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ABSTRACT 

A new hybrid reliability analysis technique based on the convex modeling theory is 

developed for structures with multi-source uncertainties, which may contain randomness, 

fuzziness, and non-probabilistic boundedness. By solving the convex modeling reliability 

problem and further analyzing the correlation within uncertainties, the structural hybrid 

reliability is obtained. Considering various cases of uncertainties of the structure, four hybrid 

models including the convex with random, convex with fuzzy random, convex with interval, 

as well as convex with other three are built respectively. The present hybrid models are 

compared with the conventional probabilistic and the non-probabilistic models through two 

typical numerical examples. The results demonstrate the accuracy and effectiveness of the 

proposed hybrid reliability analysis method. 

Keywords: Uncertainty; hybrid reliability analysis; convex modeling theory; probability; 

fuzzy; interval analysis 

1 Introduction 

With the growing complexity of practical engineering problems, the uncertainty relating 

to material properties, loads, boundary conditions, etc. has become more and more 

profound
[1-5]

. Traditional analytic approaches derived from probability models and fuzzy 

models have been widely applied to varieties of industrial communities in past decades
[6-10]

. 

Traditional structural reliability analyses require precise probability distributions or 

membership functions of the uncertain parameters based on a great amount of experimental 
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samples. However, in many engineering applications, the experimental data is often limited 

and thus the requirement of the available data to justify either the probabilistic reliability 

model or the fuzzy reliability model is not satisfied. The given subjective assumptions on 

description of the uncertainty characteristics is likely to bring about a serious error of the 

reliability analysis
[11-14]

. 

Some non-probabilistic methods for analyzing reliability via limited parametric data 

have been developed and been paid more and more attention during the past two decades. 

Ben-Haim
[15]

 first proposed the concept of structural non-probabilistic safety based on the 

convex model. Elishakoff
[16]

 first proposed a quantitative measure of the non-probabilistic 

safety based on interval analysis. Guo et al. 
[17-19]

 extended the traditional first order reliability 

method (FORM) into the interval convex model, and whereby quantified the uncertain 

structural parameters as interval variables and proposed another measure of the 

‘non-probabilistic reliability’, which was taken as the shortest distance from the origin to the 

failure surface. Qiu et al.
 [14, 20-21]

 suggested a non-probabilistic model of convex reliability 

using the partial order relation of the superscribed hyper-rectangle or hyper-ellipsoid. Jiang et 

al.
[22-23]

 carried out a correlation analysis for the non-probabilistic convex models, and further 

developed an effective method of construction of the multidimensional ellipsoids on the 

uncertainty in order to overcome the drawback of the non-probabilistic convex reliability in 

complex structural engineering. Several reliability-based optimization design methods were 

also developed by treating the non-probabilistic reliability indexes as constraints
 [24-26]

. 

However, most of the existing reliability analyses generally employ the single-source 

uncertainty models, which consider randomness, fuzziness, or non-probabilistic 

(interval/convex) uncertainty separately rather than their combination. In view of the 

complexity in practical applications, there is considerable interest in developing efficient 

methods for dealing with problems comprising of mixed uncertain variables
[27]

. 

In recent years, researchers have studied the hybrid reliability analysis structures. When 

the probabilistic and interval variables appear in the same problem, numerical methods have 

been proposed. These include the function approximation technique 
[28]

, the iterative rescaling 

method 
[29]

, the probability bounds approach 
[30]

, the mixed perturbation Monte-Carlo method 

[31]
, and the complex nesting optimization algorithm 

[32]
, among others 

[6, 33-37]
. Randomness 
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and fuzziness/convexity have also been combined for hybrid reliability analysis 
[8, 38-39]

. 

Nevertheless, the hybrid reliability analysis is still in its preliminary stage, and some 

important issues still remain unsolved. One difficulty is the construction and solution of the 

mixed models containing multiple types of uncertainties, such as randomness, fuzziness, and 

non-probabilistic uncertainty. Moreover, the interval variables and the convex variables have 

been rarely investigated simultaneously. Therefore, it is necessary to develop effective hybrid 

reliability analytical techniques and propose a series of safety assessment of the practical 

complicated structures based on multi-source uncertainties. 

This paper aims to develop a new reliability analysis method for uncertain structures 

with the mixture of randomness, fuzziness, and non-probabilistic uncertainty. The remainder 

of this paper is organized as follows. First, the traditional reliability analysis deduced by 

single-source uncertainty is introduced. Second, four hybrid reliability analysis models 

including the convex with random, convex with fuzzy random, convex with interval, and 

convex with other three are proposed respectively. Two numerical examples are then provided 

to demonstrate the effectiveness of the present method, followed by some conclusions. 

2 Probabilistic reliability and fuzzy random reliability 

2.1 Structural probabilistic-based reliability model 

Traditional probabilistic reliability can typically be measured by the probability of 

structural functions that satisfy certain requirements. The structural function is expressed by 

the limit state function, which is determined by the failure criteria. Consider a limit state 

function of the structure in the following form: 

    1 2, ,..., nM g g X X X X  (1) 

where  1 2, ,...,
T

nX X XX  is the n-dimensional random variable vector.   0M g X  

represents the failure surface, which divides the variable space into two parts, namely, the 

failure region and the safety region. Hence, the reliability of the structure can be expressed as 

  1 2 1 21 1 , ,...,
f

s f X n nR P f x x x dx dx dx


        (2) 

where fP  is the failure probability, f  is the failure region, and  1 2, ,...,X nf x x x  is the 
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joint probability density function of the basic random variables 1 2, ,..., nX X X . The random 

reliability index   is defined as the minimum distance between the origin and the failure 

surface of the standard normal variable space, i.e. 

  2 2

2
1

min min
n

i

i

u


 
   

 
u  (3) 

where    1 2, ,..., ,
T

nu u u   u  are standard normal variables. Consider a linear 

performance function 

   0 1 1 2 2 ... n nM g a a X a X a X     X  (4) 

where  1,2,...,ia i n   are constants. The reliability index   can be obtained by 

 
0 1

2 2

1

i

i

n

i XiM

n
M

i Xi

a a

a




 






 




 (5) 

where   and   represent the mean value and the standard deviation, respectively. 

Consequently, the structural reliability based on probabilistic model can be rewritten as 

follows: 

  1sR     (6) 

where     is the standard normal distribution function. 

If the normal random variables are correlated each other, their correlation coefficients are 

necessary to derive the reliability. For problems with non-Gaussian random variables, some 

techniques, such as Rosenblatt’s transformation
[40]

 and Rackwitz–Fiessler transformation
[41]

, 

can be adopted to transform the distribution into approximately equivalent normal distribution. 

Subsequently, FORM
[42]

 can be implemented for solving the multi-fold integration in Eq. (2). 

2.2 Structural fuzzy random reliability model 

Fuzziness is usually involved in the basic random variables. For instance, structural 

stress is determined by various factors, such as external loads, geometry size, supporting 

conditions and so on. The fuzziness of the stress is entirely determined by the fuzziness of 

these factors. Similar to Eq. (1), the fuzzy failure surface can be written as 
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    1 2, ,..., 0nM g g X X X  X  (7) 

where X  denotes the n-dimensional fuzzy random vector. Let  
X

 X  be the membership 

function of X , the failure probability of the fuzzy random structure is expressed as 
[43]

 

      1 2 1 2 1 2, ,..., , ,...,
X

f
f n X n nX

P E x x x f x x x dx dx dx 


      X  (8) 

where [ ]E   is the mathematical expectation. The fuzzy random reliability can be obtained as 

1s fR P  . 

3 Structural safety estimation based on non-probabilistic set theory 

The above two methods based on probability approach and fuzzy theory need to have 

sufficient information to determine the probability distributions and the membership functions, 

respectively. However, experimental data is often limited, which causes the requirement of the 

available data to justify the probabilistic reliability model or the fuzzy reliability model may 

not be satisfied. Under the circumstance, the convex method based on non-probabilistic set 

theory is attracting more attention. Two typical models for structural safety measure are 

described in this section. 

3.1 Reliability analysis based on interval model 

Assuming that  1 2, ,...,
T

nY Y YY  represents the basic interval variable vector. iY  can 

be expressed as 

 , 1,2,...,I

i i i iY Y Y Y i n    ���  (9) 

where 
iY  and 

iY  represent the lower and upper bounds of iY , respectively. 

Similar to the probabilistic model, the limit state function of the uncertain structure is 

given by 

    1 2, ,..., 0nM g g Y Y Y Y =  (10) 

In Eq. (10), the hyper-rectangular domain enclosed by the interval variables iY  is 

divided into the failure region ( 0M  ) and the safety region ( 0M  ). The measure of the 

structural failure can be defined as the ratio of the hyper-volume of the failure region to the 
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whole region, which is 

     1 20 , ,..., 0
failure

f n

total

V
P M g Y Y Y

V
       (11) 

where   represents the possibility. Consequently, the non-probabilistic measure of structural 

safety is 

     1 21 0 , ,..., 0
safety

s f n

total

V
R P M g Y Y Y

V
         (12) 

As an example, Fig. 1 illustrates the case of two-dimensional interval reliability model, 

in which the structural safety is defined when 1 2Y Y . 

3.2 Reliability analysis based on convex model 

Supposing a n-dimensional uncertain variable vector  1 2, ,...,
T

nZ Z ZZ . The boundary 

of each variable is determined by the following hyper-ellipsoid: 

 

    
1 1 1 1

1 1

: 1

,..., ,..., 1

T

T
c cc c

n n n n

r r r r

n n

Z Z Z ZZ Z Z Z

Z Z Z Z

    

     
    

   

c cZ Z Z Z W Z Z

 (13) 

where   is the hyper-ellipsoid convex set, W  is a characteristic matrix, 

 1 2, ,...,c c c

nZ Z ZcZ  and  1 2, ,...,r r r

nZ Z ZrZ  respectively denote the median value and the 

radius of Z . By normalizing the variables iZ , Eq. (13) can be rewritten as 

   2 2 2

1 2: 1 ,... 1T

standard nV V V      V V V V  (14) 

where  1 2, ,...,
T

nV V VV  and 
c

i i
i r

i

Z Z
V

Z


 . Thus, the uncertain variables are redefined into 

a unit hyper-sphere. Relating with the limit state function    1 2, ,..., 0nM g g V V V V = , the 

failure/safety measure of structure are given mathematically as 

   1 2, ,..., 0f nP g V V V    and    1 21 , ,..., 0s f nR P g V V V     (15) 

Similarly, for a bi-variable problem with uncertain parameters 1Z  and 2Z  as shown in 

Fig. 2, the ellipsoidal convex model will degenerate into an ellipse and further into with 
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normalization, as shown in Fig. 3. Assume that the structure is safe if 1 2Z Z . In this case, 

the failure/safety measure of the structure can be deduced from the following expressions: 

 

           

1 2

2

1 1 2 1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2

cos 1

1
cos 1

failure

f

total

c c c c c c

r r r r r r

S d d d
P

S

Z Z Z Z Z Z

Z Z Z Z Z Z









 
 

 
   

      
      
      

     

 (16) 

and 

 

           

1 2

2

1 1 2 1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2

cos 1
1

1
1 cos 1

safe

s

total

c c c c c c

r r r r r r

S d d d
R

S

Z Z Z Z Z Z

Z Z Z Z Z Z









 
  

 
   

      
       
      

     

 (17) 

where d  is the distance from the origin to the limit state function (shown in Fig. 3). 

As above mentioned, the non-probabilistic reliability analysis based on the convex model 

may show superiority to some extent when available information of uncertainties is 

insufficient. Moreover, the convex model has some advantages over the interval model. On 

the one hand, the uncertain parameters enclosed by the convex model no longer satisfy the 

assumption of independence. On the other hand, the uncertain variables in the convex model 

can be explicitly expressed as continuously differentiable equations, whereas those in the 

interval model not. 

Due to the increasing complexity of engineering structures, the study on multi-source 

uncertainties, especially the hybrid reliability analysis is of profound significance. In the 

following section, several cases of the convex model combined with different types of 

uncertain factors will be proposed. 

4 Hybrid reliability analysis based on convex modeling theory 

In this section, four typical combined models based on the convex method are proposed 

for estimation of the structural safety under different cases of multi-source uncertainties. 

These models or algorithms are alternatives to the current hybrid uncertainty analysis. 
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4.1 Reliability analysis of the convex and random mixed model 

If both random variables and non-probabilistic convex variables are contained in the 

basic variables relating to the limit state function, the failure surface can be expressed as 

     1 1, ,..., , ,..., 0m m nM g g X X Z Z  X Z  (18) 

where  1 2, ,...,
T

mX X XX  denotes the m-dimensional random variable vector and 

 1 2, ,...,
T

m m nZ Z Z +Z  is the (n-m)-dimensional convex modeling variables. 

Assuming that the random vector X  is taken as a constant one, and hence the hybrid 

model can be transformed into a non-probabilistic convex model. Similarly, it will be 

transformed into a random model when the convex vector Z  is confirmed. Therefore, the 

reliability analytical model based on single uncertainty source is generally the special case of 

the mixed one. 

Let one implementation  1 2, ,...,
T

mx x xx  as the initial random vector X . According 

to the convex theory, the non-probabilistic reliability of x  can be derived as 
[14] 

     1 2, , ,..., 0m m nM Z Z Z    x x  (19) 

By virtue of the distributional density function of X , the structural hybrid reliability can 

be defined as 

   sR E    x  (20) 

As x  ultimately decides the expression of   x , the subsection solution method 

should be applied for realization of Eq. (20). 

Considering a linear limit state function is considered as 

 1 1 2 2M aX b Z b Z    (21) 

where X  is a random variable and its probability density function is  f x . 1Z  and 2Z  

are convex modeling variables and are limited in the following ellipse 

2 2

1 1 2 2

1 2

1
c c

r r

Z Z Z Z

Z Z

    
    

   
. It is assumed that coefficients a , 1b  and 2b  are all positive. 

Introducing normalized variables 1V  and 2V  
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 1 1
1

1

=
c

r

Z Z
V

Z


  and  2 2

2

2

=
c

r

Z Z
V

Z


 (22) 

the original ellipse becomes 2 2

1 2 1V V  . The limit state function can then be rewritten as 

 1 1 2 2 1 1 1 2 2 2

c c r rM aX b Z b Z b Z V b Z V      (23) 

Different value of X  will directly affect the position of the failure surface 0M  , and 

further change the interference condition between the limit state function and the feasible 

region of the normalized variables.  x  derived from the convex theory is a piecewise 

function of X . In view of this, four cases are shown in Fig. 4. 

1) If the failure surface is located in region ① , X  ranges from   to 

   
2 2

2 2 1 1 2 2 1 1

c c r rb Z b Z b Z b Z

a

  
. In the case,   0x ① . According to Eq. (20), the hybrid 

reliability is also zero, i.e., 0sR ① . 

2) When 
   

2 2

2 2 1 1 2 2 1 1
2 2 1 1,

c c r r
c cb Z b Z b Z b Z b Z b Z

x
a a

 
    

 
  

 , the failure surface is in 

region ②. Utilizing Eqs.(16) and (17),  x②  can be obtained by 

          
2

11
cos 1x d x d x d x



 
   

 

② ② ② ②  (24) 

where  
   

2 2 1 1

2 2

2 2 1 1

c c

r r

b Z b Z ax
d x

b Z b Z

 




② . The hybrid reliability is 

    
   

2 2 1 1

2 2

2 2 1 1 2 2 1 1

c c

c c r r

b Z b Z

a
s

b Z b Z b Z b Z

a

R x f x dx


  

 
② ②

 (25) 

3) In region ③, the span of X  is 

 
   

2 2

2 2 1 1 2 2 1 1
2 2 1 1 ,

c c r r
c c b Z b Z b Z b Zb Z b Z

a a

 
   

 
  

  (26) 

In consideration of the geometric symmetry of this case and case 2,  x③  and sR③  

are both easily given as 



Hybrid Reliability Analysis of Structures With Multi-source Uncertainties 

 10 

          
2

11
1 cos 1x d x d x d x



 
    

 

③ ③ ③ ③  (27) 

and 

    
   

2 2

2 2 1 1 2 2 1 1

2 2 1 1

c c r r

c c

b Z b Z b Z b Z

a
s b Z b Z

a

R x f x dx

  


 

③ ③
 (28) 

where    
   

1 1 2 2

2 2

2 2 1 1

c c

r r

ax b Z b Z
d x d x

b Z b Z

 
  



③ ② . 

4) If 
   

2 2

2 2 1 1 2 2 1 1
,

c c r rb Z b Z b Z b Z
x

a

 
   

  



 , the failure surface will no longer 

intersect the feasible region of convex modeling variables.  x④  is always equal to unity, 

and the hybrid reliability is 

  
   

2 2

2 2 1 1 2 2 1 1
c c r rs

b Z b Z b Z b Z

a

R f x dx


  

 
④

 (29) 

The final hybrid reliability based on the convex and the random mixed model is 

summation of the four regions, that is, 

  s s s s sR E x R R R R      
① ② ③ ④  (30) 

4.2 Reliability analysis of the convex and fuzzy random mixed model 

In this model, the random variables will be replaced by the fuzzy random variables. Thus 

the failure surface can be rewritten as 

    1 2 1, , ,..., , ,..., 0m m nM g g X X X Z Z  X Z  (31) 

For a given  1 2, ,...,
T

mx x xx , the non-probabilistic reliability  
X

 x  can be known 

by the convex method. Then the structural hybrid reliability is 

     1 2, , ,..., 0s m m nX X
R E E M Z Z Z   

       x x  (32) 

Taking into account the influence of  Xf X  and  
X

 X  on  
X

 x , a subregional 

treatment should be carried out for the computation of Eq. (32). It is convenient to consider a 

linear limit state function as 
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 1 1 2 2M aX b Z b Z    (33) 

The approximate analytical approach as in Section 4.1 is used again to obtain the final 

hybrid reliability as 

 

       
   

     
   

   
   

2 2 1 1

2 2

2 2 1 1 2 2 1 1

2 2

2 2 1 1 2 2 1 1

2 2
2 2 1 1

2 2 1 1 2 2 1 1

c c

c c r r

c c r r

c c
c c r r

b Z b Z

a
s s s s sX X

b Z b Z b Z b Z

a

b Z b Z b Z b Z

a

X Xb Z b Z
b Z b Z b Z b Z

a
a

R E x R R R R x f x x dx

x f x x dx f x x dx

  

  



  

  



  

       

 



 

① ② ③ ④ ②

③    

 (34) 

4.3 Reliability analysis of the convex and interval mixed model 

If the limit state function contains both the convex and interval non-probabilistic 

uncertainties, i.e., 

    1 1, ,..., , ,...,m m nM g g Y Y Z Z Y Z  (35) 

The feasible region of the uncertain parameters would be formed into a hyper-volume, 

which lies between the hyper-rectangle and the hyper-ellipsoid. Fig. 5 illustrates a 

three-dimensional case. In the circumstance, the failure region and the safety region are 

divided by Eq. (35), and the structural failure/safety measure based on the non-probabilistic 

set-theory are still applicable to the hybrid model with minor modifications. 

For ease of presentation, introducing a linear limit state function as 

 1 1 2 2M aY b Z b Z    (36) 

where ,Y Y Y    is an interval variable, 1Z  and 2Z  are normalized as 

2 2

1 1 2 2

1 2

1
c c

r r

Z Z Z Z

Z Z

    
    

   
, and a , 1b  and 2b  are positive constants. 

With normalized variables 1V  and 2V  defined in Eq. (22), the limit state function 

becomes 

 1 1 2 2 1 1 1 2 2 2

c c r rM aY b Z b Z b Z V b Z V      (37) 

Y  and Y  directly change the intersection between the hyper-volume domain and the 

failure surface. Through comprehensive analysis, the following cases should be considered 
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(see Fig. 6 for details). 

Case Ⅰ(Fig. 6 (a)): When 
   

2 2

2 2 1 1 2 2 1 1
,

c c r rb Z b Z b Z b Z
Y

a

 
   

  
 

 , the hybrid 

reliability is zero, i.e., 0I
sR  . 

Case Ⅱ: When 
   

2 2

2 2 1 1 2 2 1 1
,

c c r rb Z b Z b Z b Z
Y

a

 
   

  
 

 , and the upper bound Y  

ranges from 
   

2 2

2 2 1 1 2 2 1 1

c c r rb Z b Z b Z b Z

a

  
 to 2 2 1 1

c cb Z b Z

a


 (Fig. 6 (b)), the hybrid 

reliability II
sR  is 

 

 
   

 

2 2

2 2 1 1 2 2 1 1
c c r r

Y
II

b Z b Z b Z b Z

II a
s

s y dy

R
Y Y 

  






 (38) 

where          
2

1 1II II II IIs y cos d y d y d y    and  
   

2 2 1 1

2 2

2 2 1 1

=
c c

II

r r

b Z b Z ay
d y

b Z b Z

 



. 

Case Ⅲ: When 
   

2 2

2 2 1 1 2 2 1 1
,

c c r rb Z b Z b Z b Z
Y

a

 
   

  
 

 , and Y  ranges from 

2 2 1 1

c cb Z b Z

a


 to 

   
2 2

2 2 1 1 2 2 1 1

c c r rb Z b Z b Z b Z

a

  
 (Fig. 6 (c)), the hybrid reliability III

sR  is 

 

 
   

  

 

2 2 1 1

2 2 2 2 1 1

2 2 1 1 2 2 1 1

c c

c c

c c r r

b Z b Z
Y

II IIIa
b Z b Z

b Z b Z b Z b Z
a

III a
s

s y dy s y dy

R
Y Y








  

 




 

 (39) 

where          
2

1 1III III III IIIs y cos d y d y d y    and    III IId y d y  . 

Case Ⅳ : When 
   

2 2

2 2 1 1 2 2 1 1
,

c c r rb Z b Z b Z b Z
Y

a

 
   

  
 

 , and Y  ranges from 
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   
2 2

2 2 1 1 2 2 1 1

c c r rb Z b Z b Z b Z

a

  
 to   (Fig. 6 (d)), the hybrid reliability IV

sR  is 

 

 
   

  
   

 

   

 

2 2

2 2 1 1 2 2 1 1
2 2 1 1

2 2
2 2 1 1

2 2 1 1 2 2 1 1

2 2

2 2 1 1 2 2 1 1

       

c c r r
c c

c c
c c r r

b Z b Z b Z b Zb Z b Z

II IIIa a

b Z b Z
b Z b Z b Z b Z

a
IV a
s

c c r r

s y dy s y dy

R
Y Y

aY b Z b Z b Z b Z

Y Y a





  


  

 




 
    

  
 

 

 

 (40) 

Case Ⅴ : When the lower bound Y  and the upper bound Y  are both 

   
2 2

2 2 1 1 2 2 1 1
2 2 1 1, 

c c r r
c cb Z b Z b Z b Z b Z b Z

a a

 
   

 
 
 

 (Fig. 6 (e)), the hybrid reliability V
sR  is 

 
 

 

Y
II

YV

s

s y dy
R

Y Y 





 (41) 

Case Ⅵ : When 
   

2 2

2 2 1 1 2 2 1 1
2 2 1 1, 

c c r r
c cb Z b Z b Z b Z b Z b Z

Y
a a

 
    

 
  

 and Y  ranges 

from 2 2 1 1

c cb Z b Z

a


 to 

   
2 2

2 2 1 1 2 2 1 1
c c r rb Z b Z b Z b Z

a

  
 (Fig. 6 (f)), the hybrid reliability 

VI
sR  is 

 

    

 

2 2 1 1

2 2 1 1

c c

c c

b Z b Z
Y

II IIIa
b Z b Z

Y
VI a
s

s y dy s y dy

R
Y Y







 




 
 (42) 

Case Ⅶ : When 
   

2 2

2 2 1 1 2 2 1 1
2 2 1 1, 

c c r r
c cb Z b Z b Z b Z b Z b Z

Y
a a

 
    

 
  

 and Y  ranges 

from 
   

2 2

2 2 1 1 2 2 1 1
c c r rb Z b Z b Z b Z

a

  
 to   (Fig. 6 (g)), the hybrid reliability VII

sR  is 
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    
   

 

   

 

2 2

2 2 1 1 2 2 1 1
2 2 1 1

2 2 1 1

2 2

2 2 1 1 2 2 1 1

       

c c r r
c c

c c

b Z b Z b Z b Zb Z b Z

II IIIa a

b Z b ZY
VII a
s

c c r r

s y dy s y dy

R
Y Y

aY b Z b Z b Z b Z

Y Y a





  


 




 
    

  
 

 

 

 (43) 

Case Ⅷ : When the lower bound Y  and the upper bound Y  are both 

   
2 2

2 2 1 1 2 2 1 1
2 2 1 1  

c c r r
c c b Z b Z b Z b Zb Z b Z

,
a a

 
   

 
 
 

 (Fig. 6 (h)), the hybrid reliability VIII
sR  is 

 
  

 

 

 
1

Y Y
III III

Y YVIII

s

s y dy s y dy
R

Y Y Y Y



 


  

 

 
 (44) 

Case Ⅸ : When 
   

2 2

2 2 1 1 2 2 1 1
2 2 1 1 , 

c c r r
c c b Z b Z b Z b Zb Z b Z

Y
a a

 
   

 
  

 and Y  ranges 

from 
   

2 2

2 2 1 1 2 2 1 1

c c r rb Z b Z b Z b Z

a

  
 to   (Fig. 6 (i)), the hybrid reliability IX

sR  is 

 
  

   

 
   

 

2 2

2 2 1 1 2 2 1 1

2 2

2 2 1 1 2 2 1 1

c c r rb Z b Z b Z b Z

III c c r ra

YIX

s

s y dy aY b Z b Z b Z b Z
R

Y Y Y Y a





  

      
   

  
 


 (45) 

Case Ⅹ : When the lower bound Y  and the upper bound Y  are both 

   
2 2

2 2 1 1 2 2 1 1
, 

c c r rb Z b Z b Z b Z

a

 
   

 
 
 

 (Fig. 6 (j)), the hybrid reliability is unity, i.e., 

1X
sR  . 

As mentioned above, the convex method based on non-probabilistic set theory can be 

effectively utilized to deal with the reliability analysis under the interval and the convex 

mixed model. Particularly the problem stated by Eq. (36), once the lower and the upper 
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bounds of the interval variable Y  are assured, one of the ten cases can be selected and its 

formula for hybrid reliability will be further applicable to estimate the structural safety. 

4.4 Hybrid reliability model containing randomness, fuzziness, and non-probabilistic 

uncertainty based on convex theory 

In this section, a more complex model containing four types of uncertainties (random, 

fuzzy random, interval, and convex) is discussed. The failure surface is taken as 

    
1 1 2 2 3 31 1 1 1, , , ,..., , ,..., , ,..., , ,..., 0m m m m m m nM g g X X X X Y Y Z Z    X X Y Z  (46) 

Given the specified values of iX  and jX  ( 1 1 1 21,2,...,   1, 2,...,i m and j m m m    ), 

the structural state of safety or failure can be determined from the hybrid reliability analysis 

of interval and convex mixed model, namely,    0 ,M   x x . Furthermore, by means 

of the patterns of the probability density function and the membership function, the hybrid 

reliability can be obtained by the following equation 

 

       

   
  

1 2 2
1

1 1 2
1 1 1 2 1

1 2 1 2

1 21 2 1 2 1 2

, ,

     , ,..., , ,...,

       , ,..., , , ,...,

XX

s XX

m m m X mX

m m mm m m m m

R E f d d

x x x f x x x

x x x x x x dx dx dx d x d x d x

  





 
 

  

  
 

 



 

    

x x x x x x x x

 (47) 

where X  and 
X

  are respectively the feasible regions of X  and X . 

Nevertheless, uncertainties of practical structures are complicated. For example, they 

may embody multivariable, nonlinear limit state function, implicit solution and so forth. This 

cause obtaining obtain the exact solutions of Eq. (47) are difficult, and some approximate 

techniques may be employed. For example, when dealing with the multi-source uncertainties, 

the information fusion theory or the sensitivity analysis based on the uncertain parameters can 

be adopted. If the limit state function is non-linear, the linear approximation techniques, such 

as the Taylor series expansion or the vertex approach can be used. With regard to the implicit 

expression of structural responses, such as stress or displacement, the Design of Experiment 

(DOE) method as well as the Monte-Carlo simulations may be considered. 

It is noted that each model or algorithm has its own feasibility and limitation. The 

amount of uncertain information, the complexity of the structures, and the requirements of 
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accuracy and efficiency, are the core factor in selecting appropriate models. Fig. 7 illustrates 

more details. 

5 Numerical examples 

5.1 A cantilever beam 

As the first example, we consider a cantilever beam as shown in Fig. 8. The cantilever 

beam is subjected to two concentrated forces applied at distances 1 2.0b m  and 2 5.0b m  

from the fixed end. The structure is identified as failure if max crm m , where maxm  is the 

maximum actual moment and crm  is the moment capacity of the beam. Two cases with 

different uncertain parameter settings are studied as follows: 

Case 1: 1P , 2P , and crm  are of different uncertainty types. Assuming that 1P  and 2P  are 

expressed as the convex modeling variables, and crm  is defined as random variable, fuzzy 

random variable, and interval variable, respectively. The uncertainty characteristics are listed 

in Table 1, where a  denotes the change factor of interval and ranges between 1 and 2, and 

coefficient k  ( 1, 2, 3k  ) represents the interval ranges. 

Case 2: Considering that 1P , 2P  and crm  are of the same type of single-source uncertainty. 

The uncertainty characteristics are listed in Table 2. 

The limit state function of this example can be expressed as 

 1 1 2 2crM m b P b P    (48) 

Based on the proposed hybrid reliability models in Section 4, the structural reliability of 

case (1) is obtained and shown in Fig. 9. From the reliability analysis of single-source 

uncertainty in Section 3, the structural reliability of Case 2 is also obtained and shown in Fig. 

10. The numerical results of Case 1 and 2 are compared in Table 3 for 1, 1.5, 2a  . 

From the results in Fig. 9, Fig. 10 and Table 3, the following points can be summarized: 

(1) The reliability results given by either the hybrid models or the single-source models 

with different combinations of uncertain parameters decrease as the change factor a  
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increases, as expected. This indicates that a higher uncertainty leads to a lower structural 

safety. 

(2) The hybrid reliability obtained by the convex and random mixed model is coincident 

with that derived from the convex and fuzzy random mixed model when the smaller value a . 

As the increase of a , however, due to the existence of fuzziness, the results based on the 

latter are more conservative. 

(3) The results obtained by the convex and interval mixed model are very sensitive to the 

interval parameters. The reliability decreases as the coefficient increases. Especially when 

3k  , the reliability is much lower than those deduced by the convex and random model as 

well as the convex and fuzzy random model. 

(4) By comparisons of the results obtained by the single-source reliability models and 

the hybrid reliability models, we also can obtain some meaningful conclusion: on the one 

hand, the assumption of precise probabilistic distributions for all of the uncertain variables 

may be dangerous; on the other hand, the interval analytic methods, in which all uncertainties 

are quantified by interval variables, may lead to excessively conservative results so that 

higher economic costs have to be paid on safety consideration for structural design. It should 

be emphasized that the structural reliability is closely related to the uncertain parameters, and 

hence subjective assumptions may yield unreliable results. 

5.2 Buckling problem of laminated composite shell 

In order to illustrate the validity and feasibility of the presented hybrid reliability method, 

the buckling problem of a composite shell will be used to investigate the influence of 

multi-source uncertainties in material properties and external loads on the structural 

reliability. 

Consider a 10-layer symmetric laminated composite cylindrical shell with cross-ply 

/ (90 ) / / (90 ) /
symmetric

        , where the thickness of each laminate is 0.5t mm  and 

the ply angle   may range from 0  to 90 . The radius of cylindrical shell is 125.0R mm , 

and the length  is 2000.0L mm . The density of the composite material equals 

31380.0 /kg m . Both ends of the cylindrical shell are simply supported, and the external loads 
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include the axial pressure and radial pressure as shown in Fig. 11. 

The laminated composite shell will be identified as buckling failure if crp p , where 

p  is the external pressure and crp  is the limit criteria. Additionally, due to the dispersion of 

composites, the elastic moduli  1 2 21 12, , ,
T

E E v GE  are also regarded as the uncertain 

parameters. The experimental data of elastic moduli from by Ref. [44] are listed in Table 4. 

Several cases including one hybrid uncertainty problem and three single-source uncertainty 

problems are considered and the dimensionless uncertainty characteristics are summarized in 

Table 5. 

According to the basic equations of buckling problem for a compressed composite shell, 

the closed-form of the buckling load obtained from Ref. [45] can be used, and hence the limit 

state function is expressed as 

 

     1 2 21 12 1 2 21 12

2 2

12 23 13 22 13 11 23
332 2 2

11 22 12

, , , , , , , , 

21

cr

m n

M g p g e e g p p e e g p

T T T T T T T
T p

R T T T

 

 

   

  
   

  

E

 (49) 

where  , 1,2,3ijT i j   is the element of flexural stiffness matrix T , m and n denote the 

buckling wave numbers. Based on the proposed hybrid reliability method, the reliability 

results of the structural buckling is shown in Fig. 12, and the partially enlarged region for 

typical domain of   is shown in Fig. 13 and. In addition, those for given specific values of 

ply angle   are summarized in Table 6. 

The reliability results given by either the hybrid model or the other three types of 

single-source uncertainty models reflect the same increasing or decreasing trend along with 

the change of the ply angle  . This implies that the proposed hybrid analytic method can be 

properly applied into complex structural problems. Furthermore, the mechanical properties of 

the composite cylindrical shell may vary significantly with the laminate configuration. For 

example, when   equals 20 , the laminated structure is definitely safe with a unity 

reliability; when   equals 45 , however, the composite cylindrical shell will be under the 

state of complete failure with a null reliability. 

The single-source uncertainty models including the probabilistic model, convex model, 
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and interval model have been respectively analyzed for comparison. The numerical results 

show that the probabilistic model gives the largest buckling reliability, the hybrid model the 

second, then the convex, and the interval model gives the smallest, for a certain  . 

6 Conclusions 

In engineering analysis and design, it is necessary to properly deal with the uncertainties 

that affect the structural performance. As the uncertainties may consist of multi-source and 

multi-dimensional parameters in practical structural problems, the current reliability analytical 

techniques based on single-source uncertainty models are infeasible anymore. In order to fill 

the gap, four new hybrid reliability models including convex with random, convex with 

random fuzzy, convex with interval, and convex with other three types are respectively 

investigated in this paper. Numerical examples show that the feasibility and effectiveness of 

the presented methodology. The results derived from different reliability models indicate that 

the uncertainty plays an important role in the mechanical behavior and structural safety. 

The presented hybrid reliability technique has broad applications. It can deal with a 

variety of different situations such as both linear and non-linear state functions, explicit or 

implicit solution, multi-source and multi-dimensional mixed uncertainties, and so on. In 

contrast with the existing mixed models based on probabilistic reliability theory, the models 

proposed are less dependent on the distribution characteristics of the uncertain parameters. It 

will lead to a more reliable result under the circumstances of insufficient sample data. In 

addition, as compared with the hybrid reliability analysis obtained by interval models, the 

convex modeling variables are taken into account to reflect the correlation between the 

uncertain-but-bounded parameters. 

The present paper presents hybrid uncertainty models as alternatives to dealing with the 

structural reliability analysis for multi-source uncertainties. The type and the amount of the 

uncertain information determine which model can be applied more effectively. The results 

from numerical examples indicate that the nature of the uncertain parameters should be the 

key points to determine the choice of the reliability analytic models, and thus the developed 

hybrid reliability method may have a wider application space in complex engineering. In 
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summary, fewer assumptions we make, more reliable the results we get. 
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Table 1 Uncertainty characteristics of the cantilever beam with mixed uncertainties 
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Table 2 Uncertainty characteristics of the cantilever beam with single-source uncertainty 

 1P  2P  crm  

Probabilistic model 

2

1
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~ 5, 
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P N
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     

 
 2~ 23, crm N a  

 1, 2a  

    

Convex model 
 

  
 

22
21

2

2316 5
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15 3

crmP
P
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  
      

   
   1, 2a  

  

Interval model  1 4.0625, 5.9375P    2 1.75, 2.25P   
 23 , 23crm ka ka    
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Table 3 Reliability analysis results of the cantilever beam structure 

 Reliability based on hybrid model 

 
Convex & 

random 

Convex & fuzzy 

random 

Convex & 

interval 

( 1k  ) 

Convex & 

interval 

( 2k  ) 

Convex & 

interval 

( 3k  ) 

1a   0.9796 0.9813 0.9989 0.9707 0.9203 

1.5a   0.9450 0.9432 0.9888 0.9203 0.8296 

2a   0.9037 0.8949 0.9707 0.8604 0.7500 

 Reliability based on single-source model 

 Random Convex modeling 
Interval 

( 1k  ) 

Interval 

( 2k  ) 

Interval 

( 3k  ) 

1a   0.9918 0.9718 0.9856 0.9557 0.9078 

1.5a   0.9631 0.8938 0.9748 0.9087 0.8261 

2a   0.9199 0.8253 0.9539 0.8491 0.7450 
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Table 4 Experimental data of the elastic moduli for composite cylindrical shell 
[44]

 

No. 
1E
 

(GPa) 

2E
 

(GPa) 
21v  

12G
 

(GPa) 
No. 

1E
 

(GPa) 

2E
 

(GPa) 
21v  

12G
 

(GPa) 

1 129.20 9.34 0.28 5.23 9 132.19 9.07 0.30 4.85 

2 131.59 9.53 0.33 4.97 10 132.00 9.73 0.35 5.00 

3 130.63 9.08 0.33 5.16 11 130.39 9.21 0.34 5.34 

4 132.01 9.34 0.33 5.15 12 128.28 8.67 0.33 4.98 

5 131.04 8.94 0.34 5.15 13 135.30 9.18 0.32 5.13 

6 120.61 9.04 0.33 4.81 14 137.33 9.28 0.33 5.25 

7 127.69 8.99 0.32 5.11 15 141.69 10.73 0.31 5.47 

8 133.65 9.36 0.35 5.08 16 126.91 9.39 0.33 5.65 

 

Table 5 Dimensionless uncertainty characteristics of the composite cylindrical shell 
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21 ~ 1.05, 0.0389N  

 2
12 ~ 0.9868, 0.0264g N      2~ 1, 0.01p N  

  

Convex model 

22 2 2 2

1 2 21 121.0012 1.0319 1.05 0.9868 1
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Interval model 
 1 0.9207, 1.0816e      2 0.9223, 1.1415e      21 0.9333, 1.1667   

 12 0.9075, 1.066g       * 0.97, 1.03p   

 

Table 6 Reliability analysis results of the composite cylindrical shell 

Ply angle   0  8  20  29  45  68  76  84  

Probabilistic model 0 0.9992 1 0.9915 0 0.9925 0.9987 0 

Hybrid model 0 0.9681 1 0.8946 0 0.9072 0.9619 0 

Convex model 0 0.9422 1 0.8550 0 0.8698 0.9441 0 

Interval model 0 0.8683 1 0.7838 0 0.7780 0.8394 0 
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Fig. 1. The safety region and failure region for the two-dimensional interval model 

 

 

Fig. 2. The safety region and failure region for the case of the convex model 

 

 

Fig. 3. The structural non-probabilistic reliability based on the convex model 

 

Fig. 4. Position of failure surface given different value of X  
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(a) Three-dimensional interval model (b) Three-dimensional convex model (c) 

Three-dimensional convex and interval mixed model  

Fig. 5. Three-dimensional models for non-probabilistic uncertainties 

 

 

 

Fig. 6. Different cases of the convex and interval mixed model given different interval 

variable Y  
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Fig. 7. Combination between numerical simplified technologies and the hybrid reliability 

analytical methods 
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Fig. 8. A cantilever beam 

 

 

Fig. 9. The hybrid reliability for various mixed models 

 

 

Fig. 10. The reliability of various single-source uncertainty 

 

 

Fig. 11. Configuration of a composite cylindrical shell under external pressure load 
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Fig. 12. Structural buckling reliability for the composite cylindrical shell obtained by four 

different uncertainty analytical models 

 

 

Fig. 13. Structural buckling reliability for the composite cylindrical shell in typical domain of 

  obtained by four different uncertainty analytic models 




