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Background. Nucleophosmin 1 (NPM1) plays an important role in ribosomal synthesis and malignancies, but NPM1 mutations
occur rarely in the blast-crisis and chronic-phase chronic myelogenous leukemia (CML) patients. The NPM1-associated gene set
(GCM NPM1), in total 116 genes including NPM1, was chosen as the candidate gene set for the coexpression analysis. We wonder
if NPM1-associated genes can affect the ribosomal synthesis and translation process in CML. Results. We presented a distribution-
based approach for gene pair classification by identifying a disease-specific cutoff point that classified the coexpressed gene pairs
into strong andweak coexpression structures.The differences in the coexpression patterns between the normal and the CML groups
were reflected from the overall structure by performing two-sample Kolmogorov-Smirnov test. Our developed method effectively
identified the coexpression pattern differences from the overall structure: 𝑃 value = 1.71×10−22 < 0.05 for themaximum deviation
𝐷 = 0.109. Moreover, we found that genes involved in the ribosomal synthesis and translation process tended to be coexpressed
in the CML group. Conclusion. Our developed method can identify the coexpression difference between two different groups.
Dysregulation of ribosomal synthesis and translation process may be related to the CML disease. Our significant findings may
provide useful information for the novel CML mechanism exploration and cancer treatment.

1. Introduction

Nucleophosmin 1 (NPM1), also named nucleolar phospho-
protein B23, belongs to the NucleoPhosMin/NucleoPlasMin
family of nuclear chaperones. The whole family can be
divided into four classes based on protein sequence simi-
larities: nucleophosmin (NPM1), nucleoplasmin 2 (NPM2),
nucleoplasmin 3 (NPM3), and NPM-like invertebrate pro-
teins [1, 2]. NPM1 is well studied in the whole family with
its cDNA cloned in 1989, encoding a 294-amino-acid protein
[3].The expression ofNPM1 gene is frequently altered in solid
tumors, and its mutation and translocation are also found
in hematological malignancies [4]. The encoded protein
product is a phosphoprotein that travels between the nucleus
and cytoplasm, which plays multiple roles in ribosomal
RNA (rRNA) processing, ribosome assembly, transport of
ribosomal subunits, centrosome duplication, regulation of
p53, and cell growth and proliferation [5–7].

According to the gene list curated by Brentani et al.,
NPM1 is one of 380 cancer-associated genes obtained from
a published cancer gene database [8]. In a study of Sub-
ramanian et al., the neighborhoods highly correlated with
these cancer-associated genes were selected based on four
large gene expression datasets that were collected from
various cancer projects mainly on primary tumors, includ-
ing prostate, breast, lung, lymphoma, and leukemia [9].
Pearson correlation coefficient (𝑟) between every gene in
these four datasets and one cancer-associated gene (e.g.,
NPM1) was calculated independently in each dataset. A
gene was selected as the neighborhood if 𝑟 ≥ 0.85 in
at least one out of four datasets. The cancer-associated
genes with no less than 25 selected neighborhoods were
stored in the Molecular Signature Database (MSigDB) [9].
The NPM1-associated gene set (GCM NPM1), in total 116
genes including NPM1, is one of the neighborhood sets
[9].
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NPM1 often participates in chromosomal translocation,
mutation, and deletion in hematological malignancies [5].
Chronic myelogenous leukemia (CML) is a clonal myelopro-
liferative disorder, which is characterized by the increased
and unregulated growth of immature myeloid cells in the
blood stream [10].The cytoplasmicmutatedNPM1was found
for the first time in a blast-crisis CML patient, indicating
that the mutation of NPM1 gene may function in the blastic
transformation of CML [11]. Interestingly, in a recent study,
researchers did not detect any NPM1 mutations in the ana-
lyzed blast-crisis and chronic-phase CML patients [12]. We
wonder if NPM1-associated genes can affect the ribosomal
synthesis and translation process inCML.Coexpression anal-
ysis has been applied to study the functionally related genes,
since the coexpressed genes are more likely to participate
in the similar biological processes and signaling pathways
[13, 14].

In this study,we aim to explore the differences in the coex-
pression patterns of those NPM1-associated genes between
the normal and the CML states, to further investigate the
altered ribosome activities in CML. We proposed a method
to explore the coexpression pattern difference by identifying
a disease-specific cutoff point that classified the coexpressed
gene pairs into strong and weak coexpression classes so that
the class was best coherent with the CML state. Traditional
methods on the gene coexpression analysis calculate the
individual 𝑃 value of correlation coefficient for every gene
pair to identify the significantly coexpressed gene pairs. Our
developed method considered the correlation coefficients
for all the gene pairs in each group to form two different
cumulative distributions, which can identify the difference
between two different groups from the overall structure.
The different coexpression pattern indicated the biological
alterations in CML. In addition, the functional annotation
of coexpressed gene pairs provided useful information to
understand the underlying mechanisms of the CML dis-
ease.

2. Methods

2.1. Microarray Expression Data. Microarray technology is
useful to extract the important information from cells.
Different conditions have different gene expression levels.
In this study, we chose the microarray dataset GSE5550
normalized by variance stabilizing transformations (VSN)
method, which is publicly available on the Gene Expression
Omnibus (GEO) repository [15]. The data in this dataset
are obtained from gene expression measurements of more
than 8,000 unique mRNAs. CD34+ hematopoietic stem and
progenitor cells were collected from the bone marrows of
untreated CML patients in the chronic phase and healthy
controls [15]. The subjects recruited for this dataset are
Caucasians from Germany. Two groups are included in this
dataset: (i) the CML group, nine patients, and (ii) the control
group, eight normal subjects. In this dataset, a gene may be
interrogated by more than one probe. We took the average of
all the probes for the same mRNA to deal with this situation
[16, 17].

2.2. Coexpression Measure. There were 93 out of 116 NPM1-
associated genes found in the CML microarray dataset
GSE5550 (see Table S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/610595).We extracted
the expression profiles of these 93 genes for the coexpression
analysis. The expression matrix was in dimension of 93 ×
17, where each row referred to the relative expression levels
of a gene across all the samples (8 normal and 9 CML
samples). In this study, Pearson correlation coefficient (𝑟) was
chosen as the similarity measure to indicate the associations
between genes [18]. Pearson correlation coefficient can be
used to demonstrate the biological relationship of two genes
numerically, which does not emphasize the magnitude of
their expression profiles [13, 19]. The similarity measure is
usually regarded as a kernel function between two feature
vectors.

In this study, each feature vector included the expression
profiles of a gene across all the samples in the normal
group or the CML group, respectively. The absolute values
of correlation coefficients (|𝑟| values) were chosen, since the
coexpression measure output a scalar in the range from 0
to 1 where a high value demonstrated a strong biological
relationship in either positive or negative direction and a
low value indicated a weak biological relationship. 𝐶

𝑑

(𝑖, 𝑗)

referred to the coexpression level of two genes from the
disease (CML) group, and 𝐶
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(𝑖, 𝑗) was for the normal group
(Formulas (1)) [18]:
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the Pearson correlation coefficients in theCML group and the
normal group, respectively.

2.3. Identification of the Disease-Specific Cutoff Point for Gene
Pair Classification. Two sets of correlation coefficients in the
normal and theCML groups formed two different cumulative
distributions. Two-sample Kolmogorov-Smirnov (KS) test
was applied to test if these two sets of data significantly
differed in terms of the overall distributions.The significance
for KS test was indicated by the 𝑃 value for the maximum
deviation between two cumulative distributions of𝐶

𝑑

and𝐶
𝑛

(Formulas (2)). At the maximum deviation, a threshold was
identified to group the coexpressed gene pairs into strong and
weak coexpression classes, called the disease-specific cutoff
point (𝐶). The cutoff point represented a coexpression level,
at which 𝐹
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and 𝐹
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where𝐹
𝑑

and𝐹
𝑛

refer to the cumulative distribution functions
of 𝐶
𝑑

and 𝐶
𝑛

, respectively; 𝐷 represents the maximum
deviation; 𝐶 is the cutoff point.

The specifically coexpressed gene pairs were further
identified in different groups. Different types of gene pairs
indicated different biological meanings. The normal-specific
strongly coexpressed pairs included the gene pairs strongly
coexpressed only in the normal group, which represented
the physiological balance in the cells of healthy individuals.
Apparently, these pairs were the CML-specific weakly coex-
pressed pairs that were weakly coexpressed only in the CML
group.TheCML-specific strongly coexpressed pairs included
the gene pairs strongly coexpressed only in the CML group,
which demonstrated the characteristics of the disease. For
the same reason, these pairs were the normal-specific weakly
coexpressed pairs.

2.4. Functional Annotation for NPM1-Associated Genes Using
DAVIDDatabase. Gene ontology (GO) provides a systematic
language or ontology to describe gene and gene product
attributes across all species [20]. It can be classified into three
categories [21]: (i) biological process: a set ofmolecular events
with a defined beginning and end, for example, a chemical or
physical transformation; (ii) cellular component: the parts of
a cell or the extracellular environmentwhere a gene product is
active; and (iii) molecular function: the elemental activities of
a gene product at themolecular level, for example, the specific
binding to ligands and catalysis. We applied gene ontology
to group the NPM1-associated genes into different classes,
to further explore the biological meaning of the coexpressed
gene pairs in the CML state.

TheDatabase for Annotation, Visualization and Integrated
Discovery (DAVID) was chosen to annotate these 93 genes,
which is useful to extract the biological meaning by com-
bining an integrated biological knowledge base and multiple
analytic tools [22]. All these three GO categories (biological
process, molecular function, and cellular component) were
considered in our study. Functional annotation chart was
used to identify the significant batch annotation and GO
terms that were most pertinent to the input data. When
the NPM1-associated gene list was uploaded to DAVID, the
annotation chart provided the significantly enriched GO
terms. The significance of GO term enrichment is calcu-
lated according to a modified Fisher exact test, Expression
Analysis Systematic Explorer (EASE) score. The EASE score
is regarded as a more conservative and robust adjustment
than the Fisher exact probability [23]. DAVID also provides
false discovery rate (FDR) to control the expected proportion
of false positives for the multiple hypotheses. The selection
criteria for the significantly enriched GO terms used in our
study were (i) EASE score < 0.05 and (ii) FDR < 0.05.

2.5.Mapping Coexpressed Gene Pairs to Annotated Gene Pairs.
The annotated genes in each enriched GO term were paired
with all the possible combinations, forming the annotated
gene pairs. The annotated gene pairs were mapped to the
identified coexpressed gene pairs in each GO term: the
mapped CML-specific strongly coexpressed, the mapped

Table 1: The coexpressed gene pairs identified by the disease-
specific cutoff point.

Group
Number of
strongly

coexpressed gene
pairs

Number of weakly
coexpressed gene

pairs

Normal 2763 1515
CML 3228 1050

CML-specific weakly coexpressed, the mapped normal-
specific strongly coexpressed, and the mapped normal-
specific weakly coexpressed pairs. Fisher exact test was used
to verify if genes were more likely to be coexpressed in the
CML group compared to the normal group. As a result,
one-sided 𝑃 value was chosen to indicate the significance.
The multiple-hypothesis test was performed on a list of
mappedGO terms by applying themore stringent Bonferroni
correction. The 𝑃 value of Fisher exact test was multiplied by
the total number of considered GO terms. A GO term was
significantly mapped if its corrected 𝑃 value was still smaller
than 0.05.

3. Results

3.1. Identification of Structural Coexpression Difference. The
correlation coefficients for all the possible gene pair com-
binations of these 93 NPM1-associated genes were cal-
culated. In each group, there was a set of correlation
coefficients of 4,278 gene pairs. The cumulative distribu-
tions of these two sets of data were plotted (Figure 1).
The results for KS test showed that the two distribu-
tions in the normal and the CML groups were signif-
icantly different from the overall structure (𝑃 value =
1.71 × 10

−22

< 0.05 for the maximum deviation𝐷 = 0.109).
The disease-specific cutoff point, 𝐶 = 0.252, was identi-

fied at the maximum deviation (Figure 1). Two coexpression
patterns were so distinct that the CML group had more
strongly coexpressed (level above ∼0.252) and less weakly
coexpressed (level below ∼0.252) gene pairs than that in the
normal group. The cutoff point classified gene pairs into
four coexpression classes (Table 1). Binomial distribution test
indicated that the proportion of strongly coexpressed gene
pairs in the CML group was significantly higher than that in
the normal group (one-sided 𝑃 value < 0.001).

3.2. DAVID Database Annotation for Enriched Biological
Process. According to the selection criteria (EASE score <
0.05 and FDR < 0.05), eight significantly enriched GO terms
for biological processes were identified (see Table S2). We
obtained the annotated genes involved in each biological
process and formed the annotated gene pairs. Then, the
coexpressed gene pairs were mapped to the annotated gene
pairs. The results showed that all these eight processes
had more mapped CML-specific strongly coexpressed pairs
(Table 2). In other words, genes were more likely to be
coexpressed in the CML groupwhen compared to the normal
group. Fisher exact test was used to indicate the significance.
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Figure 1: Plots of distributions for the 93NPM1-associated genes coexpression analysis. (a) Cumulative distribution functions of coexpression
levels in the normal and the CML groups. (b) Deviation distribution against different coexpression cutoff points.

Table 2: Mapping coexpressed gene pairs to annotated gene pairs from each biological process.

Number GO terms Fisher exact test Corrected 𝑃 value
a b c d 𝑃 value

1 Translational elongation 59 5 5 59 <0.001 <0.008
2 Translation 89 10 10 89 <0.001 <0.008
3 Cellular protein metabolic process 299 116 116 299 <0.001 <0.008
4 RNA processing 63 28 28 63 <0.001 <0.008
5 RNAmetabolic process 84 39 39 84 <0.001 <0.008
6 mRNA processing 18 11 11 18 0.057 0.456
7 RNA splicing 16 10 10 16 0.082 0.656
8 mRNA metabolic process 18 11 11 18 0.057 0.456
GO: gene ontology. GO terms highlighted in bold text are significantly mapped. a: mapped CML-specific strongly coexpressed pairs. b: mapped CML-specific
weakly coexpressed pairs. c: mapped normal-specific strongly coexpressed pairs. d: mapped normal-specific weakly coexpressed pairs.

The results showed that translational elongation, translation,
cellular protein metabolic process, RNA processing, and RNA
metabolic process were significantly mapped (𝑃 values < 0.05
and corrected 𝑃 values < 0.05).

Translational elongation and translation were related to
gene translation process. Translational elongation is defined
as the successive addition of amino acid residues to a nascent
polypeptide chain in the protein biosynthesis process. Trans-
lation refers to the cellularmetabolic process to formaprotein
by using a mature mRNA molecule to determine the amino
acids sequence in a polypeptide chain. We further plotted
the coexpression networks for the strongly coexpressed gene
pairs in the normal and the CML groups (Figures 2, 3, S1, and
S2). From the coexpression networks, we also observed that
there were more connections in the CML group compared to
the normal group (Figures S1 and S2). Genes identified in the
coexpression networks were classified into two major classes:

(i) ribosomal protein (RP) genes, such as ribosomal protein
L6 (RPL6) and ribosomal protein S28 (RPS28), and (ii)
translation factors, such as eukaryotic translation elongation
factor 2 (EEF2) and eukaryotic translation initiation factor
3, subunit F (EIF3F). The results revealed that nearly all the
coexpressed genes were RP genes, which are responsible for
encoding the ribosomal small and large subunits.

The basic information for the identified translation fac-
tors was obtained from National Center for Biotechnology
Information (NCBI) database. Protein products from EEF2
and EEF1B2 belong to translation elongation factors. EEF2
is a member of the GTP-binding translation elongation
factor family, which is very important for protein synthesis.
This protein can mediate the process of GTP-dependent
translocation of the nascent protein chain from A-site to
P-site on the ribosome. The encoded protein of EEF1B2 is
a guanine nucleotide exchange factor responsible for the
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Figure 2: Simplified coexpression networks for the mapped strongly coexpressed pairs in the translational elongation biological process (see
Figure S1 for the detailed networks). The blue area is for the omitted connections among genes. Genes with red rectangles are not RP genes.
(a) Mapped CML-specific strongly coexpressed pairs. (b) Mapped normal-specific strongly coexpressed pairs.
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Figure 3: Simplified coexpression networks for the mapped strongly coexpressed pairs in the translation biological process (see Figure S2 for
the detailed networks). The blue area is for the omitted connections among genes. Genes with red rectangles are not RP genes. (a) Mapped
CML-specific strongly coexpressed pairs. (b) Mapped normal-specific strongly coexpressed pairs.

transfer of aminoacylated transfer RNAs (tRNAs) to the
ribosome. Eukaryotic translation initiation factor 3, subunit
F, and initiation factor 4B (EIF3F and EIF4B) are translation
initiation factors, which are vital to initiate the translation.

3.3. DAVID Database Annotation for Enriched Cellular Com-
ponent. Based on the same selection criteria (EASE score <
0.05 and FDR < 0.05), 21 significantly enriched GO terms
for cellular components were identified (see Table S3). The
annotated genes involved in each GO term were obtained
and formed the annotated gene pairs. We also mapped
the coexpressed gene pairs to the annotated gene pairs.
The results demonstrated that genes were more likely to
be coexpressed in the CML group when compared to the
normal group among 18 out of 21 GO terms (Table 3). Fisher
exact test showed that ribonucleoprotein complex, ribosome,

cytosolic ribosome, ribosomal subunit, cytosol, cytosolic part,
intracellular non-membrane-bounded organelle, intracellular
organelle part, cytosolic large ribosomal subunit, cytoplasmic
part, cytoplasm, intracellular organelle, nuclear part, nuclear
lumen, intracellular organelle lumen, and nucleolus were
significantlymapped (𝑃 values < 0.05, and corrected𝑃 values
< 0.05).

In these significantly mapped GO terms, five of them
were related to ribosome: ribonucleoprotein complex, ribo-
some, cytosolic ribosome, ribosomal subunit, and cytosolic
large ribosomal subunit. Ribonucleoprotein complex refers to
a macromolecular complex consisting of both proteins and
RNAmolecules. Ribosome contains large and small subunits,
as well as other proteins and RNAs, which is regarded
as a machine for protein biosynthesis. Cytosolic ribosome
describes a ribosome that is located in the cytosol. Ribosomal
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Table 3: Mapping coexpressed gene pairs to annotated gene pairs from each GO term for cellular component.

GO terms Fisher exact test Corrected 𝑃 value
a b c d 𝑃 value

Ribonucleoprotein complex 271 107 107 271 <0.001 <0.018
Ribosome 62 9 9 62 <0.001 <0.018
Cytosolic ribosome 22 4 4 22 <0.001 <0.018
Ribosomal subunit 26 4 4 26 <0.001 <0.018
Cytosol 273 127 127 273 <0.001 <0.018
Cytosolic part 34 8 8 34 <0.001 <0.018
Large ribosomal subunit 14 10 10 14 0.193 3.474
Intracellular non-membrane-bounded organelle 281 157 157 281 <0.001 <0.018
Intracellular organelle part 459 265 265 459 <0.001 <0.018
Cytosolic large ribosomal subunit 10 0 0 10 <0.001 <0.018
Cytoplasmic part 481 273 273 481 <0.001 <0.018
Cytoplasm 704 416 416 704 <0.001 <0.018
Intracellular organelle 819 413 413 819 <0.001 <0.018
Nuclear part 138 73 73 138 <0.001 <0.018
Nuclear lumen 103 57 57 103 <0.001 <0.018
Intracellular organelle lumen 123 80 80 123 <0.001 <0.018
Spliceosome 11 7 7 11 0.159 2.862
Nucleolus 41 19 19 41 <0.001 <0.018
GO: gene ontology. GO terms highlighted in bold text are significantly mapped. a: mapped CML-specific strongly coexpressed pairs. b: mapped CML-specific
weakly coexpressed pairs. c: mapped normal-specific strongly coexpressed pairs. d: mapped normal-specific weakly coexpressed pairs.
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Figure 4: Simplified coexpression networks for the mapped strongly coexpressed pairs in the cytoplasm cellular component (see Figure S3
for the detailed networks). Genes coexpressed with NPM1 and genes encoding small nuclear ribonucleoproteins are shown in the networks.
The other genes and the omitted connections among genes are demonstrated in the yellow and blue areas. (a) Mapped CML-specific strongly
coexpressed pairs. (b) Mapped normal-specific strongly coexpressed pairs.

subunit consists of ribosomal large and small subunits.
Cytosolic large ribosomal subunit refers to the large subunit
that is located in the cytosol.There were more connections in
the CML group compared to the normal group (Table 3). In
addition,most of the coexpressed genes belonged to RP genes
encoding the ribosomal large and small subunits.

The nucleolus is very important for ribosome biogenesis,
containing the proteins for ribosome production [24, 25].
A number of nucleoli are found to be centered around
rDNAs that are transcribed to rRNAs for ribosome [25, 26].
In addition, various proteins responsible for the processing

and assembly of ribosomal large and small subunits are also
included in the nucleolus [25].We found that genes encoding
small nuclear ribonucleoproteins were well connected with
other genes in the CML group: small nuclear ribonucleo-
protein D2 polypeptide 16.5 kDa (SNRPD2), D3 polypeptide
18 kDa (SNRPD3), polypeptide E (SNRPE), and polypeptide
F (SNRPF) (Figures 4 and 5). From the figures, we can see
that these small nuclear ribonucleoprotein genes had more
connectionswith other genes in theCMLnetworks compared
to the normal networks (Figures S3 and S4). It was reported
that NPM1 can shuttle from the nucleus to the cytoplasm
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Figure 5: Simplified coexpression networks for the mapped strongly coexpressed pairs in the nucleolus cellular component (see Figure S4 for
the detailed networks). Genes with yellow rectangles refer to those genes encoding small nuclear ribonucleoproteins. The other genes and
the omitted connections among genes are demonstrated in the yellow and blue areas. (a) Mapped CML-specific strongly coexpressed pairs.
Genes coexpressed with NPM1 are shown in the network. (b) Mapped normal-specific strongly coexpressed pairs.

[27]. NPM1 was also found to direct the nuclear export of
ribosome [25]. When exported to the cytoplasm, the small
and large subunits are combined together to form functional
subunits [25]. In our result, NPM1 was found in both
cytoplasm and nucleolus GO terms for cellular components.
Most importantly, NPM1 was coexpressed with more genes
in the CML group than that in the normal group, including
the RP genes, for example, RPL10A and RPL36A (Figures 4
and 5).

There was no significantly enriched GO term for molecu-
lar function identified according to the same selection criteria
(EASE score < 0.05 and FDR < 0.05).

4. Discussion and Conclusion

In this study, we have identified the overall differences in
the coexpression patterns of those NPM1-associated genes
between the normal and the CML groups. Correlation
coefficients for all the possible gene pairs among these 93
genes were considered to form two different cumulative
distributions. Two-sample KS test was performed to identify
the difference (Figure 1). Firstly, the maximum deviation
(𝐷 = 0.109) between two cumulative distributions indicated
the difference between the normal and the CML groups
structurally. Then, a disease-specific cutoff point (𝐶 = 0.252)
was discovered at the maximum deviation to classify the
coexpressed gene pairs. Functional annotation was further
applied to explore the biological differences.

DAVID database annotation for enriched biological pro-
cess gene ontology demonstrated that genes involved in
translational elongation and translation were more likely to
be coexpressed in the CML group, which were related to
translation process (Table 2).The coexpressed genes that par-
ticipated in these two biological processes covered RP genes
(e.g., RPL6 andRPS28) and translation factors (e.g., EEF2 and
EIF3F) (Figures 2 and 3). The RP genes are responsible for
encoding the ribosomal large and small subunits. Ribosome
is regarded as a machine for protein biosynthesis. There
are some factors needed to assist the translation process,

including initiation factors and elongation factors. In the sig-
nificantly mapped GO terms for cellular components, some
of them were related to ribosome, cytoplasm, and nucleolus
(Table 3 and Figures 4 and 5). The rRNA large and small
subunits are generated in the nucleolus. After exported to the
cytoplasm, these components are combined together to form
the functional ribosome to perform the translation function.
Therefore, both the biological processes and the cellular
components are important. Our results showed that genes
involved in the translation processes, ribosome, cytoplasm,
and nucleolus were more likely to be coexpressed in the CML
group compared to the normal group. We can infer that the
ribosome biogenesis and translation process may be more
active in the CML state.

The translation process, ribosomal protein, and transla-
tion factor have been found dysregulated in the CML state.
Altered mRNA translation is involved in the pathogenesis
of various human cancers, including CML [28]. Ly et al.
reported that the translational regulators, ribosomal protein
S6 and 4E-BP1 (a negative regulator in cap-dependentmRNA
translation process), were constitutively phosphorylated in
CML cells [29]. The encoded protein by eukaryotic trans-
lation initiation factor 4E (EIF4E) is regarded as both a
key translation factor and a promoter for nucleocytoplas-
mic transport of specific transcripts [30]. Overexpression
of EIF4E has been found in CML patients, suggesting its
possible role in neoplastic transformation and the feasibility
as a novel therapeutic approach [30, 31].

Our developed method had two major functions. Two
sets of correlation coefficients in the normal and the CML
groups formed two different cumulative distributions. The
first function was to test if these two sets of data significantly
differed in terms of the overall distributions.The significance
was indicated by the 𝑃 value for the maximum deviation
between two cumulative distributions. A threshold was iden-
tified at the maximum deviation to group the coexpressed
gene pairs into strong and weak coexpression classes, called
the disease-specific cutoff point, which was regarded as the
second function. The widely appreciated cutoffs for the 𝑃
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values such as 0.01 or 0.05 can identify the strong and weak
coexpression classes pair by pair. However, it cannot test the
difference from the overall distributions of two groups.

Gene differential expression analysis applies statistical
methods to select genes with high/low expression levels in the
disease group and low/high expression levels in the normal
state [32]. Individual gene expression value change is able to
indicate the possible relation between this gene and disease
but cannot identify the interaction between different genes
and the plurality of pathogenic genes as a functional module
in the complex disease [33, 34]. In the real situation, genes
and their encoded proteins do not function in isolation, and
they cooperate with each other [35, 36]. Functional changes
such as the alteration in a particular biological process can
be reflected by gene coexpression changes [34]. Compared
to the gene differential expression analysis, coexpression
analysis is able to identify the functional relationship among
genes during signal transduction and group genes involved
in a functional gene set or a particular pathway. Hence,
the coexpression analysis is more useful for analyzing the
underlyingmechanisms of diseases.The altered coexpression
patterns in the CML state with respect to the normal state can
be used to identify the dysregulated pathways more easily.

We have developed a novel method to identify a disease-
specific cutoff point for coexpression levels that classified the
coexpressed gene pairs. This distribution-based classification
considered all the gene pairs to partition them into different
locations based on their different coexpression levels and
different groups.We applied thismethod to explore the differ-
ence in the coexpression patterns of those NPM1-associated
genes between the normal and the CML groups. Our method
effectively identified the statistical differences from the over-
all structure. The different coexpression pattern compared to
the normal state reflected the biological alterations in CML.
Moreover, dysregulated ribosomal synthesis and translation
process were found in the CML state compared to the normal
group. Our developed method and significant findings may
provide useful information for the exploration of novel
mechanisms and the treatment of cancer.
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