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Substructuring Approach to the Calculation of High order Eigensensitivity 

 

Abstract 

Calculation of eigensensitivity is usually time-consuming for a large-scale structure. This paper 

develops a substructuring method for computing the first, second and high order eigensensitivity. 

The local area of a structure is treated as an independent substructure to be analyzed. The 

eigensensitivity of global structure with respect to a design parameter are calculated from the 

eigensensitivity of a particular substructure that contains the design parameter, thus allowing a 

significant reduction in computational cost. The accuracy and efficiency of the substructuring 

method is proved by a frame structure and a highway bridge.  
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Nomenclature 

K, M Stiffness matrix, mass matrix 

i , Λ  The ith eigenvalue, matrix of eigenvalues 

i , Φ  The ith eigenvector (mode shape), matrix of eigenvectors 

Φ  Matrix of expanded mode shapes 

r Elemental physical parameter 

  Interface force along the boundaries of the substructures 

C Connection matrix 

N Degrees of freedom of the global structure 

NS Number of the independent substructures 

NP Size of the primitive matrix, the degrees of freedom of all substructures 

 jn  Degrees of freedom of the jth substructure 

z Participation factor of the substructural eigenmodes 

Ψ  Equivalent stiffness matrix 

 

Superscripts 

(j) The jth substructure 

p Primitive matrix or vector 

T Transpose of matrix or vector 

Subscripts 

m Master modes 

s Slave modes 

i The ith modes 
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1. Introduction 

 

Structural health monitoring (SHM) systems identify potential structural damages by detecting the 

changes in structural parameters. The changes in structural parameters are usually identified by 

adjusting parameters of an a priori finite element (FE) model of a structure to reconcile its response 

with a set of measured modal data through an optimization process. To achieve this, the 

eigensolutions and eigensensitivity of the analytical model need to be calculated repeatedly [1, 2]. 

The eigensensitivity provides an estimate of the changes in the eigensolutions caused by the 

perturbations of design parameters of structural model. In optimization process, the eigensensitivity 

serves for indicating the searching direction of an optimization algorithm, which endows the more 

sensitive parameter (with respect to the objective function) a higher priority [3].  

 

Eigensensitivity is most commonly calculated at the global structure level. Fox and Kapoor [4] firstly 

utilized the modal method to determine the first order eigenvalue and eigenvector derivatives by 

considering the changes of the physical parameters in the mass and stiffness matrices. The modal 

method requires the superposition of eigenmodes of the system to calculate the interested eigenvalue 

and eigenvector derivatives [5, 6]. Nelson [7] proposed an exact method in calculating the 

eigenvector derivatives of one mode by using the modal parameters of that mode only. Nelson's 

method has been further improved in terms of computational efficiency [8], and has also been 

generalized by taking into account the rigid body modes, and the close or repeated modes [9, 10]. 

Another approach for eigensensitivity computation is based on an algebraic formulation [11, 12]. The 

derivatives of each eigenvalue and its associated eigenvector are computed simultaneously by 

solving an algebraic system of equations. 
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Other than the computation of first order eigensensitivity, the second order or high order 

eigensensitivity is required when there are large changes in design parameters or when the systems 

has closely spaced natural frequencies. Brandon [13] calculated the second order eigensensitivity 

using the modal method. Friswell [14] extended Nelson’s method to calculate the second and higher 

order eigenvector derivatives, by repeatedly differentiating Nelson’s eigenequation. Based on the 

algebraic approach, Choi et al. [15] computed the first, second and high order derivatives of 

eigenvalues and eigenvectors associated with repeated eigenvalues. Guedria et al. [16] generalized 

Nelson's method to calculate the high order derivatives of damped and asymmetric systems, and 

Chouchane et al. [17] calculated the high order derivatives for damped and asymmetric systems 

using algebraic approach. 

 

Nevertheless, a large-scale practical structure is usually represented by a complex model, involving a 

large number of degrees of freedom (DOFs) and undetermined structural parameters. In model 

updating or optimization process, structural parameters in the analytical model are iteratively 

modified to satisfy the objective functions in an optimal way. For a large-scale structure, it is 

computationally expensive to repeatedly extract the eigensensitivity from the large-size global 

system matrices.  

 

Substructuring technology is preferable for the analysis of large complex structures [18-26]. Firstly, 

it is possible to analyze each substructure independently, or even concurrently with parallel 

computing. It is much easier and quicker to analyze the smaller substructures than a large global 

structure. While identical substructures exist, the computation load is reduced further by analyzing 

only one of the repeated substructures. Secondly, when local area of a structure is focused on, it is 

more efficient to adjusting one or more concerned substructures iteratively to reconcile the measured 

data. The substructuring methods allow the eigensolutions and eigensensitivity of the modified 
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substructures to be analyzed iteratively, whereas the unmodified substructures remain unchanged 

during the iterative model updating process. Thirdly, the number of parameters in each substructure 

is much smaller than that in the global structure. This improves the convergence of optimization 

process [23-26]. 

 

In general, substructuring methods include three steps: first, the global structure is separated into 

some manageable smaller substructures, each of which has far fewer DOFs and unknown parameters 

than the global structure; second, the substructures are analyzed independently to obtain designated 

solutions (for example, substructural eigenpairs and substructural derivative matrices); third, the 

solutions of the substructures are assembled to obtain the solutions of the global structure by 

imposing constraints on the interface of the adjacent substructures [26].  

 

Kron [27] initiated a substructuring method for calculating the eigensolutions of systems with a large 

number of variables in a piece-wise manner. Kron’s substructuring method has a concise form, and it 

has been further developed by a number of researchers [25-26, 28-29]. This paper extends the 

substructuring method to derive the eigenpair sensitivities with respect to structural parameters, 

including the first, second and high order eigensensitivity. The global structure is divided into 

manageable substructures. The derivative matrices of a few substructural eigensolutions with respect 

to a design structural parameters are computed for independent substructures. Afterwards, the 

substructural eigensensitivity matrices are assembled to recover the eigensensitivity of the global 

structure. As the substructural eigensensitivity matrices are zeros for those substructures that do not 

include the design parameter, the eigensensitivity of global structure is determined from the 

substructural eigensensitivity of a concerned substructure which contains the design parameter. Since 

it is much easier and quicker to analyze a small substructure than the large global structure, the 
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proposed substructuring method improves the computational efficiency significantly. The proposed 

substructuring method for eigensensitivity is applied to a three-span frame structure and a highway 

bridge to verify its efficiency and accuracy. 

 

2. Substructuring method for eigensolution 

In general, a global structure with N DOFs is divided into NS independent substructures. The jth ( j=1, 

2, …, NS ) substructure with n(j) DOFs has the stiffness matrix  jK  and mass matrix  jM . The n(j) 

eigenpairs of the jth substructure are 

  
     

 
 

1 2Diag , ,..., j

j j j j

n
     Λ , 

     
 
 

1 2, ,..., j

j j j j

n
     Φ  

  
       T

j j j j   Φ K Φ Λ , 
       T

j j j j   Φ M Φ I  (1) 

The eigensolutions of the independent substructures are diagonally assembled into the primitive 

forms 

  
     1 2Diag , ,..., SNp    Λ Λ Λ Λ , 

     1 2Diag , ,..., SNp    Φ Φ Φ Φ
 

(2)
 

Hereinafter, superscript ‘p’ denotes the primitive matrices, which directly encompass the variables of 

the independent substructures without imposing any constraints on them. The partitioned 

substructures are then reconnected by the virtual work principle and geometric compatibility, and the 

eigenequation of the assembled global structure is written as [28]. 

  

p

T τ

      
         

z 0Λ I Γ

0Γ 0   
(3) 

where 
Tp   Γ CΦ , τ  represents the internal connecting forces between the adjacent substructures, 

  is the eigenvalue of the global structure, and z is regarded as the mode participation factor that 

indicates the contribution of the substructural eigenmodes to the eigenmodes of the global structure. 
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After solving the reduced eigenequation, the eigenvectors of the global structure Φ  can be recovered 

by  pΦ Φ z  and by removing the identical elements of Φ  at the interfaces. C is the connection 

matrix, which constraints the interface DOFs of adjacent substructures to move jointly [28]. Each 

row of matrix C contains two non-zero elements, which are 1 and -1 for a rigid connection. Kron’s 

substructuring method considers the connection condition by the matrix C, and takes a concise form.  

 

In Eq. (2), the primitive matrices p  Λ  and p  Φ  are assembled from the complete eigensolutions 

of all substructures. It is time-consuming to calculate the complete eigensolutions of all substructures 

for a large-scale structure. Here the complete modes of each substructure are partitioned into a 

‘master’ part and a ‘slave’ part [26]. The first few lower eigenmodes in each substructure are retained 

as the master modes, and the residual higher eigenmodes are discarded as the slave modes which will 

be compensated for with the first order residual flexibility. For example, the eigenmodes of the jth 

substructure ( j=1, 2, …, NS ) are partitioned into m(j) master eigenpairs (represented by subscript ‘m’) 

and s(j) slave eigenpairs (represented by subscript ‘s’) as 

     
 

 
1 2Diag , ,..., j

j j j j
m m

     Λ ,  
     

 
 

1 2, ,..., j

j j j j
m m

     Φ
, 

 
 

 
 

 
   

 
+1 2

Diag , ,...,j j j j

j j j j
s m m m s

  
 

   Λ , 
 

 
 

 
 

   
 

+1 2
, ,...,j j j j

j j j j
s m m m s

  
 

   Φ
  

(4)
 

Assembling the master eigenpairs and the slave eigenpairs respectively, we have 

     1 2Diag , ,..., SNp
m m m m

   Λ Λ Λ Λ ,  
     1 2Diag , ,..., SNp

m m m m
 
 Φ Φ Φ Φ=

,
 

     1 2Diag , ,..., SNp
s s s s

   Λ Λ Λ Λ ,  
     1 2Diag , ,..., SNp

s s s s
 
 Φ Φ Φ Φ=

,
 

Tp
m m   Γ CΦ , 

Tp
s s   Γ CΦ

,
 

 

1

SN
jp

j=

m m ,  

1

SN
jp

j=

s s ,      j j jm s n  ,  1,2,..., Sj N   (5) 
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Partitioning Eq. (3) according to the master and slave modes, it can be expanded to 

   

τ

p
m m m

p
s s s

T T
m s




      
           

          

Λ I 0 Γ z 0

0 Λ I Γ z 0

Γ Γ 0 0
 

(6) 

The second line of Eq. (6) gives 

    1
τp

s s s


 z Λ I Γ
 

(7) 

Substituting Eq. (7) into Eq. (6) leads to 

  
  1

τ

p
m m m

T T p
m s s s






           
        

Λ I Γ z 0

0Γ Γ Λ I Γ
 

(8) 

 

In general, the lower eigenmodes of the global structure are usually required, and the required 

eigenvalues   is far less than the slave eigenvalues ( p
sΛ ) when the master modes are chosen 

properly [26]. In consequence, Eq. (8) is approximated as 

  
  1

τ

p
m m m

T T p
m s s s




           
       

Λ I Γ z 0

0Γ Γ Λ Γ
 

(9) 

Representing τ  with mz  from the second line of Eq. (9) and substituting it into the first line of Eq. (9), 

the eigenequation is simplified to 

  
   m mΨ z z

  
(10) 

where Ψ  is regarded as the equivalent stiffness matrix and is given by 

  
1p T

m m m  Ψ Λ Γ Γ   and     1 1 TT p p p p T
s s s s s s

 
    Γ Λ Γ CΦ Λ Φ C

 
(11) 

In Eq. (11),   1 Tp p p
s s s


  Φ Λ Φ  is the first order residual flexibility, which is expressed by diagonally 

assembling the substructural stiffness matrices and master modes as follows. 

                      1 11 11 1 1 1 1Diag ,..., S S S S
TTT N N N Np p p

s s s m m m m m m

                    
Φ Λ Φ K Φ Λ Φ K Φ Λ Φ

 
(12) 
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It is noted that, if a substructure is free-free after partition, then the substructural stiffness matrix is 

singular, and the inverse of substructural stiffness matrix (in Eq. (12)) does not exist. In this case, 

rigid body modes are included in Eq. (12) to calculate the residual flexibility [30]. Detailed 

procedures for calculating the residual flexibility of free-free substructures can be found in the 

Appendix.  

 

In Eq. (10), mode participation factor  mz  leads to the eigenvectors of the global structure via the 

transform of  p
m mΦ Φ z . The reduced eigenequation (Eq. (10)) takes the size of pm , which is 

much smaller than that of the original (Eq. (3)). 

 

In the present substructuring method, only the master modes (some lower modes) of the 

substructures are employed to form the reduced eigenequation (Eq. (10)), whereas the slave modes 

(higher modes) are not calculated and are compensated with the first order residual flexibility. In Eq. 

(8), the nonlinear item   1p
s 


Λ I  is approximately represented by the first item of its Taylor 

expansion   1p
s


Λ [26], and the error introduced by this approximation is 

Error =    
   

   

1 1
1 1

1 1

1 1

p p

p p
s s

p p
s s

p p
s ss s







 

   
   
 
   

Λ Λ

Λ I Λ

Λ Λ



 

   

   
   

1 1

Diag

p p

p p
s s

p p
s si i

p p
s ss s









 
 

   
          
 

  

Λ Λ

Λ Λ

Λ Λ



  

(13) 
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     Relative error = 
   

 
 

Diag Diag
1

p p
s si i

p
s ip

s i


 



 
 

  
       

 
 

Λ Λ

Λ
Λ

    

( i=1, 2, …, sp) (14) 

Therefore,  

  Largest relative error =  min p
s


Λ

 

(15) 

It means that, the relative error of this substructuring method depends on  min p
s


Λ

. If the required 

eigenvalues of global structure ( ) are far less than the minimum value of p
sΛ , the introduced error 

will be insignificant. That is to say, the minimum value of p
sΛ  controls the accuracy of the proposed 

substructuring method. As p
sΛ  includes the slave eigenvalues of the substructures, retaining more 

master modes in the substructures can increase  min p
sΛ , and thus improves the computation 

accuracy. The required number of master modes in each substructure depends on the accuracy 

requirement of a structure.  

 

The division formation of the substructures influences the computational efficiency of the 

substructuring method. Dividing a structure into excessive or insufficient number of substructures are 

both undesirable. Too few substructures might introduce large-size substructures. Analysis of large-

size independent substructures is a heavy work. However, excessive substructures might introduce a 

large transformation matrix, and accordingly cause the assembly of the substructures to the global 

structure time-consuming. One should trade off the number of the substructures and the size of each 

substructure. In Ref. 26, the authors has discussed the division of substructures and selection of 

master modes based on a numerical structure and a practical structure. The optimum number of 
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substructures is usually determined through an trial and error process. A few trials may be helpful 

before model updating and/or optimization process performed. As the eigensolutions and 

eigensensitivity are usually calculated with respect to a large number of undetermined parameters 

and they are iteratively calculated during optimization process, these trials will consume insignificant 

computational effort comparing with those consumed by model updating or optimization process. 

The optimum number of substructures determined by an elegant mathematical sense will be studied 

in future work. 

 

3. First order eigenvalue and eigenvector derivatives 

The first order eigensensitivity of the ith mode ( i=1, 2, ..., N ) with respect to a design structural 

parameter will be derived in this section. The design parameter is chosen to be the elemental stiffness 

parameter, for example the bending rigidity of an element, and is denoted as variable r in the Rth 

substructure.  

 

3.1 Eigenvalue derivative 

For the ith mode, the eigenequation (Eq. (10)) can be rewritten as 

  
   1p T

m m m i i i    Λ Γ Γ z z  (16) 

Eq. (16) is differentiated with respect to the design parameter r as 

  
   

1

1

p T
m m m ip T i

m m m i ir r

 
 




               

Λ Γ Γ Iz
Λ Γ Γ I z 0

 
(17) 

Pre-multiplying by  T

iz  on both sides of Eq. (17) gives the first order derivative of eigenvalue i  

with respect to design parameter r 

  
   

1p T
T m m mi

i ir r


    

 

Λ Γ Γ
z z

 
(18) 

where
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1p T
m m m

r

    


Λ Γ Γ
1 1 1 1

p T
T Tm m m
m m m mr r r r

        
   

   
Λ Γ Γ

Γ Γ Γ Γ
 

(19) 

The derivative matrices 
p
m

r



Λ

, m

r



Γ

, and 
r




 are formed from the eigenvalue derivatives, 

eigenvector derivatives, and residual flexibility derivatives of the substructures. Since the 

substructures are independent, these derivative matrices are calculated within the Rth substructure 

solely, while those in other substructures are zeros, i.e., 

  
 p R

m m

r r

 
 
 
      
 
 
 

0 0 0

Λ Λ
0 0

0 0 0

 

    

 

    

 

,  
 T p R

m m m

r r r

 
 
 
         
 
 
 

0 0 0

Γ Φ ΦC C 0 0

0 0 0

 

    

 

    

 

 

  

          
1

1

C C C Diag C

Tp p p T
R R Rs s s

T Ts s s

r r
r






 
 
 
             
  

 
 
 
 

0 0 0

Φ Λ Φ Φ Λ Φ
0 0

0 0 0

 

    

 

    

   

          1 1

C Diag C

TR R R R
Tm m m

r

 

 
 
 
       
 

 
 
 
 

0 0 0

K Φ Λ Φ
0 0

0 0 0

 

    

 

    

 

 (20)

 

Treating the Rth substructure as an independent structure, substructural eigenvalue derivatives 
 R
m

r



Λ

 

and substructural eigenvector derivatives 
 R
m

r



Φ

 can be calculated using traditional methods, such as 

modal method [4] or Nelson’s method [7]. As the stiffness matrix of a free-free substructure is 



  14

singular, the rigid body modes are employed to form the derivative of free-free substructural residual 

flexibility in the Appendix. 

 

3.2 Eigenvector derivative 

As the ith eigenvector of the global structure can be recovered by 

   p
i m iΦ Φ z  (21) 

the eigenvector derivative of the ith mode with respect to parameter r can be differentiated as 

  
 

p
pi m i

i mr r r

         

Φ Φ z
z Φ

 
(22) 

In Eq. (22), the eigenvector derivatives of the global structure can be regarded as the superposition of 

substructural eigenvectors p
mΦ  and substructural eigenvector derivatives 

p
m

r



Φ

 of the independent 

substructures, and i

r

 
  

z
 and z act as the weights. Once i

r

 
  

z
 is available, the eigenvector 

derivative of the ith mode of the global structure can be obtained. 

 

i

r

 
  

z
 is separated into the sum of a particular part and a homogeneous part as 

  
   i

i i ic
r

     

z
v z

 
(23) 

where ci is a participation factor. Substituting Eq. (23) into Eq. (17) leads to 

  
      

1

1

p T
m m m ip T

m m m i i i i ic
r

 
 




           

Λ Γ Γ I
Λ Γ Γ I v z z

 
(24) 

Given that    1p T
m m m i i     Λ Γ Γ I z 0 , Eq. (24) can be simplified to 

  
   i i i   Ψ I v Y

 
(25) 

where 
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1p T

m m m i

i ir

      


Λ Γ Γ I
Y z  

In consequence, the vector  iv  can be solved from Eq. (25).  

 

The solution of ci requires the orthogonal condition of eigenvector      1
T

i i z z , which is 

differentiated with respect to r as 

  

       
0

T
Ti i

i ir r

 
 

 
z z

z z
 

(26) 

Substituting Eq. (23) into Eq. (26), participation factor ci is thus obtained as 

  
        1

2
T T

i i i i ic   v z z v
 

(27) 

Given the vector  iv  and participation factor ci, i

r

 
  

z
 can be formed from Eq. (23). Afterwards, 

the global eigenvector derivatives can be recovered from Eq. (22).  

 

The eigenvector derivatives of the global structure is calculated by analyzing the Rth substructure 

and a reduced eigenequation. It is similar to the calculation of the eigenvalue derivatives. Using the 

proposed substructuring method, the calculation of first order eigenvalue and eigenvector derivatives 

of the global structure are equivalent to analyzing an independent substructure and a reduced 

eigenequation.  

 

4. Second order eigenvalue and eigenvector derivatives 

In this section, the second order eigenvalue and eigenvector derivatives are formulated using the 

substructuring method. 
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4.1 Eigenvalue derivative 

Eq. (10) is differentiated with respect to two design parameters rj and rk as  

  

           2 2

2
i i i i

i i
j k j k j kr r r r r r

 


     
   

     

Ψ I Ψ I z z
z Ψ I 0

 
(28) 

Pre-multiplying by  T
iz  on both sides of Eq. (28) gives the second order eigenvalue derivative 

  
               2 2

i ii iT T Ti
i i i i

j k j k j k k jr r r r r r r r

       
  

       

Ψ I Ψ Iz zΨ
z z z z

 
(29) 

In Eq. (29), the first order derivatives ( such as 
 i

jr

 



Ψ I
 and 

 i
kr




z
) has been calculated in 

Section 3, and can be re-used here directly. The second order derivative 
2

j kr r


 

Ψ
 is contributed by the 

second order eigenvalue derivatives, eigenvector derivatives and residual flexibility derivatives of 

the independent substructures as 

  

2

j kr r




 
Ψ

2 1p T
m m m

j kr r

    
 

Λ Γ Γ  2 12 Tp
m mm

j k j kr r r r

 
 
   

Γ ΓΛ
 (30) 

where 

 2 1 T
m m

j kr r

 

 

Γ Γ 2 1 1

2
T

T m
m m m

j k j kr r r r

             
     

Γ
Γ Γ Γ

1 2
1 12

T T T
m m m m

m m
k j k j j kr r r r r r


 


 

        
       

Γ Γ Γ Γ
Γ Γ (31) 

and
 

 

2 1

j kr r

     
 

2
2

j kr r

  


 
32

j kr r

    


 

    1 1

2

Tp p p p
m m m

T

j kr r


 


    

 
 

K Φ Λ Φ
C C 32

j kr r

    


 
(32) 

Eqs. (30)-(32) show that, the derivative matrix 
2

j kr r


 

Ψ

  

is contributed by the second order derivatives 

of substructural master modes (
2 p

m

j kr r


 
Λ

, 
2 T

m

j kr r


 
Γ

) and the multiplication of the first order derivative of 
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substructural master modes, for example, the multiplication of 
1

jr

    


 and 
T
m

kr



Γ

, and the 

multiplication involved 
T
m

jr



Γ

 and 
T
m

kr



Γ

. 

 

If the design parameters rj and rk are located in the same substructure (for example, the Rth 

substructure), the second order derivatives of substructural eigenmodes are required for the Rth 

substructure solely, while those corresponding to the other substructures are zero, i.e.,  

  

 22 Rp
mm

j kj k r rr r

 
 
 
 

  
    

 
 
  

0 0 0

ΛΛ
0 0

0 0 0

 

    

 

    

 

,       

 22 2 RT p
mm m

j kj k j k r rr r r r

 
 
 
  

   
      

 
 
  

0 0 0

ΦΓ Φ
0 0C C

0 0 0

 

    

 

    

 

,  

  

          1 12
2

T Tp p p R R R
s s s

s s s

j k
j k

r r r r

 

 
 
 
              
 
 
  

0 0 0

Φ Λ Φ Φ Λ Φ
0 0

0 0 0

 

    

 

    

 

 
(33) 

In case that rj and rk are located in different substructures, the second order derivative matrices 

2 p
m

j kr r


 
Λ

, 
2 p

m

j kr r


 
Φ

 and 
  12 Tp p p

s s s

j kr r


   

 

Φ Λ Φ
 are zero-matrix. 

 

The primitive matrices of the substructural first order derivatives (for example, 
jr




 and 
T
m

kr



Γ

) are 

diagonal assembly of the derivative matrices of the independent substructures as Eq.(20). They are 

non-zeros only in the sub-block corresponding to the substructure which includes the design 
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parameters rj or rk. It means that, if rj and rk are located in different substructures, the multiplication 

of the first order derivative matrices are zero-matrix as well.  

 

In consequence, if the design parameters rj and rk are located in different substructures, all items in 

2

j kr r


 

Ψ
 are zeros, i.e., 

2 122 Tp
m mm

j k j k j kr r r r r r

      
     

Γ ΓΛΨ
0 . In this case, the second order derivative of 

the global eigenvalue is determined by the first order derivative matrices of Eq. (29) as 

  

     2

2
T i ii

i
j k j kr r r r

   


   

Ψ z
z

 
(34)

 

Those first order derivative matrices can be re-used directly from the calculation of lower order 

eigensensitivity in Section 3. If the design parematers rj and rk are located in the same substructure 

(for example the Rth substructure). The second order eigenvalue derivatives of the global structure 

(Eq. (29)) are calculated from the second order derivatives of the master modes of the Rth 

substructure solely. 
2 p

m

j kr r


 
Λ

 and 
T
m

j kr r


 
Γ

 are calculated within the Rth substructure only by treating the 

Rth substructure as an independent structure [14].  

 

4.2 Eigenvector derivative 

Differentiating Eq. (21) with respect to the two parameters rj and rk, the second order eigenvector 

derivative of the ith mode is acquired as 

  

       22 2 p p p
i i ipi m m m

i m
j k j k j k k j j kr r r r r r r r r r

     
   

         
z z zΦ Φ Φ Φ

z Φ
 

(35) 

All items are available based on the previous analysis, except 
2

i

j kr r


 

z
. As before, 

 2
i

j kr r


 

z
 is expressed 

as the sum of a particular part and a homogeneous part as 
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2

, ,
i

ii j k i j k
j k

c
r r


 

 
z

v z  (36) 

 

The double-differentiated eigenequation (Eq. (28)) is rewritten as 

     
  

2

,
i

i i j k
j kr r




 
 

z
Ψ I Y  (37) 

where 

  
          2

, 2
i i i

ii j k
j k j kr r r r

     
  

   

Ψ I Ψ I z
Y z  (38) 

  ,i j kY  can be obtained directly using the interim results when calculating the eigenvalue 

derivatives. 

 

Substituting Eq. (36) into Eq. (37) gives 

  
       , ,i i j k i j k Ψ I v Y

 
(39) 

from which   ,i j kv   can be calculated. 

 

Differentiating the orthogonality equation     1
T

i i z z  with respect to rj and rk , we have 

  

       2

2 0
T

Ti i i
i

k j j kr r r r

   
  

     

z z z
z

 

(40) 

Substituting Eq. (36) into Eq. (40) leads to 

  

             , ,2 0
T

Ti i
i ii j k i j k

k j

c
r r

  
   

   

z z
z v z

 

(41)

 

The participation factor ci(j,k) is obtained as  
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        , ,

T
Ti i

ii j k i j k
k j

c
r r

 
  

 
z z

z v
 

(42) 

Given {vi(j,k)} and ci(j,k), the second order eigenvector derivative can be recovered from Eq. (35) and 

Eq. (36). The second order eigenvector derivative is obtained by analyzing the master modes of the 

Rth substructure and the reduced eigenequation (Eq. (28)). 

 

5. High order derivatives 

Due to the symmetric property and simple form of the reduced eigenequation (Eq. (10)), it is easy to 

derive the high order derivatives of the eigensolutions by directly re-differentiating the reduced 

eigenequation. 

5.1 Eigenvalue derivative 

Eq. (16) is differentiated with respect to k design parameters (r1 ... rk) as  

 

               1 1

1 2 1 2 1 1 2 3 1 2

k k k k
i i ii i i

i i
k k k k kr r r r r r r r r r r r r r

  


 



       
     

             

Ψ I Ψ I Ψ Iz z z
z Ψ I 0

   
(43) 

Premultiplying by  T
iz  on both sides of Eq. (43), the kth order eigenvalue derivative is obtained as 

               1 1

1 2 1 2 1 2 1 1 2 3

k kk k
i ii iT T Ti

i i i i
k k k k kr r r r r r r r r r r r r r

   



     
   

             

Ψ I Ψ Iz zΨ
z z z z

     
(44) 

In Eq. (44), the kth order eigenvalue derivative comprises two parts: the kth order derivative 

1 2

k

kr r r


  

Ψ


, and the multiplication of the derivatives of order (k-1) and lower which can be re-used 

directly from the calculation of lower order eigensensitivity.  

 

Similar to the second order derivative, the kth order derivative 
1 2

k

kr r r


  

Ψ


 is non-zero only if the k 

parameters ( r1, r2 ,..., rk ) are located in the same substructure (for example, the Rth substructure). In 
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this case, the kth order derivatives of substructural master modes of only the Rth substructure are 

calculated to assemble the kth order eigensensitivity of the global structure. Otherwise, if the k 

parameters ( r1, r2 ,..., rk ) are located in different substructures, the kth order eigensensitivity is 

determined by the derivatives of order (k-1) and lower of substructural master modes. It is seen that, 

if there are m design parameters among ( r1, r2 ,..., rk ) located in the Mth substructure, the 

substructural derivatives of order m are calculated within the Mth substructure to form the kth order 

eigensensitivity of global structure. 

 

5.2 Eigenvector derivative 

Differentiating Eq. (21) with respect to k parameters ( r1, r2 ,..., rk ), the kth order eigenvector 

derivative of the ith mode is acquired as 

  

       11

1 2 1 2 1 2 1 1 2 3 1 2

k kk k p k p p
i i ipi m m m

i m
k k k k k kr r r r r r r r r r r r r r r r r





     
    

                
z z zΦ Φ Φ Φ

z Φ
    

(45) 

The item
 

1 2

k
i

kr r r


  

z


 are required to achieve the kth order eigenvector derivative of the global 

structure. 
 

1 2

k
i

kr r r


  

z


 is written as the particular part and homogeneous part as  

  
 

      
1 2 1 2, ,... , ,...

1 2
k k

k
i

ii r r r i r r r
k

c
r r r


 

  
z

v z


 (46) 

In Eq. (46),   
1 2, ,... ki r r rv  is calculated by substituting Eq. (46) into Eq. (43) and pre-multiplying by 

 T
iz  on both sides of it as 

   
       

1 2 1 2, ,... , ,...k ki i r r r i r r r Ψ I v Y
 

(47) 

where  



  22

                
1 2

1 1

, ,...
1 2 1 2 1 1 2 3

k

k k k
i i ii i

ii r r r
k k k kr r r r r r r r r r r

   



       
     
            

Ψ I Ψ I Ψ Iz z
Y z 

  
 (48) 

  
 

 1 2, ,... ki r r rc  is calculated from the kth order derivative of the orthogonal equation     1
T

i i z z  with 

respect to k parameters ( r1, r2 ,..., rk ), which gives  

  
   

 1 2, ,...
1 2

k

k
T i

i i r r r
k

d
r r r




  
z

z


 

(49)

 

and  1 2, ,... ki r r rd  contains terms involving derivatives of order (k-1) and lower as well. Thus substituting 

Eq. (46) into Eq. (49) gives the scalar  

  
        

1 2 1 2 1 2, ,... , ,... , ,...k k k

T

ii r r r i r r r i r r rc d  z v
 

(50) 

In consequence, the kth order eigenvector derivative of the global structure are formulated from 

  
1 2, ,... ki r r rv  and  1 2, ,... ki r r rc .  

 

It is seen that, the proposed substructuring method calculates the first, second and high order 

eigenvector derivatives by analyzing the independent substructures that contains the design 

parameters and a reduced eigenequation. As the calculation of eigenvector derivatives usually 

consumes dominant computation resource in the common global method, this substructuring method 

improves the computational efficiency significantly, which will be demonstrated by numerical 

examples in Sections 6 and 7.  

6. Case study 1: frame structure 

A three-span frame structure is employed to illustrate the effectiveness of the proposed 

substructuring method in calculation of eigensensitivity. The frame structure comprises 160 two-

dimensional beam elements as labeled in Fig. 1(a). There are 140 nodes and 408 DOFs in total. The 
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material constants of the beam elements are chosen as: bending rigidity (EI) =170 106 Nm2, axial 

rigidity (EA) = 2500 106 N, mass per unit length (ρA) = 110 kg/m, and Poisson's ratio = 0.3.  The 

frame is disassembled into three substructures (NS = 3) when it is divided at 8 nodes as shown in Fig. 

1(b). After division, there are 51, 55, 42 nodes in the three substructures with the DOFs of n(1)=153, 

n(2)=165, n(3)=114, respectively. 

 

The bending rigidity of one element is chosen as the design parameter, which is labeled Element 154 

and denoted r154 in Fig. 1(a). The first 30 modes of each substructure are chosen as the master modes 

to calculate the eigensensitivity of the first 10 modes of the global structure with respect to r154. The 

design parameter r154 is located in the second substructure. The substructural eigensensitivity of the 

master modes of the second substructure (
 2

154

m

r



Λ

 and 
 2

154

m

r



Φ

) are calculated, whilst the substructural 

eigensensitivity of other substructures are zeros (
 1

154

0m

r





Λ

, 
 3

154

0m

r





Λ

,
 1

154

0m

r





Φ

,
 3

154

0m

r





Φ

). 

Afterwards, the substructural eigensensitivity are assembled to form the eigensensitivity of the global 

structure according to the proposed substructuring approach.  

 

To verify the accuracy of the proposed substructuring method in calculation of eigensensitivity, the 

traditional Nelson’s method [7] is employed to calculate the eigensensitivity of the global structure 

directly, that is, without division into individual substructures. The results from the proposed 

substructuring method and the traditional global method are compared in Table 1. It is seen that, the 

relative errors of all eigenvalue derivatives are less than 2%, which is accurate enough for most 

practical engineering applications.  

 

Following Modal Assurance Criterion (MAC) [31], the similarity of the eigenvector derivatives 

obtained with the global method and the proposed substructuring method is denoted as the 
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Correlation of Eigenvector Derivatives (COED), and is given by 

  

2

COED ,

T

i i

i i
TT

i i i i

r r

r r

r r r r

 
 

   

   
                                                             





 
 

(51) 

where i

r

 
  

 represents the eigenvector derivative obtained with the traditional global method, and 

i

r

 
  


 that with the proposed substructuring method. In this example, the COED values for all 

modes are above 0.99 as shown in Table 1, which indicates that the proposed method can achieve 

good accuracy of eigenvector derivative calculation.  

 

Afterwards, the second order eigenvalue and eigenvector derivatives are calculated using 

substructuring method. The first 30 modes are retained in each substructure, to calculate the second 

order eigensensitivity for the first 10 modes of the global structure. The eigensensitivity with respect 

to the parameter pairs of (r146, r146), (r146, r148), and (r146, r154) in Fig. 1(a) are calculated in Table 2. 

The second order eigensolution derivatives with respect to (r146, r146) represent the case that the two 

design parameters are identical. The eigensolution derivatives with respect to (r146, r148) gives the 

results with respect to two different parameters in the same substructure, while (r146, r154) with the 

case that the two parameters are located in different substructures. When the parameter pairs of (r146, 

r146) and (r146, r148) are design parameters, the second order derivatives of substructural master modes 

of Substructure 1 are calculated to form the eigensensitivity of global structure, as the two design 

parameters are located in the same substructure. When the parameters (r146, r154) are design 

parameters, the first order derivatives of substructural master modes of Substructure 1 and 

Substructure 2 are used to form the global eigensensitivity. The results from previous step in 

calculation of first order eigensensitivity can be re-used here directly. 
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As before, the second order eigenvalue and eigenvector derivatives of the first 10 modes are 

calculated using traditional global method for comparison [14]. The second order eigensensitivity 

from the substructuring method and the global method are compared in Table 2. It is seen that, the 

relative differences of second order eigenvalue derivatives between the proposed substructuring 

method and the global method are less than 3%. Following the comparison of first order eigenvector 

derivative, the accuracy of the second order eigenvector derivative is denoted by COED as well, and 

is given by 

  

2
2 2

2 2

2 2 2 2

COED ,

T

i i

j k j k
i i

T T
j k j k

i i i i

j k j k j k j k

r r r r

r r r r

r r r r r r r r

 

 

   

       
                                                                                              





 
 

(52) 

where 
2

i

j kr r

  
    

 represents the second order eigenvector derivative from the global method, and 

2
i

j kr r

  
    


 that with the substructuring method. The COED values of most modes are above 0.98 in 

Table 3, which accuracy of the second order eigenvector derivatives are sufficient for practical 

application. The proposed substructuring method achieves good accuracy in calculation of first order 

and second order eigensensitivity.  

 

7. Case study 2: practical bridge 

To illustrate the computational efficiency of the proposed substructuring method in real structures, a 

practical bridge, the Balla Balla River Bridge in Western Australia is employed here [32]. An FE 

model based on design drawings was established. The FE model of this bridge has 907 elements, 947 

nodes each has 6 DOFs, and 5420 DOFs in total, as shown in Fig. 2.  
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In this example, the second order eigensensitivity of the global structure are calculated for 

comparison, whilst the calculation of first order eigensensitivity is not presented here for clearance. 

The design parameters are chosen as the bending rigidity of slab elements denoted in Fig. 2. The 

second order eigenvalue and eigenvector derivatives with respect to parameter pairs of (r1, r1), (r1, r2), 

(r1, r3) are calculated using both the traditional global method and the proposed substructuring 

method for comparison.  

 

First, the second order eigensensitivity are calculated by the proposed substructuring method. The 

global structure is divided into 11 substructures as Fig. 2. Parameters r1 and r2 are located in the first 

substructure, and r3 in the fourth substructure. The first 50 substructural modes are retained as master, 

to calculate the eigensensitivity of first 20 modes of the global structure. The eigenvalue and 

eigenvector derivatives with respect to parameter pairs of (r1, r1), (r1, r2), (r1, r3) are calculated and 

listed in Table 3. 

 

Afterwards, the second order eigenvalue and eigenvector derivatives of the first 20 modes are 

calculated using the traditional global method [14]. The results from the substructuring and the 

traditional global method are compared in Table 3. Table 3 demonstrates that the relative differences 

in the second order eigenvalue derivatives are less than 3% for most modes. The accuracy of the 

second order eigenvector derivative is denoted by COED in terms of Eq. (52). Table 3 reports the 

COED values of most modes are above 0.98, indicating a good accuracy of the second order 

eigenvector derivatives.  

 

The computational efficiency of the substructuring method is evaluated in terms of the computation 

time in calculating the second order eigensensitivity with respect to the bending rigidity parameters 
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of slab elements located in the first substructure and the bending rigidity parameters of all slab 

elements. That is, the first elemental parameter rj is designated to the bending rigidity of the 24 slab 

elements in the first substructure, and the second elemental parameter rk is the bending rigidity of all 

288 slab elements across the whole structure. Among the 288 parameters, 24 parameters are located 

in the first substructure, and the remainders are in the other substructures as listed in Table 4.  

 

The computation time consumed by the substructuring method and traditional global method are 

compared in Table 4. The computation time of second order eigensensitivity includes the calculation 

of the first order eigensensitivity for both methods. The traditional global method totally takes up 

13,427 seconds to calculate the second order eigensensitivity with respect to the 24 parameters rj and 

the 288 parameters rk, whereas the substructuring method takes 3,594 seconds. The computation time 

consumed by the proposed substructuring method is about 25% of that cost by the traditional global 

method. In particular, if parameters rj and parameters rk are both located in the first substructure, 

calculating the second order eigensensitivity with respect to the 24 parameters of rj and 24 

parameters of rk takes 434.4 seconds. In the case that parameters rj and rk are located in different 

substructures, for example rj is located in first substructure and rk is located in the third, fifth, sixth, 

seventh or ninth substructure ( The third, five, six, seven and nine substructures respectively contain 

24 parameters rk as well, and they have similar size with the first substructure ), calculating the 

second order eigensensitivity costs about 280 seconds. As expected, the parameters rj and rk located 

in the same substructure takes longer time than they are in different substructures, since the former 

requires the item 
2

j kr r


 

Ψ

 

 within the first substructure which is zero in the latter.  
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Using the proposed substructuring method, only the substructures which contain the design 

parameters are analyzed to assemble the eigensensitivity of the global structure. This method is 

efficient in calculation of eigensensitivity of large-scale structure.  

 

The more significant merit of the proposed method lies in the applications to model updating and 

damage identification. In general, model updating and damage identification need to re-calculate the 

eigensolutions and eigensensitivity of the entire structure when the parameters of some elements are 

changed. Using the substructuring method, only particular substructures need to be re-analyzed, 

while other substructures can be untouched.  

 

8. Conclusions 

This paper employs the substructuring method to derive the first, second and high order 

eigensensitivity with respect to structural parameters. The global structure is divided into manageable 

substructures. The derivative matrices of substructural master modes with respect to the design 

elemental parameters are computed for independent substructures. Afterwards, the substructural 

eigensensitivity matrices are assembled to recover the eigensensitivity of the global structure. As the 

substructural eigensensitivity are zeros for those substructures that do not include the design 

parameters, the eigensensitivity of global structure is determined from substructural eigensensitivity 

of particular substructures that contain the design parameters. As a result, the proposed 

substructuring method is efficient in calculating the eigensensitivity.  

 

The first order eigensensitivity of the global structure is calculated from the first order derivative of 

master modes of one substructure which contain the design parameter. The second order 

eigensensitivity of the global structure is determined by the first order derivative of master modes of 
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two substructures that contain the two design parameters, if the design parameters are located in 

different substructures. In the case that the two design parameters are in the same substructure, the 

second order eigensensitivity of the global structure is recovered from the derivatives of substructural 

master modes of one substructure solely. In general, the kth order eigensensitivity of the global 

structure is recovered from the kth order derivative matrices of one substructure if the k design 

parameters are located in one substructure. Otherwise, the substructural derivative of order (k-1) and 

lower, which can be used directly from the lower order eigensensitivity calculation, are assembled 

for the eigensensitivity of the global structure. The first, second and high order eigenvector 

derivative are formed by analyzing the substructural master eigenmodes and a reduced eigenequation. 

 

The application of the proposed substructuring method to a three-span frame structure and a highway 

bridge demonstrate that the substructuring method can achieve high accuracy in calculation of 

eigensensitivity. The computation time in calculation of eigensensitivity is far less than that of the 

traditional global method. The substructuring method divides the global structure into manageable 

substructures, and calculates the eigensensitivity of global structure by the analysis of independent 

substructures. It allows an easier and quicker analysis of large-scale structures which is sometimes 

difficult or even limited to be processed on ordinary personal computation. In addition, the 

substructuring method is promising to be used in iterative model updating process. Since the 

partitioned substructures are independent, the substructuring method allows the eigensolutions and 

eigensensitivity of the modified substructures to be analyzed repeatedly, whereas the unmodified 

substructures remain unchanged during the iterative optimization process.  
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Appendix A: Residual flexibility matrix of free substructure 

The stiffness matrix is singular for a free substructure due to the rigid body motion. The residual 

flexibility is not available from the inverse of singular stiffness matrix directly. In this section, the 

residual flexibility matrix and its derivative matrix are derived for a free structure by considering the 

rigid body modes.  

 

The complete eigenmodes of a free substructure includes Nr rigid body modes R and Nd 

deformational modes dΦ . According to the substructuring method of this paper, the eigenmodes of a 

substructure are divided into Nm master modes mΦ  and Ns slave modes sΦ . The master modes mΦ  

include the Nr rigid body modes R and the (Nm-Nr) deformational master modes m-rΦ . The 

deformational modes include the deformational master modes m-rΦ  and deformational slave modes 

sΦ . Subscript m, s, r and d represent the master modes, slave modes, rigid body modes and 

deformational modes, respectively. The relation among master modes, slave modes, rigid body 

modes, and deformational modes is illustrated in Fig. A-1. 

 

 



  33

 

 

 

 

 

 

 

Figure A-1: Relation between different kinds of modal modes 

 

A generalized stiffness matrix and a generalized flexibility matrix are defined as follows, which 

include the contribution made by both the rigid body modes and deformational modes. 
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The eigenvectors of generalized stiffness matrix  TK RR  are identical to those of K, but only the 

eigenvalues of the rigid body modes are changed from 0 to 1. The generalized stiffness matrix K  

and flexibility matrix F  are full-rank, and can be transformed with each other by inversion of 
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(A-3) 

Here the generalized flexibility matrix can be expressed by the rigid body modes, master modes and 

slave modes as 
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(A-4) 

Therefore, the first-order residual flexibility matrix for the free structure can be expressed by the 

master modes as 

    11 1T T T T
s s s m-r m-r m-r

    Φ Λ Φ K RR Φ Λ Φ RR  (A-5) 

Rigid body modes R   

(Nr) 

Master deformational modes 

m-rΦ   (Nm-Nr) 

Slave deformational 

modes sΦ    (Ns) 

Master modes mΦ    (Nm) 
Slave modes 

Deformational modes dΦ    (Nd) 
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Differentiating the first-order residual flexibility (Eq. (A-5)) with respect to an elemental parameter r, 

the derivative matrix has the form of 

 

     11 1T T T
s s s m-r m-r m-r

r r r

    
 

  

Φ Λ Φ K RR Φ Λ Φ

 
     1

2 12
T
m-r m-rT T

m-r m-r m-r m-rr r r


 

        
    

Φ ΛK
K RR Φ Λ Φ Φ  (A-6) 
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Fig. 1. Frame structure and the selected design  parameters (unit: m) 
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Fig. 2. FE model of the Balla Balla River Bridge and the selected design parameters 
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Table 1: Comparison of first-order eigensensitivity with respect to r1 

Mode 

Eigenvalue derivatives Correlation of 
eigenvector 
derivatives 

(COED)  

Nelson's 
method 

Substructuring 
method 

Difference 
(%) 

1 0.876  0.876  0.00% 0.999  
2 3.621  3.622  0.02% 0.999  
3 3.431  3.433  0.07% 0.992  
4 49.478  49.567  0.18% 0.997  
5 72.918  73.650  1.00% 0.997  
6 292.125  294.986  0.98% 0.995  
7 219.068  220.354  0.59% 0.999  
8 742.183  756.540  1.93% 0.995  
9 675.675  688.697  1.91% 0.990  

10 526.273  535.207  1.70% 0.991  

 

 

 



  38

Table 2: Comparison of second-order eigenvalue derivative and eigenvector derivative (frame structure) 

Mode 

2

146 146r r


 

, 
2

146 146r r


 

 
2

146 148r r


 

, 
2

146 148r r


 

 
2

146 154r r


 

, 
2

146 154r r


 

 

Eigenvalue derivative 
COED

Eigenvalue derivative 
COED

Eigenvalue derivative 
COED 

Global 
method 

Substructuring 
method 

Difference
(%) 

Global 
method 

Substructuring 
method 

Difference
(%) 

Global 
method 

Substructuring
method 

Difference 
(%) 

1 -0.53 -0.53 0.00% 0.986 0.01 0.01 0.03% 0.991 0.00 0.00 0.08% 0.993 
2 -2.62 -2.62 0.03% 0.993 0.03 0.03 0.34% 0.996 0.01 0.01 0.41% 0.987 
3 -9.32 -9.33 0.12% 0.994 0.63 0.64 0.99% 0.993 0.14 0.14 0.00% 0.987 
4 -34.57 -34.64 0.22% 0.990 3.20 3.25 1.52% 0.990 -0.19 -0.20 2.04% 0.990 
5 -82.32 -82.33 0.01% 0.981 -9.17 -9.17 0.01% 0.997 -3.93 -3.94 0.27% 0.997 
6 -316.52 -317.61 0.34% 0.994 -19.42 -19.83 2.11% 0.981 -5.55 -5.57 0.26% 0.990 
7 -95.08 -95.32 0.26% 0.992 6.97 7.01 0.52% 0.985 5.00 5.11 2.26% 0.992 
8 -762.82 -763.31 0.06% 0.995 1.09 1.09 0.10% 0.996 11.40 11.41 0.15% 0.993 
9 -503.66 -503.17 0.10% 0.987 97.49 98.82 1.37% 0.981 56.76 57.29 0.93% 0.984 

10 -277.40 -278.40 0.36% 0.997 54.77 53.64 2.07% 0.983 21.66 21.19 2.16% 0.974 
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Table 3: Comparison of second-order eigenvalue derivative and eigenvector derivative (bridge structure) 

Mode 

2

1 1r r


  ,

 2

1 1r r


 

 
2

1 2r r


  ,

 2

1 2r r


 

 
2

1 3r r


  ,

 2

1 3r r


 

 

Eigenvalue derivative 
COED

Eigenvalue derivative 
COED

Eigenvalue derivative 
COED 

Global 
method 

Substructuring 
method 

Difference
(%) 

Global 
method 

Substructuring 
method 

Difference 
(%) 

Global 
method 

Substructuring 
method 

Difference
(%) 

1 -0.7010 -0.7012 0.03% 0.998 -0.0730 -0.0729 0.12% 0.996 -0.0295 -0.0296 0.21% 0.996 
2 -0.0016 -0.0016 0.00% 0.999 0.0001 0.0001 0.00% 0.998 -0.0003 -0.0003 0.00% 0.993 
3 -0.0030 -0.0031 0.66% 0.990 0.0008 0.0008 0.00% 0.983 0.0003 0.0003 0.00% 0.995 
4 -0.1537 -0.1536 0.02% 0.985 0.0339 0.0340 0.29% 0.995 0.0036 0.0035 1.07% 0.990 
5 -0.0008 -0.0008 0.00% 0.992 -0.0001 -0.0001 0.00% 0.994 0.0000 0.0000 0.00% 0.988 
6 -0.0258 -0.0259 0.23% 0.992 -0.0025 -0.0025 0.00% 0.991 -0.0012 -0.0012 0.00% 0.994 
7 -0.4020 -0.4022 0.05% 0.981 0.0938 0.0937 0.12% 0.986 0.0231 0.0230 0.55% 0.982 
8 -0.0643 -0.0643 0.00% 0.987 0.0014 0.0014 0.00% 0.986 -0.0010 -0.0010 0.00% 0.985 
9 -0.2160 -0.2168 0.36% 0.996 0.0161 0.0159 1.42% 0.985 -0.0062 -0.0063 1.50% 0.982 
10 -0.1997 -0.1999 0.10% 0.974 0.0610 0.0609 0.16% 0.986 0.0502 0.0502 0.00% 0.992 
11 -0.1860 -0.1864 0.22% 0.988 -0.0063 -0.0062 0.03% 0.985 0.0051 0.0052 1.92% 0.978 
12 -0.0002 -0.0002 0.00% 0.981 0.0000 0.0000 0.00% 0.974 0.0000 0.0000 0.00% 0.969 
13 -0.0001 -0.0001 0.00% 0.993 0.0000 0.0000 0.00% 0.970 0.0000 0.0000 0.00% 0.975 
14 -1.1484 -1.1497 0.11% 0.991 -0.2129 -0.2139 0.48% 0.971 -0.1031 -0.1037 0.59% 0.985 
15 -3.9496 -3.9901 1.03% 0.985 -0.7531 -0.7539 0.11% 0.980 -0.3398 -0.3401 0.08% 0.985 
16 -2.4723 -2.4320 1.63% 0.986 -0.2371 -0.2343 1.17% 0.973 0.0102 0.0105 2.74% 0.987 
17 -0.5327 -0.5337 0.20% 0.982 0.0462 0.0455 1.34% 0.977 -0.0066 -0.0065 1.67% 0.990 
18 -4.9578 -4.9587 0.02% 0.977 -0.6186 -0.6166 0.32% 0.981 -0.1997 -0.1996 0.07% 0.980 
19 -0.9347 -0.9247 1.07% 0.985 0.1271 0.1231 3.16% 0.983 -0.0093 -0.0094 1.15% 0.979 
20 -1.3160 -1.3274 0.86% 0.988 -0.5541 -0.5642 1.82% 0.975 -0.3337 -0.3346 0.27% 0.974 
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Table 4: Computation time of the global and substructuring methods in calculation of second-order 

eigensensitivity 

 
Global 
method 

Substructuring method 

Location of parameter rk 

Sub 
1 

Sub 
2 

Sub 
3 

Sub 
4 

Sub 
5 

Sub 
6 

Sub 
7 

Sub 
8 

Sub 
9 

Sub 
10 

Sub 
11 

No. of 
parameters 

288 24 32 24 32 24 24 24 32 24 32 16 

Time 
(Second) 

13427 
434.4 382.3 286.3 398.7 286.7 283.6 283.0 390.3 282.9 377.6 188.8 

3594 

 

 




