 0.3 keV with-

out foreground absorption. We find that LX/Lbol = 4.68×10−5, where Lbol is the expected

bolometric luminosity of the dM4 companion. This LX/Lbol is within the range expected

for coronal emission of a dM star. As coronal X-ray emission is commonly detected in dMe

stars (Rucinski 1984), the dM4e companion is likely responsible for the observed hard X-ray

3http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html
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emission associated with this WD.

WD 1254+223 is a DA1.3 WD with Teff of ∼40,000 K, mass of 0.6 M⊙, and distance

of 68 pc (Lajoie & Bergeron 2007). Near-IR photometry does not support the presence

of a low-mass companion (Mullally et al. 2007). Hard X-ray emission is detected only in

the XMM band 2 (0.5−1 keV), but not in band 3 (1−2 keV). The spectrum drops off

monotonically and steeply towards 1 keV, and does not resemble spectra of late-type stars

with coronal activity. This spectral shape is similar to that of WD 1234+481 (Paper I),

which shows excess emission in 0.4 − 0.6 keV, but not much beyond. Unlike WD 1254+223,

WD 1234+481 does show IR excess, and follow-up spectroscopic observations suggest an

L-type brown dwarf companion (Mullally et al. 2007; Steele et al. 2007). It is not clear

whether the brown dwarf companion contributes to the hard X-ray shoulder of the WD’s

photospheric emission. The spectrum of WD 1254+223 cannot be fitted well by a blackbody

model with the Teff of the WD, or even higher temperatures. Furthermore, the observed

X-ray flux by far exceeds that expected from the photospheric emission approximated by a

blackbody model of ∼40,000 K with a radius of ∼1 R⊕ at a distance of 68 pc. Therefore,

the WD photosphere alone cannot account for the X-ray emission. The spectrum can be

modeled with a combination of a photon power law with photon power index of 6.9 and a

solar-abundance 0.1 keV plasma (reduced χ2 = 1.8), but the physical significance of this

model is unclear, and the origin of the X-ray emission is unknown.

WD 1310−230, or V396 Hya, is a double degenerate interacting binary, in which a

0.77 M⊙ WD accretes material from a 0.17 M⊙ helium degenerate donor through an accretion

disk, indicated by triple-peaked He lines (Ruiz et al. 2001). The orbital period of this system

is 65.1 minutes, and it is known to be a strong X-ray source. The X-ray emission, detected

up to ∼7 keV, is powered by accretion. The X-ray spectra were modeled by Ramsay et al.

(2006) with a multi-temperature plasma with maximum temperature of 5.5 keV, that was

hydrogen-deficient but had an enhanced content of nitrogen and neon.
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WD 1347−129 is an eclipsing binary, which has been analyzed in detail by O’Donoghue

et al. (2003). It consists of a DA WD with a mass of 0.78 M⊙ and an effective temperature

of 14,220 K, and a 0.43 M⊙ M3.5-M4 dwarf companion with an orbital period of 3 hr 37

min. O’Donoghue et al. (2003) argue that the the M dwarf just fills its Roche lobe, and

that the rapid rotation of the WD (v sin i ≈ 400 km s−1) indicates that the system has

undergone mass transfer in the past, and is a hibernating CV. The hard X-ray emission is

likely a combination of the dM companion’s corona and the accretion of material onto the

WD surface. This is further supported by the relatively high LX/Lbol, 3–6×10−3, where LX

was calculated using the observed count rates, a distance of 49 pc (Thorstensen et al. 2008),

and assuming a plasma temperature of 0.3 keV without foreground absorption, and Lbol is

the expected bolometric luminosity of the dM3.5-4 companion.

WD 1401+438 is a new WD spectroscopically identified in the SDSS (Eisenstein et al.

2006). The WD falls in a gap between the CCD chips in the EPIC PN observation. The

total counts from PN and MOS detectors indicate a 3σ detection in the 0.5-2 keV band.

This WD is faint (g=17.1) and is not detected in 2MASS. No fluxes beyond those in SDSS

are yet available. Observations are needed to determine the X-ray spectral properties and to

search for IR excess of this WD so that the origin of its hard X-ray emission can be assessed.

WD 1541−381, or LDS 539, is a DA4 WD (Teff ∼12,600 K) with a near-IR excess,

tentatively assigned a binary status with a dM3 or later companion by Hoard et al. (2007).

The presence of the companion was later confirmed by high-resolution optical spectra taken

with the Very Large Telescope (Koester et al. 2009). Too few counts are detected for a

meaningful X-ray spectrum, and the distance of the WD is not known, therefore LX/Lbol

cannot be estimated. The WD is however too cool to generate X-rays, therefore, the dM

companion is likely responsible for the observed hard X-ray emission.

WD 1734+742, or 29 Dra, is a CV of RS CVn type, consisting of a DA1.5 WD and

a K0IV companion HD160538 (Holberg et al. 2003), with an orbital period of 903.8 days

(Fekel et al. 1993). Zboril & Messina (2009) compiled a large set of observations of this
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system and identified the companion to be a K0III star with an active chromosphere. The

EPIC-MOS1 and MOS2 spectra were piled up, so we have used the EPIC PN observation

to extract the spectrum; however, the source falls on the chip gap in PN images. The flux

calibration is therefore compromised, and the detailed spectral shape will be affected, but

the spectrum does show the presence of hard X-ray emission up to ∼4 keV. Due to the

inaccurate flux calibration, the LX/Lbol value cannot be estimated from the XMM-Newton

observations. WD 1734+742 has nevertheless been detected in our ROSPSPCCAT search,

so we use the observed PSPC count rates and the distance of 88 pc (Strassmeier et al. 1993)

to estimate LX, assuming a 0.3 keV solar-abundance plasma without foreground absorption.

The estimated X-ray luminosity of 1.74×1031 erg s−1 falls within the expected range of RS

CVn stars (∼1030–1031 ergs s−1, Singh et al. 1996). LX/Lbol, 8×10−5 is above the value

expected for normal K0III stars, with Mbol=0.2, and extrapolating the LX/Lbol vs Mbol

relationship reported by Caillault (1996). The hard X-ray emission originates from the

greatly enhanced coronal activity due to large number of starspots of this companion.

WD 2128+469 is a CV, identified as the ROSAT X-ray source RX J2130.3+4709 (Motch

et al. 1997). This eclipsing binary system was studied by Maxted et al. (2004) and was found

to consist of a 0.554 M⊙ WD and a 0.555 M⊙ dMe 3.5-5 companion with an orbital period

of ∼12 hrs. They further suggest that the WD’s effective temperature of 18,000 K is too

cool to contribute to the X-rays, and that the X-ray emission likely originates from the dMe

companion. The X-ray spectrum can be modeled by a two-plasma model with 0.4 and 1 keV

components, or by a combination of a photon power law with power index of 1.8 and a 0.7

keV solar-abundance plasma. The former model provides a better fit (reduced χ2=0.918).

The LX/Lbol is 0.9–3.1×10−3, where LX is the X-ray luminosity in the 0.3-10.0 keV band

derived from the best-fit 2-plasma model and a distance of 85 pc (Maxted et al. 2004), and

Lbol is the bolometric luminosity of a dM3.5–5 star. WD 2128+469 was also detected in

ROSPSPCCAT. For comparison, we use the observed PSPC count rates, the distance, and

assume a 0.3 keV plasma to estimate the LX, which yields LX/Lbol of 1.4–4.4×10−3. Both
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LX/Lbol estimates are at the high end of expected coronal emission of dM stars.

6.3.2 XMM: Non-associations

WD 0046−297 has an X-ray source ∼30′′ to the northwest. Although an optical counterpart

to the X-ray source is not seen, the WD is too far to be associated with the X-ray source.

Since the WD is superposed on a galaxy cluster, RXC J0049.4-2931, it is possible that the

X-ray emission originates from a background galaxy.

WD 0836+197 is a member of Praesepe open cluster, NGC 2632. The X-ray source is

seen 10′′ to the west of the WD, and it is centered at another cluster member star, Cl* NGC

2632 KW 195. No X-ray source is associated with the WD.

WD 1307+577 is a new DA WD identified in the SDSS (Eisenstein et al. 2006). The

X-ray source is ∼10′′ southeast from the WD position. The SDSS image shows a very faint

uncataloged red object about 4′′ east of the WD. The X-ray source is not associated with

the WD, but its association with the red object is unclear.

WD 1337−000 is a DA6.0 WD identified in the SDSS (Eisenstein et al. 2006; Kleinman

et al. 2004). The faint X-ray source is located ∼10′′ west of the WD. The WD is superposed

on a galaxy cluster, with one galaxy projected as close as ∼15′′ from the WD. The X-ray

source is likely associated with a background extragalactic object rather than the WD.

WD 1449+168 is a DA WD, and has been reported to have a dM3 companion with

an orbital semimajor axis of 78.′′3 (Farihi et al. 2005). An X-ray source is detected near the

WD, but the ∼12′′ northeast offset makes it unlikely that they are associated. This X-ray

source does not correspond to the dM3 companion, and does not have any obvious optical

counterpart. The X-ray emission may originate from a background AGN, since the source is

near a galaxy cluster, ACO 1983.

WD 2149+021, or GJ 838.4, has an X-ray source about 10′′ to the west. An optical

counterpart to this X-ray source is seen in the DSS2 red image, but not the blue image,

indicating that the source is likely a background galaxy. This X-ray source is not associated
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with the WD.

WD 2326+049, or G29-38, is a cool (Teff=11,700 K) DAZ WD and a ZZ Ceti variable

with a mass of 0.62 M⊙ (Farihi et al. 2009). It is the first WD known to have a dust disk

created by tidal disruption of asteroids (Zuckerman & Becklin 1987). An X-ray source is

detected near the WD, but it is ∼15′′ southwest from the WD position; no source coincident

with the WD itself was found (Jura et al. 2009). The nature of this background X-ray source

is not known.

6.3.3 ROSAT PSPC Associations

The WDs reported in this section are all “new” and, unless otherwise noted, were not

included in McCook & Sion Catalog when Papers I and II were completed.

WD 0121−756 is a hot PG1159 star discovered by Cowley et al. (1995), and it is one

of the hottest known PG 1159 stars, with Teff = 180,000 K (Werner et al. 1996). The WD

was included in Paper I as a soft X-ray detection, but the WGACAT source was detected

below 3σ (8±3 cts) in the 0.9-2 keV band and was thus dismissed. In ROSPSPCCAT, this

X-ray source is reported with 3σ significance (9±3 cts) in the 0.9-2.01 keV band. The X-ray

properties of this WD are similar to those of PG 1159 reported in Paper I. No companion

to this WD has been reported, and the 2MASS photometry does not show any IR excess:

V =15.4, J=16.229, H=16.164, and K=16.213.

WD 0331−356 is a new DA WD with Teff=31,372 K and has a dM companion (Koester

et al. 2001). The light curve of this candidate pre-CV was studied by Tappert et al. (2004),

but variability and orbital parameters could not be established due to poor data quality. The

distance to the WD is not known, therefore LX/Lbol cannot be estimated. The hard X-ray

emission is likely to originate from either the dM companion or the accretion of material

onto the WD.

WD 0418+137 was detected by Böhm-Vitense (1993) as a companion to HR 1358 (HD

27483), which is itself a spectroscopic binary of two F6V stars that orbit each other with an
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orbital period of 3.05 days. She estimates the period of the WD to be ∼16 yr. Burleigh et

al. (1998) analyzed the IUE spectrum of the WD and derived an effective temperature of

22,000 K and a mass of 0.98 M⊙. The ROSAT PSPC observation of X-ray emission from

this WD is also discussed in Burleigh et al. (1998), who suggest that the hard X-ray emission

could not originate from the WD, and that at least one of the F6V stars must therefore be

active. We calculate the LX/Lbol (Table 6.6) to be 4.5–9×10−6, where LX was calculated

from the observed count rates, a distance of 46 pc derived from the parallax value listed in

Perryman et al. (1997), and assuming a plasma temperature of 0.3 keV without foreground

absorption. Lbol is the expected bolometric luminosity of the F6V companion with Mbol of

3.6. This value is within the range expected for a late-type companion (Caillault 1996).

WD 0419−487 is already described in section 6.3.1. The ROSAT detection of hard

X-ray emission was dismissed in Paper II as unconvincing because it was faint and had a

very broad point-spread function.

WD 0458−665 is a WD + red dwarf binary identified by ROSAT observations of its X-

ray emission. The discovery and follow-up observations are reported in detail by Hutchings

et al. (1995). Briefly, it is a post-common-envelope binary of a DA WD and an M2 star, with

a period between ∼0.7 and several days. The WD temperature is ∼20,000 K. This binary

system was not resolved in the HST images (Farihi et al. 2006). We calculate the LX/Lbol to

be 1.5×10−3, where LX was calculated from the observed count rates, a distance of 190 pc

(Hutchings et al. 1995), and assuming a plasma temperature of 0.3 keV without foreground

absorption. Lbol is the expected bolometric luinosity of the M2 companion. The LX/Lbol is

at the high end of the range expected for coronal emission from late-type stars.

WD 0930+815 was detected serendipitously in the IUE spectrum of the hybrid K3III

giant HD81817 (Reimers 1984). The WD effective temperature is ∼20,000 K. The X-ray

emission has been reported by Ayres (2005). Hybrid red giants have a cold wind as well

as hot high-ionization emission lines, and a number of them are detected in X-rays. We

calculate the LX/Lbol to be 7.8×10−7, where LX was calculated from the observed count
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rates, a distance of 330 pc (Ayres 2005), and assuming a plasma temperature of 0.3 keV

without foreground absorption, and Lbol is the expected bolometric luminosity of the K3III

companion. The LX/Lbol falls within the range expected for a K3III star with Mbol of −0.5, if

we extrapolate the trends in Caillault (1996) to lower Mbol values. The hard X-ray emission

is likely associated with the hybrid K3III giant rather than the WD.

WD 1734+742 is already described in section 6.3.1.

WD 1803−482 is a RS CVn variable, consisting of a DA WD with a G8III companion,

as seen in the IUE spectra (Holberg et al. 2003). The system’s orbital period is 5200 days

(Pourbaix et al. 2004). This object is categorized as a chromospherically active binary

(Strassmeier et al. 1993), one of whose characteristics is coronal activity. LX was calculated

using the observed count rates, a distance range of 170 (Strassmeier et al. 1993) to 266 pc

(Perryman et al. 1997), and a plasma temperature of 0.3 keV with no foreground absorption.

The LX value, ∼2.3×1031, falls within the range expected for RS CVn stars. Using the

bolometric luminosity of a G8III star, we find LX/Lbol = 4.8× 10−5 – 1.2× 10−4, which falls

within the expected range for its Mbol of 8.4 (Caillault 1996). The X-ray emission is likely

due to the coronal activity of the G8III companion.

WD 2128+469 is already described in section 6.3.1.

6.3.4 ROSAT PSPC Non-associations

WD 0157+004 has an X-ray source centered ∼35′′ northeast of the WD. The SDSS images

show a faint background galaxy coincident with the X-ray source. The X-ray emission is not

associated with the WD.

6.4 Summary and Conclusions

To extend the search for hard X-ray emission associated with WDs (Papers I and II), we have

correlated XMMSSC, ROSPSPCCAT, and ROSPSPCFCAT point X-ray source catalogs
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with the latest version of McCook & Sion (2006) WD catalog, which has been augmented

with ∼10,000 new WDs, primarily from SDSS. Our new search yielded a total of 32 hard

X-ray sources associated with WDs. Among these, 17 sources were not previously reported

in Papers I or II.

Our current ROSAT search recovers all X-ray sources reported in Papers I and II, except

four sources. As these searches used different ROSAT X-ray point source catalogs with

different source detection algorithms, marginal sources may be detected in one catalog, but

not the other. Indeed, all four sources not recovered in the current search are marginal due

to low counts (WD 0339−451), or poor point-spread function at large off-axis angle (WD

1213+528, WD 1333+510, and WD 2154-512). On the other hand, WD 0419−487, discussed

and dismissed in Paper II, is reported as a hard X-ray source in this paper. Three of these

marginal sources, WD 0339−451, WD 1213+528, and WD 0419−487, were confirmed in

XMMSSC.

The hard X-ray emission associated with WDs can be roughly divided into five categories:

(1) Binary WD: coronal companion.

The most common type of hard X-ray emission associated with WDs originates from the

corona of a late-type binary companion, for example, WD 0232+035 and WD 1026+002.

The coronal emission is the dominant source of hard X-rays in non-accreting binary systems.

The hard X-ray emission usually diminishes below detection beyond ∼2 keV.

(2) Binary WD: mass transfer

The second most common type of hard X-ray emission from WDs is generated by accretion

of material from a companion that has filled its Roche lobe, for example, WD 1310−230,

WD 1944−421. Orbital periods of such binary systems are usually short (∼ few hours)

and the X-ray spectral energy distribution is harder than that of stellar coronal emission,

extending to several keV. Note that both the companion’s corona and WD’s accretion may

contribute to the hard X-ray emission, so the resulting spectral energy distribution may have

a wide range of properties.
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(3) Single hot WD.

Two WDs belong to this category: WD 2226−210 and KPD 0005+511. Both appear single

with no direct evidence of binary companions. Their X-ray spectra show a soft component

of the photospheric emission and a hard component peaking near 1 keV, corresponding to

plasma emission at temperatures of a few 106 K (Paper I; Leahy et al. 1994). The origin of

the hard component is unknown.

(4) PG1159.

ROSAT PSPC observations of two PG 1159 type WDs show very faint hard X-ray emission

in the 0.9–2.0 keV band: WD 1159−034 and WD 0121−756. The former is the WD PG

1159 itself. In each case, only 9–12 counts were detected in the hard X-rays. It is not clear

whether these sources are the fainter versions of the Single Hot WDs, and whether weak

hard X-ray emission is intrinsic to the PG1159 spectral type.

(5) Hard shoulder of the soft component.

Two WDs show soft photospheric emission with appreciable emission in the 0.5–0.9 keV

range: WD 1234+481(DA1) and WD 1254+223 (DA1.3). Their spectral shape does not

show two distinct components as WD 2226−210 and KPD 0005+511. While WD 1254+223

shows no near- or mid-IR excesses indicative of a companion, WD 1234+481 has been shown

to possess an L-type brown dwarf companion (Mullally et al. 2007; Steele et al. 2007). It

is not clear whether the brown dwarf companion contributes to the hard X-ray shoulder

of the WD’s photospheric emission. It is also unclear whether the X-ray spectral model of

WD 1254+223, a combination of 0.1 keV plasma and power law component, is physically

meaningful.

Hard X-ray emission is a good diagnostic of coronal companions to WDs and of CVs.

In six WDs, the hard X-ray emission cannot be explained by either of these scenarios. Five

of these six WDs are apparently single; one has an L-type companion. The origin of hard

X-ray emission from the single WDs is not understood, and it is not clear whether a brown

dwarf companion can contribute to the 0.5-0.6 keV X-rays. Future observations are needed
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to solve the mystery of hard X-ray emission from single WDs. Most importantly, deeper

observations of the faint sources are needed to better specify the X-ray spectral properties.

For the brightest source, WD 2226−210, high-dispersion X-ray spectra are needed so that

plasma diagnostics can be used to determine the physical conditions of the plasma, such

as temperature, density, and ionization state. Finally, it is also important to place limits

on any binary companions to the single WDs by monitoring temporal variations of X-ray

emission and the Hα line profile, and by acquiring IR photometry and spectra to search for

signatures of companions.
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Table 6.1. XMM Detections

X-ray Counts Reported
in XMMSSC (Counts)a,b

WD WD Common XMM XMM Exp Pos 0.2−0.5 0.5−1.0 1.0−2.0
Number Type Name Src no. Obs no. (ks) Coinc keV keV keV Remarksc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0216−032 DA+M2III Mira B 2XMM J021920.8−025840 0148500201 9.2 Good 15 ± 5 187 ± 14 224 ± 16 P1
0232+035 DA+dM1 Feige 024 2XMM J023507.6+034357 0305980101 6.1 Good 292 ± 18 96 ± 11 16 ± 6 N
0339−451 DA QSF 1:02 2XMM J034125.1−450045 0045940301 6.7 Good 22 ± 6 14 ± 5 14 ± 5 P1
0347+171 DA1.5+K2 V471 TAURI 2XMM J035024.9+171447 0203260101 31.8 Good 4252 ± 67 14168 ± 122 9113 ± 98 P1, M2
0419−487 DAZ8.0+dM LHS1660, LFT0349 2XMM J042105.5−483910 0305980301 7.5 Good 171 ± 14 393 ± 21 143 ± 13 N
0429+176 DA2.5+dM HZ 09, EG038 2XMM J043223.7+174503 0094810301 3.5 Good 154 ± 13 304 ± 18 72 ± 9 P1
0736+053 DA4+F5IV A CMI B, EG053 2XMMi J073917.7+051324 0415580101 30.7 Good 27915 ± 171 23059 ± 151 884 ± 32 P1
0905−724 DA1.5+F9 HD 78791B 2XMM J090508.2−723609 0164571401 16.7 Good 71366 ± 262 7441 ± 89 311 ± 20 N
1026+002 DAZ3.5+dM ... 2XMM J102834.9−000030 0305980401 9.6 Good 60 ± 9 100 ± 11 39 ± 7 N
1213+528 DAZ3.9+dM C1, EG087, EG UMa 2XMM J121544.0+523100 0305980501 6.2 Good 1170 ± 35 2568 ± 52 943 ± 32 P1
1253+261d PNN+G5III WD1255+258J 2XMM J125533.7+255330 0012850201 14.7 Good 202 ± 15 438 ± 22 236 ± 16 P1
1254+223 DA1.3 GD 153, EG187 2XMM J125702.3+220151 0125910501 10.5 Good 13476 ± 117 372 ± 20 0 ± 1 N
1310−230 DD V396 Hya, CE315 2XMM J131246.3−232132 0302160201 16.6 Good 2637 ± 53 2971 ± 56 2109 ± 47 N
1347−129 DA+dM ... 2XMM J134952.0−131336 0305310101 52.3 Good 1516 ± 40 4066 ± 65 5317 ± 75 N, M2
1401+438 DA ... 2XMM J140353.1+433457 0305360401 0.5 Good 1 ± 2 6 ± 6 14 ± 7 N, EP
1541−381 DA+dM L0480-085, LDS 539 2XMM J154510.9-381850 0305980701 3.7 Good 66 ± 9 106 ± 12 50 ± 8 N
1631+781 DA1+dM4E ... 2XMM J162910.1+780441 0400920201 2.8 Good 577 ± 25 162 ± 14 59 ± 9 P1
1734+742 DA1.5+K0 29 Dra, HD160538 2XMM J173247.2+741403 0014150401 1.4 Good 59 ± 13 160 ± 22 86 ± 32 N, M2
2128+469 DA2.8+dM ... 2XMM J213018.4+471008 0307120101 4.5 Good 88 ± 11 249 ± 17 93 ± 11 N
2226−210 DAO.49 NGC 7293, PK 36-57 2XMM J222938.5−205014 0125911001 8.0 Good 75 ± 11 330 ± 22 129 ± 14 P2
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Table 6.1 (cont’d)

X-ray Counts Reported
in XMMSSC (Counts)a,b

WD WD Common XMM XMM Exp Pos 0.2−0.5 0.5−1.0 1.0−2.0
Number Type Name Src no. Obs no. (ks) Coinc keV keV keV Remarksc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Non-associations
0046−297 DA6.3 EIS 2XMM J004843.9−292944 0201900401 9.0 U(30′′ NW) 7 ± 3 11 ± 4 23 ± 6 M2
0836+197 DA2.3 LB 5893 2XMM J083936.5+193027 0101440401 27.3 U(10′′ W) 38 ± 8 44 ± 8 38 ± 8
1307+577 DA ... 2XMMi J130920.7+572610 0301340501 9.1 U(10′′ SE) 7 ± 4 22 ± 7 39 ± 8
1337−000 DA6.0 ... 2XMM J133946.7−002001 0211080701 5.0 U(10′′ W) 10 ± 4 17 ± 5 11 ± 5
1449+168 DA2+dM3 ... 2XMM J145211.7+163815 0091140201 6.4 U(12′′ NE) 10 ± 5 19 ± 7 14 ± 6
1633+572 DQ8+2(dM4E) G225-068, EG258 2XMM J163419.7+570948 0049540401 15.5 U 3077 ± 57 5491 ± 76 1418 ± 39 P1e

2149+021 DAZ2.9 G093-048, EG150 2XMM J215226.7+022318 0155560401 3.6 U(10′′ W) 1 ± 1 6 ± 3 20 ± 5
2326+049 DAZ4.3, DAV G029-038, EG159 2XMM J232846.5+051447 0302820101 17.7 U(15′′ SW) 19 ± 6 31 ± 7 24 ± 6

aCounts are calculated using the count rates (ct/s) multiplied by the exposure times (s) listed in XMMSSC catalog.

bUnless otherwise noted, counts for PN detector are listed.

cExplanations of the terms in the Remarks column: EP: The source is detected with 3σ significance only after summing all EPIC instruments (MOS1, MOS2, PN). The
counts given are for PN. M1: The best signal to noise ratio is in MOS1 instrument; values listed are catalog entries for MOS1. M2: The best signal to noise ratio is in MOS2
instrument; values listed are catalog entries for MOS2. N: New X-ray source associated with a WD, not reported in Papers I or II. P1: The X-ray source has been discussed
in Paper I. P2: The X-ray source has been discussed in Paper II.

dThe WD is listed as WD 1255+258J in Paper I.

eAs discussed in Paper I, the hard X-ray emission comes from a nearby dM3-4e binary system and is not associated with the WD. For the discussion of positional
coincidence, see Paper I.
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Table 6.2. ROSAT PSPC Detections

X-ray Counts Reported
in PSPC (Counts)

WD WD Common ROSAT ROSAT Exp Pos 0.11−0.41 0.52−0.9 0.9−2.01
Number Type Name Src no Obs noa (ks) Coinc keV keV keV Remarksb

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0121−756 PG1159 WD0122−753J 2RXP J012253.2−752117 300369 5.4 Good 4530 ± 68 4 ± 2 9 ± 3 N
0216−032 DA+M2III MIRA B 2RXP J021921.1−025841 201501 8.9 Good 2 ± 3 23 ± 5 35 ± 6 P1
0220+222 DA3.2 G094-B5B, EG018 2RXP J022334.0+222726 190230 0.9 Good 199 ± 15 100 ± 10 81 ± 9 P2
0331−356 DA1.6+dm ... 2RXP J033352.3−353118 800301 7.0 Good 86 ± 11 17 ± 4 14 ± 4 N
0347+171 DA1.5+K2 GH7-023, V471 TAURI 2RXP J035024.0+171457 200107 18.2 Good 29431 ± 174 2208 ± 51 2489 ± 52 P1
0418+137 DA3+F6V HR1358, HD 27483 2RXP J042052.8+135150 200776 22.5 Good 1660 ± 42 416 ± 21 221 ± 15 N
0419−487 DAZ8.0+dM LHS1660, LFT0349 2RXP J042104.8−483903 190090 0.2 Good 46 ± 7 15 ± 4 26 ± 5 N, P2
0429+176 DA2.5+dM HZ 09, EG038 2RXP J043223.6+174505 200443 17.9 Good 504 ± 24 188 ± 15 148 ± 13 P1
0458−665 DA+dM ... 2RXP J045853.4−662815 900320 15.3 Good 10 ± 6 34 ± 8 34 ± 7 N
0736+053 DA4+F5IV A CMI B, EG053 2RXP J073918.2+051334 200437 3.7 Good 9080 ± 96 332 ± 18 74 ± 9 P1
0930+815 DA3+K3 HD 81817B 2RXP J093708.8+811940 201223 8.5 Good 17 ± 6 5 ± 2 11 ± 4 N
1159−034 PG1159 GW Vir 2RXP J120146.4−034536 701202 13.1 Good 1280 ± 37 6 ± 3 12 ± 4 P1
1234+481 DA.92 ... 2RXP J123645.2+475529 200578 2.4 Good 3280 ± 58 25 ± 5 -2 ± 4 P1
1253+261c PNN WD1255+258J 2RXP J125533.6+255333 201514 17.8 Good 254 ± 19 37 ± 6 39 ± 6 P1
1314+293 DA1+dM3e EG098, HZ 43A 2RXP J131622.9+290551 100308 21.5 Good 1585270 ± 1260 7312 ± 86 120 ± 11 P1d

1631+781 DA1+dM4e ... 2RXP J162911.5+780434 170154 35.4 Good 131000 ± 1000 271 ± 51 236 ± 46 P1
1634−573 DOZ1+K0V HD149499B 2RXP J163831.6−572810 200773 1.3 Good 322 ± 18 136 ± 12 121 ± 11 P1
1734+742 DA1.5+K0 29 Dra, HD160538 2RXP J173248.8+741320 701200 7.6 Good 9457 ± 99 4482 ± 67 6352 ± 80 N
1803−482 DA+G8III V832 Ara, HD165141 2RXP J180700.3−481451 201178 1.6 Good 36 ± 6 142 ± 12 187 ± 14 N
1944−421 PEC ... 2RXP J194740.5−415934 300232 9.9 Good 463 ± 22 488 ± 22 614 ± 25 P1
2128+469 DA2.8+dM ... 2RXP J213018.4+471009 400363 28.4 Good 382 ± 22 228 ± 16 194 ± 15 N
2226−210 DAO.49 ... 2RXP J222938.8−205015 900187 4.7 Good 232 ± 17 28 ± 5 25 ± 5 P2
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Table 6.2 (cont’d)

X-ray Counts Reported
in PSPC (Counts)

WD WD Common ROSAT ROSAT Exp Pos 0.11−0.41 0.52−0.9 0.9−2.01
Number Type Name Src no Obs noa (ks) Coinc keV keV keV Remarksb

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Non-associations
0048−294 DA3.5 SGP 2:31 2RXP J005114.3−291022 700275 22.7 U 24 ± 8 5 ± 3 23 ± 5 P1e

0157+004 DZ ... 2RXP J020003.9+004025 700225 5.4 U(35′′ NE) 25 ± 6 18 ± 5 15 ± 5
1134+300 DA2.4+AGN GD 140, EG184 2RXP J113705.1+294816 200091 32.5 U(41′′ NW) 1360 ± 40 53 ± 8 54 ± 8 P1f

1633+572 DQ8+2(dM4E) G225-068, EG258 2RXP J163421.3+570941 200721 44.9 U 2830 ± 55 1160 ± 34 895 ± 30 P1g

aFor multiple observations of the same target, we give the values for the one withe the longest exposure time.

bExplanations of the terms in the Remarks column: P1: The X-ray source has been discussed in Paper I. P2: The X-ray source has been discussed in Paper II. N:
New X-ray source associated with a WD, not reported in Papers I or II.

cThe WD is listed as WD 1255+258J in Paper I.

dThe values listed in ROSAT PSPC look suspect, therefore we cite the WGACAT values for this source.

eAs discussed in Paper I, the hard X-ray source is not convincingly centered on the WD, and the X-ray source is occulted by the PSPC window support structure.

fAs discussed in Paper I, the hard X-ray source is centered 41′′ northwest of the WD and coincides with an AGN, which causes the hard X-ray emission.

gAs discussed in Paper I, the hard X-ray emission comes from a nearby dM3-4e binary system and is not associated with the WD.
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Table 6.3. ROSAT PSPCF Detections

X-ray Counts Reported
in PSPCF (Counts)

WD WD Common ROSAT ROSAT Exp Pos 0.11−0.41 0.52−0.9 0.9−2.01
Number Type Name Src no Obs noa (ks) Coinc keV keV keV Remarksb

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

2226−210 DAO.49 CSPN NGC 7293 2RXF J222938.5−205012 900187 4.2 Good 26 ± 5 6 ± 3 24 ± 5 P2
0005+511 DOQZ.4 KPD 0005+5106 2RXF J000817.7+512315 200428 4.9 Good 172 ± 13 7 ± 3 18 ± 4 P2
0512+326 DA1.8 14 Aur C, HD33959C 2RXF J051523.5+324109 200815 2.3 Good 1130 ± 34 52 ± 7 44 ± 7 P2
1314+293 DA1+dM3.5e HZ 43A 2RXF J131621.5+290558 200418 21.1 Good 26000 ± 870 82 ± 24 57 ± 20 P1
1631+781 DA1+dM4e 1ES 1631+78.1 2RXF J162907.8+780438 200821 2.7 Good 2190 ± 47 6 ± 3 11 ± 3 P1

Non-associations
1821+643 DOZ.4 DS Dra 2RXF J182152.3+642143 200429 8.0 U 175 ± 13 30 ± 6 126 ± 12 P1c

aFor multiple observations of the same target, we give the values for the one with the longest exposure time.

bExplanations of the terms in the Remarks column: P1: The X-ray source has been discussed in Paper I. P2: The X-ray source has been discussed in Paper II.

cAs mentioned in Paper I, the X-ray emission from this source is blended with an adjacent source.
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Table 6.4. X-ray Spectra Model Parameters

WD Name Component 1a Component 2 χ2
ν(d.o.f.)

WD 0232+035 power law plasma 3.48 (10)
Γ=6.526 kT=0.814 keV

WD 0232+035 plasma plasma 1.50 (10)
kT=0.049 keV kT=0.803 keV

WD 0419-487 power law plasma 1.017 (40)
Γ=1.832 kT=0.348 keV

WD 0419-487 plasma plasma 1.171 (40)
kT=0.308 keV kT=4.438 keV

WD 1254+223 power law plasma 1.850 (77)
Γ=6.890 kT=0.107 keV

WD 2128+469 power law plasma 1.513 (17)
Γ=1.835 kT=0.678 keV

WD 2128+469 plasma plasma 0.918 (15)
kT=0.361 keV kT=1.096 keV

aFor the power law component, Γ denotes the power law index.

Table 6.5. XMM WDs with Known Companions

WD Name Spec Type Distance (pc) Lx Lx/Lbol

0232+035 dM1.5-2 69a 4.29×1028 1.84×10−4 – 2.49E×10−4

0419-487 dM4 11b 2.98×1027 4.10×10−5

1026+002 dM4e 38c 3.40×1027 4.68×10−5

1310-230 DD 90d 3.88×1029 ...
1347-129 dM3.5-4 49d 3.40×1029 2.47×10−3 – 4.67×10−3

2128+469 dM3.5-5 85e 1.30×1029 9.47×10−4 – 3.10×10−3

aBenedict et al. (2000)

bBruch (1999)

cLiebert et al. (2005)

dThorstensen et al. (2008)

eMaxted et al. (2004)
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Table 6.6. ROSAT WDs with Known Companions

WD Name Spec Type Distance (pc) Lx Lx/Lbol

0331-356 dM ... ...
0418+137 2F6V 45.7a 9.33×1028 4.52×10−6 – 9.04×10−6

0419-487 dM4 11b 4.66×1028 6.41×10−4

0458-665 dM2 190c 2.51×1029 1.46×10−3

0930+815 K3III 330d 3.27×1029 7.77×10−7

1734+742 K0III 88e 1.74×1031 7.60×10−5

1803-482 G8III 170e–266a 2.30×1031 4.81×10−5 – 1.18×10−4

2128+469 dM3.5-5 89f 1.86×1029 1.35 – 4.43×10−3

adistance calculated using the parallax value from Perryman et al. (1997)

bBruch (1999)

cHutchings et al. (1995)

dAyres (2005)

eStrassmeier et al. (1993)

fMaxted et al. (2004)
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Figure 6.1: XMM-Newton spectra of WDs associated with hard X-ray emission reported
in Papers I or II. Origin of the hard X-ray emission is noted in the upper right corner
for each WD. row 1: WD0216−032, WD0347+171, WD0429+176, row 2: WD0736+053,
WD1213+528, WD1253+261, row 3: WD1631+781, and WD2226−210.
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Figure 6.2: XMM-Newton spectra and models of WDs associated with hard X-ray emission
not previously reported in Papers I or II. The dashed and dot-dashed lines show the model’s
components, labeled in the upper right corner. For WD 1310−230, we only present the
X-ray spectrum; detailed modeling was carried out by Ramsay et al. (2006). The spectrum
of WD 1734+742 is affected by chip gap, therefore, we do not model the X-ray emission.
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Chapter 7

Summary and Future Work

The search for planetary systems around stars other than our Sun has yielded great results

in recent years, with hundreds of planets discovered through RV variations (e.g. Butler et al.

2006) and, more recently, transits (Borucki et al. 2011). The evolution of planetary systems

past the main sequence has been studied theoretically (Debes & Sigurdsson 2002; Villaver

& Livio 2007, e.g.), and it is expected that planets massive and distant enough will survive

through stellar evolution. Giant planets have been detected around red giants (e.g. Setiawan

et al. 2005; Sato et al. 2007), but so far no planets around WDs have been confirmed.

Planetary systems also contain dust and debris, similar to asteroids or KBOs in our

Solar System. Dust disks, thanks to their large emitting areas, are much easier to detect

than planets. Spitzer Space Telescope observations have greatly improved our understanding

of debris disks around main-sequence stars, and their evolution as the stars age on the

main-sequence (Rieke et al. 2005; Su et al. 2006).

Interestingly, Spitzer has also enabled discoveries of dust disks around very old (∼Gyr)

WDs (Becklin et al. 2005; Kilic et al. 2005). These dust disks are around cool WDs whose

atmospheres are polluted by metals, and the dust disks are all located within the WDs’ Roche

limits. These disks were produced by tidally disrupted asteroids that are accreted onto the

WD’s surface and contaminate its atmosphere with metals. The detection of asteroidal

material around such old WDs provides the strongest observational evidence so far for the

survival of planetary systems into late stages of stellar evolution.

An entirely different kind of disk has been discovered around Helix Nebula’s CSPN. The

dust disk around Helix’s CSPN is detected as excess IR emission at 8, 24 and 70 µm. The
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excess emission originates from a dust continuum, and is consistent with a dust disk located

between 35 and 130 AU from the WD, containing ∼0.13 M⊕. It has been suggested that

the dust was produced by collisions among KBOs that were dynamically rejuvenated during

the post-AGB evolution (Su et al. 2007). Interestingly, X-ray observations of Helix have

revealed a hard X-ray point source coincident with the CSPN. Hard X-ray emission is usually

associated with companions, but the IR photometric measurements rule out companion as

late as T dwarfs. We have searched the XMM and ROSAT archives for additional hard X-ray

sources associated with single WDs, but none of them with IR observations show excess IR

emission. The origin of the hard X-ray emission remains unclear.

To search for more dust disks similar to the one around the Helix CSPN, we have car-

ried out a Spitzer MIPS 24 µm survey of hot WDs/pre-WDs (Chu et al. 2011). We have

found 9 cases of excess 24 µm emission, and the spectra of four of these confirm that the

excesses originate from a dust continuum. In eight cases, excess emission was seen only in

8–14 µm range, but a number of WDs/CSPNs also exhibit excesses at shorter wavelengths.

Interestingly, 7 out of 9 hot WDs with 24 µm excesses were still surrounded by PNe.

Inspired by the fact that the majority and the strongest IR excesses were seen around

WDs that are still CSPNs, we have searched the Spitzer archive for programs that include

observations of PNe and examined their CSPNs. We have found 19 cases of IRAC and/or

MIPS excesses, but these excesses have a variety of origins. Two stars have apparent visual

companions which can account for all of the observed excess emission. Seven stars are

[WC]-type CSPNs, which have strong stellar winds, and the IR excess is caused by dust

and free-free emission from accelerating particles in the stellar winds. Two of the stars are

borderline objects between young PNe and symbiotic stars. In eight cases, an extended

emitter, such as a dust disk, is required to fit the IR SEDs. Combined with our 24 µm

survey of hot WDs (Chu et al. 2011), the incidence of dust disks among CSPNs is &17%.

The SEDs show a great diversity in the emission characteristics of the IR excesses. For

some of the WDs/CSPNs, we have obtained follow-up spectroscopic observations with Spitzer
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IRS, and Gemini NIRI and Michelle spectrographs. Each spectrum contains dust continuum

emission, but the spectral shapes vary. In some cases, line emission coincident with the

CSPN is seen in addition to the continuum emission (e.g., NGC 6804, NGC 7139). None

of the spectra display any mineralogical features except for NGC 6804, which exhibits a

crystalline silicate feature at 10 µm.

For WDs/CSPNs without spectroscopic observations, we derive basic disk parameters

based on blackbody approximations to the excess emission. For cases with available spectro-

scopic observations, where appropriate, we use optically thin dust disk models and realistic

grain parameters and distributions to model the dust emission and derive disk properties.

In cases where excess is seen only at wavelengths longer than ∼5.8 µm, the dust is located

a few tens of AUs from the central stars, and PR lifetimes are long enough for dust to have

survived through a significant portion of the WD’s/CSPNs age. These cases are consistent

with the origin of collisionally disrupted subplanetary objects.

The cases that show near-IR excesses in addition to 24 µm excesses are more compli-

cated. While the dust disk around CSPN K1-22 can be modeled by a single disk component

extending from sublimation radius to ∼ 40 AU, in other cases, like that of NGC 2438, a

single disk component is not sufficient to fit the data. Furthermore, short PR lifetimes imply

that some of the disks must be optically thick, and further modeling with an appropriate

disk model is needed.

The diverse SED and spectral characteristics of the IR excesses may imply different dust

origins. We consider two mechanisms that can be responsible for the observed dust emission.

The first one is the same mechanism suggested to produce the dust around main sequence

stars as well as Helix’s CSPN, the breakup of bodies in planetesimal belts due to collisions.

The second possibility is the formation of dust disks in binary interactions. Stable

Keplerian-rotating disks are commonly observed around post-AGB binaries (de Ruyter et

al. 2006), and some CSPNs with dusty disks may have descended from these objects. The

disk around CSPN NGC 6804, is particularly similar to circumbinary post-AGB dust disks.
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Its optical thickness, gas content, and the 10 µm crystalline silicate feature all resemble the

features of post-AGB dust disks.

Much future work is necessary to understand the origins of these intriguing systems. On

the theoretical side, better understanding of post-AGB binary evolution as well as debris

disk evolution along its parent star is needed to compare the detection rate and properties

of our disks to theoretical predictions.

Many observational ventures can be undertaken to probe these systems better. For

objects without IR spectra, future spectroscopic observations will help assess the nebular

contamination of the measured flux densities, and will help constrain the extent and prop-

erties of the dust disks. An appropriate instrument for this task would be the Mid-Infrared

Instrument on the James Webb Space Telescope, with spectroscopic capabilities in the 5–28

µm range. Even objects with existing IRS spectra would benefit from both deeper exposures

in cases where the signal to noise ratio is low, and coverage at longer wavelengths, because

the constraints on outer disk radii are poor.

In optical wavelengths, a better sampling of the optical and near-IR SED would allow

us to accurately model the WD atmospheres, which would be improved even further by

constructing appropriate synthetic spectra for all WDs/CSPNs. Interferometric observa-

tions with EVLA or ALMA may spatially resolve the detected dust disk, and place better

constraints on the parameters in the dust disk models.

In addition, to assess the link between CSPN dust disks and binarity, we need to carry out

a thorough search for unresolved companions, especially for objects with near-IR excesses.

High-resolution imaging with HST or adaptive optics can resolve wide companions, whereas

photometric or RV monitoring may reveal close companions with short orbital periods.

Finally, surveys for additional dust disks around WDs and CSPNs may help us discover

correlations between physical parameters of dust disks and their central stars, and possibly

discern evolutionary trends.
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