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Abstract

A product line design problem studies the optimal product line and corre-

sponding quality and price for each product. This problem is critical for the

success of businesses in both manufacturing and service sectors, and has been

an important research focus for decades in both areas of marketing and oper-

ations management. To contribute in this line of discussion, this dissertation

comprises of three essays in which we investigate how product line design

problem interacts with such operations issues as capacity, remanufacturing,

and reverse logistics, and examine how the results of these interactions af-

fect the environment. Throughout this dissertation, we focus on the design of

product quality, a single dimensional vertical differentiation which represents

all more-is-better attributes of a product.

In the first essay, we investigate how “back-end” capacity constraint inter-

acts with “front-end” pricing decisions. Specifically, we assume capacity is

consumed in both fixed (depends on the length of a product line) and variable

(depends on product quality) ways. A product design model for segmented

market is used to derive and analyze the optimal product line strategy. We

find that lower capacity introduces operations cannibalization which reduces

the length of the optimal product line. We also show that if longer product

line consumes more fixed capacity (e.g., for changeover or setup), then the

resulting economy of scale could make offering a standard product optimal,

which completely contradicts the classic product line design results.

In the second essay, we study remanufacturing and its environmental con-

sequences within the context of product design. In particular, production

costs and consumer valuations are considered as functions of quality and are

differentiated based on whether the product is non-remanufacturable, reman-

ufacturable, or remanufactured. Given this, the firm maximizes its profit by

determining whether or not to remanufacture and, if so, how much to re-

manufacture. Correspondingly, we examine the environmental consequences
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of these optimal remanufacturing decisions using a quality-dependent mea-

sure which focuses on resource extraction and waste disposal. We show that

true “green” consumers should not only value remanufacturable products but

also value remanufactured products. We also find that consumers’ higher

willingness-to-pay and the firm’s low production cost can potentially lead to

worse environmental consequences in addition to higher profit.

In the final essay, we extend the model in the second essay by incorporat-

ing an exogenous collection rate and by considering social and environmental

welfare in the decision making process. Examining the collection rate, we con-

firm that an increase in the collection rate generally benefits both the firm

and the environment. We also find that there exists a threshold of collection

rate above which collecting more units yields no effect on either profitability

or environmental friendliness. Examining social and environmental welfare,

we find that considering environmental welfare benefits the environment due

to both lower quality and a smaller sales volume. In contrast, considering

consumer welfare hurts the environment due to a much larger sales volume.

This once again underscores that it is consumption that hurts the environ-

ment.
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Chapter 1

Introduction

1.1 Problem Overview

Product design is critical to a manufacturer’s success. A well designed prod-

uct will facilitate a firm implementing its strategy, while an ill designed prod-

uct might force a firm to bankruptcy. For example, Apple Inc. launched its

first iPod on October 23, 2001. Now about ten years later, Apple Inc. has

developed a full product line that includes Classic iPod, the touchscreen

iPod Touch, the video-capable iPod Nano, and the compact iPod Shuffle.

Inspired by its success with iPod, Apple further developed two new product

lines, namely iPhone in January 2007 and iPad in April 2010. The successful

introduction of these product lines has not only saved the company but also

significantly increased its stock price. As of January 03, 2011, Apple Inc.

was worth more than $300 billion, the second most valuable company in the

world (Praetorius 2011). For this reason, among many others, product line

design problems have been one of the focal interests in marketing, operations

management, and engineering design.

Recent years, especially the last decade, have witnessed the booming of

reverse supply chain management. Product return, the “cost center” of a

firm’s operation, has been gradually turned into a new “revenue center”

(Guide and Van Wassenhove 2009). On the one hand, top management has

changed their view on the reverse supply chain. More systematic theories

and tools are applied to managing product returns. Instead of sitting in

the warehouse, returned products are collected, sorted, remanufactured, and

then sold to consumers through marketing endeavors. On the other hand,

consumers and the society as a whole are becoming increasingly aware of the

environmental consequences of product production and consumption. More

consumers are willing to buy “greener” products, even at a price premium

(Cremer and Thisse 1999, Sengupta 2011). As a result, the remanufacturing
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industry increased to $63 billion business by 2005.

Indeed, this surging “green wave” has presented enormous opportunities

for the 21st century. Whether firms can seize these opportunities is critical

to their success. Also important is how firms take on the inherent challenges

from legal, technological and marketing perspectives. On the legal side, a

number of legislations have been introduced in Europe, North America, and

Japan in the last two decades. These laws and regulations mandate man-

ufacturers to reduce waste and take responsibilities for the entire life-cycle

of their products (Webster and Mitra 2007). On the technological side, to

take advantage of the cost savings, manufacturers must design and produce

new remanufacturable products which would require more costly materials

and more efficient technology (Lee and Bony 2007). Finally, on the market-

ing side, remanufactured products may not be well received by consumers

because these products have been used (Guide and Li 2010). Also, selling

remanufactured products could cause significant cannibalization to the new

products, hence impeding the profitability (Atasu et al. 2008). Therefore, to

ride this green wave, firms need to systematically incorporate remanufactur-

ing and the reverse supply chain in their decision-making processes.

Many researches have shown that remanufacturing generally leads to higher

profitability. However, does this necessarily translate into environmental

friendliness, one of the most important benefits of remanufacturing? This

question is difficult to answer. To make things worse, remanufacturing could

potentially have negative environmental implications. For example, in ship

remanufacturing, unprocessed scrap metals are oftentimes abandoned on the

beach (CNN.com, 2008). In fact, firms proliferated across many industries

are guilty of greenwashing in the sense that they ride the “green wave” of

environmental consumerism without necessarily considering whether or not

their actions actually benefit the environment (Orange 2010). Indeed, the

implicit presumption that remanufacturing benefits the firm as well as the

environment warrants more rigorous examination.

1.2 The Objective and the Plan

This dissertation consists of three essays, each of which models a product

design problem within a specific operations management context. The first

2



essay (Chapter 2) addresses the question of how a capacity constraint af-

fects a monopoly firm’s optimal product line decisions. The second essay

(Chapter 3) studies the interaction between remanufacturing and product

design. In this setting, it also examines the environmental consequences of

remanufacturing by comparing the environmental damage associated with

optimal remanufacturing solutions to the damage associated with optimal

non-remanufacturing solutions. Building on the second essay, the third essay

(Chapter 4) extends the model of Chapter 3 by investigating the impact of

collection rate on the profitability and environmental friendliness of reman-

ufacturing.

In Chapter 2, we study the interaction between product line design and lim-

ited capacity in a monopolistic setting. Classic product line design literature

(i.e. Moorthy 1984, Kim and Chhajed 2000) has discussed this problem ex-

tensively by studying cannibalization and its implications. Here we consider

an operations constraint, limited capacity, which introduces to the product

line design problem a new trade-off between quality and quantity. On the

one hand, offering high quality can extract more surplus with each product

but lead to small quantity. On the other hand, offering low quality can boost

the sales volume but significantly reduce the profit margin of each product.

Hence, we consider this new trade-off in the product line design problem,

and ask how does limited capacity affect the optimal product line decisions?

Specifically, how does limited capacity interact with market cannibalization

and affect the optimal quality and price decisions?

To address these questions, we consider a monopoly firm serving a market

with two consumer segments that differ in size and valuation of quality. The

firm faces resource constraints in the form of limited capacity. Its production

technology dictates that capacity is consumed during changeovers or setups

as well as during actual production. Specifically, setup capacity (capacity

consumption per setup) depends on the length (number of product types)

of the product line, with longer product lines consuming more capacity for

setups. In contrast, variable capacity (capacity consumption per product)

increases linearly in product quality to reflect that it consumes more capacity

to manufacture a product with higher quality than it is to manufacture one

with lower quality. In our paper, capacity consumption depends on both

quality and quantity (as in Yayla-Küllü et al. 2011), whereas in existing

literature capacity consumption depends only on quantity (as in Dobson and
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Yano 2002, Tang and Yin 2010).

In Chapter 3, we study remanufacturing and its environmental conse-

quences in the context of product design. A firm has the option to design

a non-remanufacturable product or a remanufacturable one and to specify a

corresponding quality. These design choices affect both the production costs

and the consumer valuations associated with the product. On the cost side,

remanufacturable products cost more to produce originally, but less to reman-

ufacture, than non-remanufacturable products cost to produce. Analogously,

on the consumer side, remanufacturable products are valued more, but re-

manufactured products are valued less, than non-remanufacturable products

are valued. Given this, we investigate the environmental consequences of

remanufacturing by first defining a measure of environmental damage that,

ultimately, is a function of what is produced and how much is produced, and

then applying that measure to assess the environmental damage associated

with the firm’s optimal strategy relative to the environmental damage asso-

ciated with the firm’s otherwise optimal strategy if a non-remanufacturable

product were designed and produced. In doing so, we bridge the gap between

profit maximization and environmental friendliness to ascertain the extent to

which the two are complementary and to identify key factors of compatibility

when they are not complementary.

To operationalize the firm’s design for remanufacturing problem with a par-

simonious model that captures remanufacturing fundamentals, we follow the

lead of Ferrer and Swaminathan (2006) and Atasu et al. (2008) by formulat-

ing a two-stage analytic framework. We consider a firm serving a continuous

market. At the beginning of stage 1, the firm first determines whether to

design a remanufacturable product or a non-remanufacturable one and, cor-

respondingly, establishes the quality of the chosen product. Then the firm

sets the selling price for the product and sells an amount accordingly, as

dictated by the specified consumer market’s heterogeneity. Finally, to con-

clude stage 1, consumers who purchase the product extract its consumption

value and then either discard the remains (which is the case if the product

was designed to be non-remanufacturable) or return the remains (which is

the case if the product was designed to be remanufacturable). The returned

amount, if applicable, thus establishes a supply constraint on the number of

units that can be remanufactured for resale. Given that, at the beginning

of stage 2, the firm’s decision is to set its optimal product portfolio, that

4



is, to determine how many units of new versus remanufactured products to

produce and what associated prices to set accordingly for each product type

in stage 2.

In Chapter 4, we extend the model of Chapter 3 to explore the effect

of collection rates on a monopolist’s optimal design for remanufacturability.

In particular, we investigate the conditions under which the firm makes its

products remanufacturable when only a certain fraction of used products is

returned at the end of each period. In that context, we ask, how does the

optimal product mix between new and remanufactured products and optimal

product quality change according to the collection rate? And, how do these

decisions affect the environment? Moreover, we compare and contrast the

manufacturer’s optimal design for remanufacturability to the design that

would maximize social and environmental welfare.

In contrast to our model in Chapter 3, we operationalize the design for

remanufacturability problem in Chapter 4 with an infinite-horizon model.

There are two key distinctions: 1) no initial period, which means that can-

nibalization between new and remanufactured products explicitly exists in

each period; and 2) no ending period, which means that each new product

can potentially be remanufactured. At the beginning of the planning hori-

zon, the decision maker determines whether to design a remanufacturable

product or a non-remanufacturable one, and establishes the corresponding

quality. Given this product design, at the beginning of each period, the deci-

sion maker sets its optimal product portfolio, that is, determines how many

units of new versus remanufactured products to produce and what associated

prices to set accordingly in each period. Then, consumers make purchasing

decisions and determine whether to discard or to return the remains after

consumption. Finally, to conclude each period, the firm’s reverse logistics

collects a certain fraction of used products, which establishes a supply con-

straint on the number of units that can be remanufactured for resale.
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Chapter 2

Product Line Design With
Capacity Constraint

2.1 Introduction

The product line design problem involves the study of the optimal product

variety, and corresponding quality and price for each product in the product

line. This problem is critical for success of business in both manufacturing

and service organizations. Thus, it has been an important research focus

for more than four decades by scholars in both marketing and operations

management. Marketing literature establishes that higher product variety

can result in higher market share and revenue because it allows a firm to

better meet the special needs of consumers. However, the potential gain from

greater product variety must be balanced against the lower unit cost with

fewer variants (Lancaster 1990). The operations literature has studied this

tradeoff between revenue and cost, and has offered some prescriptions under

such settings as competition (Alptekinoǧlu and Corbett 2008, Villas-Boas

2009, Tang and Yin 2010), lead time and congestion (Dobson and Yano 2002,

Chayet et al. 2011, Alptekinoǧlu and Corbett 2010), and higher overhead and

administrative costs (Netessine and Taylor 2007). In this chapter, however,

we study capacity as yet another important factor in determining the optimal

product variety.

Indeed, firms are always operating under operational constraints such as

time, labor, equipment, space, and inventory (Goldratt and Cox 1992). These

resource constraints can lead to competition among multiple products as

manifested in many industries. For example, in the manufacturing sector,

the constraint could be the total machine time which is limited by the total

working hours and the number of assembly lines. Products which require

different amount of processing time and serve different consumer segments

share the same assembly line, and hence compete against each other for ma-

chine time (Dobson and Yano 2002, Chayet et al. 2011). Consequently, a
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firm has to optimally allocate its limited machine time among competing

products to maximize its profits. Other examples include customer service

centers which serve both premium and general customers, and aircraft ac-

commodating seats for different classes (Yayla-Küllü et al. 2011).

When making product line design decisions, a firm faces challenges posed

by capacity constraint on both the revenue and cost sides of the problem.

On one hand, offering higher variety enables the firm to extract more surplus

from consumers by better matching products with consumer preferences. But

limited capacity may prevent the firm from reaching out to every consumer

or from offering the best quality. On the other hand, offering lower variety

reduces unit production cost due to economies of scale in the production

process. But lack of differentiation prevents the firm from extracting more

surplus from consumers with higher willingness to pay. Some research has

addressed the trade-off between high revenue and low cost (e.g., Chayet et al.

2011, Tang and Yin 2010, Yayla-Küllü et al. 2011).

In this chapter, we aim to study the product line design problem of a

monopoly firm who serves a segmented market under limited capacity. Specif-

ically, we investigate the effect of capacity on the firm’s optimal product line

strategy, and identify conditions under which this optimal strategy deviates

from the corresponding classic prescription under unconstrained capacity.

We also examine the manifestation of capacity in quality and price, as well

as in consumer welfare and profitability.

To address these questions, we consider a segmented market with two

consumer segments that differ in size and valuation of quality. Serving this

market is a monopoly firm who has limited capacity and whose production

technology dictates that capacity is consumed during changeovers or setups

as well as during actual production. On one hand, setup capacity (capacity

consumption per setup) depends on the length of the product line, with

longer product line consuming more capacity for setups. On the other hand,

variable capacity (capacity consumption per product) increases linearly in

product quality, representing the notion that it consumes more capacity to

manufacture a product with higher quality than to manufacture one with

lower quality. Therefore, in this chapter, capacity consumption depends on

both quality and quantity (as in Yayla-Küllü et al. 2011), whereas in many

existing literature capacity consumption depends only on quantity (as in

Dobson and Yano 2002, Tang and Yin 2010).
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Our model considers product quality as an endogenous design decision.

This enables us to explicitly formulate capacity consumption with regards

to quality. This modeling construct allows richer dynamics between quality

and capacity, and is potentially more realistic for production scenarios where

products with different quality demands different amount of capacity. Con-

sequently, our modeling framework allows us to derive more insights into the

trade-off between operations and marketing prescriptions. The main results

of this chapter are summarized as follows:

• Capacity introduces cannibalization from the operations side as op-

posed to cannibalization from the market side which manifests because

of consumer differentiation. These two types of cannibalization exhibit

similar yet different effects on the firm’s optimal product line decisions.

First, an increase in cannibalization reduces the “length” of a product

line (product variety) regardless of the sources of cannibalization. How-

ever, lower capacity increases cannibalization because of reductions in

capacity for the high-quality products, while larger consumer differen-

tiation increases cannibalization because of the firm’s inability to im-

plement price discrimination. Secondly, operations cannibalization im-

pacts the qualities of both products while market cannibalization only

affects the quality of the low-end product when offering two products is

optimal. Moreover, capacity restriction does not affect the “width” of a

product line (quality differentiation between two products). Therefore,

the quality differentiation between products should remain the same

even if the firm experiences changes in capacity due to any reason,

whether it is downsizing, acquisition, or outsourcing.

• Offering a standard product for the whole market could be optimal

when capacity is limited, although such a strategy is never optimal

when capacity is abundant. When the two consumer segments are

close in their valuation and capacity is moderate, offering a standard

product for both segments is better than customizing only for the high-

end segment due to a larger sale volume of the standard product, and

it is also better than offering two products due to savings in setup ca-

pacity. Hence, capacity constraint offers another explanation of why

offering a standard product is still practiced in many industries. Note

that the differentiation in valuation between the two segments is the
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fundamental driver in determining whether or not offering a standard

product is optimal. If the two segments are sufficiently apart, for ex-

ample, then this strategy is never optimal. Instead, the firm offers two

products when capacity is high and offers a niche product for the high

segment only when capacity is low.

• In addition, limited capacity also exhibits strong influence over the

firm’s operational decisions, such as capacity utilization. For example,

the firm may choose to idle some capacity when there is a large setup

capacity associated with offering two products. This occurs when ca-

pacity is moderate, in which case the firm has enough capacity to offer

the targeted segment with its efficient quality. But, large setup capac-

ity makes it unattractive to offer two products because the remaining

capacity after setup is not sufficient to offer high enough qualities to

attract consumers.

• Intuitively, limited capacity generally leads to lower quality and price

for consumers as compared to the unconstrained capacity case. How-

ever, this is not necessarily true. In fact, limited capacity may lead

to higher quality, price and consumer welfare for certain segment(s).

For example, as opposed to offering two differentiated products, when

offering a standard product for the whole market is optimal, the low

segment may receive higher quality and hence higher price. This con-

sequently translates to higher consumer welfare for the high segment.

The rest of the chapter is organized as follows. In §2.2, we review rele-

vant literatures. Then in §2.3, we lay out the model assumptions for both

consumers and the firm, and we develop and solve models for each product

line design strategy. In §2.4, we discuss the impact of capacity on the firm’s

optimal product line decisions such as capacity utilization, quality, price,

consumer welfare as well as the firm’s profit. And we conclude in §2.5.

2.2 Literature Review

Our research is related to two streams of literature. One stream is the lit-

erature on product line design. It started with Mussa and Rosen (1978)’s
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seminal research on vertical product differentiation in quality, which was fur-

ther developed by Moorthy (1984) to tailor for segmented market. These

marketing research emphasize “front-end” issues, that is to extract maxi-

mum surplus from heterogeneous consumers. They demonstrate the effects

of market cannibalization in a product line with multiple products. Given

cannibalization, this model is further developed to study a variety of issues,

such as consumers’ patience about time-to-market (Moorthy and Png 1992),

distribution channel structure (Villas-Boas 1998), competition and horizon-

tal consumer taste (Desai 2001), multiple quality-type attributes (Kim and

Chhajed 2002), consumer evaluation cost (Villas-Boas 2009), and consumer

variety seeking behavior (Sajeesh and Raju 2010). These works generally

consider no explicit operational cost but assume a convex relationship be-

tween quality and corresponding variable cost. The results suggest that

cannibalization leads to quality distortion to the lower-valuation segment.

As cannibalization increases, the low segment should be dropped altogether.

Moreover, a single standard product for all would never be optimal in this

setting.

Also building on the stylized product line design model of Mussa and Rosen

(1978) are many research papers on the operations and marketing interface.

These works emphasize on the “back-end” issues, that lead to lower oper-

ational cost. For example, Desai et al. (2001), Kim and Chhajed (2002),

and Heese and Swaminathan (2006) study the implications of product com-

monality and resulting cost saving effect on product line decisions. Krishnan

and Zhu (2006) investigate impact of development cost in addition to vari-

able cost. Shao (2007) studies system flexibility in a competition setting

and learns that first-mover with flexibility may suffer from low profitability

when the level of flexility is public information to its competitor. Netes-

sine and Taylor (2007) examine the production technology with the classic

economic order quantity model representing the make-to-stock cost. Chayet

et al. (2011) study the effect of congestion in the form of queuing models.

The second stream of literature of interest to us is on resource constraint.

This literature generally assumes exogenous product design and demand, and

focuses on satisfying consumer demand with limited resources. For example,

Cohen et al. (1988), Zhang (1997) and Mirchandani and Mishra (2002) pro-

pose that limited resources should be prioritized according to products or

consumer classes. In particular, the product with higher profitability or con-
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sumer class with higher willingness to pay should be assigned with higher

priority. Dobson and Yano (2002), Tang and Yin (2010), and Yayla-Küllü

et al. (2011) study the effect of capacity with exogenous product design but

endogenous pricing scheme which determines the demand of each type of

product. Dobson and Yano (2002) assume that each product serves inde-

pendent market which allows the authors to focus on the effect of capacity

sharing in the absence of cannibalization. In contrast, Tang and Yin (2010)

and Yayla-Küllü et al. (2011) study capacity with cannibalization such that

multiple products serve the same uniformly distributed market. Tang and

Yin (2010) consider product differentiation only in consumer valuation, while

Yayla-Küllü et al. (2011) consider products differentiation in both quality

and variable capacity consumption. Nevertheless, their results show that

with limited capacity, a firm chooses its product line strategy by balancing

marginal profitability against marginal capacity consumption.

In this chapter, we continue this line of discussion on the impact of ca-

pacity in product line design. The questions we ask are closely related to

those in Tang and Yin (2010) and Yayla-Küllü et al. (2011). However, our

model differs from these two papers in that we consider endogenous qual-

ity and model capacity consumption that depends on quality. Firstly, we

assume segmented market which allow us to examine the rich dynamics be-

tween quality, quantity and capacity. Secondly, capacity is consumed in both

fixed and variable fashion. In particular, the fixed setup capacity depends

on product types, while the variable capacity requirement per product de-

pends on the quality of the product. Here, our interpretation of capacity

as a quality-dependant resource constraint is not only more realistic than

the quantity interpretation in Tang and Yin (2010), but also enables us to

explicitly capture the trade-off between quality and quantity. Moreover, a

longer product line requires more capacity to setup than a short product line

does, which differentiate this chapter from Yayla-Küllü et al. (2011). This

assumption captures the notion of economy of scale in the sense that lower

product variety means smaller setup capacity requirement and hence more

effective capacity for production.
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2.3 The Model

In this section, we first introduce and discuss our assumptions for the con-

sumers and the firm. Then, we formulate and solve the decision models for

each product strategy. Finally, we compare these strategies to develop the

optimal strategy.

2.3.1 Modeling Assumptions

Consumers. We consider a market with two vertically differentiated con-

sumer segments which differ in size and valuation of quality. Within each

segment, consumers are homogenous. We use subscripts h and l to denote the

high- and low-valuation consumer segments, respectively. The high-valuation

segment is characterized with size nh and valuation of quality vh, whereas,

the low-valuation segment is characterized with size nl and valuation of qual-

ity vl. Consumers purchase a product to maximize their non-negative surplus

defined by the difference between consumer’s utility and product price. For

a product of quality q and price p, a customer with valuation v will derive

a surplus of vq − p. If only one product is offered to the market, then con-

sumers will purchase this product if the resulting surplus is non-negative

(i.e., vq − p ≥ 0). If two products are offered to the market, then consumers

will choose the product which provides them with higher non-negative sur-

plus. If purchasing either product yields the same surplus, then consumers

will choose the product that is designed for them (i.e., high segment chooses

high-quality product, while low segment chooses low-quality product).

We allow partial coverage of a consumer segment if the total number of

products offered is smaller than the size of the targeted segment. In this

case, some consumers in this segment purchase the product while others do

not purchase because of limited supply of products. Which specific consumer

in a segment purchases the product is not important because of consumer

homogeneity within each segment1.

Firm. We consider a monopoly firm seeking to maximize its profit by of-

fering the market with one or two products. Each product is differentiated

by a single dimension “quality”, denoted by q, which captures all more-is-

better features (e.g., Moorthy 1984, Kim and Chhajed 2000). Generally, a

1For the same reason, we do not consider strategic consumers in this chapter.
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production process involves multiple steps and each step requires different in-

puts. The intricate relationships between various inputs and quality lead to

increasing marginal cost in quality. Consistent with the extant product line

design literature (e.g., Moorthy 1984, Kim and Chhajed 2000, Netessine and

Taylor 2007), we use cq2 to model the variable cost per unit to manufacture

a product with quality q, where c > 0 is the cost coefficient.

The firm has a limited capacity, denoted by K. Its production technol-

ogy requires both fixed and variable consumption of capacity. First, a fixed

capacity is required for each product type for set-up activities such as cali-

brating machines and preparing materials. By definition, this setup capacity

depends only on the number of product types. Accordingly, we denote this

setup capacity with bm, where m = 1, 2 is the number of product types.

Without loss of generality, we normalize bm such that b1 = 0 and b2 = b > 0.

Here, b is the extra setup capacity for offering two products, hence represents

the cost of product variety. Second, a quality dependent variable capacity is

required for each product. And we use aq to model the variable capacity per

unit required for manufacturing a product with quality q, where coefficient a

denotes the variable capacity required to offer unit quality. In the context of

this chapter, a > 0 captures the notion that high quality implies finer work-

manship or more features, thus warranting more capacity (Krishnan and Zhu

2006).

In our modeling context, we follow the convention of Alptekinoǧlu and

Corbett (2008) by assuming that variable capacity requirement depends lin-

early on quality. This assumption can also be justified from the bottleneck

perspective in operations management. Generally, a production process in-

volves multiple steps and each step requires different inputs. But the capacity

of a process is solely determined by the bottleneck step which is character-

ized by the lowest output rate. Hence, it is reasonable to assume that the

variable capacity required at this step increases at a constant rate in quality

represented by a linear function. Take the bottling industry for example. In

this industry, quality can be represented by the volume of a bottle, whereas

the capacity can be represented by the total machine time. Given that the

machine has a constant filling rate, the time required to fill up a bottle is de-

termined by the volume of the bottle, a relationship that can be represented

by a linear function.

We summarize all the notation in Table 2.1. Consistent with the prod-
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Table 2.1: Summary of Notation
Symbol Definition
vi, ni Valuation of quality and size for segment i = h, l
a, Marginal capacity for each unit of quality
b Setup capacity for a product line
R Market cannibalization factor, R = nh/nl(vh/vl − 1)
xi Quantity of the i = h, l-quality products (decision variables)
qi Quality levels for product i = h, l(decision variables)
pi Price levels for product i = h, l (decision variables)

uct design literature (Moorthy and Png 1992, Krishnan and Zhu 2006),

we denote qe
h = vh/2c and qe

l = vl/2c as the “efficient” quality for the

high and low segment2, respectively. Similarly, we denote qu
h = vh/2c and

qu
l = vl/2c(1−nh(vh−vl)/(nlvl)) as the unconstrained quality when two prod-

ucts are offered Moorthy and Png (1992), respectively. Note that qe
h = qu

h

while qe
l > qu

l indicating that cannibalization leads to a lower quality for the

low segment. Consequently, to serve the market with unconstrained quality

requires a minimum capacity of b+ a(nh+nl)vl

2c
, in which b represents the set-up

capacity, and a(nh+nl)vl

2c
represents the capacity required to manufacture nh

products of quality qu
h and nl products of quality qu

l . We define this capacity

threshold as the unconstrained capacity K̄. When K ≥ K̄, our problem is

unconstrained and is equivalent to that in Moorthy (1984). Hence in this

chapter, we focus on the case where K < K̄.

Facing capacity constraint, the firm may choose to offer different number of

products catering to different segments. Specifically, the firm can customize

one product for the high segment only, which we refer to as the Niche strategy

(N); or offer a standard product targeted at both segments, which we refer

to as the Standard strategy (S); or customize one product for each segment,

which we refer to as the Product-line strategy (L). We use superscripts N , S,

L to represent the Niche, Standard and Product-Line strategy, respectively.

In the remainder of this section, we develop and solve the profit-maximizing

model for each strategy.

2Here, efficient quality for a segment is defined as the optimal quality if a single product
is offered to the segment.
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2.3.2 Single Product Strategies

A single product strategy represents the case when the firm offers one product

to the market. If the Niche strategy is implemented, then the firm designs

a single product so that it appeals only to consumers in the high segment.

Correspondingly, the firm faces the following problem

max
x,p,q

ΠN = x(p− cq2) (2.1)

s.t. vhq − p ≥ 0 (2.2)

x− nh ≤ 0 (2.3)

axq −K ≤ 0 (2.4)

And all decision variables xh, qh, ph ≥ 0. Constraint (2.2) is the participation

(or incentive) constraint which ensures that customers in the high segment

derive non-negative surplus from purchasing the niche product3. Inequality

(2.3) and (2.4) are the quantity and capacity constraints for the Niche strat-

egy. Accordingly, the incentive constraint (2.2) is binding because nothing

prevents the firm from setting a price which extracts all the surplus from

consumers in the high segment. That is, p(q) = vhq.

Similarly, if the Standard strategy is implemented, then the firm designs

a single product and targets it at both segments. Correspondingly, the firm

faces the following problem

max
x,p,q

ΠS = x(p− cq2)

s.t. vlq − p ≥ 0 (2.5)

x− (nh + nl) ≤ 0 (2.6)

axq −K ≤ 0

And again all decision variables x, q, p ≥ 0. The Standard strategy problem

resembles the Niche strategy problem except for the participation constraint

and quantity constraint. Specifically, (2.5) is the incentive constraint which

ensures that customers in the low segment derive non-negative surplus from

3Consumers in the high segment will derive from the niche product zero surplus which
is always higher than the surplus derived by consumers in the low segment from the same
product. Hence this niche product does not appeal to the low segment.
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purchasing the standard product4. And (2.6) is the quantity constraint to

ensure that the total quantity of standard product should be no more than

the total size of the two segments.

Lemma 2.1. For a single product strategy problem defined in §2.3.2,

(i) quantity constraint (2.3) and (2.6) are always binding;

(ii) capacity constraint (2.4) is binding when capacity is low, i.e., K ≤ KN

for the Niche strategy or K ≤ KS for the Standard strategy.

where KN = anhvh/(2c) and KS = a(nh + nl)vl/(2c).

Lemma 2.1 establishes that the quantity and capacity constraint will be

tight for a single product strategy. Accordingly, we can write the profit as

a function of q, i.e., ΠN(q) = nh(vhq − cq2) for the Niche strategy, which is

concave in q. Optimizing this profit over q, we obtain the following proposi-

tion.

Proposition 2.1. Let xi∗, qi∗, pi∗, Πi∗ denote the conditionally optimal quan-

tity, quality and price decisions as well as the associated profits for strategy

i = N, S. If a single product strategy is implemented, then

xi∗ qi∗ pi∗ Πi∗

Niche nh
vh

2c (1− (1− K
KN )+) vhqN∗ nhv2

h

4c (1− ((1− K
KN )+)2)

Standard nh + nl
vl

2c (1− (1− K
KS )+) vlq

S∗ (nh+nl)v
2
l

4c (1− ((1− K
KS )+)2)

Proposition 2.1 summarizes the optimal quantities, qualities, prices and

the corresponding profits for both the Niche and Standard strategies. Note

again that KN and KS represent the corresponding thresholds capacity below

which the firm following a single product strategy will exhaust all capacity

while above which the firm will offer the corresponding efficient quality level

and idle any extra capacity more than these thresholds.

Examining first the optimal quantities, and from Lemma 2.1 (i), we find

that the firm should always completely cover the targeted segment(s). As

capacity increases, the firm can obtain non-negative increase in profit by

either increasing quantity or increasing quality. The marginal return on

capacity is higher if this unit of capacity is utilized to increase quantity than

4Consumers in the high segment always buy as they derive more surplus from the
standard product than consumers in the low segment do.
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if it is utilized to improve quality as long as the intended segment(s) is not

fully covered. As a case in point, consider the Niche strategy. For given

quantity x < nh,

∂ΠN(x(K), q)

∂K
=

vh − cq

a
>

vh − 2cq

a
≥ vh

a
− 2cK

a2x
=

∂ΠN(x, q(K))

∂K
≥ 0

holds where the second inequality follows because K ≥ axq. In other words,

the firm is better served by increasing quantity first before improving qual-

ity when capacity is not enough to cover the intended segment(s) with the

corresponding efficient quality. Examining the optimal profits, we find that

there exists a maximum profit which is obtained when capacity is sufficiently

high (specifically, K ≥ K i for the strategy i = N,S). When capacity is lower

than the corresponding capacity threshold, the firm obtains a lower profit,

which reduces quadratically in the difference between available capacity K

and the corresponding threshold. The bigger is this difference, the lower is

the firm’s profit.

2.3.3 Product Line Strategy

In the Product-Line strategy, the firm customizes one product for each seg-

ment. Correspondingly, the firm faces the following problem,

max
xi,pi,qi

ΠL =
∑

i=h,l

[
xi(pi − cq2

i )
]

(2.7)

s.t. viqi − pi ≥ 0, i = h, l (2.8)

vhqh − ph ≥ vhql − pl (2.9)

vlql − pl ≥ vlqh − ph (2.10)

xh − nh ≤ 0, (2.11)

xh + xl ≤ nh + nl (2.12)

b + a
∑

i=h,l

xiqi −K ≤ 0. (2.13)

Again (2.8) is the incentive constraint for segment i = h, l, (2.11) and (2.12)

are the corresponding quantity constraints, while (2.13) is the the capacity

constraint, and (2.9) and (2.10) are self-selection constraints. These self-

selection constraints ensures that consumers in the high segment always de-
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rive positive utility from either product. In our modeling context, this means

that consumers in the high segment seek for the high-quality product first

and for the low-quality product later if the high-quality product is not avail-

able. Thus, these conditions do not rule out the possibility that a fraction of

the high segment buys the high-quality product while another fraction buys

the low-quality product.

The participation constraint (2.8) will be binding for the low segment as

nothing prevents the firm from extracting all the rent from consumers in

the low segment, or pl = vlql. Also, the self-selection constraint (2.9) is

binding, indicating that the firm can extract surplus from the high segment

up to a point where the high segment is indifferent between either product,

or ph = vhqh − (vh − vl)ql. Replacing the prices for high- and low-quality

products in (2.7), the profit function can thus be written as

ΠL(xh, xl, qh, ql) = xh(qhvh − cq2
h − ql(vh − vl)) + xl(vlql − cq2

l ) (2.14)

subject to constraints (2.11), (2.12), and (2.13). Similar to Lemma 2.1 for

the Niche strategy, we have the following lemma for the Product-line strategy

which follows directly from the corresponding Lagrange model.

Lemma 2.2. For the Product-line problem defined in §2.3.3, i) quantity con-

straints (2.11), (2.12) are always binding; ii) capacity constraints (2.13) is

always binding.

The intuition behind Lemma 2.2 is as follows. First, both segments should

be completely covered under the Product-Line strategy. Offering every cus-

tomer in the high segment with high-quality product gives the firm higher

marginal profit. While, offering every customer in the low segment with low-

quality products gives the firm lower marginal cost. Second, the firm should

exhaust available capacity under the Product-Line strategy. If the limited

capacity is not exhausted, then utilizing one more unit of capacity can in-

crease product quality, which leads to higher price and higher profit margin.

Consequently, we can solve (2.14) and arrive at the following result.

Proposition 2.2. If the Product-Line strategy is implemented, a firm facing
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limited capacity (K < K̄) designs its product qualities, such that

qL
h =

(K − b)

a(nh + nl)
+

(vh − vl)

2c

qL
l =

(K − b)

a(nh + nl)
− nh(vh − vl)

2cnl

, (2.15)

and the corresponding profit ΠL(K) =
nhv2

h

4c
+

nlv
2
l

4c
(1− R)− c(K̄−K)2

a2(nh+nl)
. KL ≤

K < K̄ and R ≤ 1, where KL = K̄ − a(nh+nl)vl

2c
(1−R).

Proposition 2.2 characterizes the optimal product line quality with regards

to K. These results can be interpreted as follows. First, effective capacity

after setup is evenly allocated resulting in a base quality of K−b
a(nh+nl)

for each

product. Then to differentiate the two products, anh(vh−vl)
2c

amount of capac-

ity intended for producing low-end products is reallocated to producing the

high-end product. As a result, quality of the low-end product is reduced by
nh(vh−vl)

2cnl
, while that of the high-end product is increased by (vh−vl)

2c
. Second,

with unlimited capacity, the two products should have qualities of qu
h and qu

l ,

respectively. Because of limited capacity, quality of each product is reduced

by

qu
h − q∗h = qu

l − q∗l =
K̄ −K

a(nh + nl)
,

so that the firm can offer enough volume to cover each segment.

One interesting result is that the “width” of the product line (defined

by the differentiation in quality between the products and represented by

∆q = qh−ql) remains the same whether or not capacity is limited, i.e., ∆q∗ =

∆qu = (nh+nl)(vh−vl)
2cnl

. This illustrates the effects of market cannibalization.

That is, in order to implement price discrimination through consumer self-

selection, the firm must differentiate the qualities of its two products by

increasing the quality of the high-end product and reducing the quality of

the low-end product.

In contrast, the second perspective demonstrates the effects of limited ca-

pacity on the quality differentiation. Due to limited capacity, the firm cannot

offer the same product qualities as the unconstrained case. Instead, it re-

duces the qualities for both products by the same level. And this level of

reduction is proportional to the difference between available capacity and

the unconstrained capacity. The lower available capacity the firm has, the

bigger is the quality reduction. When available capacity approaches the un-
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constrained level, the reduction in quality becomes zero. When available

capacity approaches KL, the reduction in quality is the largest, at a value of
vl

2c
− nh(vh−vl)

2cnl
, in which case the quality of the low-end product approaches

zero. Thus, the available capacity should be more than KL for offering two

products to be feasible.

2.3.4 Optimal Product Line Strategy

Let Kns denote the capacity threshold where the firm is indifferent between

the Niche strategy and the Standard strategy, and is obtained by setting

ΠN(K) = ΠS(K). Similarly, let Ksl and Knl denote the corresponding ca-

pacity threshold where the firm is indifferent between the Standard and the

Product-Line strategies, and between the Niche and the Product-Line strate-

gies, respectively. By comparing the conditionally optimal profits for all three

strategies, we have the following proposition about the optimal product line

strategy.

Proposition 2.3. The optimal product line strategy for a firm facing limited

capacity is as follows:

(i) If max[Ksl, Knl] ≤ K and vh < vl(nh+nl)/nh, then the firm implements

the Product-Line strategy;

(ii) If Kns ≤ K < Ksl, then the firm implements the Standard strategy;

(iii) If 0 < K < min[Kns, Knl] and vh < vl(nh + nl)/nh, or if vh ≥ vl(nh +

nl)/nh, then the firm implements the Niche strategy.

Proposition 2.3 characterizes the optimal strategy for given capacity and

consumer valuation. To better understand the results in Proposition 2.3, we

graphically represent the optimal strategy space in Figure 2.1. We set the

parameters at vl = 1, nh/nl = .6, b = .1, and a = c = 1 for all figures in

this chapter unless otherwise stated. Notice that it is the ratios of vh/vl and

nh/nl as well as a/c that determine the structure of the optimal strategy.

When capacity is not constrained, we know from (Moorthy 1984, Moorthy

and Png 1992) that a firm offers a product line if market cannibalization

is weak (i.e., vh < vl(nh + nl)/nh as in region (iv)) and offers only a high-

quality product for the high segment if market cannibalization is strong (i.e.,

vh ≥ vl(nh +nl)/nh as in region (v)), which corresponds to the area of Figure
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Figure 2.1: Optimal Strategy in Capacity and Consumer Valuation

2.1 in which K ≥ K̄. When capacity is constrained, this classic result can

be challenged depending on the level of capacity and consumer valuation.

On the one hand, if capacity is close to the unconstrained level (as in region

(i)), then offering two products is optimal as it helps the firm to segment the

market and to benefit from a large demand. On the other hand, if capacity

is sufficiently lower than the unconstrained level, then segmenting strategy is

no longer optimal due to corresponding low qualities. Instead, the firm finds

it more profitable to offer a single product so as to avoid the extra setup

capacity associated with offering two products. Specifically, the firm offers a

standard product for both segments (as in region (ii)) if the two consumer

segments are close to each other in valuation; and it offers a niche product

for the high segment (as in region (iii)) if the two consumer segments are far

apart.

Figure 2.1 suggests that there are certain threshold values of capacity and

valuation for a strategy to be viable. The following proposition formalizes

these existential results.

Proposition 2.4. There exist v̂h, K̂, and b̂ such that

i) Offering a standard product to both segments is never optimal when con-

sumer segments are sufficiently apart in valuation (i.e., vh ≥ v̂h), re-

gardless of capacity level;

ii) Offering two products is never optimal when capacity is low (i.e., K <

K̂) regardless of consumer valuations.
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where b̂ = KS (
√

nl(nl+nh)−nl)

2nh+nl
, K̂ = Kns(v̂h), and

v̂h =





vl + 2bvl

KS (−1 +
√

1 + nl

4nh
(1 + 2KS

b
)), b ≤ b̂

vl + bvl

KS

√
nl

(nh+nl)
(−1 +

√
nl

nh
(−1 + 2KS

b

√
(nh+nl)

nl
)), b > b̂

The first part of Proposition 2.4 demonstrates that offering a standard

product is never optimal if consumer segments are sufficiently apart from

each in valuation (i.e., vh > v̂h where v̂h = arg[Ksl(vh) = Kns(vh)]). We

know that, on the upside, offering a standard product can be optimal be-

cause it benefits from a larger sales volume (compared to offering a niche

product) as well as no setup capacity (compared to offering two products).

On the downside, offering a standard product does not implement price dis-

crimination, the loss of which hinges on the level of cannibalization. When

vh < v̂h, weak cannibalization reduces the need to differentiate quality which

renders offering a standard product optimal. When vh ≥ v̂h, however, rela-

tive strong cannibalization dictates quality differentiation between products.

In particular, if the capacity is relatively low, then the firm achieves this qual-

ity differentiation by customizing only for the high segment so as to avoid

setup capacity requirement. If the capacity is relatively high, then the firm

customizes for both segments. Notice that v̂h <
√

nh+nl

nh
vl, where the latter

represents the threshold valuation for the high segment above which offering

a standard product is always dominated by offering a niche product.

The second part of Proposition 2.4 demonstrates that lower capacity re-

duces product variety. More interestingly, we find that offering two products

is never optimal when capacity is below a certain threshold K̂. We know

from Proposition 2.2 that the firm reduces the qualities of both products as

capacity decreases from the unconstrained level. This reduces the benefit of

market segmentation due to lower profit margins. When K ≥ K̂, the firm

still benefits from implementing segmentation because the resulting qualities

and profit margins are sufficiently high (i.e., region (i)). When K < K̂,

however, this benefit becomes trivial. The firm is better off offering a sin-

gle product to avoid the extra setup capacity, specifically, offering a standard

product if consumer valuations are close (i.e., region (ii)) and offering a niche

product if consumer valuations are apart (i.e., region (iii)).

Note that when the setup capacity b = 0, we have v̂h = vl and K̂ = 0. The
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implications of b is discussed in the next section.

2.3.5 Operations Cannibalization and Cost of Variety

Our discussion about the optimal strategy indicates that limited capacity

introduces operations cannibalization because offering low-quality products

cannibalizes the capacity that could be used to offer high-quality products.

This is different from market cannibalization introduced by asymmetric in-

formation about consumer valuation. Specifically, operations cannibaliza-

tion introduced by limited capacity intensifies as capacity decreases. And

the effects of stronger operations cannibalization on the optimal strategy can

be illustrated in two ways. First, operations cannibalization decreases the

qualities for both segments when offering either a standard product or two

products is optimal. This is different from market cannibalization which only

distorts the quality of the low-quality product.

Second, strong operations cannibalization reduces the length of a product

line to obtain higher profit margin from the high segment, as is similar to

the effect of market cannibalization. However, a shorter product line asso-

ciated with strong operations cannibalization can also be attributed to the

setup capacity b, which recall from §2.3.1, represents the extra setup capac-

ity required for offering two products relative to offering a single product.

In particular, larger b favors shorter product line and smaller b favors longer

product line. Obviously, for single product strategies, a decrease in b yields

no effect on the firm’s decisions. For the Product-Line strategy, however,

a decrease in b means that less capacity is required for setup hence more

capacity is available for actual production. In other words, decreases in b

translate to higher qualities for both products which, in turn, translate into

more benefit from customizing for both segments. Specifically, we have the

following result on the setup capacity b.

Proposition 2.5. Large setup capacity decreases product variety. Offering a

standard product is optimal only when the setup capacity is sufficiently large,

i.e. b > β1, where

β1 =





KS(1− 2R)
(√

1 + nlR2

nh(1−2R)2
− 1

)
vh ≤ 2(nh+nl)vl

(2nh+nl)

KS
√

nl√
(nh+nl)

(
1−R−

√
1−R (vh+vl)

vl

)
2(nh+nl)vl

(2nh+nl)
< vh ≤

√
(nh+nl)

nh
vl
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Recall that the extra setup capacity b represents the cost of product vari-

ety. In this context, β1 denotes the minimum level of setup capacity above

which the cost of variety is sufficiently high (i.e., b > β1) such that offer-

ing a standard product could be optimal. Note that β1 increases in vh and

limvh→vl
β1 = 0. This indicates that for given b > 0, there exists a corre-

sponding v̂h such that if vh < v̂h, then b > β1 is true. In other words, as

long as offering two products requires extra setup capacity, the correspond-

ing cost of variety could render offering a standard product optimal for small

consumer differentiation. Graphically, this result means that region (ii) in

Figure 2.1 always exists for positive values of b. In contrast, if b = 0, then

there is no cost of variety. Hence offering a standard product is never opti-

mal regardless of capacity and consumer valuation. However, the effects of

operations cannibalization remain the same as the firm offers a niche product

when capacity is low (i.e., K < Knl) and offer two products when capacity

is sufficiently high (i.e., K ≥ Knl).

2.4 Discussion of Results

In this section, we investigate how the dynamics between limited capacity

and cannibalization affect capacity utilization and correspondingly, product

variety, quantity, as well as qualities. In particular, we illustrate how these

decisions change in capacity for a given set of market and production pa-

rameters, and compare these decisions to those with unconstrained capacity

(Moorthy 1984).

2.4.1 Capacity Utilization

Recall from §2.3 that when capacity is limited, an increase in capacity allows

a firm to achieve higher profit by increasing either product quality or quantity.

Thus, as a natural extension, we explore in this section whether a firm would

necessarily exhaust all available capacity when following the optimal product

line strategy. This is answered by the following proposition.

Proposition 2.6. A firm facing limited capacity may not necessarily exhaust

all capacity. For given vh, the firm may idle some of its capacity as follows:
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(i) If 2(nh+nl)vl

(2nh+nl)
< vh and b > β2, idle K −KN units of capacity for KN <

K < min[Kns, Knl]

(ii) If vh <
√

(nh+nl)
nh

vl and b > β3, idle K − KS units of capacity for

KS < K < Ksl;

where β2 =
anlvl(

√
(nh+nl)/nl−1)

2c
(1−R), and β3 = KSR

√
nl

nh
.

Proposition 2.6 presents some interesting circumstances in which a firm

with limited capacity chooses not to use all available capacity. This capacity

idling behavior only occurs when a single product strategy is optimal5. In

these cases, increases in capacity do not affect product quality because the

quadratic cost function dictates that it is never optimal to offer a consumer

segment with a quality higher than the corresponding efficient level. In the

meantime, neither do increases in capacity affect the firm’s optimal strategy

because the resulting qualities will be too low to justify higher product variety

(e.g., switching from the Niche or Standard strategy to the Product-Line

strategy) or higher quantity (e.g., switching from the Niche to the Standard

strategy). Hence, the firm is better-off to idle any capacity that is more than

the capacity thresholds KN (for the Niche strategy) or KS (for the Standard

strategy).

From Proposition 2.6, we find that both consumer valuations and setup

capacity play critical roles in the firm’s capacity idling behavior. In partic-

ular, capacity idling occurs when consumer segments are neither too close

(i.e., Proposition 2.6 (i)) nor too far apart (i.e., Proposition 2.6 (ii)). If con-

sumer segments are close to each other in valuation (i.e., if vh < 2(nh+nl)vl

(2nh+nl)
,

violating the condition of Proposition 2.6 (i)), then the marginal return of

additional capacity increases faster when producing for both segments than

it does when customizing only for the high segment. As a result, the firm

switches its optimal strategy from offering a niche product to offering a stan-

dard product before the capacity is sufficient to offer the high segment with

its efficient quality. On the other hand, if consumer segment are far apart

(i.e., if vh >
√

(nh+nl)
nh

vl, violating the condition of Proposition 2.6 (ii)), then

the marginal return of additional capacity is always higher when customizing

for only the high segment than it is when producing a standard product for

both segments.

5Recall from Lemma 2.2 that the Product-Line strategy always exhausts all capacity
for K ≤ K̄.
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Figure 2.2: Impact of Setup Capacity b with vh = 1.5

Proposition 2.6 also establishes setup capacity b as another driver for the

firm’s capacity idling decision. To better illustrate the impact of b, we provide

a variant representation of the optimal strategy in Figure 2.2 in which the

horizontal axis now represents the setup capacity b instead of the valuation

for the higher segment as in Figure 2.1. Figure 2.2 demonstrates that capac-

ity idling occurs only when the setup capacity is sufficiently large (regions

(A),(B),(C)). Recall that setup capacity represents the additional capacity

required to set up for two products as compared to the capacity required to

set up for a single product. By definition, b only affects the Product-Line

strategy but not the single product strategies. Hence, one would expect that

the larger b is, the more reluctant the firm would be to switch to offering two

products, hence the more likely capacity idling would occur.

Now comparing the size of idled capacity to setup capacity b, we have the

following result.

Proposition 2.7. A firm facing limited capacity never idles more than b

units of capacity.

Proposition 2.7 demonstrates an important characteristic of capacity idling,

i.e., the firm never idles more than the setup capacity. Recall that capacity

idling occurs only when the firm has sufficient capacity to offer efficient qual-

ity to the intended segment. Given the conditions specified in Proposition

2.6, if the firm acquires b more units of capacity, then it should offer two

products rather than a single product (e.g., regions (B) and (C)), or offer a

standard product rather than a niche product (e.g., region (A)). Note that

if the firm offers a single product and exhausts its capacity, then acquiring b

more units of capacity does not guarantee switch to a new strategy.
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2.4.2 Product Variety and Quantity

When capacity is not constrained, we know from (i.e., Moorthy 1984) that

consumer valuation is the only driver for a firm’s choice of product variety

and quantity. Specifically, larger differentiation in valuation between the

two consumer segments (e.g., high cannibalization) leads to lower product

variety and quantity, in which case the firm is better-off serving only the high

segment. When capacity is limited, however, we find that lower capacity is

another driver for lower product variety and quantity. In particular, the firm

reduces its product variety and quantity when capacity is limited. As we

have discussed in §2.3, higher variety requires extra setup capacity which

translates to lower effective capacity for the production and lower quality for

each product. In contrast, lower variety can avoid this setup capacity and

hence leave more effective capacity for production. In a similar vein, larger

quantity means capacity is shared among more products hence each product

consumes less capacity which again translates to lower quality. But smaller

quantity means that each product can consume relatively more capacity and

consequently, have higher quality and profit margin.

Moreover, we find that reductions in product variety and quantity do not

necessarily happen simultaneously. For example, when consumer segments

are close to each other in valuation (i.e., in the case when vh < v̂h as illus-

trated in Figure 2.1), lower capacity makes it profitable for the firm to reduce

its product variety so as to avoid setup capacity, but lower capacity does not

affect the total quantity because the firm is better-off serving both segments.

Only when capacity is significantly low does the firm reduce product quantity

so as to have higher quality for one segment.

2.4.3 Product Quality and Price

In this section we investigate the optimal quality and price for each consumer

segment. Specifically, we ask two questions: (i) How do they change in ca-

pacity? and (ii) how do they compare with the corresponding unconstrained

levels. Here, we answer the questions for product quality. First, we know

from §2.3 that product qualities are non-decreasing in capacity for a given

strategy. However, qualities may decrease at the capacity thresholds where

the firm’s optimal strategy switches. If the firm switches from offering a niche
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Figure 2.3: The Impact of Capacity on Product Qualities

product to offering a standard product, the high segment receives lower qual-

ity while the low segment receives higher quality (from 0 to positive quality)

because the firm reallocates some capacity from serving the high segment to

serving both segments. In contrast, if the firm switches from offering a stan-

dard product to offering two products, then the high segment receives higher

quality while the low segment receives lower quality because, conversely, the

firm reallocates some capacity from serving the low segment to increasing

the quality for the high segment.

Comparing the optimal product quality for each segment under limited ca-

pacity to the corresponding unconstrained qualities qu
h and qu

l , we find that

both the high and low segment generally receive lower-than-unconstrained

quality when capacity is limited. However, the low segment may receive

higher quality when capacity is limited than it does when capacity is un-

constrained. This occurs when offering a standard product is optimal and

capacity is moderate, as summarized in the following proposition.

Proposition 2.8. Under limited capacity, consumer segments generally re-

ceive lower qualities than they do under unconstrained capacity. However, the

low segment receives higher quality under limited capacity, if KS(1 − R) <

K ≤ Ksl.

Note that the range of capacity in Proposition 2.8 exists when consumer

segments are relatively close in valuation and setup capacity is relatively

large. In this case, close consumer valuations make it profitable for the

firm to serve the low segment, while large setup capacity prevents the firm

from offering two products. More interestingly, the low segment may even

receive its corresponding efficient quality qe
l . Figure 2.3 graphically illustrates

these results about product quality by depicting the quality received by each
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segment as a function of K. In this figure, N, S, and L, respectively, refer to

the zones where Niche, Standard, and Product Line strategies are optimal.

Note that vh = 1.5 and b = 0.4 which corresponds to the case b > β1.

Next, we investigate the price for each consumer segment and find similar

results as for qualities. Specifically, the prices for both segments generally

increase in capacity but may increase or decrease when the firm’s optimal

strategy switches. These changes are due to the corresponding changes in

quality. If the firm switches from offering a niche product to offering either

a standard product or two products, then the high (low) segment gets lower

(higher) price due to lower (higher) quality. If the firm switches from offering

a standard product to offering two products, then the high (low) segment gets

higher (lower) price due to higher (lower) quality.

Now we compare the prices with the corresponding prices in the uncon-

strained capacity case pu
h and pu

l , and find similar results as we did for qual-

ities. That is, both consumer segments generally pay lower prices than the

corresponding unconstrained prices due to lower quality. However, we also

find that limited capacity can lead to higher prices for both high and low

segments, as summarized in the following proposition.

Proposition 2.9. Under limited capacity, consumer segments generally re-

ceive lower prices than they do under unconstrained capacity. However,

(i) The high segment receives higher price under limited capacity, if (nlK
SR2+

nhK
N) vl

nhvh
< K ≤ max[Kns, Knl];

(ii) The low segment receives higher price under limited capacity, if KS(1−
R) < K < Ksl.
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Note that the reasons behind the higher prices are different across different

consumer segments. In particular, the high segment gets higher price under

limited capacity due to the lack of cannibalization. This occurs when offering

a niche product for only the high segment is optimal. In this case, the firm can

implement first-degree price discrimination and extract all the surplus from

the high segment without violating the self-selection constraints. In contrast,

the low segment gets higher price under limited capacity mainly due to higher

quality. Figure 2.4 graphically illustrates these results by depicting the price

received by each segment as a function of K.

2.4.4 Consumer Welfare

In this section, we investigate the impact of limited capacity on consumer

welfare which is defined by the difference between consumer utility and price

of the product. In the context of product line design for segmented market,

Moorthy (1984) and Moorthy and Png (1992) conclude that when capacity

is not constrained, the firm’s pricing mechanism extracts all the surplus from

the low segment but leaves a surplus of CW u
h = (vh − vl)q

u
l to the high

segment. When capacity is limited, we find that the low segment still gets

no surplus while the high segment can enjoy a surplus of CWh = (vh−vl)q
∗
l as

long as the low segment is served (e.g., the firm either offers a standard or two

products). In fact, the high segment enjoys a higher surplus when capacity

is limited than it does when capacity is not limited as long as q∗l > qu
l , as the

following proposition shows.

Proposition 2.10. The high segment enjoys a higher surplus under limited

capacity than it does under unconstrained capacity, if vh < vl+
2bc(
√

1+nl/nh−1)

a(nh+nl)

and KS(1−R) < K < Ksl.

From Proposition 2.10, we know that the high segment can enjoy a higher

surplus when capacity is limited if consumer segments are relatively close

and capacity is relatively high. In this case, the firm is better served by

offering a standard product rather than customizing for the high segment.

To illustrate the impact of capacity on consumer welfare, we depict the ratio

of CWh/CW u
h in Figure 2.5 for vh = 1.2 and vh = 1.6. From Figure 2.5,

we find that the surplus for the high segment generally is non-decreasing in

capacity unless the optimal strategy switches. Moreover, the high segment is
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Table 2.2: The Percentage of Naive Profit and Optimal Profit
vh

1.2 1.4 1.6 1.8 2.0
.1 0% 0% 0% 0% 0%
.2 28% 26% 24% 23% 23%

K .4 52% 55% 49% 46% 45%
.6 72% 72% 70% 69% 67%
.8 89% 89% 88% 88% 88%

better-off (i.e., CWh/CW u
h > 1 as shown in Figure 2.5) when the Standard

strategy is implemented and ql > qu
l .

2.4.5 Profit Loss for a Naive Firm

In this section, we want to examine the price of not considering capacity

constraint in the decision-making process. Specifically, we examine a naive

firm who ignores the impact of capacity and keeps the same product line

design as in the unconstrained case. That is, the firm sets the quality at

the unconstrained quality qu
i where i = h, l. We assume that it serves each

segment in the market with quantity proportional to their sizes. Therefore,

the profit for a naive firm is ΠI =
(K−b)(nh(vh−vl)

2+nlv
2
l )

2anlvl
, where superscript

I represents the naive firm. To see the implication of deviating from the

optimal behavior, we calculate the profit ratio ΠI/Π∗. While analytical ex-

pressions are complicated, Table 2.2 is used to show the the results. Here,

we set parameters such that a = 1, b = .1, c = 1, nh = .6, nl = 1, and vl = 1.

Also, we choose five levels of capacity K = .1, .2, .4, .6, .8 and five levels of

valuation vh = 1.2, 1.4, 1.6, 1.8, 2.0.

From the Table, we notice as expected that being ignorant would always

result in a loss in profit. For given market, this loss increases as capacity
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decreases. For example, when K = 0.8 (the capacity is very close to the

unconstrained capacity K̄ = .9), the profit of a naive firm is around 90%

of corresponding optimal profit which indicates a 10% loss. As capacity

decreases, the ignorant firm performs much worse. In particular, when K =

0.2, the resulted loss is more than 70%. More importantly, the rate of change

for this ratio increases as capacity decreases. That is, for lower capacity,

changing capacity would results in much more change in this ratio. Take

vh = 1.2 for example. When capacity decreases from K = 0.8 to K = 0.1, the

rate of change in profit loss increases from 17% each 0.2 units of capacity to

28% each 0.1 unit of capacity. Therefore, managers should pay more attention

to the product design decisions when the firm’s capacity is relatively low.

2.5 Conclusions

In this chapter, we consider the effect of limited capacity on a monopoly

firm’s optimal product line design decisions. The firm operates in a market

characterized by two consumer segments that differ in valuation and size. To

serve this segmented market, the firm optimally designs its product line and

correspondingly qualities, given limited capacity. Furthermore, its product

line design affects both production cost and capacity consumption. On the

cost side, product quality quadratically increases variable cost indicating an

increasing cost to quality (Moorthy and Png 1992, Desai 2001). On the ca-

pacity side, the length of product line determines the fixed setup capacity

such that offering two products requires b more units of capacity to setup

than offering a single product does. Meanwhile, quality linearly increases

variable capacity requirement, indicating a constant capacity to quality ra-

tio. In this modeling context, we first conditionally solve the firm’s design

problem for each strategy and then we compare the corresponding profits

to identify and characterize conditions on which insights from extant litera-

ture are challenged or even reversed. Then we discuss the impact of limited

capacity on the firm’s decisions.

Our analysis and discussion suggest that limited capacity can introduce

operations cannibalization which intensifies as capacity decreases. This is in

contrast to the market cannibalization introduced by differentiation in con-

sumer valuations. While cannibalization always reduces the length of a prod-
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uct line (i.e., the number of product types), the exact source of cannibaliza-

tion exhibits quite different effects on the firm’s product line design decisions.

For example, market cannibalization distorts the quality of the low-quality

product. In contrast, operations cannibalization reduces the quality of each

product. If two products are offered, then it reduces the qualities of both

products at the same rate which leads to a constant width of product line

(i.e., the differentiation in quality between two products).

We also find that offering a standard product for the whole market could

be optimal when capacity is moderate and consumer segments are close in

valuation. In this case, the firm prefers a shorter product line due to oper-

ations cannibalization, and it also prefers a larger sales volume because of

weak market cannibalization. To a certain extent, operations constraint can

be interpreted as an additional term in the objective function which rep-

resents the corresponding cost of certain resources. These operations cost

generally introduces economy of scale because of lower unit cost. For ex-

ample, Netessine and Taylor (2007) consider the cost of inventory and find

offering a standard product is optimal when the corresponding cost param-

eter is relatively large and consumer valuations are close. In this chapter,

we consider capacity and find similar results when capacity is relatively low.

This is because the marginal return of capacity decreases in capacity, or in

other words, lower capacity indicates higher shadow price for capacity.

Like any other model, our results rely on the modeling assumptions made.

The most noteworthy with respect to capacity is that the firm consumes

capacity in both fixed and variable way. We have shown that offering a

standard product is never optimal when the setup capacity b < β1. Note

that when vh → vl, β1 → 0. Hence, what’s essential to this result is the

assumption that b > 0. In other words, as long as a longer product line

requires extra capacity to setup, then offering a standard product could be

optimal when consumer segments are close to each other (i.e., vh ≤ v̂h).

However, a positive setup capacity is not required for us to understand the

impact of limited capacity as an additional source of cannibalization. If b = 0,

for example, then lower capacity favors a shorter product line with a niche

product for the high segment only.

Also fundamental to our results is the assumption that variable capacity

increases linearly in both quality and quantity. Given this modeling con-

struct, our results show that the firm always prioritizes quantity over quality.
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Consequently, the operations cannibalization introduced by limited capacity

reduces the qualities of both products but does not affect the quantity of

each product unless optimal product line strategy switches. We make this

assumption for traceability and insights, but our insights are applicable to

more general cases.
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Chapter 3

Is Remanufacturing
Environmentally Friendly?

3.1 Introduction

Remanufacturing is generally considered to be both profitable due to lower

production cost (Caterpillar Press Release 2005) and environmentally ben-

eficial due to reduced virgin material and waste (Guide 2000). Neverthe-

less, remanufacturing and its financial and environmental implications are

complex. From the profitability perspective, for example, remanufacturing

introduces a trade-off between current and future profits. Compared to a

non-remanufacturer, a remanufacturer may increase sales of new products

by reducing prices, sometimes even lower than marginal cost, so that more

used products are available for remanufacturing. But, because not all cus-

tomers are willing to pay as much for a remanufactured product as for a new

one, the resulting cost saving associated with remanufacturing may not be

enough to justify the reduced profit in the previous period.

Similarly, from the environmental perspective, remanufacturing can po-

tentially have negative environmental consequences. This is true, for exam-

ple, in ship remanufacturing where unprocessed scrap metals are oftentimes

abandoned on the beach (CNN.com, 2008). Indeed, firms proliferated across

many industries are guilty of greenwashing in the sense that they ride the

“green wave” of environmental consumerism without necessarily consider-

ing whether or not their actions actually benefit the environment (Orange

2010). And exacerbating this effect, environmentally friendly products often

entice consumers to increase their total consumption. As a March 2010 Time

Magazine article titled Less is Actually More observes(Walsh 2010):

. . . studies indicate that people who install more-energy-efficient
lights lose 5% to 12% of the expected savings by leaving them

on longer . . .

This suggests that consumption habits may compromise, if not totally offset,
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direct environmental benefits resulting from remanufacturing. Thus, the im-

plicit presumption that remanufacturing benefits the environment warrants

more rigorous examination.

In this chapter, we study a firm’s design for remanufacturing problem

and, perhaps more importantly, we examine the environmental consequences

when remanufacturing is the optimal strategy. In particular, we investigate

the conditions under which a firm makes its products remanufacturable. Ac-

cordingly, we develop a model to characterize the firm’s optimal product

portfolio of new and remanufactured products, and establish the correspond-

ing optimal product design decisions. Then, we assess the environmental

impact of these results. Consequently, we bridge the gap between profitabil-

ity and environmental friendliness to ascertain whether or not the two are

complementary, and in doing so, we identify key drivers that would make

remanufacturing practices more environmentally friendly.

We approach these issues by modeling a firm’s product design and reman-

ufacturing decisions when serving a market with heterogenous consumers.

On the product design front, the firm must choose to design either a non-

remanufacturable product or to design a remanufacturable product; and the

firm must also specify the corresponding quality. On the remanufacturing

front, the firm must choose whether or not to remanufacture a given product

if the product is designed to be remanufacturable. These choices impact both

the manufacturer’s cost structure and consumers’ valuation. On the cost side,

a remanufacturable product costs more to produce originally, but less to re-

manufacture, as compared to the cost of producing a non-remanufacturable

product. On the consumer side, a remanufacturable product is valued more

by consumers, but a remanufactured one is valued less, as compared to the

valuation of a non-remanufacturable product. The firm thus must consider

these trade-offs and optimally choose the design and corresponding quality

and price.

To operationalize the firm’s design for remanufacturing problem with a

parsimonious model that captures remanufacturing fundamentals, we follow

the lead of Ferrer and Swaminathan (2006) and Atasu et al. (2008) by for-

mulating a two-stage analytic framework. At the beginning of stage 1, the

firm first determines whether to design a remanufacturable product or a

non-remanufacturable product and, correspondingly, establishes the quality

of the chosen product. Then the firm sets the selling price for the product
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and sells an amount accordingly, as dictated by the specified consumer mar-

ket’s heterogeneity. Finally, to conclude stage 1, consumers who purchase the

product extract its consumption value and then either discard the remains

(which is the case if the product was designed to be non-remanufacturable)

or recycle the remains (which is the case if the product was designed to be

remanufacturable). The recycled amount, if applicable, thus establishes a

supply constraint on the number of units that can be remanufactured for

resale. Given that, at the beginning of stage 2, the firm’s decision is to set

its optimal product portfolio, that is, to determine how many units of new

versus remanufactured products to produce and what associated prices to set

accordingly for sale of each product type in stage 2.

This chapter specifically studies remanufacturing and its environmental

consequences through a product design lens. Our modeling framework thus

extends beyond the domain of product pricing into the domain of product

design and pricing. Moreover, it sets the stage for assessing the environmen-

tal friendliness of profitable product design and pricing, and for exploring

the consequences accordingly. As such, our model offers two benefits that

constitute its primary contribution. The first benefit of our model is the in-

corporation of quality as an endogenous variable. Specifically, we formulate

our model by explicitly building the firm’s cost structure and consumers’

valuation preferences on quality, which allows us to map the firm’s optimal

remanufacturing decisions onto quality space. As a result, we find that, ev-

erything else being equal, the firm would couple increased remanufacturing

with higher quality. In addition, we find that quality significantly enriches

the modeling interactions by providing a lever for manipulating the product

mix of new versus remanufactured products offered in stage 2. For exam-

ple, if quality were exogenous, then the firm could reap the cost benefits

associated with remanufacturing in stage 2 only if it increased sales of new

products in stage 1 by lowering price. However, with endogenous quality, the

firm has the added opportunity of increasing product quality and extracting

more profit from each product. Accordingly, we find that if the cost saving

associated with remanufacturing is relatively low, the firm increases both re-

manufacturing and product quality and reduces the sales of new products in

both stages so as to charge a higher margin. In contrast, however, if this cost

saving associated with remanufacturing is relatively high and all returned

products are remanufactured, the firm would increase quality by decreasing
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sales of both new and remanufactured products.

The second benefit of our model is the introduction of the notion of envi-

ronmental damage, a quality-dependent analytical measure to quantitatively

capture the environmental consequences of design for remanufacturing. This

environmental measure provides a mechanism to assess the ecological foot-

print of product design in a remanufacturing context. Specifically, our mea-

sure focuses on the environmental impact associated with the extraction of

virgin material and the discard of waste, but it can be extended to include the

impact associated with transportation and consumption stages of a product

life cycle as well. Moreover, this measure is robust in the sense that differ-

ent weights can be assigned to the different stages of the product life cycle

without altering the insights.

Perhaps most notable among these insights is that, in the context of our

model, we find that environmental damage significantly increases when con-

sumers are more environmentally conscious, that is, when consumers value

the idea that a product can be remanufactured rather than the fact that

the product has been remanufactured. This can be particularly detrimen-

tal to the environment if consumers value remanufacturable products on the

one hand, but significantly devalue remanufactured products on the other

hand. Intuitively, if consumers value the idea that a product can be reman-

ufactured but not necessarily value remanufactured products, then the firm

becomes reluctant to actually remanufacture any recycled units. Instead,

it simply takes advantage of consumers’ environmental consciousness by de-

signing for remanufacturability, but avoids the potential cannibalization by

not remanufacturing. This somewhat counterintuitive result reinforces the

idea that consumption rather than production, per se, is the enemy of the

environment. Thus, to paraphrase Orange (2010), the first step to a better

environment is to reduce, not to recycle or to reuse.

In a similar vein, we also find that more cost efficient production technology

(i.e., a lower production cost or a higher cost saving from remanufacturing)

may not necessarily benefit the environment, despite increasing profit for the

firm. In particular, the environment is worse off if production cost is suffi-

ciently low. Intuitively, a lower production cost means a higher profit margin

for new products, which in turn attracts the firm to provide a higher volume

of new products, which thereby consumes more virgin resources and results

in more discarded waste. Similarly, a higher cost saving from remanufactur-
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ing attracts the firm to design higher quality, which again ultimately results

in more damage to the environment. Therefore, somewhat surprisingly, it is

in the interest of the environment for production technologies not to be too

efficient.

The remainder of this chapter is organized as follows. In §3.2, we review

the literature and position this chapter accordingly. In §3.3, we specify and

discuss our model primitives, and we formulate and solve the firm’s result-

ing profit maximization problem by mapping out and cataloging different

product design and remanufacturing strategies. Then in §3.4, we compare

the different strategies to determine the firm’s optimal decisions, and we ex-

plore implications accordingly. Section 3.5 defines the environmental damage

measure that we use as an index to evaluate the impact on the environment

resulting from the firm’s optimal strategy. We discuss the scope and appli-

cability of our model in §3.6, and we conclude the chapter in §3.7. Detailed

proofs appear in Appendix.

3.2 Relation to Literature

Our research relates to two streams of literature. One stream is the liter-

ature on remanufacturing. Within this realm, there are two different foci.

One focus is defined primarily by operational issues and thereby takes a cost-

minimization approach to determine optimal system design. This approach

assumes price, demand, and remanufacturability to be exogenous, and gen-

erally applies to issues such as logistics, production planning, and inventory

control (Fleischmann et al. 1997, Toktay et al. 2000). The other focus is

defined primarily by pricing issues and thereby takes a profit-maximization

approach to addresses such issues as market segmentation (Debo et al. 2005,

Ferrer and Swaminathan 2006, Atasu et al. 2008) and competition (Ma-

jumder and Groenevelt 2001, Ferrer and Swaminathan 2006, Ferguson and

Toktay 2006). This profit-maximization approach captures richer interac-

tions between price and quantity trade-offs. In particular, on the one hand,

the firm has incentive to lower the first-stage new product price to boost sales

in order to achieve cost savings realized by selling remanufactured products in

the second stage. However, on the other hand, such remanufacturing would

cannibalize new product sales in the second stage, thus creating a disincentive
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for remanufacturing. Considering these trade-offs, Majumder and Groenevelt

(2001) analyze competition between an OEM and a local firm. They find that

a social planner should provide incentives to the OEM to increase remanu-

facturing. Debo et al. (2005) study segmentation and remanufacturability in

an infinite-horizon setting and find that both fixed and variable costs affect

remanufacturing in a negative way. Ferrer and Swaminathan (2006, 2010)

study both finite-horizon and infinite-horizon problems in a competition set-

ting and conclude that remanufacturing decisions become stable after initial

states. Ferguson and Toktay (2006) investigate remanufacturing as a strat-

egy to deter market entry. Common to these models is the assumption that

both new and remanufactured products are indistinguishable or that reman-

ufactured products are discounted relative to new products. None of these

models, however, define quality as endogenous. In contrast, our model, while

similar to this second focus of remanufacturing literature, includes product

quality as a decision in addition to price and quantity.

The second stream of related literature is that on product design, which we

trace to Mussa and Rosen (1978) and to Moorthy (1984). This stream studies

the optimal quality and pricing decisions of a product line that is differen-

tiated by quality when serving consumers heterogenous in their willingness

to pay. Results indicate that a low-quality product cannibalizes the sales

of a high-quality product and, as a result, the firm responds by increasing

the differentiation between the high- and low-quality products. Our problem

is similar to this product line problem in that the new and remanufactured

products in our model can be considered as the high- and low-quality prod-

ucts in the product line problem. However, our problem is different from the

product line problem in two respects. The first difference is the remanufactur-

ing supply constraint that restricts the number of remanufactured products

to be no greater than the number of recycled products available. The second

difference is consumer perception of quality. In our remanufacturing setting,

both products have the same quality level. Thus, differentiation between

products is due to the fact that consumers discount their valuation of re-

manufactured products because these products were used previous to being

remanufactured.

Relative to these literatures, our framework underscores the fundamental

interactions between three remanufacturing related factors, namely, supply

constraint, cost saving, and cannibalization. The supply constraint exists
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because, in our remanufacturing setting, there is a natural upper limit on

the number of recycled products that are available to remanufacture. With-

out this constraint, the second stage problem would resemble a product line

problem. Cost saving is a direct driver of remanufacturing. To achieve cost

saving in stage 2, the firm needs to incur higher variable cost in stage 1

to make its new product remanufacturable. Finally, remanufacturing intro-

duces cannibalization into the second stage when both products are offered

to the same market. Because remanufactured products are less expensive

substitutes to the new products, they have the potential to reduce the firm’s

ability to extract surplus from consumers with high willingness to pay.

3.3 The Model

We specify the modeling assumptions that define the firm, the heterogenous

consumers, and the decision making framework in §3.3.1. Then we develop

and conditionally solve the firm’s design for remanufacturing problem based

first on the stipulation that the firm does not remanufacture any products

in stage 2 (§3.3.2) and subsequently on the stipulation that the firm does

remanufacture products in stage 2 (§3.3.3).

3.3.1 Modeling Assumptions

The Firm. We define the firm as a profit maximizer that can both manu-

facture new products and remanufacture used ones depending on its product

design choices. These design choices include product quality and remanu-

facturability. We model product quality, denoted by q, as a one-dimensional

measure representing all the components/attributes that consumers prefer.

We model remanufacturability, denoted by k, such that k = 0 represents

a non-remanufacturable product and k = 1 represents a remanufacturable

product1. Once determined, the product design cannot be changed. More-

over, a remanufacturable product can be remanufactured at most once.

Given product quality q and remanufacturability k, the firm incurs a vari-

able cost for each unit of its product produced2. Consistent with the product

1We will investigate the implications of relaxing this assumption so that k ∈ [0, 1] is a
continuous variable in Section 6.

2Although in some remanufacturing models the firm incurs a fixed cost associated with
developing and choosing production technology, for tractability, we adopt the convention
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design literature, the variable cost of production is quadratic in quality, but

the magnitude of this variable cost depends on whether the unit produced

is a new non-remanufacturable product, a new remanufacturable product,

or a remanufactured product. Specifically, we use q2 to model the variable

cost per unit to produce a new non-remanufacturable product of quality q,

we use (1 + c1)q
2 to model the per unit variable cost to produce a new

remanufacturable product (i.e., we use c1q
2 to denote the cost premium as-

sociated with producing a new remanufacturable unit over producing a new

non-remanufacturable unit), and we use (1−c2)q
2 to model the per unit vari-

able cost to produce a remanufactured product (i.e., we use c2q
2 to denote

the cost savings associated with remanufacturing a recycled unit over pro-

ducing a new non-remanufacturable unit). Note that c1 ≥ 0, which means

that producing a new product that can be remanufactured is more expen-

sive than producing a new product that cannot be remanufactured, and that

0 < c2 ≤ 1, which means that remanufacturing a recycled product is less

expensive than manufacturing a new product. Our assumptions are consis-

tent with Debo et al. (2005) in that our new product unit cost increases in k.

Given this construct, to facilitate our presentation, we denote gn(k) = 1+c1k

for k = 0, 1 as the production cost coefficient associated with a new product,

which depends on whether or not the new product is remanufacturable, and

we denote gr = 1 − c2 as the remanufacturing cost coefficient which is valid

only when k = 1.

Consumers. Consumers differ vertically in their willingness to pay, and

they differentiate whether a product is new and non-remanufacturable, new

and remanufacturable, or used but remanufactured. Specifically, we model

consumers’ valuation for a new non-remanufacturable product of quality q

as vq, where v follows a uniform distribution along [0, 1]3. Comparatively,

we model consumers’ valuation for a new remanufacturable product of qual-

ity q as (1 + θ)vq (i.e., we use θvq to denote consumers’ valuation premium

associated with purchasing a new remanufacturable product over a new non-

of Atasu et al. (2008) and normalize this fixed cost to zero. However, incorporating a fixed
cost such as this in our model is straightforward.

3In this chapter, we assume a uniform distribution for consumer valuation of quality
for several reasons: 1) it allows us to focus on the cannibalization between new and
remanufactured products; 2) it enables us to derive closed form results; 3) it is a widely
adopted assumption in remanufacturing literatures. Hence this assumption allows us to
compare and contrast our results to those of others.
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Figure 3.1: Heterogenous Consumers

remanufacturable one), and we model consumers’ valuation for a reman-

ufactured product as (1 − α)vq (i.e., we use αvq to denote the valuation

discount associated with purchasing a remanufactured product over a new

non-remanufacturable one). Note that θ ≥ 0, which means that consumers

value a new product that can be remanufactured more than one that cannot

be remanufactured, and that α ≥ 0, which means that consumers value a

used product that has been remanufactured less than a new one that has not

been remanufactured. Analogous to gn(k) and gr, we denote fn(k) = 1 + θk

for k = 0, 1 and fr = 1− α to facilitate our presentation.

Consumers purchase to maximize their non-negative surplus, which is de-

fined by the difference between valuation and price paid. Let pn and pr be

the price of a new and a remanufactured product, respectively. The surplus

derived by a consumer of type v from buying a new and a remanufactured

product characterized by q and k is fn(k)vq−pn and frvq−pr, respectively. If

only new products are available, then consumers choose to purchase the new

product if fn(k)vq − pn ≥ 0. If both new and remanufactured products are

available, then consumers choose the new product over the remanufactured

one if fn(k)vq−pn ≥ frvq−pr and vice versa, but if consumers cannot derive

nonnegative surplus from either product then they will remain inactive (i.e.,

they will purchase neither product), which occurs for consumers with low

valuation as shown in Figure 3.1.

In the first stage, only new products can be sold regardless of product

design. Thus the demand for new products in the first stage, dn1, is

dn1 = 1− pn1

fn(k)q
(3.1)

where pn1 is the new product price in the first stage, q is the quality, and
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k = 0, 1 is the remanufacturability. If the product is designed to be non-

remanufacturable (i.e., if k = 0), then in the second stage, again only new

products can be sold. In this case, the corresponding second stage demand is

similar to (3.1): dn2 = 1− pn2

fn(k)q
, where pn2 is the second stage new-product

price. If the product is designed to be remanufacturable (i.e., if k = 1),

then in the second stage the firm must choose whether or not to remanufac-

ture. If the firm chooses not to remanufacture any units in the second stage,

then only new products can be sold and the corresponding demand is again

similar to (3.1). In contrast, if the firm chooses to remanufacture, then a

fraction of consumers purchase new products, a fraction of consumers pur-

chase remanufactured products, and the remainder of consumers purchase

no products4. In this case, the corresponding second stage demands for new

and remanufactured products, dn2 and dr2, respectively, are

dn2 = 1− pn2 − pr2

(fn(1)− fr)q
, and

dr2 =
pn2 − pr2

(fn(1)− fr)q
− pr2

frq
(3.2)

where pr2 is the remanufactured product price in the second stage.

The Decision Framework. Consistent with the related remanufacturing

literature (Majumder and Groenevelt 2001, Ferrer and Swaminathan 2006,

Ray et al. 2005, Atasu et al. 2008), we use a two-stage model to formulate

the firm’s design for remanufacturing problem. At the beginning of stage 1,

the firm first chooses its product quality and remanufacturability. Then the

firm sets a corresponding selling price and produces only new products. At

the end of stage 1, these units either are discarded (which is the case if k = 0)

or are collected through recycling (which is the case if k = 1)5. Finally, in

stage 2, the firm sets the prices for new and (or) remanufactured products

and produces the corresponding quantities subject to the remanufacturing

supply constraint imposed by the new product sales in the first stage.

4Given that α ≥ 0 by assumption, consumers value remanufactured products less than
they value new products. Thus, consumers who buy new products have higher v than
those who buy remanufactured ones. This is depicted in Figure 3.1, which illustrates that
dn2 is to the right of dr2.

5Throughout our analysis, we assume 100% collection rate for the remanufacturable
products at the end of stage 1. Similar to Atasu et al. (2008), we assume that the collection
cost is linear in the quantity collected and is included in the remanufacturing cost grq

2.
For the case in which the collection rate is less than 100%, our results are not significantly
altered as long as the collection rate is not too small.
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Given this, we next develop and solve the firm’s profit maximization prob-

lem for given quality q to establish a strategy space for product design that

depends on whether or not remanufacturing takes place. We first investigate

the case in which there is no remanufacturing (i.e., the case in which dr2 = 0).

We refer to this case as the Non-Green strategy. Then we study the case in

which there is remanufacturing (i.e., the case in which dr2 > 0). We refer to

this case as the Green strategy6. Later, in Section 4, we compare the profit

of the optimal Green strategy to that of the optimal Non-Green strategy to

establish conditions indicating when remanufacturing is optimal.

3.3.2 Non-Green Strategy

We define the Non-Green strategy as one in which only new products are

sold in each period. In other words, by definition of this strategy, dr2 = 0.

Nevertheless, at the design stage, two substrategies exist: either design the

product to be non-remanufacturable (k = 0), which we refer to as the Tradi-

tional substrategy (T); or design the product to be remanufacturable (k = 1),

which we refer to as the Premium substrategy (M). In either substrategy, the

demand function is the same for both stage 1 and stage 2 and is given by

(3.1). Accordingly, if the firm implements the Non-Green strategy, then

pn1 = pn2 = p and the total profit for the two stages is

ΠNG(p, q, k) = 2

(
1− p

fn(k)q

)
(p− gn(k)q2), (3.3)

which is concave in p for given quality q and remanufacturability k. Op-

timizing (3.3) over p for given q and k, we have p(q, k) = (fn(k)+gn(k)q)q
2

.

Substituting this for p in (3.3), the resulting profit written as a function of q

and k, is

ΠNG(q, k) =
q(fn(k)− gn(k)q)2

2fn(k)
. (3.4)

Let qNG(k) denote the optimal product quality as a function of k given that

the Non-Green strategy is implemented. Then, optimizing (3.4) over q yields

6Notice that in this chapter, our notion of “greenness” is defined by whether or not prod-
ucts are remanufactured as opposed to whether or not they are merely remanufacturable.
In other words, we define “green” to mean not only that k = 1 but also that dr2 > 0.
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qNG(k) = fn(k)
3gn(k)

for k = 0, 1. This, from (3.4), implies that

ΠNG(k) ≡ ΠNG(qNG(k), k) =
2fn(k)2

27gn(k)
=

{
2
27

, if k = 0;
2(1+θ)2

27(1+c1)
, if k = 1.

(3.5)

Given (3.5), let ΠT ≡ ΠNG(k = 0) denote the firm’s profit if the Traditional

substrategy is implemented, and let ΠM ≡ ΠNG(k = 1) denote the firm’s

profit if the Premium substrategy is implemented. Then, comparing ΠT to

ΠM leads directly to the following proposition.

Proposition 3.1 (Optimal Non-Green Strategy). Let (kNG∗, qNG∗, pNG∗)

denote the optimal design and pricing decisions, given that dr2 = 0; and

let dNG∗ and ΠNG∗ denote the associated two-stage total demand and profit,

respectively. Then, the Premium substrategy is optimal (i.e., kNG∗ = 1) if

and only if 1 + c1 < (1 + θ)2. Accordingly,

kNG∗ qNG∗ pNG∗ dNG∗ ΠNG∗

1 + c1 < (1 + θ)2 1 qM = (1+θ)
3(1+c1)

2(1+θ)2

9(1+c1)
2
3

ΠM = 2(1+θ)2

27(1+c1)

1 + c1 ≥ (1 + θ)2 0 qT = 1
3

2
9

2
3

ΠT = 2
27

Recall that 1 + θ represents a consumer’s valuation coefficient for a re-

manufacturable product and that 1 + c1 represents the corresponding cost

coefficient for the remanufacturable product. Thus, in essence, Proposition

3.1 indicates that if the marginal valuation for a remanufacturable product

justifies the marginal cost of producing the product, then designing for re-

manufacturing is justified even though no units are actually remanufactured

subsequently. In other words, even under the intention not to remanufac-

ture, it still would be in the firm’s best interest to design a remanufacturable

product under the right circumstances. This indicates that the valuation pre-

mium θ is more representative of environmental consciousness, or the idea of

a green world, more than it is representative of actual greenness, per se. In

this sense, θ is akin to consumers “talking a green talk”, but it is not indica-

tive of whether or not consumers are willing to follow through by actually

“walking the green walk”.

Intuitively, because profit margin is quadratic in consumer valuation and

linear in variable production cost, if (1 + θ)2 > 1 + c1, then the valuation

premium has a stronger positive effect on profit than the production cost has
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a negative effect. Thus, the increased production cost associated with re-

manufacturable products is justified. Interestingly, however, demand is not

affected by remanufacturability. Instead, the market effects of remanufac-

turability are realized through an increased product quality coupled with a

correspondingly increased price, which ultimately results in a higher profit

margin but not a higher demand volume.

3.3.3 Green Strategy

We define the Green strategy as one in which remanufactured products are

sold in the second stage. In other words, by definition of this strategy, dr2 > 0.

Accordingly, given this strategy, the firm designs the new product to be re-

manufacturable (i.e., k = 1). In stage 2, then, the firm optimally determines

the product portfolio of new and remanufactured products knowing that the

remanufactured products will cannibalize the demand for new products. We

therefore categorize the Green strategy into two substrategies depending on

the firm’s level of remanufacturing in stage 2. If all recycled products are

remanufactured (i.e., if dn1 = dr2 > 0), then we say the firm implements the

Complete Remanufacturing substrategy (CR). In contrast, if fewer than all

recycled products are remanufactured (i.e., if dn1 > dr2 > 0), then we say

the firm implements the Partial Remanufacturing substrategy (PR).

In either of these substrategies, the demand functions for stage 1 and

stage 2 are given by (3.1) and (3.2), respectively. Accordingly, if the firm

implements the Green strategy, then k = 1. Thus, to simplify notation, let

fn ≡ fn(1) = 1 + θ and gn ≡ gn(1) = 1 + c1. Then, the total profit for the

two stages is

ΠG(pn1, pn2, pr2, q) = dn1(pn1 − gnq
2)

+ dn2(pn2 − gnq
2) + dr2(pr2 − grq

2) (3.6)

Given (3.6), note that the Green strategy would be implemented only if

gr/fr < gn/fn because, otherwise, the Green strategy would be dominated

by the Non-Green strategy of Section 3.2. (Please see Lemma 1 in Appendix

for details.) Accordingly, in mapping out the Green strategy, we implicitly as-

sume that gr/fr < gn/fn to ensure that dr2 > 0. Optimizing (3.6) for given q,

subject to the supply constraint dr2 ≤ dn1, thus yields Lemma B.2, which also
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is provided in Appendix. Lemma B.2 characterizes (pG
n1(q), p

G
n2(q), p

G
r2(q)), the

optimal two-stage pricing decisions as functions of q, given that the Green

strategy is implemented, as well as (dG
n1(q), d

G
n2(q), d

G
r2(q)), the corresponding

optimal demands. This leads to the following proposition.

Proposition 3.2. If the Green strategy is implemented, then the optimal

two-stage prices and demands, as functions of q, are such that:

i)
∂pG

n2(q)

∂q
>

∂pG
n1(q)

∂q
≥ ∂pG

r2(q)

∂q
> 0;

ii)
∂dG

n2(q)

∂q
<

∂dG
n1(q)

∂q
< 0, whereas

∂dG
r2(q)

∂q
> 0 for q < q1 but

∂dG
r2(q)

∂q
< 0 for

q > q1,

where q1 = fnfr(fn−fr)
f2

n(gn−gr)−(fn−fr)2gn
denotes the quality threshold above which

dG
r2(q) = dG

n1(q), but below which dG
r2(q) < dG

n1(q).

According to Proposition 3.2, the prices for both new and remanufactured

products increase as quality increases, given that the Green strategy is im-

plemented. Moreover, the stage 2 new product price increases faster than

the stage 1 new product price, which increases faster than the stage 2 re-

manufactured product price. To understand this, consider that three factors

— new product cost, cannibalization, and remanufacturing cost saving —

influence prices. While new product cost positively influences all prices, the

other two factors affect prices differently depending on the product type and

the stage. In particular, the stage 2 new product price is positively affected

by cannibalization, the stage 1 new product price is negatively affected by

remanufacturing cost saving, and the stage 2 remanufactured product price

is negatively affected by both cannibalization and remanufacturing cost sav-

ing. Therefore, intuitively, the firm has more incentive to increase its new

product price in stage 2 than in stage 1 due to the cannibalization from the

remanufactured products in stage 2.

As Proposition 3.2 also illustrates, if the Green strategy is implemented,

then the sales volume of new products in both stage 1 and stage 2 decreases

as quality increases. In contrast, the corresponding sales volume of reman-

ufactured products first increases and then decreases in q. Intuitively, when

quality is sufficiently low (specifically, when q < q1), the firm does not re-

manufacture all recycled products from stage 1. In that case, an increase

in quality means larger cost savings from remanufacturing, hence the firm
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remanufactures more. However, when quality is sufficiently high (specifically,

when q > q1), the firm remanufactures all recycled products from stage 1. In

that case, an increase in quality not only affects the profit of remanufactured

products in stage 2, but also that of new products in stage 1. And because

the marginal value of remanufacturing a unit is smaller than the marginal

loss of producing a unit of new product, the firm remanufactures less.

Given (3.6), let ΠG(q) = ΠG(pG
n1(q), p

G
n2(q), p

G
r2(q), q) denote the profit as-

sociated with the Green strategy, reduced to a function of q only. Lemma

B.3, also provided in Appendix, establishes that ΠG(q) is continuous and

unimodal in q. Maximizing ΠG(q) accordingly leads to the following propo-

sition.

Proposition 3.3 (Optimal Green Strategy). Let (qG∗, pG∗
n1 , pG∗

n2 , pG∗
r2 ) denote

the optimal design and pricing decisions given that dr2 > 0; and let dG∗ and

ΠG∗ denote the associated two-stage total demand and profit, respectively.

Then by definition kG∗ = 1, and

qG∗ =



qG
S = fn+fr

3(gn+gr)
, 0 ≤ gr ≤ grS;

qG
C = f2

n(gn+gr)+gn(f2
n−f2

r )
3(fng2

n+frg2
r+(fn−fr)(gn+gr)2)

(
2−

√
1− 3(f2

n+fnfr−f2
r )(frgn−fngr)2

(f2
n(gn+gr)+gn(f2

n−f2
r ))2

)
,

grS < gr ≤ grC

qG
P = 2fnfr(fn−fr)gn

3((frgn−fngr)2+2fr(fn−fr)g2
n)

(
2−

√
1− 3(frgn−fngr)2

2fr(fn−fr)g2
n

)
,

grC < gr ≤ frgn

fn
;

where grS = frgn

fn
− (f2

n−f2
r )gn

fn(3fn−2fr)
and grC = frgn

fn
− 4frgn(fn−fr)

2f2
n+3fnfr−3f2

r
. Accordingly,

for j = n1, n2, r2:

pG∗
j dG∗ ΠG∗

0 ≤ gr ≤ grS pG
j (qG

S ) 2dG
n1(q

G
S ) ΠG(qG

S )

grS < gr ≤ grC pG
j (qG

C ) 2dG
n1(q

G
C ) + dG

n2(q
G
C ) ΠG(qG

C )

grC < gr ≤ frgn

fn
pG

j (qG
P ) dG

n1(q
G
P ) + dG

n2(q
G
P ) + dG

r2(q
G
P ) ΠG(qG

P )

Note that grS < grC < frgn

fn
. Thus, Proposition 3.3 characterizes the opti-

mal green quality based on the remanufacturing cost gr, indicating that this

optimal quality increases as gr decreases, which is intuitive. Accordingly,

from Proposition 3.2, the prices increase, and, correspondingly, the sales vol-

umes of new products decrease while the sales volume of remanufactured
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products first increases and then decreases. Notice also from Proposition 3.3

that if the Green strategy is implemented, then grC establishes the critical

remanufacturing cost threshold below which the Complete Remanufacturing

substrategy is optimal (d∗r2 = d∗n1), and above which the Partial Remanufac-

turing substrategy is optimal (0 < d∗r2 < d∗n1). Similarly, grS establishes the

critical remanufacturing cost threshold below which it is optimal not only to

remanufacture all recycled products from stage 1 (d∗r2 = d∗n1), but also to sell

only remanufactured products in stage 2 (d∗n2 = 0).

3.4 Optimal Design for Remanufacturing

In this section, we compare the profit associated with the optimal Green

strategy (Proposition 3.3) to the profit associated with the optimal Non-

Green strategy (Proposition 3.1) to determine conditions for optimality. Specif-

ically, we apply Propositions 3.3 and 3.1 to answer three questions: When is

it optimal to go green? When is it optimal to go completely green? When is

it optimal to design for green but not to go green?

3.4.1 When is it Optimal to Go Green?

In the context of our model, going green means that dr2 > 0 in an opti-

mal solution. Thus, to answer this question, we directly compare the profit

associated with the optimal Green strategy from Proposition 3.3 to that as-

sociated with the optimal Non-Green strategy from Proposition 3.1. This

yields the following proposition.

Proposition 3.4 (Going Green). If gr/fr < gn/fn < fn, then it is optimal to

go green; that is, it is optimal not only to design a remanufacturable product

(k∗ = 1), but also to sell remanufactured products (d∗r2 > 0).

Proposition 3.4 provides a sufficient condition indicating when the Green

strategy in Proposition 3.3 is optimal. Notice that this condition is two-

fold: First, for remanufacturing (i.e., the Green strategy) to be optimal, it

must be worthwhile to produce a remanufacturable product in the first place

(re: gn < f 2
n). But that is not enough. Second, for remanufacturing to be

optimal, it must also be worthwhile to actually remanufacture the reman-

ufacturable products (re: gr/fr < gn/fn). The first half of this sufficient
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condition (gn < f 2
n) is equivalent to that in Proposition 3.1, thus indicating

when it is worthwhile to design for remanufacturability regardless of whether

or not remanufacturing will actually occur. For insight into the second half

of the sufficient condition, we note that the ratio gi/fi can be interpreted as

a market cost efficiency ratio in the following sense: Consider a consumer

of type v. If that consumer were to purchase a new product with quality q,

which would cost gnq2 to produce, then the corresponding consumer valua-

tion would be fnvq. Thus, the cost per unit valuation of this new product

is gnq
2/(fnvq) = gnq/(fnv). Likewise, the cost per unit valuation of the cor-

responding remanufactured product is grq/(frv). Therefore, Proposition 3.4

essentially indicates that it is optimal to go green if it is more cost efficient,

as measured against market valuation, to remanufacture a remanufacturable

unit of quality q than it is to manufacture a remanufacturable unit of quality

q (i.e., if grq/(frv) < gnq/(fnv) or gr/fr < gn/fn). Note that this condition is

consistent with those in Atasu et al. (2008) and in Ferrer and Swaminathan

(2010), both of which consider models of exogenous quality for the special

case in which fn = gn = 1. Thus, Proposition 3.4 extends their results to

our case of endogenous quality.

3.4.2 When is it Optimal to Go Completely Green?

In the context of our model, going completely green means that 0 < dr2 = dn1

in an optimal solution. Thus, to answer this question, we again compare the

profit associated with the optimal Green strategy from Proposition 3.3 to

that associated with the optimal Non-Green strategy from Proposition 3.1.

Proposition 3.5 (Going Completely Green). If gn < f 2
n and gr ≤ grC <

gnfr/fn, then it is optimal to go completely green; that is, it is optimal not

only to sell remanufactured products (d∗r2 > 0), but also to exhaust all avail-

able supply of recycled products in doing so (d∗r2 = d∗n1).

Proposition 3.5 provides a sufficient condition indicating when remanu-

facturing all available supply of recycled products is optimal. Notice that,

again, this condition is two-fold. Consistent with Proposition 3.4, for com-

plete remanufacturing to be optimal, not only must it be worthwhile to first

produce remanufacturable products and then to sell remanufactured prod-

ucts (re: gn < f 2
n and gr < gnfr/fn), but also it must be worthwhile to
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remanufacture all of the recycled products (re: gr ≤ grC). Intuitively, for

complete remanufacturing to be optimal, the market cost efficiency ratio of a

remanufactured product must be sufficiently lower than that of a new prod-

uct, namely gr/fr ≤ grC/fr = gn/fn − 4gn(fn−fr)
2f2

n+3fnfr−3f2
r

< gn/fn. If the market

cost efficiency ratio of a remanufactured product were to exceed this thresh-

old, then the potential cannibalization of new product sales would dominate

the potential benefits of selling a marginal unit of the remanufactured prod-

ucts, in which case the firm would be better served by not going completely

green.

3.4.3 When is it Optimal to Design for Green but

Not to Go Green?

In the context of our model, designing for green but not going green means

that k = 1 but dr2 = 0 in an optimal solution. Thus, to answer this question,

first recall from Lemma B.1 (in Appendix) that d∗r2 = 0 if and only if gn/fn ≤
gr/fr. Combining this with Proposition 3.1 then leads to the following.

Proposition 3.6 (Designing for Green but Not Going Green). If and only

if gn/fn ≤ min[fn, gr/fr], then it is optimal to design for green but not to go

green; that is, it is optimal to design a remanufacturable product (k∗ = 1),

but not to sell remanufactured products (d∗r2 = 0).

Thus, consistent with Proposition 3.4, Proposition 3.6 indicates that, if

the market cost efficiency ratio of a new remanufacturable product is lower

than that of a remanufactured product (i.e., if gn/fn ≤ gr/fr), then it is not

worthwhile to remanufacture any units even though it is worthwhile to design

remanufacturable products to begin with (i.e., even though gn/fn < fn).

Basically, under these conditions, optimality dictates cashing in on high profit

margins in stage 1 by designing for green, but then avoiding cannibalization

by not going green after all.

3.4.4 Discussion on the Optimal Quality and Demand

Note that, by combining Proposition 3.1 with Propositions 3.4–3.6, we can

write the optimal quality (denoted by q∗), given the condition that gn/fn ≤
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fn, as follows:

q∗ =

{
qG∗, if gr/fr < gn/fn;

qM = fn

3gn
, if gr/fr ≥ gn/fn.

(3.7)

Thus, as a stepping stone to better understand the impact of endogenous

quality in the context of our model, particularly with regard to its effect on

the optimal remanufacturability (k∗), we graphically compare the optimal

quality from (3.7) to qT = 1/3, which from Proposition 3.1, denotes the

quality that corresponds to the Traditional substrategy and, as such, rep-

resents the conditionally optimal quality given that k = 0. Specifically, in

Figure 3.2, we graph the ratio q∗/qT as a function of gr. In a similar vein,

we also graph in Figure 3.2 the ratio of the corresponding total demands

(d∗n1 + d∗n2 + d∗r2)/d
T as well as the ratios of the corresponding new product

demands (d∗n1 + d∗n2)/d
T and remanufactured product demands d∗r2/d

T . In

producing these graphs, we set fn = 1.2, fr = 0.9, and gn = 1.1. These

parameters serve as our illustrative and representative case for Figure 3.2, as

well as for the figures that follow unless otherwise stated.

Examining first the graph of q∗/qT , we find that, as the remanufacturing

cost gr increases, the optimal quality decreases until it reaches the minimal

level at gr = gnfr/fn. At this point, q∗/qT = fn/gn; thus, q∗ > qT is assured

if fn/gn > 1. Examining second the graphs of (d∗n1 + d∗n2)/d
T , d∗r2/d

T and

(d∗n1 + d∗n2 + d∗r2)/d
T , we find that a smaller volume of new products are sold

when an optimal strategy is implemented than otherwise would be sold if

k = 0, which is intuitive. However, a larger total volume of products are sold

than otherwise would be sold if k = 0. This thus reflects the conventional

wisdom that a firm reaches a larger consumer base when implementing a

remanufacturing strategy.

3.5 Environmental Friendliness

In this section, we address the extent to which remanufacturable products

are environmentally friendly, given that they are optimal to produce. In

other words, we assess the environmental friendliness of k∗ = 1. To this end,

we first define an environmental measure that we refer to as environmental

damage. We then apply this measure to assess the environmental damage
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Figure 3.2: Illustration of Optimal Green Quality and Demand

associated with the optimal strategy (q∗), and we compare that to the envi-

ronmental damage associated with the Traditional substrategy (qT ), which

represents the conditionally optimal strategy given that k = 0. Specifically,

we make comparisons to answer two questions: Is it necessarily environmen-

tally friendly to design for green if the intention is not to go green? Is it even

necessarily environmentally friendly to go completely green?

3.5.1 Definition of Environmental Damage

Our definition of environmental damage derives from the notion of carbon

footprint. Carbon footprint refers to the total set of greenhouse gas emis-

sions produced by an organization, event or product. By analogy, we define

environmental damage as the total resources acquired from, and wastes dis-

carded to, the environment during a product’s life cycle. Specifically, we

assume that the environmental impact of extracting the resources for, and

disposing the remains of, a product of quality q is e1q and e2q, respectively,

where e1 and e2 represent environmental damage coefficients. Accordingly,

for given quality q and remanufacturability k, the environmental damage

associated with stage 1 of our model is

∆1 = dn1e1q + dn1(1− k)e2q,

where the first term dn1e1q denotes the damage caused by the extraction of

resources required to produce dn1 units of new product with quality q at the

start of stage 1, and the second term dn1(1−k)e2q denotes the environmental

damage caused by waste disposal at the end of stage 1 if the dn1 units are not

recycled (i.e., if k = 0). Analogously, the environmental damage associated
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with stage 2 of our model is

∆2 = dn2e1q + (dn1 − dr2)ke2q + (dn2 + dr2)e2q,

where the first term dn2e1q denotes the environmental damage caused by the

extraction of resources required to produce dn2 units of new product with

quality q at the start of stage 2, the second term (dn1 − dr2)ke2q denotes

the environmental damage caused by waste disposal at the start of stage

2 if used units are recycled at the end of stage 1 (i.e., if k = 1) but not

remanufactured in stage 2, and the third term (dn2 + dr2)e2q denotes the

environmental damage caused by waste disposal at the end of stage 2. Thus,

the total environmental damage for the two stages, which we denote ∆(q), is

∆(q) = ∆1 + ∆2 = (dn1 + dn2)(e1 + e2)q (3.8)

where (3.8) reflects the fact that (1− k)dr2 = 0 because k = 0 requires that

dr2 = 0 by definition.

Notice therefore that the environmental damage measure reduces to a func-

tion that is independent of remanufacturing quantity dr2 and remanufac-

turability k. This is because, in the context of our model, remanufacturing

does not require the extraction of virgin resources beyond those originally

extracted to produce the units when they were new. Moreover, the waste re-

sulting from the disposal of remanufactured products in stage 2 is offset com-

pletely by the waste avoided by not having to dispose the remanufacturable

products recycled for remanufacturing in stage 1. Thus, as (3.8) illustrates,

what ultimately impacts the environment are two factors: (i) what is pro-

duced (which is represented by product quality q), and (ii) how much new

is produced (which is represented by new product demand dn1 + dn2). This

makes sense because, in essence, that is what is drawn from and eventually

returned back to the earth. Note that in this sense, the cannibalization of

new products by remanufactured products in stage 2 is a good thing from

the standpoint of environmental friendliness. Note also that we write envi-

ronmental damage ∆(q) as a function of q because (dn1 + dn2) ultimately is

a function of q as per Propositions 3.1 and 3.3.

Given this measure of environmental damage defined by (3.8), we are par-

ticularly interested in comparing ∆(q∗|k∗ = 1, d∗r2 = 0) to ∆(qT ) as well as
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comparing ∆(q∗|k∗ = 1, d∗r2 = d∗n1) to ∆(qT ). The first comparison assesses

the environmental damage associated with implementing an optimal strat-

egy, given that it is optimal to design a remanufacturable product but not

to remanufacture that product, relative to the environmental damage that

otherwise would result if k = 0. Accordingly, this comparison addresses our

first question of environmental friendliness: Is it environmentally friendly to

design for green if the intention is not to go green? Similarly, the second

comparison assesses the environmental damage associated with implement-

ing an optimal strategy given that it is optimal to remanufacture completely,

relative to the environmental damage that otherwise would result if k = 0.

Accordingly, this comparison addresses our second question of environmental

friendliness: Is it even necessarily environmentally friendly to go completely

green?

3.5.2 Is it Environmentally Friendly to Design for

Green but Not to Go Green?

Recall that, in the context of our model, designing for green but not going

green means that k = 1 but dr2 = 0 in an optimal solution. Thus, to answer

this question, we leverage Proposition 3.6 to obtain the following.

Proposition 3.7. If and only if fn/gn > max[1, fr/gr], the optimal strategy

is to design for green but not to go green (k∗ = 1, d∗r2 = 0), but this strategy

is not environmentally friendly (∆(q∗|k∗ = 1, d∗r2 = 0) > ∆(qT )).

Proposition 3.7 is interesting because it illustrates how the environment

ultimately pays the price when consumers overvalue the idea of remanufac-

turability (fn) relative to how much they value actual remanufacturing (fr).

In particular, Proposition 3.7 demonstrates a necessary and sufficient condi-

tion indicating when it is optimal for the firm to design a remanufacturable

product (k∗ = 1) that it has no intention of remanufacturing (d∗r2 = 0), al-

though the environment would be better served if the firm simply designed

a non-remanufacturable product instead (k = 0). In this case, the firm’s

decision not to remanufacture coupled with the increased quality associated

with a remanufacturable design results in increased environmental damage.

This result is an example of how good market intentions may produce un-

intentional outcomes. If environmentally conscious consumers express their
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concerns for the environment through a higher willingness to pay for prod-

ucts that can be remanufactured, then this preference attracts the firm to

design a remanufacturable product. However, that same consumer prefer-

ence will hurt the environment if it is coupled with a low willingness to pay

for products that have been remanufactured. Indeed, it is precisely this type

of inconsistency in consumers’ preferences that results in the unintended en-

vironmental consequences. This insight thus underscores a qualification for

consumers truly to be green. In particular, to be green, it is not sufficient for

consumers simply to value the idea of remanufacturing; they must also value

products that actually are remanufactured. In other words, it is not enough

to “talk green”; to be green, consumers must also “walk green”.

3.5.3 Is it Environmentally Friendly to Go

Completely Green?

In Section 5.2, we found that it is not necessarily environmentally friendly

to design for green if the intention is not actually to go green. But that begs

the question at the other extreme: What if it is optimal to go completely

green? Would even that necessarily be environmentally friendly? To address

this question, recall that, in the context of our model, going completely green

means that 0 < dr2 = dn1 in an optimal solution.

Proposition 3.8. If gr ≤ grC and gn/fn < 1 − f2
r (3fn−fr)

(2fn−fr)(fn+fr)2
< 1, then

the optimal strategy is to go completely green (k∗ = 1, d∗r2 = d∗n1), but that

strategy is not environmentally friendly (∆(q∗|k∗ = 1, d∗r2 = d∗n1) > ∆(qT )).

Proposition 3.8 demonstrates that, indeed, it is not necessarily environ-

mentally friendly to go green even if it means going completely green. Sur-

prisingly, but not entirely unexpectedly, this would be the case if the produc-

tion technology is especially cost efficient (in the sense that gn/fn is relatively

low). Intuitively, if the market cost efficiency ratio of a new remanufacturable

product is low (specifically, if gn/fn < 1−f 2
r (3fn−fr)/((2fn−fr)(fn+fr)

2)),

then it is optimal not only to remanufacture completely when gr ≤ grC , but

also to set quality relatively high. As a result, the associated environmental

damage ends up greater than it otherwise would if k = 0.

This suggests that cost efficiency potentially affects the environment dif-

ferently than it affects the firm. To the firm, cost efficiency translates into
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Figure 3.3: Illustration of Environmental Damage for Varying Production
Cost Parameters

increased profit. To the environment, however, cost efficiency translates into

higher quality which in turn leads to greater environmental damage. There-

fore, although it is in the best interest of the firm to pursue such efficiencies,

it is not particularly in the best interest of the environmentalist for the firm

to achieve such pursuits.

Proposition 3.7 and 3.8 illustrate that cost efficiency of new remanufac-

turable products can lead to worse environmental consequences. This effect

is manifested in higher product quality when remanufacturing cost gr is rel-

atively large in which case d∗r2 = 0 as in Proposition 3.7, or when gr is

relatively small in which case d∗r2 = d∗n1 as in Proposition 3.8. While the for-

mer requires moderate cost efficiency with production technology, the latter

demands much more higher cost efficiency. Hence, the latter is less likely to

happen than the former. In other words, to remanufacture is generally more

environmentally friendly than not to remanufacture given that the product

is remanufacturable.

3.5.4 Sensitivity Analysis for Environmentally

Friendliness

Next, in the form of a sensitivity analysis, we investigate the impact of pro-

duction costs (gn and gr) and consumer valuations (fn and fr) on the envi-

ronmental friendliness of an optimal policy. Specifically, we fix two of the

four parameters while varying the other two, and we compare ∆(q∗), the

environmental damage associated with the optimal strategy, to ∆(qT ), the

environmental damage associated with the conditionally optimally strategy

given that k = 0.
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Figure 3.4: Illustration of Environmental Damage for Representative
Valuation Parameters

Figure 3.3 shows graphs of ∆(q∗)/∆(qT ) as a function of remanufacturing

cost gr for three different new product production costs gn = 1.1, 1.2, 1.4.

Notice that a reduction in the remanufacturing cost yields a decrease in

environmental damage if gr is relatively high, but it yields an increase in

environmental damage if gr is relatively low. Intuitively, Figure 3.3 reflects

that complete remanufacturing is not optimal for relatively high gr but it

is optimal for relatively low gr. Hence, reducing the remanufacturing cost

when gr > grC increases the volume of remanufacturing, which increases

cannibalization of new products (smaller dn2), thus reducing the damage on

the environment. However, further reductions in gr, when gr is already low,

do not affect cannibalization because all available units already are being

remanufactured. Rather, such reductions in gr result in higher quality, thus

increasing the damage on the environment. In fact, this increase in envi-

ronmental damage could potentially render complete remanufacturing less

environmentally friendly.

Figure 3.3 also illustrates that environmental damage increases as gn de-

creases. This observation reflects two effects: First, a lower gn means a higher

profit margin for new remanufacturable products. Second, a lower gn also

means a smaller relative cost difference between new and remanufactured

products, gn − gr. These two effects thus combine to make remanufactur-

ing less attractive. Hence, the firm sells a larger volume of new products

and a smaller volume of remanufactured ones. As a result, cannibalization

decreases, thus increasing the damage on the environment.

In contrast, as illustrated by Figure 3.4, which provides graphs of ∆(q∗)/∆(qT )

as a function of gr for three values of fr (fr = 0.6, 0.8, 0.9) and for three val-
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ues of fn (fn = 1.1, 1.2, 1.4), environmental damage decreases as consumers’

willingness to pay for remanufactured products (fr) increases, but it increases

as consumers’ willingness to pay for new products (fn) increases. Intuitively,

as Figure 3.4 (a) reflects, the firm is more reluctant to remanufacture for

lower fr. Thus, reductions in fr decrease cannibalization, thus increasing the

damage on the environment. Similarly, as Figure 3.4 (b) reflects, a higher fn

translates not only into a greater reluctance to remanufacture but also into

a desire for higher quality. Hence, increases in fn decrease cannibalization

and increase quality, thus creating a reinforcing effect increasing the damage

on the environment.

These results once again support insights from Proposition 3.7 indicating

that inconsistency in consumers’ valuations between what can be remanufac-

tured relative to what has been remanufactured contributes to environmental

damage. Basically, the larger is the difference, (fn− fr), whether it is due to

increases in fn or to decreases in fr, the larger is the environmental damage

that results from an optimal solution. In other words, although valuing re-

manufactured products leads to smaller environmental damage, valuing only

the notion of remanufacturability leads to greater environmental damage.

This is indicative of the notion that consumption, as opposed to produc-

tion, is a primary driver of environmental damage. Accordingly, to para-

phrase Orange (2010), the key to green is first to reduce consumption, and

only then to recycle and to reuse that which has been consumed. This is

also indicative of firms not particularly operating in the interests of the envi-

ronment. Indeed, as theWall Street Journal article titled “The Case Against

Corporate Social Responsibility” argued in September 2010, “the concept of

Corporate Social Responsibility is flawed. Companies do good [socially] only

if they can do well [financially].” Restated in the language of our model, when

a product is remanufacturable, firms may not necessarily remanufacture, and

even if they do, they may not remanufacture completely.

3.6 Conclusion

In this chapter, we have studied remanufacturing and its environmental con-

sequences through a product design lens. In this context, a firm has the

option to design a non-remanufacturable or a remanufacturable product and
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to specify a corresponding quality, and these design choices affect both the

production costs and the consumer valuations associated with the product.

On the cost side, remanufacturable products cost more to produce origi-

nally, but less to remanufacture, than non-remanufacturable products cost

to produce. Analogously, on the consumer side, remanufacturable products

are valued more, but remanufactured products are valued less, than non-

remanufacturable products are valued. Given this, we investigate the envi-

ronmental consequences of remanufacturing by first defining a measure of

environmental damage that, ultimately, is a function of what is produced

and how much is produced, and then applying that measure to assess the

environmental damage associated with the firm’s optimal strategy relative

to the environmental damage associated with the firm’s otherwise optimal

strategy if a non-remanufacturable product were designed and produced. In

doing so, we bridge the gap between profit maximization and environmental

friendliness to ascertain the extent to which the two are complementary and

to identify key factors of compatibility when they are not complementary.

Our results indicate that consumer preferences and production technology

potentially affect environmental friendliness differently than they affect profit

maximization. We find, for example, that consumer greenness and produc-

tion efficiency generally lead to a more profitable firm, which is consistent

with the remanufacturing literature (e.g., Debo et al. 2005), but they do not

necessarily translate to a more environmentally friendly firm. Specifically, we

find that if green consumers overvalue the idea that a product can be reman-

ufactured relative to how much they value a product that has been remanu-

factured, then the firm’s optimal mix of new versus remanufactured products

will not necessarily achieve the level of cannibalization required to benefit the

environment in the form of waste disposal reductions. Consequently, under

such circumstances, consumer greenness translates into increased damage on

the environment. In a related vein, we find that although production effi-

ciencies translate into healthier bottom lines, they also translate into higher

quality products that, in turn, translate into increased damage on the envi-

ronment.

Fundamental to our analysis is the modeling assumption that consumers

differentiate between remanufacturable products, non-remanufacturable prod-

ucts, and remanufactured products specifically such that they value reman-

ufactured products (weakly) less than non-remanufacturable products and
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they value non-remanufacturable products (weakly) less than remanufac-

turable products. In other words, fundamental to our modeling construct is

the stipulation that fr ≤ 1 ≤ fn. Nevertheless, whereas our stipulation that

consumers value remanufacturable products more than non-remanufacturable

products (fn ≥ 1) is essential to our analysis, at least to the extent that we

also assume remanufacturable products cost more than remanufacturable

products to produce, ceteris paribus, our companion stipulation that con-

sumers value remanufactured products less than non-remanufacturable prod-

ucts (fr ≤ 1) is, as it turns out, superfluous. We make this modeling assump-

tion to parallel our presumption that the cost to remanufacture is less than

the cost to produce originally, but in the end what drives our results is not

the condition fr ≤ 1 but rather the condition that fr ≤ fn. Thus, even if

consumers valued remanufactured products more than they valued new non-

remanufacturable products, our analysis would apply as long as they didn’t

value remanufactured products more than they valued new remanufacturable

products.

In contrast, if consumers were to value remanufactured products more than

they valued remanufacturable products, that is, if consumers were to view

new products as inferior substitutes for remanufactured products, then the

demand model of Figure 3.1 would change at its core because consumers with

higher valuation of quality would prefer remanufactured products and those

with lower valuation of quality would prefer new products. In other words,

if fr > fn, then the relative positions of dn2 and dr2 in Figure 3.1 would

reverse so that dr2 would be depicted to the right of dn2 rather than vice

versa. Ultimately, such a recharacterization would mean that remanufactured

products not only would benefit from lower production costs (in the sense

that gr/fr < gr/fn < gn/fn would be true) but also would benefit from higher

prices (in the sense that p∗r2 > p∗n2 would result). Under these circumstances,

the analysis therefore would imply simply that d∗n2 = 0 unconditionally.

Also fundamental to our analysis are the definitions of virgin resource ex-

traction and waste disposal as measures that are directly proportional to

quality. Nevertheless, similar to the specifications of consumer valuations,

this proportionality assumption is required only to the extent that environ-

mental damage is defined to be non-decreasing in quality and in quantity.

Because our assessments of environmental friendliness begin with the Pre-

mium substrategy, in which case it is optimal to design for green but not to go
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green, and because this substrategy results in the same sales volume as other-

wise would result in the Traditional substrategy (re: Proposition 3.1), which

serves as the benchmark for environmental friendliness, it is the comparison

between the optimal quality and the conditionally optimal quality given that

k = 0 that is fundamental to our results. Thus, if virgin resource extrac-

tion and waste disposal were defined more generally to be non-decreasing

functions of quality, then we would expect similar qualitative assessments of

environmental friendliness as those determined in §3.5 to result.

Note, however, that these qualitative assessments very well could be af-

fected if environmental damage were decreasing over some quality levels.

As an illustrative example of such a potential, consider Subramanian et al.

(2009) who develop a repeated purchase model in which environmental re-

sources are consumed not only during production (by the firm) but also

during use (by consumers). Thus, in this context, consumers face a trade-off

between a during-use cost, on the one hand, and a product replacement cost

on the other hand. If such a during-use environmental effect were incorpo-

rated into our modeling context, then an additional term would be required

to represent the amount of environmental damage incurred during use, which

potentially could be decreasing in quality. Therefore, exploration of such an

effect constitutes a viable direction for future research.
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Chapter 4

Environmental Friendliness:
Scope and Applicability

In §3, we have studied remanufacturing and its environmental consequences

through a product design lens. To this purpose, we developed a two-stage

model in which the manufacturer has the option to design a non-remanufacturable

or a remanufacturable product and to specify a corresponding quality. Our

results indicate that consumer preferences and production technology po-

tentially affect environmental friendliness differently than they affect profit

maximization. We find, for example, that consumer greenness and produc-

tion cost efficiency generally translate to a more profitable firm, but they do

not necessarily lead to a more environmentally friendly firm.

In this chapter, we further explore the scope and applicability of the model

and results in §3. Specifically, we consider several extensions to, and varia-

tions of, our modeling assumptions and settings, and we discuss their impli-

cations. In §4.1, we study the value of educating consumers. In §§4.2–4.3,

we explore the impact of a continuous remanufacturability and an exogenous

quality on the optimal decisions and on associated environmental impact. In

§4.4, we investigate the effect of an infinite-horizon model. Building on this

model, we discuss the effects of collection rate, as well as the perspectives of

both an environmental planner and a global planner in §§4.5–4.6.

4.1 The Value of Consumer Education

Recall from §3.5 that consumers who are environmentally conscious in the

sense that they value the idea that a product can be remanufactured, but are

not necessarily green in the sense that they do not particularly value a prod-

uct that has been remanufactured could lead to unintentional consequences

in the form of unwarranted environmental damage. Thus, as a natural exten-

sion, we explore in this section the potential value of educating consumers to

be less environmentally conscious, per se, and to be more green. Specifically,

64



Table 4.1: Marginal Effect of Consumer Valuation on Environmental
Damage

θ
0.1 0.2 0.3 0.4 0.5

α

0.1 0.12, 0.08 0.07, 0.02 0.21, 0.19 0.15, 0.13 0.13, 0.08
0.2 0.08, 0.02 0.17, 0.14 0.13, 0.09 0.12, 0.07 0.11, 0.06
0.3 0.15, 0.11 0.13, 0.07 0.12, 0.06 0.11, 0.05 0.11, 0.04
0.4 0.12, 0.06 0.11, 0.05 0.11, 0.04 0.10, 0.04 0.09, (0.09)
0.5 0.12, 0.04 0.11, 0.04 0.09, 0.04 0.09, (0.09) 0.09, (0.09)

we focus on the question of what would be more environmentally beneficial, a

decrease in fn (i.e., a decrease in θ) or an increase in fr (i.e., a decrease in α).

To this end, we numerically evaluate changes to environmental damage rela-

tive to changes in θ and in α, given that the optimal policy is implemented.

Specifically, we set c1 = 0.2, c2 = 0.5, and e1 +e2 = 1, and we compute ∂∆(q∗)
∂θ

and ∂∆(q∗)
∂α

for values of θ and α such that (θ, α) ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
Table 4.1 provides a matrix of results where each entry presents (∂∆(q∗)

∂θ
,

∂∆(q∗)
∂α

) for specified values of θ and α, with parenthesis indicating a negative

value. According to Table 4.1, increases in θ result in increases to environ-

mental damage regardless of the value of α. Similarly, increases in α result

in increases in environmental damage for most values of θ. However, in-

creases in α yield decreases to environmental damage if both θ and α are

large. Thus, as a general rule, there is value (to the environmentalist) in

educating consumers to be less environmentally conscious (smaller θ) and

more environmentally green (smaller α). In other words, it is in the envi-

ronment’s better interest to have consumers not necessarily value so highly

that which can be remanufactured, but rather to value highly that which has

been remanufactured. Moreover, notice that ∂∆(q∗)
∂θ

> ∂∆(q∗)
∂α

. Thus, if the

choice must be made between educating consumers against the ills of over-

valuing that which can be remanufactured and the ills of undervaluing that

which has been remanufactured, the environment would be better served by

investing in the former.

4.2 Remanufacturability

In §3, we defined remanufacturability (k) to be a binary variable. In this

section, we relax this stipulation and assume that k is a continuous variable
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such that k ∈ [0, 1]. In this new context, however, the interpretation of k

requires refinement. If k ∈ [0, 1], then rather than representing whether or

not a product can be remanufactured (as it does in this chapter), k would

represent the fraction of a product that can be remanufactured. As such,

this concept is related to, but is different from, both the notion of collec-

tion rate (Majumder and Groenevelt 2001, Ferrer and Swaminathan 2006,

2010) and the notion of yield ratio (Ferguson and Toktay 2006, Ferguson and

Koenigsberg 2007). To illustrate this difference, consider a cell phone as an

example. If the cell phone were defined to have two components, a shell and

a battery, then the notion of collection rate would refer to the ratio of how

many used cell phones are recycled after use relative to how many are sold,

and the notion of core yield would refer to how many of the cell phones (as

complete units) that are recycled have enough residual value remaining to

justify remanufacturing. In contrast, a fractional k in our modeling context

would refer to how much of a given cell phone (just the shell, just the battery,

both, or neither) is remanufacturable.

If, indeed, k were redefined in our model such that k ∈ [0, 1], then most of

our analysis leading to Propositions 3.1 – 3.3 would remain unaltered, except

for the analysis to determine k∗. Because we found that analysis not to be

tractable analytically, we implemented a numerical procedure to establish

the optimal k for an extensive array of input parameters. From this analysis,

which is provided in Appendix C.2, we found that k∗ is a boundary point

solution such that k∗ = 0 or k∗ = 1 even if k is defined on [0, 1]. Thus we infer

that, qualitatively, the results and interpretations from Chapter 3 continue

to hold if k were defined as a continuous design variable.

4.3 Exogenous Quality

In §3.5.2, we established that the environmental damage associated with a

remanufacturable product, when such a design is optimal, could be larger

than that associated with a non-remanufacturable product, depending on

the circumstances. Moreover, under such circumstances, a primary reason

for the increased environmental damage is that a remanufacturable product

leads to a higher quality design than does a non-remanufacturable product.

Thus, in this section, to test the extent to which this result depends on the
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Figure 4.1: Illustration of Environmental Damage for Exogenous Quality

endogeneity of quality in our model, we revisit the comparison of environ-

mental damage behind Proposition 3.7 but this time we assume exogenous

quality instead. Accordingly, for the purpose of this section, let ∆∗(q) de-

note the environmental damage associated with the optimal two-stage pricing

and remanufacturability strategy for given q, and let ∆T (q) denote the envi-

ronmental damage associated with the conditionally optimal pricing policy,

given that k = 0, for given q.

Proposition 4.1. If gn/fn < 1 and gr > gn − (fn − fr)(1 − gn/fn), then

∆∗(q) > ∆T (q).

As Proposition 4.1 demonstrates, even for an exogenous quality, it is not

necessarily environmentally friendly to go green. In particular, going green

leads to larger environmental damage if the remanufacturing cost is suffi-

ciently high (specifically, if gr > gn − (fn − fr)(1 − gn/fn)). In this case,

Proposition 4.1 dictates that the firm design remanufacturable products but

not remanufacture enough of them to achieve the level of cannibalization

needed for the environment to benefit. In fact, under these circumstances,

the firm ends up selling a higher volume of new products than it otherwise

would had the product been non-remanufacturable.

To graphically illustrate the implications of exogenous quality, we plot, in

Figure 4.1, graphs of environmental damage for q = 1/3 (which corresponds

to the conditionally optimal quality when k = 0) and q = fn/3gn (which

corresponds to the conditionally optimal quality when k = 1 but dr2 = 0).

We find that higher quality generally results in higher environmental damage

if gr is either large or small. However, we also find that higher quality

leads to lower environmental damage if gr is moderate. Intuitively, if gr is

moderate, then higher quality means that the firm remanufactures a higher
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Figure 4.2: Infinite-horizon Model Specification

percentage of recycled units due to the correspondingly smaller volume of

new product sales. This increases cannibalization, thus decreasing damage

on the environment.

4.4 Infinite Horizon

In §3, a two-stage model is used to exemplify the cannibalization effect be-

tween new and remanufactured products. While a two-stage model is parsi-

monious and useful for developing insights into the problem context studied

in §3, an infinite horizon model would be equally parsimonious for developing

similar insights into the effects of longer problem horizons.

The Decision Framework. We use a infinite-horizon model as shown

in Figure 4.2 to formulate the firm’s profit-maximization problem. First,

at the design stage, stage 0, the firm determines product quality and the

level of remanufacturability. These two design dimensions remain unchanged

throughout the horizon. Then in the t-th stage where t ∈ R+, the firm

sets the prices for new and (or) remanufactured products and produces the

corresponding quantities. At the end of the period, used units are recycled

through reverse logistic network as in Figure 4.2. And this amount of recycled

product establishes the supply constraint for the t + 1-th stage.

The key here is the interaction between the supply constraint imposed by

new products sales from the last period, and cannibalization arising from

selling both new and remanufactured products. Unlike a two-period model

which requires the firm to sell only new products in the first period and allows

the firm to sell only remanufactured products in the second, an infinite-

horizon model requires the firm to produce new products every period to

maintain a steady state. Moreover, (Ferrer and Swaminathan 2006, Ray

et al. 2005) shows that in an infinite-horizon model, it is optimal for the firm
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to set the same price and to sell the same volume of products in each period.

In other words, the pricing decision in an infinite-horizon model is one-time

(Atasu et al. 2008). Hence, we drop the subscript t in our model formulation.

Consumer Demand. Consumers purchase to maximize their non-negative

surplus, which is defined by the difference between valuation and price paid.

Let pn and pr be the price of a new and a remanufactured product, respec-

tively. Then the demand functions for new and remanufactured products are

similar to those in §3.3, but with different subscript. Specifically, if only new

products are available, then the corresponding demand for new products is

represented by (4.1).

dn = 1− pn

fn(k)q
(4.1)

If the product is designed to be remanufacturable (i.e., if k = 1), then the

demand for new and remanufactured products, dn and dr, respectively, are

dn = 1− pn − pr

(fn − fr)q
, and dr =

pn − pr

(fn − fr)q
− pr

frq
(4.2)

Note that dn and dr represent the demand for new and remanufactured prod-

ucts in a stable state hence no subscript is used to represent the time period.

Profit. If the firm designs a non-remanufacturable product (i.e., if k = 0),

then it only sells new products in each period. Accordingly, the demand is

represented by (4.1) and the corresponding profit is

Π(pn, q, k) = dn(pn − gnq
2) (4.3)

If the firm designs a remanufacturable product (i.e., if k = 1), then the

pricing decisions for new and remanufactured products would be stationary

over time (Atasu et al. 2008), the corresponding remanufacturing problem

boils down to

max
pn,pr

Π = dn(pn − gnq2) + dr(pr − gnq
2) (4.4)

s.t. dr ≤ dn (4.5)

By applying the same solution procedure as in §3, we analogously solve (4.4).

(Detailed derivations are provided in Appendix C.2.)

Accordingly, Figure 4.3 shows the graphs of the optimal quality (qI∗), as
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Figure 4.3: Comparison between Two-Stage and Infinite-Horizon Quality,
Demand, and Environmental Damage

well as the corresponding total demand for a given period (dI∗
n +dI∗

r ) and the

associated environmental damage (∆I∗), all as functions of the remanufac-

turing cost gr. For comparison, we likewise graph in Figure 4.3 the optimal

quality from the two-stage formulation (q∗), as well as the corresponding

stage 1 demand (d∗n1), stage 2 demand (d∗n2 + d∗r2), and the associated en-

vironmental damage (∆∗). Note that the two-stage results are normalized

such that they represent the average values for a single stage.

As Figure 4.3(a) illustrates, the infinite-horizon model implies a greater

volume of products sold in each period than does the two-stage model in

stage 1 (i.e., dI∗
n + dI∗

r > d∗n1). This is because two types of products (new

and remanufactured) are sold in the infinite-horizon model compared to only

one type of product (only new) in stage 1 of the two-stage model. Similarly,

the infinite-horizon model implies a larger volume of products sold per period

than does stage 2 of the two-stage model (i.e., dI∗
n + dI∗

r > d∗n2 + d∗r2) if gr is

sufficiently small because two types of products (new and remanufactured)

are sold in the infinite-horizon model compared to only one type of prod-

uct (only remanufactured) in stage 2 of the two-stage model. However, the

infinite-horizon model implies a smaller volume of products sold per period

than does stage 2 of the two-stage model if gr is sufficiently large. This is

because, like in the infinite-horizon model, two types of products (new and re-

manufactured) are sold in stage 2 of the two-stage model, but comparatively,

there is less cannibalization of remanufactured products by new products due

to the fact that new products in stage 2 of the two-period model need not

be collected for later use.

As Figure 4.3(b) illustrates, an infinite-horizon model dictates a higher
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quality than does the two-stage model. This is because the new units in stage

2 of the two-stage model will not be remanufactured, thus the cost saving

potential of these units cannot be realized. Hence, the two-stage model yields

a lower quality so as to reduce this waste of cost saving potential. Figure

4.3(b) also shows that the infinite-horizon model does not fundamentally

alter the pattern in which environmental damage changes with regards to

remanufacturing cost. However, the infinite-horizon model does yield slightly

higher or lower environmental damage as does the two-stage model in §3.

If the remanufacturing cost is relatively small, on one hand, the infinite-

horizon model dictates a higher sales volume of new products as well as a

higher quality than does the two-stage model, leading to more environmental

damage. If the remanufacturing cost is relatively large, on the other hand, the

infinite-horizon model dictates a much smaller sales volume of new products

due to stronger cannibalization, as reduces the environmental damage. This

reduction in environmental damage outweighs the effect of a slightly higher

quality. Hence, the total environmental damage is smaller.

4.5 Collection Rate

Product return has been considered as a “dead weight” of a firm’s operation

rather than as a source of value creation. It was not until the last decades or

two that this situation started to change. Instead of passive handling return

after it happens, firms have started to consider the reverse supply chain

in their decision-making process. For example, end-of-use products can be

reintroduced as remanufactured products by recovering the residual value of

the functioning components from the returned products. In related literature

on product return, there are four types of product returns depending on

the nature: commercial, warranty, end-of-use, and end-of-life. Each type of

return can be treated so that it will create value for the firm.

As Guide et al. (2003) pointed out, the profitability of remanufacturing

depends critically on product acquisition management. One would expect

that the more used products are recycled, the more remanufactured products

can be sold. Thus increases in collection rate could potentially generate

more economic gains and causing less environmental damage. For example,

in September 2010, Chemistry & Industry features an article stating that
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the carbon footprint of recycling PET (a type of packaging plastics) is lower

than landfill when the recycling rate is higher than 45%. The economic and

environmental benefits of recycling more used units may remain true even

if the reverse logistics entails a fixed cost, and even more so if recycling

is mandatary due to related legislation as the case in many nations in the

European Union.

In this section, we focus on the end-of-use product returns, that is, prod-

ucts still contain significant amount of value and can be remanufactured to

original functionality. Geyer et al. (2007) study the impact of durability and

product life-cycle on the profitability of remanufacturing by minimizing the

total cost of collection, sorting, remanufacturing, and disposal. Guide et al.

(2003) recognize the variation of conditions in returned products and propose

a price-sensitive return framework to determine the optimal acquisition price

for each condition of used products. Both research assume that remanufac-

turing cost for each condition class is exogenous while the product return and

total demand depends on the acquisition and retail price respectively. They

find that decrease in acquisition price in one conation class would increase the

return from other condition class. Galbreth and Blackburn (2010) also con-

sider the variation of condition in returned products but consider demand

and the distribution of used products condition exogenous. They assume

that unit remanufacturing cost decreases as more returned products are ac-

quired and then trade-off the decreasing remanufacturing cost vs increasing

the collection and inspection cost. Savaskan et al (2004) and Savaskan and

Van Wassenhove (2006) study the different structure of reverse supply chain

and their impact on the optimal collection rate. Their results suggest that

in decentralized setting, collecting through retailer yields a higher collection

rate than collecting through manufacturer or a third-party. All these models

assume no differentiation between new and remanufactured products hence

no cannibalization. The collection rate mainly affects the operational side

of the question. Webster and Mitra (2007) and Mitra and Webster (2008)

investigate the impact of subsidy and take-back law on product returns and

consequently on the profitability of remanufacturing.

The objective in this section is to investigate the effect of collection rate on

a monopolist’s design for remanufacturing problem and examine its environ-

mental consequences. We study the interactions between product collection

rate and an endogenous quality, and study how these interactions would af-
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Figure 4.4: Illustration of Consumer Demands in Infinite-Horizon Model

fect the firm’s quality design and remanufacturing decision. In particular,

we study the conditions on which the firm makes its products remanufac-

turable given that only a certain fraction of used products is recycled at the

end of each period. If so, how do the optimal product quality and optimal

product mix between new and remanufactured products change according

to the collection rate? We also examine the effect of collection rate on the

environment and identify the key drivers that make remanufacturing more

environmentally friendly.

4.5.1 Model and Solution

Here, we first introduce some necessary assumptions and then define the

firm’s design for remanufacturing problems. Each problem is then solved

separately.

Collection Rate. At the end of each period, used products are collected

back to the firm through reverse supply chain. In this section, we model

the reverse logistics with an exogenous collection rate, denoted by γ, which

represents the percentage of used products that can be recycled at the end

of each period. This setting represents the scenario where the firm has no

control over the reverse logistics, and consumers randomly decide whether

to recycle a used product as shown in Figure 4.4. Consistent with §4.4, we

assume that the recycling of each used unit can only occur in the same period

as the purchase and consumption of the new product. Otherwise, the unit is

lost and will never be recycled.

Profit. The introduction of collection rate does not affect the expressions

for profit directly. If the firm designs a non-remanufacturable product (i.e.,

if k = 0), then the corresponding profit is (4.3). If the firm designs a reman-

ufacturable product (i.e., if k = 1), then the corresponding profit is (4.4).

73



The key distinction between the current section and §4.4 is that the supply

constraint (4.5) changes to

dr ≤ γdn. (4.6)

This difference has two effects. On one hand, recycling a fraction of used

products means the cost saving potential in those products that are not col-

lected can not be realized, which makes remanufacturing less attractive. On

the other hand, fewer remanufactured products in the market will lead to

weaker cannibalization between the two products, which makes remanufac-

turing more attractive.

Following the same solution procedure as in §4.4, we can solve the firm’s

remanufacturing problem under an exogenous collection rate. Due to the

fact that the non-remanufacturing problem is fundamentally the same with

or without collection rate, the solution to the Traditional strategy remains

the same in §3.3 and §4.4.

For the remanufacturing problem (4.4), Lemma C.1 in Appendix C.1 demon-

strates that for given q, the firm implements the Premium strategy if gn/fn ≤
gr/fr, and implements the Green strategy if gn/fn > gr/fr. Note that gi/fi

represents the cost efficiency of product i = n, r. Accordingly, the firm

chooses not to remanufacture if the new remanufacturable product is more

cost efficient, and vice versa. In the former case, dr = 0, hence (4.4) becomes

ΠM(q) = fnq(fn−gnq)2

4fn
, which has the same structure as (4.3).

In the latter case, Lemma C.2 characterizes (pG
n (q), pG

r (q)), the optimal

pricing decisions as a function of q, as well as (dG
n (q), dG

r (q)), the correspond-

ing demands. We find that the firm remanufactures more recycled units as

product quality increases. As a result, the new product sales volume de-

creases in quality due to cannibalization from remanufactured products. A

closer look reveals that as quality increases, the firm sells fewer new prod-

ucts in each period to increase the price and thus marginal return of both

products. Let ΠG(q) = ΠG(pG
n (q), pG

r (q), q) denote the profit associated with

the Green strategy as a function of q. Then Lemma C.3, also provided in

Appendix C.1, establishes that ΠG(q) is continuous and unimodal in q. Max-

imizing ΠM(q) and ΠG(q) accordingly leads to the following Proposition.

Proposition 4.2 (Optimal Remanufacturing Strategy). Let qR∗ denote the

optimal quality if the Remanufacturing strategy is implemented. Then by
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definition, k = 1, and

qR∗ =





qG
C = fn+γfr

3(gn+γgr)
, 0 ≤ gr ≤ grC ;

qG
P =

fr(fn−fr)gn

“
2−
√

1−3(frgn−fngr)2/[fr(fn−fr)g2
n]
”

3(frgn(gn−gr)−gr(frgn−fngr))
, grC < gr ≤ frgn

fn
;

qM = fn

3gn
, frgn

fn
< gr ≤ 1.

where grC = (1+γ)(fn+γfr)−3γ(fn−fr)
(fn+γfr)2+3γ2fr(fn−fr)

frgn.

Proposition 4.2 characterizes the optimal product quality in the remanu-

facturing cost gr when the firm designs a remanufacturable product. A couple

of observations are worth mentioning. First, considering collection rate in the

design for remanufacturing problem does not fundamentally change the struc-

ture of the optimal product quality. That is, the optimal quality increases as

remanufacturing cost decreases. Second, collection rate only affects product

quality when complete remanufacturing is optimal. This is intuitive because

the supply constraint is not binding under partial or no remanufacturing.

4.5.2 Results and Discussion

In this subsection, we first compare the optimal profit when a non-remanufacturable

product is designed (i.e., k = 0) to the optimal profit when a remanufac-

turable product is designed (i.e., k = 1). This comparison helps us under-

stand the effect of collection rate on the profitability of remanufacturing.

Then, we compare the environmental damage associated with optimal deci-

sion.

Profitability

First, comparing the conditional optimal solution when k = 0 to that when

k = 1 yields the following proposition.

Proposition 4.3. Given that gr/fr < gn/fn < fn, then it is optimal for

the firm to remanufacture. Accordingly, the collection rate affects the firm’s

remanufacturing strategy such that

i) If γ̂ < γ ≤ 1, then it is optimal to partially remanufacture;

ii) If γ ≤ min[γ̂, 1], then it is optimal to completely remanufacture.
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where

γ̂ =
(fn − fr)

(
gn(1 +

√
1− 3(frgn−fngr)2

(fn−fr)frg2
n

)− 2gr

)

2(fn − fr)gr − (frgn − fngr)
− 1

Proposition 4.3 summarizes the effects of an exogenous collection rate on

the firm’s optimal remanufacturing decisions. These results are two-folded.

First, collection rate has no effect on the firm’s optimal remanufacturability

decision. As we recall, whether or not to design a remanufacturable product

is independent from collection rate, and depends on the comparison of cost

efficiency between a non-remanufacturable product and a remanufacturable

one. In a similar vein, collection rate produces no effect on whether or not a

used product will be remanufactured. However, when the firm does remanu-

facture, collection rate may affect the firm’s optimal decision. In particular,

there exist a threshold collection rate, γ̂, such that when the collection rate

is higher than this threshold, the firm will partially remanufacture. If the

collection rate is lower than this threshold, then the quantity of used prod-

ucts collected is smaller than the amount of used products the firm would

like to remanufacture. As a result, the firm will remanufacture all available

used products.

Note that γ̂ is a decreasing function in gr. When remanufacturing cost is

relatively low (i.e., gr ≤ (5fr−fn)gnfr

f2
n+(5f5−fr)fr

), we have γ̂ ≥ 1, which means that the

firm will always remanufacture all used products. When remanufacturing

cost is relatively high (i.e., gr ≥ gnfr/fn), we have γ̂ ≥ 0, which indicates

that the firm will remanufacture nothing.
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Figure 4.5 graphically represents the firm’s optimal remanufacturing deci-

sion as in Proposition 4.2. We set parameters at θ = 0.2, α = .2, c1 = .1

and keep the same values throughout this chapter unless otherwise stated.

When the remanufacturing cost is relatively high compared to new product

cost, as in region (i), it is not worthwhile to sell remanufactured products

as gr/fr > gn/fn. In this case, collection rate has no effect because the firm

designs a remanufacturable product with quality qM but does not remanu-

facture. As gr reduces, remanufactured product becomes more and more cost

efficient and the firm starts to sell remanufactured products to reap the ben-

efits of cost savings. Hence, the effect of collection rate starts to emerge. In

particular, the firm remanufacture a fraction of recycled units at higher col-

lection rate (as in region (ii)) and remanufactures all recycled units at lower

collection rate (as in region (iii)). In this case, the remanufactured products

are not sufficiently cost efficient, i.e., (5fr−fn)gn

f2
n+(5f5−fr)fr

< gr/fr < gn/fn. The

firm will not remanufacture more than γ̂d∗n units of available recycled units

due to potential cannibalization. In this context, γ̂ represents the percentage

threshold above which partial remanufacturing is optimal and below which

complete remanufacturing is optimal. As gr further decreases, the remanu-

factured products become sufficiently cost efficiency, i.e., gr/fr < (5fr−fn)gn

f2
n+(5f5−fr)fr

such that complete remanufacturing is always optimal.

We know from previous analysis, collection rate affects the firm’s remanu-

facturing decisions if low remanufacturing cost is coupled with low collection

rate. On one hand, low remanufacturing cost guarantees that remanufac-

tured products are more cost efficient than new products so that the firm

finds it worthwhile to sell remanufactured products. On the other hand,

low collection rate dictates that the firm cannot remanufacture more than

it would otherwise do if more recycled units were available. Given Proposi-

tion 4.2, we have the following results about the optimal product design and

product mix, as well as the associated environmental damage.

Proposition 4.4. Given that gn/fn < fn, then collection rate γ affects the

firm’s quality and quantity decisions only when gr ≤ grC(γ). Accordingly,

(i) ∂q∗
∂γ

> 0;

(ii) ∂d∗n
∂γ

< 0, ∂d∗r
∂γ

> 0.
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Proposition 4.4 demonstrates that if remanufacturing cost is sufficiently

low (i.e., gr ≤ grC(γ)), then higher collection rate translates into higher opti-

mal quality and lower (higher) new (remanufactured) products sales volume.

In this case, the firm completely remanufactures all recycled units. When

collection rate increases, the firm can, ceteris paribus, realize more cost sav-

ing potential by doing two things. One is to increase product quality which

increases the cost saving potential for each product. The other is to re-

manufacture more used products. This increase in remanufacturing volume

intensifies cannibalization, hence the firm reduces new products sale volume

to raise the prices.

Environmentally Friendliness

Here, we compare the environmental damage associated with the optimal

profit when a non-remanufacturable product is designed (i.e., k = 0) to

that associated with the optimal profit when a remanufacturable product is

designed (i.e., k = 1). This yields the following proposition.

Proposition 4.5. Given that gr/fr < gn/fn < fn, then it is optimal for the

firm to remanufacture, and

i) ∂∆(q∗(γ))
∂γ

< 0, if 0 ≤ γ ≤ min[γ̂, 1];

ii) ∂∆(q∗(γ))
∂γ

= 0, otherwise.

Proposition 4.5 summarizes the effect of product collection rate on the

environmental damage. Increasing collection rate will decrease environmental

damage. This result is intuitive. We know from Proposition 4.4 that increases

in collection rate mean more bigger volume of remanufactured products and

smaller volume of new products. The corresponding strong cannibalization

reduces the environmental damage. However, this effect is true only when

collection rate is relatively low. In particular, if collection rate is higher

than the threshold γ̂, then increases in collection rate yields no effect on the

environment.

To better illustrate these results, Figure 4.6 shows the graphs of envi-

ronmental damage (∆(q∗)/∆(qT )) as a function of gr for collection rate

γ = 0.25, 0.5, 1. Notice that for a given remanufacturing cost, decreases

in γ increase the associated environmental damage, which is consistent with
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Proposition 4.4. However, we also notice that decreases in γ may have no

effect on the environment. This result occurs when remanufacturing cost is

relatively large in which case the firm would not remanufacture more than a

certain amount of recycled units regardless of the collection rate. Therefore,

it is not necessarily beneficial to the environment to collect more used units.

4.6 Environmental Design

In today’s world, more and more firms brand themselves as environmentally

friendly. They claim to be operating according to double or even triple

bottom line. Are these firms suppose to behave differently as opposed to

those who maximize profit? In this section, to provide a benchmark for

comparison, we consider the design for remanufacturing problem for two

additional types of decision makers — an environmental planner and a global

planner. In this context, we define an environmental planner’s objective to

be to maximize profit net of the associated environmental damage. That

is, we define the environmental planner as one who would adopt a double

bottom line (2BL) perspective by maximizing Φ = Π − β∆, where β > 0

is a cost coefficient to translate environmental damage into monetary terms.

Analogously, we define a global planner as one who would adopt a triple

bottom line (3BL) perspective by maximizing Θ = Π− β∆ + Ω, where Ω is

the corresponding consumer welfare. In a sense, we represent the interests of

three stakeholders: the money (Π), the people (Ω), as well as the environment

(−β∆).

Consistent with the §3, we represent the total environmental damage in
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each period with ∆ = (e1+e2)dnq, where coefficient e1 and e2 representing the

environmental impact of extracting raw materials and discarding waste. β >

0 is the coefficient that transform environmental impact to monetary term.

In a sense, βe1 and βe2 can be considered as the shadow price for extracting

raw material and discarding waste of unit quality. Let e = β(e1 + e2) denote

the corresponding marginal environmental cost in quality.

Decision makers differ from each other by assigning different weights to the

interest of each stakeholder in their objectives. In particular, the firm assigns

100% weight to profit; the environmental planner assigns equal weights (50%)

to profit and to environmental consequence; while the global planner assigns

equal weights (33%) to profit, to consumer welfare and to environmental

consequence. Here, our interests are limited to these three cases. However,

one can always explore the implications of different weights assignment. As

a case in point, a social planner assigns equal weights to profit and consumer

welfare.

In the rest of this section, we first define and then solve the design for

remanufacturing problem for the environmental planner and global planner,

respectively. Then, we compare and contrast these solutions with those of a

firm. These comparisons help us develop insights into the effects of consider-

ing multiple stakeholders on the optimal remanufacturing strategies and the

associated environmental impact.

4.6.1 Environmental Planner

If the environmental planner implements the Traditional strategy, then the

corresponding objective function is analogous to (4.3) and denoted by Φ(p, q, k) =

dn(pn−gnq
2−eq), where dn is again represented by (4.1). Following the same

solution procedure as in §4.3, we obtain the corresponding the optimal qual-

ity denoted with superscript ′ is

qT ′ =
1− e

3
; dT ′

n =
1− e

3
(4.7)

In order to make the Traditional strategy meaningful, namely qT ′ > 0, we

assume that e < 1, i.e., the cost of environmental damage should not be

too high. Notice that qT ′ < qT and dT ′
n < dT

n . In other other words, if a

non-remanufacturable product is designed, then the environmental planner
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always designs a lower quality and sells a smaller quantity than the firm

does. This is intuitive in the sense that environmental damage increases in

both quality and new product sales volume. Considering the environmental

damage in the objective function thus reduces the attractiveness of designing

a high quality or selling a high volume.

If the environmental planner designs a remanufacturable product, then the

corresponding profit function is analogous to (4.4) and denoted by

max
pn,pr

Φ(q) = dn(pn − gnq
2 − eq) + dr(pr − grq

2) (4.8)

where dn and dr are represented by (4.2). In equation (4.8), the first term

denotes the double-bottom-line contribution from selling new products and

the second term denotes the double-bottom-line contribution from selling

remanufactured products. The environmental planner hence optimize (4.8)

subject to supply constraint (4.6). Again, we develop the solution, provided

in Appendix C.1, to the environmental planner’s problem analogous to the

procedure followed in §4.3.

4.6.2 Global Planner

In this section, we analyze the problem faced by a global planner who car-

ries both social and environmental responsibilities. Here the global plan-

ner to an environmentally friendly firm is the same as social planner to a

profit-maximizing firm. The key difference is that global planner takes into

consideration of consumer welfare (Ω) in addition to firm’s profit (Π) and en-

vironmental impact (∆). The corresponding objective function for the global

planner (denoted by Θ) is Θ = Φ + Ω.

Analogous to (4.3), the global planner’s objective function, if the Tradi-

tional strategy is implemented (i.e., k = 0), is Θ(p, q) = (p−q2−eq)dn+ q−p
2

dn,

where the first term (p−q2−eq)dn denotes the double-bottom-line contribu-

tion and the second term q−p
2

dn denotes the corresponding consumer welfare.

Next analogous to (4.8), the global planner’s objective function if a reman-
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ufacturable product is designed (i.e., k = 1) is

Θ(pn, pr, q) = dn(pn − gnq2 − eq) + dn
fnq + fn(1− dn)q − 2pn

2

+ dr(pr − grq
2) + dr

fr(1− dn)q − pr

2
(4.9)

where the first two terms denote the triple-bottom-line contribution from

selling new products, and the second two terms denote the triple-bottom-

line contribution from selling remanufactured products. Following the same

solution procedure as in §4.3, we can again derive the optimal solution for

global planner, denoted with superscript ′′. Detailed solutions are listed in

Appendix C.1.

4.6.3 Discussion

Now, we compare the optimal decisions of the environmental (global) planner

to that of the firm. Then, we discussion the implications of these decisions

on environmental damage and consumer welfare.

Total Welfare

To answer the question on welfare, we compare the welfare associated with

the remanufacturing scenario (i.e., k = 1) with that associated with non-

remanufacturing scenario (i.e., k = 0) similar to our discussion for the firm in

§4.3. Let (q′, k′) denote the environmental (global) planner’s optimal design

decisions.

Proposition 4.6. Given that gn ≤ (fn−e)2

(1−e)2
, then it is optimal for the envi-

ronmental (global) planner to remanufacture. Accordingly, the collection rate

affects the environmental (global) planner’s remanufacturing strategy such

that

i) If frgn

fn

(fn+2e)
(fn−e)

≤ gr ≤ 1, then it is optimal to design for remanufacturing

but not to remanufacture, and correspondingly q′ = qM ′ = fn−e
3gn

;

ii) If gr < (fn+2e)frgn

fn(fn−e)
, when γ̂′ ≤ γ ≤ 1, then it is optimal to remanufacture

but not to exhaust all recycled units, and correspondingly q′ = qG′
P ;

iii) when γ ≤ min(γ̂′, 1], then it is optimal not only to remanufacture but also

to completely remanufacture, and correspondingly q′ = qG′
C = (fn+γfr)−efr(1+γ)

3(gn+γgr)
.
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where γ̂′ and qG′
P are defined in Appendix C.1.

Proposition 4.6 describes how the optimal strategy for environmental and

global planner changes in γ. Similar to Proposition 4.3, we find that col-

lection rate exhibits similar effects on the optimal remanufacturing strategy,

that is collection rate produces no effects on whether or not to remanufacture

but does affect how much to remanufacture. Note that γ̂′ → γ̂ as e → 0, that

is, the consideration of environmental damage in the decision making pro-

cess (i.e., for the environmental planner) does not fundamentally change the

structure of the optimal solution as opposed to not considering environmental

damage (i.e., for the firm).

However, changing the decision rules from single-bottom line to double- or

even triple-bottom line does make remanufacturing more likely. This effect

is demonstrated in three ways. First, it is more likely for an environmental

planner to design a remanufacturable product than it is for a firm (i.e., f 2
n <

(fn−e)2

(1−e)2
). Hence for given the same set of parameters, the environmental

planner is more likely to design for remanufacturing than is the firm. Second,

if the product is designed to be remanufacturable, then it is more likely for

an environmental planner to sell remanufactured products than it is for a

firm. Note here that the minimum remanufacturing cost above which the

decision maker will not remanufacture is higher for the environmental planner

than for the firm, i.e., (fn+2e)frgn

fn(fn−e)
> frgn

fn
. Finally, if selling remanufactured

products is attractive, then it is more likely for an environmental planner to

remanufacture all recycled units than it is for a firm. This is demonstrated

as g′rC(γ) > grC(γ) for given γ. In other words, the remanufacturing cost

threshold (minimum level of cost saving), below (above) which complete

remanufacturing is optimal, is higher (lower) for the environmental planner

than for the firm.

To better compare and contrast the impact of decision rules, Figure 4.7

establishes the optimal remanufacturing strategy space in γ and gr for dif-

ferent decision makers. The two letters in each parenthesis correspond to

the optimal strategy according to single bottom line or double-bottom line.

For instance, (P, C ′) corresponds to the case in which the firm does partial

remanufacturing while the environmental planner does complete remanufac-

turing. From Figure 4.7, we observe that the environmental planner always

implements “greener”, or at least no worse, strategic decisions than the firm
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Figure 4.7: Illustration of Optimal Remanufacturing Strategy for Different
Decision Rules

does, which is intuitive. Here, we mention two regions of interests. The first

region is (M, M ′) in which even the environmental planner designs for reman-

ufacturing but does not actually sell any remanufactured products. In this

case, the remanufacturing cost is too high (i.e., gr > (fn+2e)frgn

fn(fn−e)
), thus it is not

worthwhile to sell remanufactured products. Notice that as consumers value

new products more (fn increases), this region expands to the left ( (fn+2e)frgn

fn(fn−e)

decreases), suggesting that the environmental planner is more likely to de-

sign but not to remanufacture. The other region is (P, P ′) in which even the

environmental planner implements partial remanufacturing. In this case, the

remanufacturing cost is moderate hence the decision makers are not willing

to implement complete remanufacturing due to the potential cannibalization.

Notice that as the environmental factor e increases, both γ̂′ and (fn+2e)frgn

fn(fn−e)

increase, or move to the right in Figure 4.7. This suggests that e, or more

specifically β, can be thought of as a possible policy lever, such as a tax

penalty for example, to push firms toward more environmentally friendly

decisions.

Comparing the optimal product design for an environmental planner and

a global planner, we have the following results on the optimal quality and

demand that maximize welfare.

Proposition 4.7. The global planner’s objective function value is always

twice that of the environmental planner, i.e., Θ(q) = 2Φ(q) for ∀q. Let q′

(q′′) and d′i (d′′i ) denote the optimal quality and demand for product i = n, r

that maximize the environmental (global) planner’s objective function Φ(Θ).
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Accordingly,

(i) q′ = q′′;

(ii) 2d′i = d′′i , i = n, r.

Proposition 4.7 characterizes the intrinsic relationship between the envi-

ronmental planner and global planner’s design for remanufacturing problem.

Most interestingly, considering consumer welfare in the decision-making pro-

cess yields no effect in the choice of optimal quality. However, the global

planner sells both products at lower prices such that the demand for each

product is doubled relative to that for the environmental planner. As a re-

sult, more consumers are enjoying surplus. In fact, the contribution from

the third bottom line, consumer welfare, equals to the contribution from the

double-bottom line, sum of profit and environmental damage, i.e., Ω(q′) =

Θ(q′)− Ω(q′).

Environmental Damage

Our previous discussion indicates that different decision rules do not fun-

damentally change the structure of the optimal solution to the design for

remanufacturing problem. Consequently, given a decision rule, higher collec-

tion rate should reduce, or at least not increase, environmental consequences

of remanufacturing. This results is exhibited in Figure 4.8 which depicts

the associated environmental damage for 1BL (∆(q∗)), 2BL (∆(q′)) and 3BL

(∆(q′′)) respectively, as compared to the environmental damage associated

with the non-remanufacturing solution (∆(qT )).
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Examining first the curve for each decision rule, we find that the environ-

mental damage first decreases and then remains constant regardless of the

decision rules. Take the environmental planner for example. If the collection

rate is low (i.e., γ ≤ γ̂′), then increases in collection rate translate to lower

environmental damage. In this case, the environmental planner remanufac-

tures all recycled units. Hence higher collection rate means more used units

are remanufactured in each period. As a result, fewer new products are sold,

and a stronger cannibalization leads to smaller environmental damage. If

the collection rate is relatively high (i.e., γ ≤ γ̂′), however, increases in col-

lection rate do not affect the environment. In this case, the environmental

planner remanufactures a fixed amount of recycled products to reduce can-

nibalization. Higher collection rate does not increase remanufacturing but

means more used units are discarded after being collected. As a result, the

environment cannot benefit from higher collection rate. Note that the set of

parameters in Figure 4.8 represents the scenario in which the environmental

factor e is not significant. Accordingly, both the firm and the environmental

planner find it optimal to implement partial remanufacturing when collection

rate is close to 100% (as region (P, P ′) in Figure 4.7).

Examining second the environmental damage for given collection rate, we

notice that 2BL always causes lower environmental damage than 1BL does.

Recall that environmental damage is a function of both quality and new

products sales volume. The environmental planner always sells a smaller

volume of products and generally designs lower quality than the firm does,

hence the associated environmental damage is lower. If a higher quality

is designed (which could occur when remanufacturing cost is moderate and

collection rate is high), then the environmental planner will sell much smaller

volume of new products. And this reducing effect from smaller new products

sales outweighs the increasing effect from high quality, thus again leading to

lower environmental damage.

However, we also observe that 3BL causes more environmental damage

than 1BL or 2BL. We know from Proposition 4.7 that the global planner

designs the same product quality as the environmental planner but sells twice

as much new products as well as remanufactured products. In this case, the

increasing effect from large volume dominates the potentially reducing effect

from lower quality. As a result, the environment is always worse-off when 3BL

is adopted as the decision rule. This again suggests that it is consumption
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rather than production that is the fundamental driver for more environmental

damage.

Consumer Welfare

Consumer welfare is defined as the difference between the utility and price

associated with purchasing a product. Accordingly, an individual consumer

derive smaller consumer welfare with lower product quality or higher price,

or both. Figure 4.9 (a) shows the consumer welfare for 1BL (Ω(q∗)), 2BL

(Ω(q′)), and 3BL (Ω(q′′)), respectively, relative to that for the Traditional

case (Ω(qT )). First, we find that as collection rate increases, consumer welfare

first decreases and then remains the same. We know from Proposition 4.4

that increases in collection rate mean higher quality, higher prices and lower

sales volumes. While the lower sales volumes mean that fewer consumers can

enjoy positive welfare, higher quality and prices mean that each consumer

can enjoy a lower consumer welfare. Hence the total consumer welfare for

the market decreases. When collection rate is higher enough, increases in

collection rate do not affect quality design nor remanufacturing decisions.

Hence, the total consumer welfare for the market remains the same.

Second, we find that 3BL leads to the highest amount of consumer welfare

followed by 1BL and 2BL. 3BL yields the highest amount of consumer wel-

fare, which is intuitive because the global planner considers consumer welfare

in the decision making process and sells products to much more consumers.

In contrast, 2BL yields the lowest amount of consumer welfare. Compared to

the global planner, the environmental planner sells products to much fewer

consumers and charges higher prices. Compared to the firm, the environ-

mental planner generally designs lower quality and sells to fewer consumers,

and both factors lead to lower consumer welfare.

Our discussion shows that higher sales volumes and the consequent higher

consumer welfare under 3BL perspective lead to higher environmental dam-

age. Then a natural follow-up question is how does 3BL perform when envi-

ronmental damage is normalized by consumer welfare. Accordingly, Figure

4.9 (b) illustrates the environmental damage associated with unit level of

surplus for 1BL (∆(q∗)/Ω(q∗)), 2BL (∆(q′)/Ω(q′)), and 3BL (∆(q′′)/Ω(q′′)),

respectively, normalized by that for the Traditional case (∆(qT )/Ω(qT )). We

notice that remanufacturing for all decision rules performs better than the
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Figure 4.9: Illustration of Consumer Welfare (θ = 0.1,α = .1; c1 = .1;
c2 = 0.2; and e = .03;)

non-remanufacturing. In particular, 2BL performs worse than 1BL when

collection rate is low and does better when collection rate is high. We know

from previous discussion that 2BL yields lower environmental damage as well

as lower consumer welfare. When collection rate is low, both the firm and the

environmental planner implement complete remanufacturing indicating the

same level of cannibalization. In addition, the environmental planner designs

a lower quality and sells smaller volume than the firm does. Consequently,

switching from 1BL to 2BL leads to a larger reduction in consumer welfare

than in environmental damage. When collection rate is high, however, the

environmental planner sells a larger volume of remanufactured products than

the firm does, which translates into stronger cannibalization. Consequently,

switching from 1BL to 2BL leads to a smaller reduction in consumer welfare

than in environmental damage. Moreover, 3BL causes the least amount of

environmental damage normalized by consumer welfare. This result is to be

expected because the global planner induces much larger consumer welfare

than the firm as well as the environmental planner.

These results have important implications for the policy makers. If the

policy makers care more about the environment, then they should minimize

the total environmental impact. This objective indicates lower product qual-

ity and lower sales volume. On the other hand, if the concern is on both the

consumers and the environment, then they should minimize the environmen-

tal damage per unit of consumer surplus. However, this objective leads to

bigger environmental impact and the environment is worse-off.
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Public Policy Instruments

From the public policy maker’s perspective, a profit-maximizing firm does

not serve the interests of the environment nor the consumers. To improve this

situation, various policy instruments can be employed. Here, we discuss two

common practices that are designed for the firm: 1) taxation on each unit

of environmental damage incurred, denoted by b, and 2) subsidy for each

used product remanufactured, denoted by s. Specifically, we study what

policy or combination of policies are necessary for the firm to behave as an

environmental planner or a global planner.

First, by setting b = β, taxation alone suffices for the firm to consider

environmental damage in its product design process. In essence, taxation

functions as additional cost to each unit of new products. This additional

cost makes the firm design lower quality and remanufacture more. However,

subsidy alone will not achieve the intended objective but drive the firm to-

wards the opposite direction. This is because subsidy, in effect, reduces the

remanufacturing cost and increases the cost saving from remanufacturing.

To a certain extent, high subsidy means smaller gr. In response, the firm

would increase the optimal quality and consequently cause more environ-

mental damage.

Second, for the firm to operate as a global planner, both taxation and

subsidy instruments are required. On one hand, imposing a tax of β on each

unit of environmental damage incurred will force the firm to behave as an

environmental planner as discussed above. On the other hand, the difference

in profit between the environmental planner and global planner, Π′(q′) −
Π′′(q′), must be compensated through subsidies. The following proposition

summarizes our discussion.

Proposition 4.8. Public policy instruments can provide incentives for a

profit-maximizing firm to behave as an environmental planner or even a global

planner. First, taxation, rather than subsidy, alone is effective to transform

the firm to an environmental planner. Second, both taxation and subsidy

are required to transform the firm to an environmental planner. Specifically,

impose a tax of b = β on each unit of environmental damage and provide a
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subsidy s for each remanufactured product, where

s =

{
(fn+frγ−e)(fn+frγ−4e)

18(gn+grγ)
, γ ≤ min[γ̂′, 1];

q′ (fn−fr−(gn−gr)q′−e)(fn−fr−(gn−gr)q′−3e)+(fn−fr)(fr−grq′)2
2((frgn−fngr)q′+ef2)

, γ̂′ < γ ≤ 1.

where q′ is specified in Proposition 4.6.

4.7 Conclusion Remark

In this chapter, we first examine the applicability of the results in §3, and

then extend the model to study the impact of collection rate and different

decision rules on the design for remanufacturing problem.

In §4.1, we explore the value of educating consumers regarding their eval-

uations towards new and remanufactured products. We find that it is envi-

ronmentally friendly to reduce consumers’ evaluation for new products and

to improve their evaluation for remanufactured products. §§4.2-4.4 examine

the robustness of our results in §3 by relaxing our modeling assumptions

to represent a continuous remanufacturability k, a exogenous quality, and

a infinite-horizon model. The discussion suggests that our results in §3 are

quite robust. For example, if remanufacturability is continuous, then our

computational analysis demonstrates that the firm would still set the opti-

mal remanufacturability at either k∗ = 0 or k∗ = 1. If product quality is not

a decision, then the firm’s decision to design for remanufacture could still

hurt the environment when the level of remanufacturing does not bring out

strong enough cannibalization. And, if the planning horizon changes from

two periods to infinite, then the firm would slightly increases its product

quality, producing similar impact on the environment.

In §4.5, we explore the impact of collection rate to the firm’s design for

remanufacturing problem. In contrast with §3, we consider an exogenous

collection rate which introduces new tradeoffs to the problem. On the down

side, low collection rate creates a more stringent supply constraint. The cost

saving potential in used products that are not recycled cannot be realized. On

the up side, low collection rate would reduce cannibalization of new products

from remanufactured ones, which could potentially increase the profitability

of remanufacturing. Considering this new tradeoff, we use a infinite-horizon

model to study the impact of collection on the profitability and consequently
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the environmental impact of remanufacturing.

Our analysis show that collection rate does not affect whether or not to

remanufacture, but affects how much to remanufacture. As a result, when

remanufacturing is sufficiently cost efficient, increases in collection rate gen-

erally increase profitability and reduce environment consequences. Higher

collection rate translates to larger volume of remanufactured products hence

more cost savings; in the meantime, it also translates to stronger cannibaliza-

tion hence smaller volume of new products. Consequently, the environment

is better-off. However, this is not necessarily true. In particular, if remanu-

facturing cost is moderate, then there exists a threshold collection rate above

which changes in collection rate do not affect the corresponding design nor

remanufacturing decisions. This threshold provides another explanation why

it is not necessarily beneficial to invest in reverse logistics so as to improve

the collection rate.

In §4.6, we revisit the design for remanufacturing problem from the per-

spectives of different stakeholders by considering the cost of environment

damage and consumer welfare in the objective function. In doing so, we un-

derstand how the interest of one stakeholder may affect the interests of others.

Our results indicate that considering the interests of different stakeholders

does not change the structure of the optimal remanufacturing solutions but

can potentially lead to unintended outcomes. For example, considering the

environmental damage in the objective function in addition to profit will

benefit the environment due to lower quality and stronger cannibalization in

each period. Surprisingly but not unexpectedly, however, including consumer

welfare in the objective could hurt the environment even more. Although the

optimal quality design remains the same, considering consumer welfare would

double the volumes of both new and remanufactured products, thus doubling

the environmental damage. This result once again underscores our conclusion

that it is consumption rather than production that hurts the environment.

An interesting implication of our discussion on public instruments reveals

that imposing tax on each unit of environmental damage can force a decision

maker to design lower quality and to sell smaller volume of products. The

higher is this tax, the smaller is the associated environmental impact. How-

ever, subsidy may not function as effective in reducing environmental damage

as tax does. In fact, subsidy may cause the firm to design high quality which

could potentially lead to more environmental damage.
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Chapter 5

Conclusion

5.1 Summary and Results

In this dissertation, we study the interactions among three stakeholders—

a firm, market, and environment—in the context of product design as il-

lustrated in Figure 5.1. In the center of this triangular is the product(s)

characterized by quality, a single dimensional vertical measure. This prod-

uct offering (quality, price, and quantity) affects the interests of all three

stakeholders. The firm is characterized by its production technology, which

affects its cost structure such as variable cost (Moorthy 1984, Moorthy and

Png 1992), fixed cost (Krishnan and Zhu 2006), inventory cost (Netessine

and Taylor 2007), as well as operational constraints such as common com-

ponents (Kim and Chhajed 2000, Heese and Swaminathan 2006, Desai et al.

2001), flexibility (Shao 2007), and lead time (Chayet et al. 2011). Given this,

the firm decides product quality and price to maximize its profit, which is

denoted by the difference between revenue and cost.

The market is characterized by consumer differentiation, either horizontal

(e.g., taste of color) or vertical (r.e., valuation of quality) which in turn affects

the demand. Horizontal differentiation generally assumes exogenous quality

and studies search cost (e.g., Kuksov 2004), product positioning (e.g., Tyagi

2000), personalized pricing (e.g., Choudhary et al. 2005, Liu and Zhang 2006),

and customization (e.g., Dewan et al 2003, Syam et al 2005). In contrast,

vertical differentiation generally considers endogenous quality and studies

topics such as segmentation (e.g., Moorthy 1984, Moorthy and Png 1992,

Desai 2001), valuation change (e.g., Kim and Chhajed 2000). Given this

differentiation and product offering, consumers purchase the product which

maximizes their non-negative surplus, which is denoted by the difference

between utility and price.

Compared to the firm and the market, the environment makes no deci-
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Figure 5.1: Stakeholder Triangular

sions but suffers the potential consequences. In this dissertation, we charac-

terize the environment from two perspectives, resource extraction and waste

disposal, which both work against the environment. Given this, the envi-

ronment’s interest is to minimize the environmental consequences associated

with decisions made by the firm and consumers.

In the first essay (§2), we consider the interaction between the firm and

the market, and investigate the effect of back-end operational constraint such

as limited capacity on the firm’s optimal product line design decision. The

firm serves a segmented market characterized by two consumer segments that

differ in valuation and size. Its product line design affects both production

cost and capacity consumption. On the cost side, product quality quadrati-

cally increases variable cost indicating an increasing cost to quality, which is

consistent with existing literature (e.g., Moorthy and Png 1992, Desai 2001).

On the capacity side, the length of product line determines the fixed setup

capacity such that offering two products requires b more units of capacity to

setup than offering a single product does. Meanwhile, variable capacity con-

sumption linearly increases in product quality, indicating a constant capacity

to quality ratio.

Given this modeling context, we find that operational constraints such

as limited capacity can introduce cannibalization from the operations side.

This operations cannibalization, which increases as the corresponding re-

source decreases, is as opposed to the market cannibalization introduced by
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heterogeneity in consumer valuations. While both types of cannibalization

reduce the length of a product line (r.e., the number of product types), the

exact type of cannibalization exhibits quite different effects on the firm’s

product line design decisions. For example, market cannibalization distorts

the quality of the low-quality product, increasing the width of the product

line (r.e., the quality differentiation between two products). In contrast,

operations cannibalization reduces the quality of each product and, if two

products are offered, it does so by maintaining a constant width of product

line. Another result is that limited capacity can potentially make it optimal

to offer a standard product for the whole market. When capacity is limited,

how the firm consumes capacity matters. In particular, if a longer product

line requires larger setup capacity (higher cost of variety), then offering a

standard product results in lower unit capacity requirement due to economy

of scale. To a certain extent, operations constraints can be interpreted as ad-

ditional shadow costs to the objective function. If these factors bring about

economy of scale, then they would produce similar effects on the optimal

product line strategy, making standardization potentially optimal. As cases

in point, consider the inventory cost in Netessine and Taylor (2007) and the

fixed cost in Krishnan and Zhu (2006).

In the second essay (§3), we again explore the dynamics between the

firm and the market but focus on remanufacturing and its environmental

consequences in the context product design. Specifically, the firm’s design

choices—remanufacturability and quality—affect both the production costs

and the consumer valuations associated with each type of product. Given

this, we investigate the environmental consequences of remanufacturing by

measuring environmental damage as a function of both quality and quantity.

We find that consumer greenness and production cost efficiency generally

lead to a more profitable firm, which is consistent with the remanufacturing

literature (e.g., Debo et al. 2005). But, our results also indicate that higher

profitability does not necessarily translate into more environmentally friendli-

ness. Moreover, consumer preferences and production technology potentially

affect the environment differently than they do the profit.

In our model, we differentiate consumers’ valuations for remanufacturable

products from those for remanufactured ones. This differentiation enables

us to pinpoint the essential characteristics of what makes green consumers

“green”. Specifically, we find that if green consumers overvalue the idea
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that a product can be remanufactured relative to how much they value a

product that has been remanufactured, then the firm will not remanufacture

enough used products so as to achieve the required level of cannibalization

to benefit the environment. Consequently, under such circumstances, green

consumerism may even translate into increased damage on the environment.

In a related vein, we find that although production cost efficiencies translate

into healthier bottom lines, they also translate into higher quality products

that, in turn, translate into increased damage on the environment.

As an extension to the second essay, the third essay (§4) explores the effect

of an exogenous collection rate on the optimal design for remanufacturabil-

ity and its impact on the environment. We find that, only a fraction of used

products are collected at the end of each period, new challenges are imposed

on the design for remanufacturability problem. On the one hand, a low col-

lection rate means that the cost saving potential in used products that are

not collected cannot be realized, hence reducing the profitability of reman-

ufacturing. On the other hand, a low collection rate creates a more strin-

gent supply of used products, hence fewer products can be remanufactured.

This reduces the cannibalization of new products from remanufactured ones,

which could potentially increase the profitability of remanufacturing. Given

this trade-off, our results confirm that an increase in the collection rate gen-

erally benefits both the firm and the environment. A higher collection rate

translates into a larger sales volume of remanufactured products and, hence,

a higher profit; it also translates into stronger cannibalization thus reducing

the sales volume of new products, which, in turn, translates into lower envi-

ronmental damage. However, there exists a threshold above which increases

in collection rate produce no effects on either profit or environmental impact.

Also in §4, we compare and contrast the firm’s optimal design for remanu-

facturability results to those that would maximize social and environmental

welfare. We find that, when compared to the social and environmental plan-

ner’s optimum, the firm over produces in the sense that it increases both

product quality and sales volume.

95



5.2 Future Research

Like any other modeling research, our results rely on the modeling assump-

tions we have made. The most essential assumption is that quality can be

defined as a single dimensional vertical measure that represents all more-is-

better attributes of a product. Other assumptions are important to derive

analytical results, but they are not critical to the insights. For example in

§2, we assume that the firm consumes capacity in both fixed and variable

ways. While the fixed capacity consumption is essential for offering a stan-

dard product to be optimal, it does not alter the overall effect of limited

capacity. Similarly, the implications of capacity remain fundamentally the

same as long as variable capacity consumption increases in quality faster

than it does in quantity. For another example, in §§3–4, we assume that en-

vironmental damage associated with a product increases linearly in quality.

Our discussions show that our results hold as long as environmental damage

is defined to be a non-decreasing function of quality.

However, considering some other factors in our model could potentially

change our results. Here, we discuss two major directions for future re-

search. First, this dissertation assumes that environmental damage is mainly

reflected by resource extraction and waste disposition. Consumption, how-

ever, may also be a major contributor to the environmental damage during

a product’s life cycle. Considering consumption could lead to two complica-

tions. On the one hand, higher quality could potentially decrease the associ-

ated environmental damage during consumption due to better technology or

higher efficiency (i.e., Subramanian et al. 2009). On the other hand, reman-

ufactured products will contribute to the environmental damage measure. If

such a during-use environmental effect were incorporated into our modeling

context, then an additional term would be required to represent the amount

of environmental damage incurred during use, which could potentially al-

ter the relationship between quality and environmental impact. Therefore,

exploration of such an effect constitutes a viable direction for future research.

Second, this dissertation explores the product design problem faced by a

monopoly firm, and provides a picture of how operational issues affect the

monopolist’s product design decisions and how these decisions interact with

the environment. Another interesting factor that we have not yet considered

is competition. Especially in the remanufacturing industry, a firm may face
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competition from a third-party remanufacturer who intercepts and reman-

ufactures a fraction of used products and sells remanufactured products to

the same market (e.g., Majumder and Groenevelt 2001). It may also face

competition from another manufacturer who competes with new rather than

remanufactured products (Atasu et al. 2008). In these cases, the firm may

want to thwart a competitor by designing a non-remanufacturable product

or, if the product is designed to be remanufacturable, by remanufacturing

more used products. Although related literature has studied competition in

various settings, the effect of endogenous quality has not yet been examined.
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Appendix A

Appendix for Chapter 2

Due to the similarities between single product models, we prove Lemma 2.1

and Proposition 2.1 for the Niche strategy.

Proof of Lemma 2.1. The lagrange function corresponding to (3.3) is

max
x,q

L = x(qvh − cq2) + λ(K − axq) + µ(nh − x) (A.1)

The KKT conditions are

∂L

∂q
= x(vh − aλ− 2cq)

∂L

∂x
= q(vh − aλ− cq)− µ

And the corresponding solutions are

q =
(vh − aλ)

2c
;

To prove Lemma 2.1, we first discuss the quantity condition. If µ > 0, then

complementary condition dictates x = nh. If µ = 0, then ∂L
∂q

= (vh−aλ)2

4c
> 0.

Thus, the firm should product as much as possible, or x = nh.

Now we discuss the capacity condition. If λ > 0, then K = anhq =
anh(vh−aλ)

2c
< anhvh

2c
. If λ = 0, then K ≥ anhq = anhvh

2c
. Thus, the capacity

constraint is binding when K ≤ anhvh

2c
.

Proof of Proposition 2.1. From Lemma 2.1, we know that for the Niche

strategy, x∗ = nh. If K ≤ KN , then capacity constraint is binding. In other

words, q∗ = K
anh

. If K > KN , q∗ = vh

2c
. Similarly, for the Standard strategy,

x∗ = (nh + nl), q∗ = K
a(nh+nl)

if K ≤ KS and q∗ = vl

2c
if K > KS.

Proof of Lemma 2.2. To prove our results, we again use lagrangian method.
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The lagrange function corresponding to (2.14) is

L(xh, xl, qh, ql) = xh(qhvh − cq2
h − ql(vh − vl)) + xl(vlql − cq2

l ) (A.2)

+ λ(K − b− a(xhqh + xlql)) + µh(nh − xh) + µl(nh + nl − xh − xl)

where λ, µh and µl are lagrangian coefficients for conditions (2.13), (2.3),

and (2.6) respectively. The corresponding KKT conditions are

∂L

∂qh

= xh(vh − aλ− 2cqh) = 0

∂L

∂ql

= xl(vl − aλ− 2cql)− xh(vh − vl) = 0

∂L

∂xh

= qh(vh − aλ− cqh)− ql(vh − vl)− µh − µl = 0

∂L

∂xl

= ql(vl − aλ− cql)− µl = 0

From the KKT conditions, we have

qh =
(vh − aλ)

2c
; ql =

vl − aλ

2c
− xh(vh − vl)

2cxl

First, we prove that quantity condition (2.6) is always binding. We consider

two cases: If µl > 0, then this is true due to complementary slackness. If

µl = 0, then ∂L
∂xl

= 1
4c

((vl − aλ)2− x2
h(vh− vl)

2/x2
l ) > 0 because the Product-

Line strategy dictates ql = vl−aλ
2c

− xh(vh−vl)
2cxl

> 0. Thus, condition (2.6) is

always binding.

Now, we consider quantity condition (2.3). From previous proof, we know

that µl = 1
4c

((vl−aλ)2−x2
h(vh−vl)

2/x2
l ) > 0. Hence, ∂L

∂xh
= (qh−ql)(

(vh−vl)
2

+
xh(vh−vl)

2xl
− µh. We again consider two cases: if µh > 0, then condition (2.3)

is binding due to complementary slackness. If µh = 0, then ∂L
∂xh

> 0, thus

condition (2.3) is binding.

Now we prove that capacity constraint (2.13) is binding. If λ > 0, then

K = b + a(nh
(vh − aλ)

2c
+ nl(

vl − aλ

2c
− nh(vh − vl)

2cnl

))

= b +
a(nh + nl)

2c
(vl − aλ)

⇐⇒ 0 ≤ aλ = b +
a(nh + nl)vl

2c
−K
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Thus, (2.13) is binding if K < b + a(nh+nl)vl

2c
.

Proof of Proposition 2.2. From Lemma 2.2, we know that at optimality

x∗h = nh, x∗l = nl, and λ = b/a + (nh+nl)vl

2c
. Correspondingly, the optimal

qualities are

q∗h =
(K − b)

a(nh + nl)
+

(vh − vl)

2c
; q∗l =

(K − b)

a(nh + nl)
− nh(vh − vl)

2cnl

.

q∗l > 0 requires K > KL = K̄ −KS(1−R).

Proof of Proposition 2.3. We prove this proposition by comparing the

profit associated with each strategy. First, we compare the profits of niche

and standard strategies. From Proposition 2.1, we know that profit function

ΠN(K) and ΠN(K) are both defined on two domains, and KN ≥ KS requires

vh ≥ (nh+nl)
nh

vl. Hence, we consider four cases based on the available capacity

K. Case 1: If K > max[KN , KS], then, ΠN(K)−ΠS(K) =
nhv2

h

4c
− (nh+nl)v

2
l

4c
≥

0 which requires vh ≥
√

(nh+nl)
nh

vl. Case 2: If K < min[KN , KS], then

ΠN(K)− ΠS(K) =
K(anhvh − cK)

a2nh

− K(a(nh + nl)vl − cK)

a2(nh + nl)
≥ 0

⇒ K ≥ 2RKS

For this case to be valid, we have vh ≤ vns
h = 2(nh+nl)vl

(2nh+nl)
. Case 3: If KN <

K ≤ KS, then ΠN(K) − ΠS(K) =
nhv2

h

4c
− K(a(nh+nl)vl−cK)

a2(nh+nl)
≥ 0 requires

K < KS(1 −
√

1− nhv2
h

(nh+nl)v
2
l
). For this case to be valid, we again have

vns
h < vh ≤

√
(nh+nl)

nh
vl. Case 4: If KS < K ≤ KN , then ΠN(K) ≥ ΠS(K) is

always true. Correspondingly, we define the isoprofit line Kns such that the

Standard strategy is more profitable when K > Kns.

Kns =





2RKS, vh ≤ vns
h ;

KS(1−
√

1− nhv2
h

(nh+nl)v
2
l
), vns

h < vh <
√

(nh+nl)
nh

vl;

Second, we compare the profit of Product-Line strategy with that of the

Standard strategy. We consider two cases. Case 1: If K < KS, then ΠL(K)−
ΠS(K) =

nhv2
h

4c
+

nlv
2
l

4c
(1− R)− c(K̄−K)2

a2(nh+nl)
− K(a(nh+nl)vl−cK)

a2(nh+nl)
≥ 0 requires K ≥

K̄ − a2nh(nh+nl)
2(vh−vl)

2+4b2c2nl

8bc2nl
. For this case to be valid, we need vh > vS

h =
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vl(1 +
b
√

nl

KS√nh
). Case 2: If KS < K < K̄, then ΠL(K) − ΠS(K) =

nhv2
h

4c
+

nlv
2
l

4c
(1−R)− c(K̄−K)2

a2(nh+nl)
− (nh+nl)v

2
l

4c
≥ 0 requires K ≥ K̄−KS (vh−vl)

√
nh

vl
√

nl
. For this

case to be valid, we need vh ≤ vS
h . Correspondingly, we define the isoprofit

line Ksl such that the Product-Line is more profitable when K > Ksl.

Ksl =





K̄ − RKS√nl√
nh

, vh ≤ vl +
2bc
√

nl/nh

a(nh+nl)
;

K̄ − ( b
2

+ nl(RKS)2

2bnh
), vl +

2bc
√

nl/nh

a(nh+nl)
< vh ≤ (nh+nl)vl

nh
;

Third, we compare the profit of Product-Line strategy with that of the

Niche strategy. We again consider two cases. Case 1: If K < KN , then

ΠL(K) − ΠN(K) =
nlv

2
l

4c
(1 − R) − c(K̄−K)2

a2(nh+nl)
+ c(KN−K)2

a2nh
≥ 0 requires K ≥

RKS− bnh

nl
(1+

√
(nh+nl)

nh
+ KS(1−R) 2nl

bnh
). Correspondingly, we require vh ≤

vN
h = (nh+nl)vl

nh
− 2bc(nl−

√
(nh+nl)nl)

an2
h

. Case 2: If K > KN , then then ΠL(K) −
ΠN(K) =

nlv
2
l

4c
(1−R)− c(K̄−K)2

a2(nh+nl)
≥ 0 requires K ≥ K̄ −KS(1−R)

√
nl√

(nh+nl)
.

For this case to be valid, we need vN
h < vh ≤ (nh+nl)vl

nh
. Corresponding, we

define the isoprofit line Knl such that the Product-Line is more profitable

when K > Knl.

Knl =





KSR− bnh

nl
(1 +

√
(nh+nl)

nh
+ KS(1−R) 2nl

bnh
) vh ≤ vN

h ;

K̄ −KS(1−R)
√

nl√
(nh+nl)

, vN
h < vh ≤ (nh+nl)vl

nh
;

Therefore, offering two products is optimal when K > max Ksl, Knl, offering

a niche product is optimal when K ≤ min Kns, Knl, and offering a standard

is optimal when Kns < K < Ksl.

Proof of Proposition 2.4. To prove the first part, it suffices to show that

Kns < K < Ksl when vl ≤ vh < v̂h. From Proposition 2.3, we know

that Kns increases in vh and Ksl decreases in vh. Then it suffices to show

that Kns = Ksl at v̂h, which is true by definition. To identify v̂h, we first

show that vS
h ≤ v̂h by contradiction. Assume vS

h > v̂h. Then Kns(vS
h ) <

Kns(v̂h) = Kns(v̂h) <= KnsvS
h which is impossible. Therefore, vS

h ≤ v̂h

is always true. For given setup capacity b, if v̂h ≤ vns
h , then Kns = Ksl

implies that v̂h = vl + 2bvl

KS (−1 +
√

1 + nl

4nh
(1 + 2KS

b
)). This requires b ≤

b̂ = KS (
√

nl(nl+nh)−nl)

2nh+nl
. If v̂h > vns

h , then Kns = Ksl implies that v̂h =
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vl + bvl

KS

√
nl

(nh+nl)
(−1 +

√
nl

nh
(−1 + 2KS

b

√
(nh+nl)

nl
)). This requires that b > b̂.

To prove the second part, it suffices to show that max[Ksl, Knl] ≥ K̂.

From the proof for Proposition 2.3, we know that Ksl decreases in vh. Hence

for any vh ≤ v̂h, we have Ksl(vh) ≥ Ksl(v̂h) which equals to K̂ by definition.

Similarly, we know that Knl increases in vh. Hence for any v̂h < vh ≤ nh+nl

nh
vl,

we have Knl(vh) ≥ Ksl(v̂h) which equals to K̂ by definition.

Proof of Proposition 2.5. Now we prove that offering a standard product

strategy is optimal only when b ≥ β1. It suffice to show that for given

valuation vh, it satisfies vh ≤ v̂h when b ≥ β1. Consider two cases: If vh ≤ vns
h ,

then vh ≤ v̂h implies b ≥ β1 = KS(1− 2R)
(√

1 + nlR2

nh(1−2R)2
− 1

)
. If If vh ≤

vns
h , then vh ≤ v̂h implies b ≥ β1 = KS

√
nl√

(nh+nl)

(
1−R−

√
1−R (vh+vl)

vl

)
.

Proof of Proposition 2.6. To prove that the firm idles capacity before

switching its optimal strategy, we show that the iso-profit capacity level Knl

and Kns are higher than KN , and that Ksl is higher than KS. We consider

three cases based on vh. First, assume 2(nh+nl)vl

(2nh+nl)
< vh <

√
(nh+nl)

nh
vl. If setup

capacity for offering two products b ≤ β1, then the optimal strategy is either

Niche or Product-Line. Idling capacity means Knl > KN , which implies

that b > β2 =
anlvl(

√
(nh+nl)/nl−1)

2c
(1 − R). If setup capacity for offering two

products b > β1, then the optimal strategy changes from Niche to Standard

and to Product-Line as capacity increases. For the firm to idle capacity

before switching from Niche to Standard strategy, we need Kns > KN which

is always true as vh > 2(nh+nl)vl

(2nh+nl)
. For the firm to idle before switching from

Standard to Product-Line, we need Ksl > KS which implies that b > β3.

Second, assume vh ≤ 2(nh+nl)vl

(2nh+nl)
. We have Kns ≤ KN which indicates no

capacity idling when the optimal strategy switches from Niche to Standard.

Capacity idling occurs only when the optimal strategy switches from Stan-

dard to Product-Line. This requires Ksl > KS which is true when setup

capacity is large enough, b > β3.

Third, assume vh ≥
√

(nh+nl)
nh

vl. Standard strategy is always dominated

by Niche strategy. Capacity idling occurs only when the optimal strategy

switches from Niche to Product-Line. This requires Knl > KN which is true

when b > β2.
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Proof of Proposition 2.7. When β2 < b ≤ β1 or b > β3, the firm idles

capacity before switching from offering a single product to offering a product

line. Given this, it is easy to verify that KN + b > Knl and KS + b > Ksl.

When b > β1, the firm idles capacity before switching from offering a niche

product to offering a standard product. Given this, it is easy to verify that

KN + b = KN + β1 > Knl(β1) = Kns.

Proof of Proposition 2.8. First, for the high segment. As of Propositions

2.1 and 2.2, q∗h ≤ vh

2c
= qu

h is always true. Next, for the low segment. q∗l > qu
l =

vl

2c
(1−R) can only be true when offering a standard product is optimal, which

means, as of Proposition 2.3, K < Ksl. In this case, q∗l = K
a(nh+nl)

> vl

2c
(1−R)

requires K > KS(1−R). Thus, we conclude the proof.

Proof of Proposition 2.9. First, for the high segment. As of Propositions

2.1 and 2.2, p∗h > qu
h can only be true when offering a niche product is

optimal, which means, as of Proposition 2.3, K < max[Kns, Knl]. In this

case, p∗h = vhK
anh

>
v2

h

2c
− (vh − vl)

vl

2c
(1 − R) = pu

h requires K > (nlK
SR2 +

nhK
N) vl

nhvh
. Thus the high segment receives a higher price under limited

capacity if (nlK
SR2 + nhK

N) vl

nhvh
< K < max[Kns, Knl].

Next, for the low segment. p∗l > pu
l is equivalent to q∗l > qu

l which, from

Proposition 2.9, requires KS(1 − R) < K < Ksl. Thus, we conclude the

proof.

Proof of Proposition 2.10. CWh > CW u
h is equivalent to q∗l > qu

l which,

from Proposition 2.9, requires KS(1 − R) < K < Ksl. For this to be valid,

we need vh < vl +
2bc(
√

1+nl/nh−1)

a(nh+nl)
.
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Appendix B

Appendix for Chapter 3

As building blocks for proving Propositions 3.2–3.8, we first establish three

lemmas. The proofs of Lemmas B.1 and B.2 are combined and follow the

statement of Lemma B.2. The proof of Lemma B.3 directly follows its state-

ment. For Lemmas B.1–B.3, let pG
ij(q), d

G
ij(q) denote the optimal Green strat-

egy price and corresponding demand as a function of q for product i = n, r in

stage j = 1, 2, respectively. Moreover, let q1 = fnfr(fn−fr)
f2

n(gn−gr)−(fn−fr)2gn
denote the

quality threshold above which dG
r2(q) = dG

n1(q), q2 = (f2
n−f2

r )
fngn−frgr

denote the qual-

ity threshold above which dG
r2(q) = dG

n1(q) and dG
n2(q) = 0, and q3 = (fn+fr)

(gn+gr)

denote the quality threshold above which dG
r2(q) = dG

n1(q) = dG
n2(q) = 0.

Lemma B.1. If k = 1, then for given q < q3, dr2(q) > 0 if and only if

gr/fr < gn/fn.

Lemma B.2. If k = 1 and gr/fr < gn/fn, then qG∗ < q3 and, for i = n, r

and j = 1, 2, pG
ij(q), d

G
ij(q) are as follows:

(i) for 0 < q < q1,

dG
n1(q) =

fn − gnq

2fn

; dG
n2(q) =

fn − fr − (gn − gr)q

2(fn − fr)
;

dG
r2(q) =

(frgn − fngr)q

2fr(fn − fr)
;

pG
n1(q) = pG

n2(q) =
(fn + gnq)q

2
; pG

r2(q) =
q(fr + grq)

2
; (B.1)
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(ii) for q1 ≤ q < q2,

dG
n1(q) = dG

r2(q) =
fn(fn − gnq) + (frgn − fngr)q

2(f 2
n + fr(fn − fr))

;

dG
n2(q) =

fn(fn − gnq)− fr(fr − grq)

2(f 2
n + fr(fn − fr))

;

pG
n1(q) =

(fn(fn + gnq) + 2fr(fn − fr)− (frgn − fngr)q)fnq

2(f 2
n + fr(fn − fr))

;

pG
n2(q) =

(fn + gnq)q

2
;

pG
r2(q) =

(fn(fn + gnq)− (fn − fr)(fn − fr − (gn + gr)q))frq

2(f 2
n + fr(fn − fr))

(B.2)

(iii) for q2 ≤ q < q3,

dG
n1(q) = dG

r2(q) =
fn + fr − (gn + gr)q

2(fn + fr)
; dG

n2(q) = 0;

pG
n1(q) =

fn

fr

pG
r2(q) =

fnq(fn + fr + (gn + gr)q)

2(fn + fr)
; pG

n2(q) = pG
r2(q) + (fn − fr)q

(B.3)

Proof of Lemmas B.1–B.2: Here we prove our results using the lagrangian

method. The corresponding lagrangean of profit (3.6) for given q is

L(pn1, pn2, pr2) = (pn1 − gnq
2 + λ)

(
1− pn1

fnq

)

+

(
1− pn2 − pr2

(fn − fr)q

)
(pn2 − gnq2 + µ)

+

(
pn2 − pr2

(fn − fr)q
− pr2

frq

)
(pr2 − grq

2 − λ + η)

where λ, µ and η are lagrangian coefficients for conditions dr2 ≤ dn1, dn2 ≥ 0,

and dr2 ≥ 0 respectively. The corresponding KKT conditions are

∂L
∂pn1

= 1− pn1

fnq
− (pn1 − gnq

2 − λ)

fnq
= 0

∂L
∂pn2

= 1− pn2 − pr2

(fn − fr)q
− (pn2 − gnq2 + µ)

(fn − fr)q
+

(pr2 − grq
2 − λ + η)

(fn − fr)q
= 0

∂L
∂pr2

=
(pn2 − gnq2 + µ)

(fn − fr)q
+

pn2 − pr2

(fn − fr)q
− pr2

frq
− fn(pr2 − grq

2 − λ + η)

fr(fn − fr)q
= 0
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as well as the corresponding orthogonal conditions. The corresponding solu-

tions are

pn1(q) =
(fn + gnq)q − λ

2
; dn1(q) =

(fn − gnq)q + λ

2fnq
;

pn2(q) =
(fn + gnq)q − µ

2
; dn2(q) =

(fn − fr)q − (gn − gr)q
2 + µ + λ− η

2(fn − fr)q
;

pr2(q) =
(fr + grq)q + λ− η

2
; dr2(q) =

(frgn − fngr)q
2 − fnλ− frµ + fnη

2fr(fn − fr)q

To prove Lemma B.1, we first prove sufficient and then necessary condi-

tions. To that end, we first assume dr2(q) > 0 which implies η = 0. Thus

0 < dr2(q) =
(frgn − fngr)q

2 − fnλ− frµ

2fr(fn − fr)q
⇒ frgn − fngr >

fnλ + frµ

q2
≥ 0

which completes the sufficient condition.

Next, assume frgn > fngr, which implies q1 < (fn−fr)
(gn−gr)

< q2 < fn

gn
< q3.

We consider four cases based on the multipliers λ and µ: (1) if λ = µ = 0,

then dr2(q) > fnη
2fr(fn−fr)q

≥ 0; (2) λ = 0 and µ > 0, then dn2(q) = 0, which

implies dr2(q) ≥ (fr−grq)
2fr

> (fn−gnq)
2fn

= dn1(q) ≥ 0; (3) if λ > 0 and µ = 0,

then dn1(q) = dr2(q), which implies η = ((frgn−fngr)fn+frgn(fn−fr))q
f2

n
(q1 − q) +

λ(f2
n+fn(fn−fr))

f2
n

. Hence, dn2(q) ≥ 0 implies 0 < λ ≤ (fn − fr)(fn − gnq)q, or

(fn − gnq) > 0. Thus, dn1(q) = dr2(q) > (fn−gnq)
2fn

> 0; (4) if λ > 0 and µ > 0,

then

0 < λ =
(frgn − fngr)q

2 + fnη

(fn + fr)
; 0 < µ =

q(fngn − frgr)(q − q2) + frη

(fn + fr)

and, consequently, dn1(q) = dr2(q) = (gn+gr)q(q3−q)+η
2(fn+fr)

> 0, thereby completing

the proof of Lemma B.1.

To prove Lemma B.2, note that dr2(q) > 0 (by definition); thus, η = 0 and

frgn > fngr (by Lemma B.1). Accordingly,

0 ≤ dn1(q)− dr2(q) =
q1 − q

2q1

+
(f 2

n + fnfr − f 2
r )λ

2fnfr(fn − fr)q
+

µ

2(fn − fr)q
(B.4)

Notice from (B.4) that dn1(q) − dr2(q) is decreasing in q. There are four

possibilities. Case I: If 0 < q < q1, then q < fn−fr

gn−gr
< fn

gn
. Accordingly,

dn1(q) − dr2(q) > (f2
n+fnfr−f2

r )λ
2fnfr(fn−fr)q

+ µ
2(fn−fr)q

≥ 0, and dn2(q) > µ+λ
2(fn−fr)q

≥ 0.
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These inequalities imply that λ = 0 and µ = 0, respectively. Thus, the KKT

conditions above directly imply (B.1).

Case II: If q1 ≤ q < q2, then

λ =
2fnfr(fn − fr)q

(f 2
n + fr(fn − fr))

(dn1(q)− dr2(q) +
q − q1

2q1

)− fnfrµ

f 2
n + fr(fn − fr)

,

⇒ dn2(q) =
fnfr(dn1(q)− dr2(q))

(f 2
n + fr(fn − fr))

+
(fngn − frgr)(q2 − q)

2(f 2
n + fr(fn − fr))

+
(fn + fr)µ

2(f 2
n + fr(fn − fr))q

>
(fn + fr)µ

2(f 2
n + fr(fn − fr))q

≥ 0

Thus, µ = 0 and correspondingly, λ = 2fnfr(fn−fr)q
(f2

n+fr(fn−fr))
(dn1(q) − dr2(q) + q−q1

2q1
).

Notice that if dn1(q) > dr2(q), then λ > 0 which is a contradiction. There-

fore, dn1(q) = dr2(q) and λ = 2fnfr(fn−fr)q
(f2

n+fr(fn−fr))
q−q1

2q1
. Correspondingly, the KKT

conditions above directly imply (B.2).

Case III: If q2 ≤ q < q3, then q > fn−fr

gn−gr
. Assume λ = 0. If λ = 0, then on the

one hand, (B.4) becomes 0 ≤ dn1(q)−dr2(q) = q1−q
2q1

+ µ
2(fn−fr)q

, which implies

µ > 0. But if λ = 0, then on the other hand, dn2(q) = (gn−gr)
2(fn−fr)

(
fn−fr

gn−gr
− q

)
+

µ
2(fn−fr)q

> 0 which, in turn, implies µ = 0, a contradiction. Thus λ > 0,

which implies dn1(q) = dr2(q). Correspondingly,

0 < λ =
fnfr(fn − fr)q

(f 2
n + fr(fn − fr))

(q − q1)

q1

− fnfrµ

f 2
n + fr(fn − fr)

µ =
2(f 2

n + fr(fn − fr))qdn2(q) + (fngn − frgr)(q − q2)q

(fn + fr)

Notice that if dn2(q) > 0, then µ > 0, a contradiction. Therefore, dn2(q) = 0,

and thus, µ = (fngn−frgr)(q−q2)q
fn+fr

> 0. Correspondingly, the KKT conditions

above directly imply (B.3).

Case IV: If q ≥ q3, then q > fn

gn
. Accordingly, 0 ≤ dn1(q) < λ

2fnq
. This

implies that λ > 0 and dn1(q) = dr2(q). Similar to Case III, we also have

µ > 0. Thus the KKT conditions again reduce to (B.3). But notice that,

given (B.3), q ≥ q3 implies that dn1(q) = dn2(q) = dr2(q) = 0. Thus,

qG∗ < q3.

Lemma B.3. If k = 1 and gr/fr < gn/fn, then ΠG(q) is unimodal in q over

q ∈ [0, q3).

Proof of Lemma B.3: From Lemma B.2 and equation (3.6), ΠG(q) re-
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duces to

ΠG(q) =





ΠP (q) = 2q(fn−gnq)2

4fn
+ (frgn−fngr)2q3

4fnfr(fn−fr)
q < q1

ΠC(q) = (fn−gnq)2q
4fn

+ q(fn(fn−gnq)+(frgn−fngr)q)2

4fn(f2
n+fr(fn−fr))

q1 ≤ q < q2

ΠS(q) = q(fn+fr−(gn+gr)q)2

4(fn+fr)
q2 ≤ q < q3

(B.5)

To prove Lemma B.3, we first establish that ΠG(q) is continuous and dif-

ferentiable over [0, q3). Then ΠG(q) is unimodal over q ∈ [0, q3) if Πi(q) for

i = P, C, S is such that ΠP (q) is unimodal over (0, q1), ΠC(q) is unimodal

over [q1, q2), and ΠS(q) is unimodal over [q2, q3).

Accordingly, first we prove continuity and differentiability.

lim
q→q−1

ΠG(q) = lim
q→q+

1

ΠG(q) =
f 2

nfr(frgn − fngr)
2(2fn − fr)(f

2
n − f 2

r )

4(f 2
n(gn − gr)− (fn − fr)2gn)3

lim
q→q−2

ΠG(q) = lim
q→q+

2

ΠG(q) =
fn(fn − fr)(fn + fr)

2(frgn − fngr)
2

4(fngn − frgr)3

and

lim
q→q−1

∂ΠG(q)

∂q
= lim

q→q−1

∂ΠG(q)

∂q

=
3fnfr(fn − fr)(frgn − fngr)

2

4(f 2
n(gn − gr)− (fn − fr)2gn)2

+
f 2

n(fngr(f
2
ngr − f 2

r gn)− f 2
r gn(fn(gn + gr)− 2frgn))

2(f 2
n(gn − gr)− (fn − fr)2gn)2

lim
q→q−2

∂ΠG(q)

∂q
= lim

q→q+
2

∂ΠG(q)

∂q

=
(fn + fr) (3(frgn − fngr)

2 + 2gngr(fn − fr)
2 − 2fnfr(gn − gr)

2)

4(fngn − frgr)2

Next, we establish that ΠP (q) is unimodal over (0, q1). To that end, we

define the following notations:

γ =
fr

fn

; β =
gr

gn

; ai = i +
(γ − β)i

γ(1− γ)
> i;⇒ a′i = −i(γ − β)i−1

γ(1− γ)
, i = 1, 2
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Accordingly, we have q1 = fn

gn

γ(1−γ)
γ(1−γ)+γ−β

, which implies fn

gn
= a1q1.

ΠP (q) ∝ 2f 2
n

g2
n

q − 4
fn

gn

q2 + q3a2

⇒ ∂ΠP (q)

∂q
∝ 2f 2

n

g2
n

− 8
fn

gn

q + 3a2q
2 = 3a2(q − q̂−)(q − q̂+)

where q̂± = a1(4±√16−6a2)
3a2

q1. Notice, if 3a2 ≥ 8, then ∂ΠP (q)
∂q

> 0 over [0, q1),

in which case ΠP (q) is unimodal. Thus, consider if 3a2 < 8. Let H =√
16− 6a2, and q̂− = a1(4−H)

3a2
q1 < q̂+ = a1(4+H)

3a2
q1. Then to show that ΠP (q)

is unimodal, it suffices to show that q̂+ ≥ q1. To that end, if q̂− ≥ q1, then

q̂+ > q̂− ≥ q1. Otherwise, if q̂− < q1, then H > 4a1−3a2

a1
, or β > γ (3γ−1)(2−γ)

2+3γ(1−γ)
.

In this case, we have q̂+ ≥ q1 ⇐⇒ K(β) = a1

a2

4+H
3

≥ 1. Thus, to complete

the proof that ΠP (q) is unimodal, it suffices to show that min K(β) ≥ 1.

We consider two cases. First, if 4a1 ≥ 3a2, then K(β) ≥ 4a1

3a2
≥ 1. Next, if

4a1 < 3a2, then it suffices to show that (1) K(β) is unimodal in β, and (2)

min[K(βmax), K(βmin)] ≥ 1. To that end, we establish (2) first: K(βmax) =

K(γ) = 1; if γ ≥ 1/3, then K(βmin) = K(γ (3γ−1)(2−γ)
2+3γ(1−γ)

) = 1; and if γ < 1/3,

then

K(βmin) = K(0) ≥ 1 ⇐⇒ lim
β→0

H2 ≥ lim
β→0

(
3a2

a1

− 4)2

⇐⇒ lim
β→0

8a1 − 2a2
1 − 3a2 ≥ 0 ⇐⇒ lim

β→0
a1(5− 2a1) = a1

1− 3γ

1− γ
≥ 0

Finally, we establish that K(β) is, indeed, unimodal in β, thereby com-

pleting the proof that ΠP (q) is unimodal over [0, q1). Let Z = K a2

a1
. Hence,

Z ′ = Z(K′
K

+ X) and Z ′′ = (Z′)2
Z

+ Z(K′′
K
− (K′

K
)2 + X ′), where X =

a′2
a2
− a′1

a1
.

Correspondingly, we have

3Z − 4 = H =
√

16− 6a2 > 0 ⇒ Z ′(3Z − 4) = −a′2 > 0

⇒Z ′′(3Z − 4) + 3(Z ′)2 = −a′′2

⇒ K ′′

K

∣∣∣∣
K′=0

= −a′′2 + Z(3Z − 4)X ′ + 2(3Z − 4) (Z′)2
Z

Z(3Z − 4)
< 0

where the inequality follows because a′′2 = 2
γ(1−γ)

> 0 and X ′ =
a′′2
a2
− (

a′2
a2

+
a′1
a1

)X > 0 due to −(
a′2
a2

+
a′1
a1

) > 0 and X|K′=0 > 0. This implies that K(β)

is unimodal, thereby completing the proof that ΠP (q) is unimodal in q over
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(0, q1).

Next, we follow a similar analysis to establish that ΠC(q) is unimodal in q

over [q1, q2). Let

bi = 1 +
(1− γ + β)i

1 + γ(1− γ)
; b′i =

i(1− γ + β)(i−1)

1 + γ(1− γ)
i = 0, 1, 2

Note that b0 > b1 > b2. Accordingly, we have q2 = fn

gn

1−γ2

1−βγ
, which implies

fn

gn
= 1−βγ

1−γ2 q2.

ΠC(q) ∝ b0f
2
n

g2
n

q − 2b1
fn

gn

q2 + b2q
3

⇒ ∂ΠC(q)

∂q
∝ b0f

2
n

g2
n

− 4b1
fn

gn

q + 3b2q
2 = 3b2(q − q̂−)(q − q̂+)

where q̂± ≡ 1−βγ
1−γ2

2b1−
√

4b21−3b0b2

3b2
q2. Notice that if 4b2

1 ≤ 3b0b2, then ∂ΠC(q)
∂q

> 0

over [q1, q2), in which case ΠC(q) is unimodal. Thus, consider if 4b2
1 > 3b0b2.

Let H =
√

4b2
1 − 3b0b2 > 0. Then, to show that ΠC(q) is unimodal, it suffices

to show that q̂+ ≥ q2. To that end, if q̂− ≥ q2, then q̂+ > q̂− ≥ q2. Otherwise,

if q̂− < q2, then H > 2b1 − 3b2
(1−γ2)
(1−βγ)

, or β > 3γ−2
3−2γ

. In this case, we have

q̂+ ≥ q2 ⇐⇒ K(β) = 1−βγ
1−γ2

b0
(2b1−H)

≥ 1. Thus, to complete the proof that

ΠC(q) is unimodal, it suffices to show that min K(β) ≥ 1. We consider two

cases. First, if 2b1 ≥ 3b2
(1−γ2)
(1−βγ)

, then K(β) ≥ 1−βγ
1−γ2

2b1
3b2

≥ 1. Next, if 2b1 <

3b2
(1−γ2)
(1−βγ)

, then it suffices to show that (1) K(β) is unimodal in β, and (2)

min[K(βmax), K(βmin)] ≥ 1. To that end, we establish (2) first: K(βmax) =

K(γ) = 1;if γ ≥ 2/3, then K(βmin) = K
(

3γ−2
3−2γ

)
= 1 + 2(4γ(1−γ)+(3γ−2))

10−17γ+8γ2 ≥ 1;

and if γ < 2/3, then

K(βmin) = K(0) ≥ 1 ⇐⇒ H2 ≥ (3b2(1− γ2)− 2b1)
2

⇐⇒b0 ≤ (1− γ2)(4b1 − 3(1− γ2)b2) ⇐⇒ γ(1 + γ)(3γ − 2) ≤ 0 ⇐⇒ γ ≤ 2/3

Finally, we establish that K(β) is unimodal in β, thereby completing the

proof that ΠC(q) is unimodal over [q1, q2). Let Z ≡ (1−γ2)K
(1−βγ)

. Hence Z′
Z

=
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K′
K

+ γ
(1−βγ)

. Correspondingly, we have

b2Z − 2b1 = H =
√

4b2
1 − 3b0b2 > 0

⇒Z ′

Z
=

2− (1− γ + β)Z

H
b′1 ⇒

K ′

K
=

2(1 + γ)− (1 + β)Z

(1− βγ)(b2Z − 2b1)

⇒ K ′′

K

∣∣∣∣
K′=0

= − (1 + γ)Z

(1− βγ)2(b2Z − 2b1)
< 0

This implies that K(β) is unimodal, thereby completing the proof that ΠC(q)

is unimodal over [q1, q2).

Next, to complete the proof of Lemma B.2, we establish that ΠS(q) is

unimodal in q over [q2, q3). Accordingly, we have q3 = fn

gn

(1+γ)
(1+β)

, which implies
fn

gn
= (1+β)

(1+γ)
q3.

ΠS(q) ∝ (1 + γ)
f 2

n

g2
n

q − 2(1 + β)
fn

gn

q2 +
(1 + β)2

(1 + γ)
q3

⇒ ∂ΠS(q)

∂q
∝ (1 + γ)

f 2
n

g2
n

− 4(1 + β)
fn

gn

q + 3
(1 + β)2

(1 + γ)
q2

= 3
(1 + β)2

(1 + γ)

(q3

3
− q

)
(q3 − q)

Thus ∂ΠS(q)
∂q

> 0 for q < q3

3
, and ∂ΠS(q)

∂q
< 0 for q3

3
< q < q3, which implies

that ΠS(q) is unimodal in q over [q2, q3), thereby completing the proof for

Lemma 3.

Proof of Proposition 3.2: From Lemma B.1, we know that frgn > fngr,

and from Lemma B.2, we know that prices and demands are defined over

three segments: (0, q1), [q1, q2), and [q2, q3). We first establish the continuity

of both price and demand, and then we analyze the impact of q for each

segment. For the prices, we have for j = 1, 2

lim
q→q−1

pG
nj(q) = lim

q→q+
1

pG
nj(q) =

f 3
nfr(fn − fr)((fn − fr)gn + fn(gn − gr))

2(f 2
n(gn − gr)− (fn − fr)2gn)2

lim
q→q−2

pG
r2(q) = lim

q→q+
2

pG
r2(q) =

fnf
2
r (fn − fr)(2fngn(fn − fr) + fr(frgn − fngr))

2(f 2
n(gn − gr)− (fn − fr)2gn)2
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Accordingly, for the demand, we have

lim
q→q−1

dG
n1(q) = lim

q→q+
1

dG
n1(q) =

fnfr(fn − fr)((fn − 2fr)(fn − fr)gn + f 2
n(gn − gr))

2(f 2
n(gn − gr)− (fn − fr)2gn)2

lim
q→q−1

dG
n2(q) = lim

q→q+
1

dG
n2(q) =

fnfr(fn − fr)
2((fn − fr)gn + fn(gn − gr))

2(f 2
n(gn − gr)− (fn − fr)2gn)2

lim
q→q−2

dG
r2(q) = lim

q→q+
2

dG
r2(q) =

fn(frgn − fngr)

2(f 2
n(gn − gr)− (fn − fr)2gn)

Given the continuity of pG
ij(q) and dG

ij(q), we discuss the impact of q for

each segment. First, for q < q1, we have

∂pG
n2(q)

∂q
=

∂pG
n1(q)

∂q
=

(fn + 2gnq)

2
>

∂pG
r2(q)

∂q
=

(fr + 2grq)

2
> 0;

∂dG
n2(q)

∂q
= − (gn − gr)

2(fn − fr)
< − gn

2fn

=
∂dG

n1(q)

∂q
< 0;

∂dG
r2(q)

∂q
=

(frgn − fngr)

2fn(fn − fr)
> 0.

Secondly, for q1 ≤ q < q2, we have

∂pG
n2(q)

∂q
=

(fn + 2gnq)

2

>
∂pG

n1(q)

∂q
=

fn[fn(fn + 2gnq) + 2(fn − fr)fr − 2(frgn − fngr)q]

2(f 2
n + fr(fn − fr))

> 0;

∂pG
n2(q)

∂q
=

(fn + 2gnq)

2

>
∂pG

r2(q)

∂q
=

fr[(fn − fr)(fr + 2(gn + gr)q) + fn(fr + 2gnq)]

2(f 2
n + fr(fn − fr))

> 0;

∂dG
n1(q)

∂q
=

∂dG
r2(q)

∂q
= −((fn − fr)gn + fngr)

2(f 2
n + fr(fn − fr))

< 0;

∂dG
n2(q)

∂q
= − (fngn − frgr)

2(f 2
n + fr(fn − fr))

< 0.

Finally, for q2 ≤ q < q3, we have

∂pG
n2(q)

∂q
=

fr(fn − fr) + 2(f 2
n + fr(gn + gr)q)

2(fn + fr)
>

∂pG
n1(q)

∂q
=

fn

fr

∂pG
r2(q)

∂q
=

fn((fn + fr) + 2(gn + gr)q)

2(fn + fr)
> 0

∂dG
n1(q)

∂q
=

∂dG
r2(q)

∂q
= − (gn + gr)

2(fn + fr)
< 0 =

∂dG
n2(q)

∂q
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Proof of Proposition 3.3: Given Lemma B.3 and its proof, qG∗ = qG
S ≡ q3

3

if and only if qG
S ≥ q2, which is equivalent to gr ≤ grS. Similarly, qG∗ =

qG
C ≡ 2b1−

√
4b21−3b0b2

3b2

fn

gn
if and only if q1 ≤ qG

C < q2, which is equivalent to

grS < gr ≤ grC . Finally, qG∗ = qG
P ≡ 4−√16−6a2

3a2

fn

gn
if and only if qG

P < q1,

which is equivalent to grC < gr < frgn

fn
.

Proof of Proposition 3.4: Assume that gr/fr < gn/fn < fn. Then, two

possibilities exist in an optimal solution: either d∗r2 = 0 or d∗r2 > 0. If d∗r2 = 0,

then k∗ = 1 by Proposition 3.1. If d∗r2 > 0, then k∗ = 1 by definition. Thus,

k∗ = 1 is always true. Given this, Lemma B.1 implies d∗r2 > 0.

Proof of Proposition 3.5: As per the proof of Proposition 3.4, gn/fn < fn

implies k∗ = 1, and gr/fr < gn/fn implies d∗r2 > 0 by Lemma B.1. Given

this, Proposition 3.3 applies, which indicates that gr ≤ grC implies d∗r2 =

d∗n1 > 0.

Proof of Proposition 3.6: As per the proof of Proposition 3.4, gn/fn < fn

implies k∗ = 1. Moreover, by Lemma B.1, gr/fr ≥ gn/fn implies d∗r2 = 0.

Thus gn/fn < min[fn, gr/fr] implies that {k∗ = 1, d∗r2 = 0} is true. Next, to

establish that gn/fn ≥ min[fn, gr/fr] implies that {k∗ = 1, d∗r2 = 0} is not

true, consider two cases: If gn/fn > gr/fr, then either gn/fn < fn, in which

case d∗r2 6= 0 by Proposition 3.4, or gn/fn ≥ fn, in which case k∗ 6= 1 by

Proposition 3.1. Thus, gn/fn > gr/fr implies that {k∗ = 1, d∗r2 = 0} is not

true. Similarly, if gr/fr ≥ gn/fn ≥ fn, then either d∗r2 > 0 in which case

d∗r2 6= 0, or d∗r2 = 0, in which case k∗ = 0 by Proposition 3.1. Thus, again,

{k∗ = 1, d∗r2 = 0} is not true.

Proof of Proposition 3.7: Assume that gn/fn < min[1, gr/fr]. Then gn/fn <

min[fn, gr/fr], which implies k∗ = 1 and d∗r2 = 0 by Proposition 3.6. Corre-

spondingly, from Proposition 3.1, fn/gn > 1 implies that ∆(q∗) = ∆(qM) =
2(e1+e2)fn

9gn
> 2(e1+e2)

9
= ∆(qT ). Thus, gn/fn < min[1, gr/fr] implies ∆(q∗) =

∆(qM) > ∆(qT ). Next, to establish that gn/fn ≥ min[1, gr/fr] implies

that ∆(q∗) = ∆(qM) > ∆(qT ) is not true, consider two cases: If gn/fn ≥
min[fn, gr/fr], then ∆(q∗) 6= ∆(qM) by Proposition 3.6. If min[1, gr/fr] ≤
gn/fn < min[fn, gr/fr], then 1 ≤ gn/fn < gr/fr, which implies ∆(q∗) =
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∆(qM) = 2(e1+e2)fn

9gn
≤ 2(e1+e2)

9
= ∆(qT ). Thus, gn/fn ≥ min[1, gr/fr] implies

that ∆(q∗) = ∆(qM) > ∆(qT ) is not true.

Proof of Proposition 3.8: If gr ≤ grC < gnfr/fn and gn/fn <

1− f2
r (3fn−fr)

(2fn−fr)(fn+fr)2
< fn, then d∗r2 = d∗n1 by Proposition 3.5. Thus, to complete

the proof, it suffices to show that (1) ∆(q∗|k∗ = 1, d∗r2 = d∗n1) decreases in

gr, in which case ∆(q∗|k∗ = 1, d∗r2 = d∗n1) ≥ ∆(q∗|k∗ = 1, d∗r2 = d∗n1)|gr=grC
;

and (2) ∆(q∗|k∗ = 1, d∗r2 = d∗n1)|gr=grC
> ∆(qT ). To prove (1), we establish

that d∆(q∗)
dgr

= ∂∆(q∗)
∂gr

+ ∂∆(q∗)
∂q∗

dq∗
dgr

< 0 by demonstrating that ∂∆(q∗)
∂gr

< 0 and
∂∆(q∗)

∂q∗
dq∗
dgr

< 0. First, to prove that ∂∆(q∗)
∂gr

< 0, note that grS < gr ≤ grC ⇒
∂∆(q∗)

∂gr
= − (e1+e2)(fn−fr)q∗

2(f2
n+fr(fn−fr))

< 0 and gr ≤ grS ⇒ ∂∆(q∗)
∂gr

= − (e1+e2)q∗
2(fn+fr)

< 0. Next,

we prove that ∂∆(q∗)
∂q∗

dq∗
dgr

< 0 by establishing that ∂∆(q∗)
∂q∗ > 0 and dq∗

dgr
< 0. If

gr ≤ grS, then ∂∆(q∗)
∂q∗ = (e1 + e2)/6 > 0 and ∂q∗

∂gr
= − fn+fr

3(gn+gr)2
< 0. If grS <

gr ≤ grC , then recall from the proof of Lemma B.3 that q∗ = qG
C = fn

gn

b0
2b1+H

,

where H =
√

4b2
1 − 3b0b2. Thus,

∂H

∂gr

=
(b0 − 1)(b1 + 3(γ − β))

gnH
> 0

⇒ sign

{
∂q∗

∂gr

}
= sign

{
−

(
2
db1

dgr

+
∂H

∂gr

)}
< 0

Moroever,

∂∆(q∗)
∂q∗

= (e1 + e2)
fn(fn − 2gnq∗) + (fn − fr)(fn + fr − 2(gn + gr)q

∗)
2(f 2

n + fr(fn − fr))

=
(e1 + e2)

2(1 + γ − γ2)

(2− γ2)H − 2γ(γ − β)

2b1 + H
≥ 0

where the inequality follows because gr > grS implies that β ≥
(

3γ−2
3−2γ

)+

,

which in turn implies that (2− γ2)H − 2γ(γ − β) ≥ 2((3γ−2)+γ2(1−γ)(4−γ))
(3−2γ)(1+γ−γ2)

≥ 0

if γ ≥ 2/3, and (2 − γ2)H − 2γ(γ − β) ≥ 2γ2(1−γ)
(1+γ−γ2)

≥ 0 if γ < 2/3. Thus,

we conclude that d∆(q∗)
dgr

< 0 for gr ≤ grC , which implies ∆(q∗|k∗ = 1, d∗r2 =

d∗n1) ≥ ∆(q∗|k∗ = 1, d∗r2 = d∗n1)|gr=grC
.

Finally, to complete the proof, we establish that ∆(q∗|k∗ = 1, d∗r2 =

d∗n1)|gr=grC
> ∆(qT ) as follows. At gr = grC , gn/fn < 1 − f2

r (3fn−fr)
(2fn−fr)(fn+fr)2

implies that ∆(q∗)|gr=grC
= 2(e1+e2)f2

n(2f2
n+3fnfr−3f2

r )
9(2fn−fr)(fn+fr)2gn

> 2(e1+e2)
9

= ∆(qT ).
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Appendix C

Appendix for Chapter 4

C.1 Proofs of Propositions

Proof of Proposition 4.1: To prove that ∆∗(q) = (e1+e2)q(dn1(q)+dn2(q)) >

(e1 + e2)q(1 − q) = ∆T (q), it suffices to show that dn1(q) + dn2(q) > 1 − q.

If gn/fn < 1, then, from (3.4), ΠNG(q, k = 1) = q(fn−gnq)2

2fn
> q(1−q)2

2
=

ΠNG(q, k = 0). Moreover, if, on the one hand, gr ≥ gnfr/fn > gnfr/fn −
2(fn − fr)(fn − gn)/fn, then ΠNG(q, k = 1) ≥ ΠG(q) by Lemma B.1. Thus,

in this case, the optimal remanufacturing strategy for given q is k(q) = 1

and dr2(q) = 0, and the corresponding optimal pricing strategy implies, from

(3.3), that dn1(q) + dn2(q) = 1 − gnq/fn > 1 − q which in turn implies that

∆∗(q) > ∆T (q). If, on the other hand, gnfr/fn > gr > gnfr/fn − 2(fn −
fr)(fn − gn)/fn, then ΠG(q) > ΠNG(q, k = 1) by Lemma B.1. Thus in

this case, the optimal remanufacturing strategy for a given q is k(q) = 1

and dr2(q) > 0, and the corresponding optimal pricing strategy implies,

from Lemma B.2, that dn1(q) + dn2(q) ≥ 1 − q which in turn implies that

∆∗(q) > ∆T (q).

Similar to the Appendix B, we first establish three lemmas as build-

ing blocks for proving Propositions 4.2–4.4. The proofs of Lemmas C.1

and C.2 are combined and follow the statement of Lemma C.2. The proof

of Lemma C.3 directly follows its statement. For Lemmas C.1–C.3, let

pG
i (q), dG

i (q) denote the optimal Green strategy price and corresponding de-

mand as a function of q for product i = n, r, respectively. Moreover, let

qγ = γfr(fn−fr)
(frgn−fngr)+γfr(gn−gr)

denote the quality threshold above which dG
r (q) =

γdG
n (q), and q̄ = fn+γfr

gn+γgr
denote the quality threshold above which dG

r (q) =

dG
n (q) = 0.

Lemma C.1. Given that k = 1, then for given q < q̄, dr2 > 0 if and only if

gr/fr < gn/fn.
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Lemma C.2. If k = 1 and gr/fr < gn/fn, then qG∗ < q̄. Then, for given

collection rate γ, a remanufacturing firm should

i) If 0 < q < qγ, remanufacture a proportion of recycled products and set

the demand, price as

dn(q) = d̃n − (frgn − fngr)q

2fn(fn − fr)
; dr(q) =

(frgn − fngr)q

2fr(fn − fr)
;

pn(q) =
(fn + gnq)q

2
; pr(q) =

(fr + grq)q

2
; (C.1)

and enjoys a profit of Π(q) = q(fn−gnq)2

4fn
+ (frgn−fngr)2q3

4fnfr(fn−fr)
;

ii) If qγ ≤ q < q̄, remanufacture all recycled products and set the demand,

price as,

dn(q) =
fn − gnq + γ(fr − grq)

2(fn + γfr(2 + γ))
; dr(q) = γdF

n

pn(q) =
(fn + γfr)(fn + gnq + γ(fr + grq)) + 2γ2fr(fn − fr)

2(fn + γfr(2 + γ))
;

pr(q) =
((1 + γ)(fn + gnq + γ(fr + grq))− 2γ(fn − fr))frq

2(fn + γfr(2 + γ))
; (C.2)

and enjoys a profit of Π(q) = q(fn−gnq+γ(fr−grq))2

4(fn+γfr(2+γ))
.

iii) If q > min(1, q̄), produce nothing.

Proofs for Lemmas C.1–C.2. We prove our results using lagrangian method.

The corresponding lagrangean of profit (4.4) for given q is

max
pn,pr

L(q) =

(
1− pn − pr

(fn − fr)q

)
(pn − gnq2 + γλ)

+

(
pn − pr

(fn − fr)q
− pr

frq

)
(pr − grq

2 − λ + µ)

where λ and µ are the lagrange multipliers for conditions dr ≤ γdn and
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dr ≥ 0, respectively. Correspondingly the KKT conditions are

∂Π

∂pn

= 1− pn − pr

(fn − fr)q
− (pn − gnq2 + γλ)

(fn − fr)q
+

(pr − grq
2 − λ + µ)

(fn − fr)q
= 0

∂Π

∂pr

=
(pn − gnq2 + γλ)

(fn − fr)q
+

pn − pr

(fn − fr)q
− pr

frq
− fn(pr − grq

2 − λ + µ)

fr(fn − fr)q
= 0

λ

(
γ

(
1− pn − pr2

(fn − fr)q

)
−

(
pn − pr

(fn − fr)q
− pr

frq

))
≥ 0

µ

(
pn − pr

(fn − fr)q
− pr

frq

)
≥ 0

The solution to this lagrange system is

pn =
fnq + gnq2 − γλ

2
; pr =

frq + grq
2 + λ− µ

2

dn =
(fn − fr)q − gnq2 + grq

2 + λ(1 + γ)− µ

2(fn − fr)q
;

dr =
(frgn − fngr)q

2 − λ(fn + γfr) + µfn

2fr(fn − fr)q

To prove Lemma C.1, we first prove sufficient and then necessary conditions.

To that end, we first assume dr > 0 which implies µ = 0.

0 < dr =
(frgn − fngr)q

2 − λ(fn + γfr) + µfn

2fr(fn − fr)q
⇒ frgn−fngr >

λ(fn + γfr)

q2
≥ 0

which completes the sufficient condition.

Next, we assume frgn > fngr, which implies. We consider four cases based

on the multipliers λ and µ: (1) if λ = µ = 0, then dr(q) = (frgn−fngr)q2

2fr(fn−fr)q
> 0;

(2) if λ = 0 and µ > 0, dr > 0 again holds; (3) If λ > 0 and µ = 0, then

λ = (frgn−fngr)q2−frγ((fn−fr)−(gn−gr)q)q
(fn+frγ(2+γ))

. dr = γdn = γ(fn−gnq+γ(fr−grq))
(fn+frγ(2+γ))

> 0 as

q < q̄; (4) if λ => 0 and µ > 0, then dr = γdn = γ(fn−gnq+γ(fr−grq))
(fn+frγ(2+γ))

= 0,

which contradicts q < q̄. Thus, we complete our proof for Lemma C.1.

Second, we prove Lemma C.2. Note that dr(q) > 0 (by definition); thus

µ = 0 and frgn > fngr (by Lemma C.1). Accordingly,

γdn(q)− dr(q) =
γ(qγ − q)

2qγ

+
λ(fn + frγ(2 + γ))

2fr(fn − fr)q

which decreases in q. Here we consider three possibilities.

Case 1. If 0 < q < qγ, then γdn(q)−dr(q) > λ(fn+frγ(2+γ))
2fr(fn−fr)q

≥ 0 which implies
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that λ = 0. Thus, KKT conditions above directly imply (C.1).

Case 2. If qγ ≤ q < q̄, then 0 ≤ γdn(q) − dr(q) = γ(qγ−q)

2qγ
+ λ(fn+frγ(2+γ))

2fr(fn−fr)q
.

Thus λ ≥ 0. If λ = 0, then γdn(q) − dr(q) = γ(qγ−q)

2qγ
< 0 which is

impossible. Therefore, λ = 2fr(fn−fr)q
(fn+frγ(2+γ))

γ(q−qγ)

2qγ
, and γdn(q)− dr(q) = 0.

Correspondingly, the KKT conditions above imply (C.2).

Case 3. If q ≥ q̄, then, similar to Case II, we again have λ > 0. Thus,

γdn(q) = dr(q) = γ(fn−gnq+γ(fr−grq))
(fn+frγ(2+γ))

< 0 which is impossible. Thus,

qG∗ < q̄.

Lemma C.3. If gn/fn > gr/fr, then the profit function for remanufacturing

strategy ΠG(q) is unimodal in q over q ∈ [0, fn/gn].

Proof for Lemma C.3. From Lemma C.2, ΠG(q) reduces to

ΠG(q) =





ΠP (q) =
q(fn − gnq)2

4fn

+
(frgn − fngr)

2q3

4fnfr(fn − fr)
, q < qγ;

ΠC(q) =
q(fn − gnq + γ(fr − grq))

2

4(fn + γfr(2 + γ))
, qγ ≤ q < q̄

To prove Lemma C.3, we first establish that ΠG(q) is continuous and differ-

entiable over [0, q̄]. Then ΠG(q) is unimodal over q ∈ [0, q̄] such that ΠP (q)

is unimodal over (0, qγ), and ΠC(q) is unimodal over [qγ, q̄).

Accordingly, we first prove the continuity and differentiability at quality

level qγ.

lim
q→q−γ

ΠG(q) = lim
q→q+

γ

ΠG(q)

=
γ(fn − fr)fr(frgn − fngr)

2(fn + γfr(2 + γ))

4((frgn − fngr) + γfr(gn − gr))3

lim
q→q−γ

∂ΠG(q)

∂q
= lim

q→q+
γ

∂ΠG(q)

∂q

=
(frgn − fngr)((frgn − fngr)(fn + γfr(2 + γ))− 2γfr(fn − fr)(gr + γgr))

4(frgn − fngr + γfr(gn − gr))2

Second, we establish that ΠP (q) is unimodal over (0, qγ). To that end, we
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define the following notations:

f =
fr

fn

; g =
gr

gn

; a1 =
(f − g)

f(1− f)

1 + γ

γ
+

g

f
; a2 =

(f − g)2

f(1− f)
+ 1.

Accordingly,

a′1 = − 1 + γf

γf(1− f)
< 0; a′2 = −2(f − g)

f(1− f
< 0.

We have qγ = fn

gn

γf(1−f)
(f−g)+γf(1−g)

, which implies fn

gn
= a1qγ.

ΠG(q) ∝ f 2
n

g2
n

q − 2
fn

gn

q2 + a2q
3

∂ΠG(q)

∂q
∝ f 2

n

g2
n

− 4
fn

gn

q + 3a2q
2 = 3a2(q − q̂−)(q − q̂+)

where q̂± = a1qγ(2±√4−3a2)

3a2
. Note if 3a2 ≥ 4, then ∂ΠG(q)

∂q
> 0 over [0, qγ], in

which case ΠG(q) is unimodal. Thus, consider if 3a2 < 4. Let H =
√

4− 3a2,

and q̂− = a1qγ(2−H)

3a2
< q̂+ = a1qγ(2+H)

3a2
. Then, to prove unimodality, it suffices

to show that qγ ≤ q̂+. To that end, if qγ ≤ q̂−, then qγ ≤ q̂− < q̂+ is true.

Otherwise, if qγ > q̂−, then H > 2a1−3a2

a1
, and f((1−f)(1−2γ)+f(1+γ)2)

3γ2f(1−f)+(1+γf)2
< g < f .

In this case, to prove qγ ≤ q̂+ we need to show K(g) = a1(2+H)
3a2

≥ 1. We

consider two cases. First, if 2a1 ≥ 3a2, then K(g) ≥ 2a1

3a2
≥ 1. Second, if

2a1 < 3a2, then it suffices to show that (1) K(g) is unimodal in g, and (2)

min[K(gmax), K(gmin)] ≥ 1. To that end, we establish (2) first: K(gmax) =

K(f) = 1; if f ≥ 2γ−1
γ(4+γ)

, then K(gmin) = K(f((1−f)(1−2γ)+f(1+γ)2)
3γ2f(1−f)+(1+γf)2

) = 1; and if

f < 2γ−1
γ(4+γ)

, then

K(gmin) = K(0) ≥ 1 ⇐⇒ lim
g→0

H2 ≥ lim
g→0

(
2a1 − 3a2

a1

)2

⇐⇒ lim
g→0

a2
1 − 4a1 + 3a2 ≤ 0 ⇐⇒ (1− f)(1− 2γ) + f(1 + γ)2

γ2(1− f)2
≤ 0

Finally, we establish that K(g) is unimodal in g. Let Z = K a2

a1
. Hence,

Z ′ = Z(K′
K

+ X) and Z ′′ = (Z′)2
Z

+ Z(K′′
K
− (K′

K
)2 + X ′), where X =

a′2
a2
− a′1

a1
.
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Correspondingly, we have

3Z − 2 = H =
√

4− 3a2 > 0 ⇒ Z ′(3Z − 2) = −a′2/2 > 0

⇒Z ′′(3Z − 2) + 3(Z ′)2 = −a′′2/2

⇒ K ′′

K

∣∣∣∣
K′=0

= −a′′2/2 + Z(3Z − 2)X ′ + 2(3Z − 2) (Z′)2
Z

Z(3Z − 2)
< 0

where the inequality follows because a′′2 = 2
f(1−f)

> 0 and X ′ =
a′′2
a2
− (

a′2
a2

+
a′1
a1

)X > 0 due to −(
a′2
a2

+
a′1
a1

) > 0 and X|K′=0 > 0. This implies that K(β)

is unimodal, thereby completing the proof that ΠP (q) is unimodal in q over

(0, qγ).

Next, we follow a similar analysis to establish that ΠC(q) is unimodal in q

over [qγ, q̄]. Accordingly, we have q̄ = fn

gn

(1+γf)
(1+γg)

, which implies fn

gn
= (1+γg)

(1+γf)
q̄.

ΠG
C(q) ∝ (1 + γf)2

(1 + γf) + γf(1 + γ)

(
f 2

n

g2
n

q − 2
(1 + γg)

(1 + γf)

fn

gn

q2 +
(1 + γg)2

(1 + γf)2
q3

)

∂ΠG
C(q)

∂q
∝ (1 + γf)2

(1 + γf) + γf(1 + γ)

(
f 2

n

g2
n

− 4
(1 + γg)

(1 + γf)

fn

gn

q +
(1 + γg)2

(1 + γf)2
q2

)

∝ 3
(1 + γg)2

(1 + γf)2
(q − q̄)(q − q̄

3
)

Thus,
∂ΠG

C(q)

∂q
> 0 for q < q̄/3 and

∂ΠG
C(q)

∂q
< 0 for q̄/3 < q < q̄, which implies

that ΠG
C(q) is unimodal in q over [qγ, q̄]. We thereby complete the proof for

Lemma C.3.

Proof for Proposition 4.2. Given Lemma C.3 and its proof, qG∗ = qG
C ≡ q̄

3

if and only if qG
C ≥ qγ, which is equivalent to gr ≤ grC . Similarly, qG∗ =

qG
P ≡ 2−√4−3a2

3a2

fn

gn
if and only if qG

C < qγ and gr

fr
< gn

fn
, which is equivalent to

grC < gr ≤ frgn

fn
.

Proof for Proposition 4.3. To prove the first part, assume that gr/fr <

gn/fn < fn. Then, two possibilities exist in an optimal solution: either

d∗r2 = 0 or d∗r2 > 0. If d∗r2 = 0, then k∗ = 1 by Lemma C.2. If d∗r2 > 0, then

k∗ = 1 by definition. Thus, k∗ = 1 is always true. Given this, Lemma C.2

implies d∗r2 > 0. In this case, we know from Proposition 4.2 that 0 < d∗r < γd∗n
requires gr > grC which translates to γ > γ̂.

To prove the second part, assume that gr/fr < (1+γ)(fn+γfr)−3γ(fn−fr)
(fn+γfr)2+3frγ2(fn−fr)

gn/fn.

As per the proof of Proposition 4.2, gr/fr < fn means k∗ = 1, and gr < grC
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means d∗r = γd∗n > 0. This requires gr ≤ grC which translates to γ ≤ γ̂. And

γ ≤ 1 by definition.

Proof for Proposition 4.4. From Proposition 4.2, we know that k∗ = 1

when gn/fn < fn. If gr > grC , then 0 ≤ d∗r < γd∗n is true, which implies

that the collection rate has no effect on the optimal solution. If gr ≤ grC ,

we have q∗ = qG
C = fn+γfr

3(gn+γgr)
and, correspondingly, demands are γd∗n = d∗r =

γ(fn+γfr)
3(fn+γfr(2+γ))

. Hence,

∂q∗

∂γ
=

frgn − fngr

3(gn + γgr)2
> 0

∂d∗n
∂γ

= −fr(fn(1 + 2γ) + frγ
2)

3(fn + γfr(2 + γ))2
< 0

∂d∗r
∂γ

=
(fn + γfr)

2 − (fn − fr)frγ
2)

3(fn + γfr(2 + γ))2
> 0

Proof for Proposition 4.5. From Proposition 4.2, we know that k∗ = 1

when gn/fn < fn. If gr > grC , then 0 ≤ d∗r < γd∗n is true, which implies

that the collection rate has no effect on the optimal solution. If gr ≤ grC ,

we have q∗ = qG
C = fn+γfr

3(gn+γgr)
and, correspondingly, demands are γd∗n = d∗r =

γ(fn+γfr)
3(fn+γfr(2+γ))

. Hence, the associated environmental damage ∆∗ = ed∗nq∗ =
e(fn+γfr)2

9(gn+γgr)(fn+γfr(2+γ))
, and

∂∆∗

∂γ
= −e(fn + γfr)((fn + γfr)(fn + γ2fr) + 2γfr)

9(gn + γgr)(fn + γfr(2 + γ))

· ((fn − fr)gn + fn(gn + γgr))

9(gn + γgr)(fn + γfr(2 + γ))
< 0.

To prove Propositions 4.6–4.7, we again first introduce and prove Lemma

C.4 for environmental planner. Let pG′
i (q), dG′

i (q) denote the optimal Green

strategy price and corresponding demand as a function of q for product i =

n, r, respectively. Moreover, let q′γ = fr(γ(fn−fr)−e(1+γ))
(frgn−fngr)+γfr(gn−gr)

denote the quality

threshold above which dG′
r (q) = γdG′

n (q), and q̄′ = fn+γfr−e
gn+γgr

denote the quality

threshold above which dG′
r (q) = dG′

n (q) = 0.
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Lemma C.4. If k = 1 and gr/fr < gn/fn, then qG′ < q̄′. Then, for given

collection rate γ, an environmental planner should

i) If 0 < q < q′γ, remanufacture a proportion of recycled products and set

the demand, price as

pG′
n (q) = pG

n (q) +
eq

2
; pG′

n (q) = pG
r (q)

dG′
n (q) = dG

n (q)− e

2(fn − fr)
; dG′

r (q) = dG
r (q) +

e

2(fn − fr)
(C.3)

and enjoys a profit of Φ(q) = ΠP (q)− eq(2((fn−fr)−(gn−gr)q)−e)
4(fn−fr)

;

ii) If q′γ ≤ q < q̄′, remanufacture all recycled products and set the demand,

price as,

pG′
n (q) = pG

n (q) +
eq(fn + γfr)

2(fn + γfr(2 + γ)
;

pG′
r (q) = pG

r (q) +
eq(1 + γ)

2(fn + γfr(2 + γ)
;

dG′
r (q) = γdG′

n (q) = dG
r (q)− eγ

2(fn + γfr(2 + γ))
(C.4)

and enjoys a profit of Φ(q) = q(fn−gnq−e+γ(fr−grq))2

4(fn+γfr(2+γ))
.

iii) If q > min(1, q̄′), produce nothing.

Proofs for Lemmas C.4. The proof is similar to that for Lemma C.2. We

prove our results using lagrangian method. The corresponding lagrange func-

tion for profit (4.8) is

max
pn,pr

Φ(q) =

(
1− pn − pr

(fn − fr)q

)
(pn − gnq2 − eq + γλ)

+

(
pn − pr

(fn − fr)q
− pr

frq

)
(pr − grq

2 − λ + µ)

where λ and µ are the lagrange multipliers corresponding to dr ≤ γdn and

dr ≥ 0, respectively. And the KKT conditions are

∂Φ

∂pn

= 1− pn − pr

(fn − fr)q
− (pn − gnq

2 − eq + γλ)

(fn − fr)q
+

(pr − grq
2 − λ + µ)

(fn − fr)q
= 0

∂Φ

∂pr

=
(pn − gnq

2 − eq + γλ)

(fn − fr)q
+

pn − pr

(fn − fr)q
− pr

frq
− fn(pr − grq

2 − λ + µ)

fr(fn − fr)q
= 0
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and the corresponding orthogonal conditions. The solution to this lagrange

system is

p′n(q) =
fnq + gnq

2 + eq − γλ

2
; p′r(q) =

frq + grq
2 + λ− µ

2

d′n(q) =
(fn − fr − e)q − (gn − gr)q

2 + λ(1 + γ)− µ

2(fn − fr)q
;

d′r(q) =
(frgn − fngr)q

2 + freq − (fn + γfr)λ + fnµ

2fr(fn − fr)q

We first prove that gr/fr < gn/fn
(fn+2e)
(fn−e)

is sufficient for d′r(q) > 0 by con-

tradiction. Assume that d′r(q) = 0. Then the orthogonal conditions dic-

tate that λ = 0 and µ ≥ 0. From the lagrange solution, we know that

µ = −q (frgn−fngr)q+fre
fn

. If gr/fr ≤ gn/fn, then µ < 0 which implies a contra-

diction. Thus, gr/fr < gn/fn is a sufficient condition for d′r(q) > 0. Given

this, we have

γd′n(q)− d′r(q) =
γ(q′γ − q)

2qγ

+
λ(fn + frγ(2 + γ))

2fr(fn − fr)q

which again decreases in q. Here, we consider three cases.

Case 1. If 0 < q < q′γ, then γdn(q)−dr(q) > λ(fn+frγ(2+γ))
2fr(fn−fr)q

≥ 0 which implies

that λ = 0. Thus, KKT conditions above directly imply (C.3).

Case 2. If q′γ ≤ q < q̄′, then 0 ≤ γdn(q) − dr(q) =
γ(q′γ−q)

2qγ
+ λ(fn+frγ(2+γ))

2fr(fn−fr)q
.

Thus λ ≥ 0. If λ = 0, then γdn(q) − dr(q) = γ(qγ−q)

2qγ
< 0 which

is impossible. Therefore, λ = 2fr(fn−fr)q
(fn+frγ(2+γ))

γ(q−q′γ)

2qγ
> 0, and γdn(q) −

dr(q) = 0. Correspondingly, the KKT conditions above imply (C.4).

Case 3. If q ≥ q̄′, then, similar to Case 2, we again have λ > 0. Thus,

γdn(q) = dr(q) = γ(fn−gnq+γ(fr−grq))
(fn+frγ(2+γ))

< 0 which is impossible. Thus,

qG′ < q̄.

Proof for Proposition 4.6. The proof is similar to that in Proposition 4.2.

First, we prove gn ≤ (fn−e)2

(1−e)2
implies k′ = 1 by considering two scenarios. If

d′r = 0, then gn ≤ (fn−e)2

(1−e)2
implies that ΦM ≡ (fn−e)2

27gn
> ΦT ≡ (1−e)2

27
. If d′r = 0,

then k = 1 by definition.
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Second, given that gn ≤ (fn−e)2

(1−e)2
, the optimal solution is one of the three

cases: (1) d′r = 0; (2) 0 < d′r < γd′n; and (3) 0 < d′r = γd′n.

(1) If d′r = 0, then q′ = qM ′
. Accordingly, µ = q′ −(frgn−fngr)q′−fre

fn
≥ 0 which

implies gr ≥ frgn

fn

(fn+2e)
(fn−e)

. Also gr ≤ 1 by definition.

(2) If 0 < d′r < γd′n, then q′ = qG′
P , µ = 0 and λ = 0. Accordingly, d′r =

(frgn−fngr)q′+fre
2fr(fn−fr)

> 0 implies that gr < frgn

fn

(fn+2e)
(fn−e)

. Also, q′ < q′γ translates

to γ > γ̂′.

(3) If 0 < d′r = γd′n, then q′ = qG′
C . In this case, q′ ≥ q′γ translates to γ ≤ γ̂′.

Where,

γ̂′ =
−fr(2frgn − fn(gn + gr) + e(gn + 2gr))

fr(fr(gn + 2gr)− 3(fn − e)gr)(
1 +

√
fr − (frgn(fn + 2e)− fngr(fn − e))(fr(gn + 2gr)− 3(fn − e)gr)

(fr(2frgn − fn(gn + gr) + e(gn + 2gr))2

)

qG′
P =

2((fn − fr)gn − e(gn − gr))
√

fr

3(frgn(gn − gr)− (frgn − fngr)gr)(√
fr −

√
1− 3(frgn(gn − gr)− (frgn − fngr)gr)(fr(fn − 2e)− (fn − e)2)

4((fn − fr)gn − e(gn − gr))2

)

Proof for Proposition 4.7. We prove our results in two parts: d′r(q) = 0

and d′r(q) > 0. First when d′r(q) = 0, the global planner’s objective function

is Θ(p, q, k) = (p − gnq2 − eq)dn + fnq−p
2

dn. Following the same solution

procedure as in §4.3.3, we have d′′n(q) = 2d′n(q) and Θ(q, k) = q(fn−e−gnq)2

2fn
=

2Φ(q, k). Second when d′r(q) > 0, the global planner’s objective function

is (4.9). Following the same solution procedure as in §4.3.3, we again have

d′′n(q) = 2d′n(q) and d′′r(q) = 2d′r(q), and

Θ(q) = 2Φ(q) =





ΠP (q)− eq(2((fn − fr)− (gn − gr)q)− e)

4(fn − fr)
, q < q′γ;

q(fn − gnq − e + γ(fr − grq))
2

4(fn + γfr(2 + γ))
, q′γ ≤ q < q̄′

Consequently, Θ(q) = 2Φ(q) implies the same optimal quality, or q′ = q′′,

and di(q
′′) = 2di(q

′′) = 2di(q
′). Thus, we conclude our proof.
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Proof for Proposition 4.8. First, the relationship between a firm’s profit

Π and an environmental planner’s objective Φ implies that taxation can

transform a firm to an environmental planner. Next, we focus on the second

part of proposition. For the firm to behave like a global planner, taxation is

required to reduce the product quality. Moreover, a global planner charges

lower prices, which means lower profit for the firm. Thus, subsidies must

compensate up to an amount of Π′ − Π′′, which represents the difference

in the firm’s profit under 2BL and under 3BL. Thus, the subsidy per unit

product remanufactured s = (Π′ − Π′′)/d′′r .

C.2 Derivation

Remanufacturability Model

We discuss the implications of continuous k ∈ [0, 1] for the Non-Green and

Green strategies, respectively. First, if the Non-Green strategy is imple-

mented, then the profit function (3.5) becomes ΠNG(k) = 2(1+θk)2

27(1+c1k)
, which

implies that ∂2ΠNG(k)
∂k2 = 4(c1−θ)2

27(1+c1k)3
≥ 0. Therefore ΠNG(k) is convex in k,

which implies that arg max ΠNG(k) = 0 or 1. Thus, kNG ∈ {0, 1}. Next, if

the Green strategy is implemented, then the profit function (3.6) becomes

ΠG(pn1, pn2, pr2, q, k) = dn1(pn1 − gn(k)q2)

+ dn2(pn2 − gn(k)q2) + dr2(pr2 − gr(k)q2) (C.5)

Following the same procedure as in §3.3, we find that Lemmas B.1-B.3 change

only in two regards: (1) k = 1 is replaced by k > 0, and (2) fi and gi

are replaced by fi(k) and gi(k), respectively, for i = n, r. Accordingly, for

given k, we solve for qG(k) and pG
n1(k), pG

n2(k), pG
r2(k), the optimal design and

pricing decisions given that dr2 > 0, as per Proposition 3.3. Substituting

these decisions into (C.5) thus reduces the Green strategy profit to ΠG(k),

a function of the single variable k. Given ΠG(k), we then conducted a line

search to determine k∗ = arg max{ΠG(k), ΠNG(k = 1), ΠNG(k = 0)}. We

implemented this line search for an extensive array of input parameters such

that (θ, α, c1, c2) ∈ {0, 0.1, 0.2, . . . , 1.0}, and in every instance we found that

either k∗ = 1 or k∗ = 0.
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Infinite-Horizon Model

We solve the infinite-horizon model by following the same solution procedure

as in §§3.3–3.4. If the Non-Green strategy is implemented (4.3), then the

solution is the same as in the two-stage model. If the Green strategy is

implemented (4.4), then for given q, let pIG
i (q) and dIG

i (q) denote the price

and demand for product i = n, r in the infinite-horizon problem. Accordingly,

for q < qI
1 ≡ fr(fn−fr)

(frgn−fngr)+fr(gn−gr)
,

pIG
n (q) =

(fn + gnq)q

2
; pIG

r (q) =
(fr + grq)q

2
;

dIG
n (q) =

(fn − fr)− (gn − gr)q

2(fn − fr)
; and dIG

r (q) =
(frgn − fngr)q

2fr(fn − fr)
;

And for q ≥ qI
1 ,

pIG
n (q) =

((fn + fr)(fn + gnq + (fr + grq)) + 2fr(fn − fr))q

2(fn + 3fr)
;

pIG
r (q) =

(2fr + (gn + gr)q)frq

(fn + 3fr)
;

dIG
n (q) = dIG

r (q) =
(fn + fr − (gn + gr)q)

2(fn + 3fr)

Given this, Lemma B.1 and Proposition 3.1 in Chapter 3 still hold. There-

fore, similar to the two-stage model, we establish that ΠIG(q) is unimodal

in q over (0, q3) if the Green strategy is implemented. Correspondingly, we

determine the optimal qI∗ by analyzing first-order conditions to establish

qIG∗ = arg max ΠIG(q) and then comparing ΠIG(qIG∗) to ΠING(qING∗).
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