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Double Vagueness: Uncertainty in Multi-scale Fuzzy
Assignment of Duneness
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ABSTRACT In the automation of identification of landscape features the vagueness arises from the fact that the at-
tributes and parameters that make up a landscape vary over space and scale. In most of existing studies these two
kinds of vagueness are studied separately. This paper investigates their combination in identification of coast landscape
units. Fuzzy set theory is used to describe the vagueness of geomorphic features due to the continuity in space. The
vagueness resulted from the scale of measurement is evaluated by statistic indicators. The differences of fuzzy objects

derived from data at differing resolutions (in size from 3X 3 cells to 25X 25 cells) are studied in order to examine

these higher-order uncertainties.
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Introduction

The surface parameters of a landscape can vary in
a spatial nature as well as with scale. The continu-
ous distribution of conceptual features and landform
parameters over space means that it is not possible
to draw a crisp boundary between the foreshore and
the beach ' . Further it is widely accepted that a
single scale of analysis is insufficient for accurate
description or characterization of a landscape, as
this would rely too heavily on the resolution of the
original DEM. For example, a channel at one scale
would be a ridge at a different scale'® . When clas-
sifying a landscape in terms of surface parameters,
the scale of analysis must be considered. Therefore,
in the automation of identification of landscape fea-
tures the vagueness arises from the fact that the at-
tributes and parameters that make up a landscape
vary over space and scale.

Fuzzy set theory can be used to model vagueness,
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imprecision and in-accuracy. It has been successful-
ly used. for example, to describe the accuracy of
land cover classifications, imprecision in geographi-
cal boundaries and vagueness in geographic ob-

jects[ 134

The assignment of fuzzy membership
values is not clearly understood, however. The as-
signment of fuzzy membership values is always sub-
jective, subject to algorithm, spatial scales, and in-
dividual preference, etc., giving rise to a higher
level of uncertainty, and often making this the
w eakest part in the application of fuzzy set theory.

Scale is a major unsolved issue in geographical in-
formation related sciences although some attempts
have been made. For example, in cartography,
“how to derive small scale maps from large scale
maps” is a key issue for automated map generaliza-

" In human geography, “how to aggregate

tion
data from small enumeration units to larger units
for processing” on spatial analysis and modelling is
called “ the modifiable areal unit problem” . In

physical geography, “how to extrapolate informa-
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tion across scales” is often being asked to improve
the cost-befit ratio of samp]ingm .

When vagueness is involved in the definition of
the geographical objects, the multiscale problem
makes the modeling and representation of the geo-
graphical objects more complicated and uncertain;
there is not just uncertainty about the extent of the
object, but about the estimate of the uncertainty of
the extent of the object. However, very little re-
search has looked at this higher order vagueness:
vagueness from both space and scale, at the same
time. “Will scale affect the result of modeling fuzzy
spatial objects” is an un-tackled question. The re-

search reported here aims to answer this question.

1 Modeling of fuzzy spatial objects

The inherent characteristics of geographical enti-
ties, i. e. continuitys heterogeneity, dynamics and
scale-dependence, imply that most of them are nat-
urally indeterminate or fuzzy!®. If we want to
model geographical entities in GIS, we have to first
define the objects and then measure them in term of
the parameters involved in the definition. Since the
definition of objects in GIS is related to category
theory!”, the indeterminacy of geographical enti-
ties is revealed in the uncertainties in category theo-
ry, as the definition of the category might be fuzzy,
multi-criteria, spatially incomplete, and/or time-
incoherent. If one of the reasons is valid, the object
class should be defined as an uncertain category. If
we use set theory to define the class of the geo-
graphical entities, we may use fuzzy set theory or
rough set theory to model the Vaguenesslgilu .

A number of researchers have also introduced the
idea that terrain objects are fundamentally vague,
and may be appropriate for analysis by fuzzy sets.
Vague landscape features have been defined by two
methods: either elevation has been as the basis of a
semantic im port model where some a priori know I-
edge is used to assign a certain value of fuzzy mem-
bership of a landscape feature to a particular height

[112

above datum » or they use a number of surface

derjvatives., such as slope and curvature, in a multi-

variate fuzzy classification!'* '

2 Modeling of scale

Scale can refer both to the level of detail of a de-
scription, and to the scope or extent of the area
covered. As mentioned above, scales are inherent in
the ways process operates. To deal with scale in
modeling human and physical systems, and to mod-
el the effect of scale on description is a challenging
issue in geographical information science. In car-
tography, maps are produced at certain scales with
different application, e.g. 1 *10 000 and 1 100
000. Small-scale maps provide better overview
while large-scale maps provide more detailed and
precise information. It is intuitive that the same
number of map symbols cannot be represented when
the map scale is smaller. It means that the repre-
sentation of the same features on the ground will be
different on maps of different scales. The issue aris-
ing is “how to derive small scale maps from large
scale maps” through operations such as simplifica-
tion, aggregation and selective omission ' . This
issue is on the representation of spatial data and is
called “map generalization”. As map generalization
is not directly relevant to current research, it will
not be discussed further here.

In geography, there is a similar issue. Normally,
geographical data are sampled in small enumeration
units (also called small scale), and in some applica-
tions these data need to be aggregated to a larger
enumeration unit. However, the statistical results
will be different when the analysis is carried out on
the basis of different size of enumeration units (spe-
cially on the zones used to produce aggregate statis-
tics i.e. different scales), and different aggrega-
tions of the same size. Therefore, there is an issue
of “how to aggregate data from small enumeration
units to larger units for processing”. This issue is
called “the modifiable areal unit problem” ® .

There is a similar issue in all geographical infor-
mation related sciences, such as geomorphology, o-
ceanography, soil science, biology, biophysics so-
environmental sciences

cial sciences, , hydrwlogy,
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and landscape ecology. In general, there are two
related but distinctive goals for conducting a multi-
scale analysis in these studies. The first is to char-
acterize the multiscale structure of a landscape. The
second is to detect or identify “scale breaks” or “hi-
erarchical levels” in the landscape, which often can
be studied as a spatially nested hierarchy.

Two approaches to multiscale analyses are possi-
ble;: @D the direct multiscale approach that use in-
herently multiscale methods, and @ the indirect
multiscale approach that uses single methods repeatedly
at different scales. Frequently used multiscale methods
include semivariance analysis wavelet analysis, fractal
analysis lacunarity analysis, and blocking quadrate
variance analysis. All these methods wntain multiscale
@mporents in their mathematical formulation or proce-
dures, and thus are either hierarchicll or multi-
saaled . On the other hand, the indirect approach to
multiscale analysis can use methods redesigned from sin-
gle sale analysis such as a wide variety of landscape
metrics (e.g. diversity, ntagion, perimeter-area ra-
tios, spatial autocorrelation indices) as well as statistical
measures (e. g. mean, variance, correlation or regres-
sion coeffidents). The scale multiplicity in the indirect
approach is realized by resampling the data at different
scales, albeit grain or extent, and then repeatedly com-
puting the metrics or statistical measures using sampled
data at different scaled '

M any studies have dealt with numerical aggrega-
tion such as zoning or modifiable area unit prob-

[18.19]

lems . Some studies have used categorical ag-

gregation based either on a majority or a random

rulel 2

. The statistical approach has been broadly
applied in multiscale analysis, just as it has been
widely used to model spatial uncertainty and its
Wood (1996) had used

fuzzy sets to calibrate the vagueness resulting from
21]

propagation. However

multiscale analysis
Recent research on scales in GIS can be found in
Reference [ 22] . Five key issues of scales such as,

“changing the scale of measurement”, “nomsta-

3

tionary modeling”, “dynamic modeling”, “ condi-

tional simulation” and “ constrained optimization”,

are put forward as recommended for further re-
search for GI Science. It is argued that while regu-
larization provides an important tool for modeling
change of scale, it does not solve the problem of
changing the scale of measurement for an actual da-
ta layer. When changing the scale of measurement
is facilitated by interpolation, the inherent smooth-
ing which results in the predicted values may alter
the bivariate distribution between that variable and
any other. Solutions based on simulation are inade-
quate. Therefore, the issue of “Changing the scale
of measurement” is the most important and should
be given the highest priority by researchers among
these five problems.

In summary, although fuzzy set theory has been
widely used in GIS, the scale issue has not been in-
vestigated; while statistical approaches has been ap-
plied in multiscale analysis, the fuzzy aspect of the
geographical features is ignored. This current re-
search attempts to combine these two relevant and
inherent issues by studying the effect of scale on
modeling fuzzy spatial objects, as an approach to
modeling the higher order fuzziness in spatial ob-

jects: double fuzziness.

3 Case and methodology

3.1 Case study area

A barrier island, Ameland, in the north of the
Netherlands is adopted as a case study here (Fig.
1). The process of coast change involves the erosion
and accumulation of sediments along the coast. It
can be monitored through the observation of
changes of landscape units such as foreshore, beach
and foredune. The process of coastal change is
scale-dependent in space and time.

The landscape units are defined on the basis of
water lines. The foreshore is the area above the clo-
sure depth and beneath the low water line, beach is
the area above the low water line and beneath the
dune  foot,  the foredune is  the first

row of the dunes inland from dune foot. These
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Fig. 1 Test site— Ameland. The Netherdands

definitions are normally different from surveyor to
surveyor, from case to case and from time to time.
For example, the low water line was set to be —6
m in 1965 to 1984 and 1989, and —8 m in 1985 to
1988 and in 1990 to 1993. Therefore, the extent of
these landscape units are a fuzzy concept, but on
the basis of height observation, it is possible to de-
rive a measure of foreshore, beach and duneness.
Height observations have been made by laser scan-
ning of the beach and dune area and by echo sound-
ing on the foreshore. These data have been interpo-
lated to form a full height raster of the test area.
Experiments show that the uncertainty of the inter-
polated heights of the raster can be expressed by
standard deviation (6=0.15 m). However, in the
following analysis, the error of the height raster

which was used as the original fine resolution
DEM, is ignored.

3.2 Multiscale analysis of DEM

Since the hierarchical analysis does not have to as-
sume the existence of a hierarchical structure in the
landscape under study, we adopted the indirect ap-
proach to multi-scale analysis. The multiplicity of
scales is realized by resampling the data at different
resolutions resolution acting as a surrogate for
scale, and then repeatedly computing the statistical
measures using sampled data at different resolu-
tions. One way of resampling data is to systemati-
cally aggregate the original fine-resolution data set

and produce a hierarchically nested data set,, which

leads to a hierarchical analysis using single-resolu-
tion methods. We have used the software Landsurf
developed by Wood (2003) to aggregate the origi-
nal fine-resolution DEM (60 m <X 60 m) to coarse
data sets, using a moving window ranging in size
from 3X 3 cells to 25X 25 cells. In Wood’ s soft-
ware the surface is modeled as a quadratic surface
using the central point and the outer points of an
expanding window, and calculating a generalized
value of the elevation for the centre point of the sur-

2" The characterization of scale-based uncer-

face
tainty so far has been described independently of the
model of the surface and any operational definition
of scale itself. In this way, a series of DEM s with
cell size from 60 m>X 60 m (1X1 cells) to 1 500 m

X1 500 m (25X 25 cells) are created.
3.3 Fuzy classification

As described in Section 3. 1, the extent of the
coastal landscape units are a fuzzy concept, but
based on height observation, it is possible to derive
a measure of foreshore, beach and duneness. We
use the fuzzy set to represent the vagueness in the
definition of these landscape units. The fuzzy mem-
bership function is built to modify the crisp classifi-
cation criteria and a trapezodial membership func-

tion was adopted

for fuzzy classification. Ac-
cording to the definitions given by geomorphologists
for the situation of Ameland, the height values of
the closure depth, low water line and dune foot are

suggested to he about —6.0m, 1.1 m, and 2
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m, respectively. After fuzzy classification, each
grid cell has a membership vector, containing a val-
ue for each of the three classes. As multiresolution
DEM s were created in Section 3. 2, a series of fuzzy

membership vectors were created at 13 resolutions.

3.4 Identification of multiscale fuzzy geo-

morphologic objects

The estimation of the spatial extent of objects
from the fuzzy classifications is related to the inter-
pretation of fuzziness of the objects and their topo-
logical relationships, hence a pre-defined fuzzy ob-
ject model is required. For example, if foreshore,
beach and foredune are considered to be spatially
disjointing objects, the conceptual model suggests
that a specific location should either belong to beach
or foredune, but not to both and a boundary has to
be set to define explicitly the spatial extent of any
object by assigning each grid cell to exactly one ob-
ject. In such cases criteria (conditions) have to be
applied to assign a cell to a specific class. After seg-
mentation, the spatial extents of objects are identi-
fied and the boundaries between them are apparent
automatically. These boundaries are called condi-
tional-boundaries since they are based upon condi-
tions (or criteria). In this case, the concept of ob-
jects with fuzzy spatial extent is applied, which
means the objects are represented as fields with

varying fuzzness and conditional boundaries' ¥ .

4 FEffect of scale on fuzzy spatial ob-

jects

In the beginning of the multi-scale analysis, we
actually proposed two opposing hypotheses: fuzzy
spatial object will vary smoothly with changing
grain size as pixels are aggregated reflecting a de-
crease in variability; or fuzzy spatial objects will
show discrete changes as grain changes. Additional-
ly, we wanted to determine if these changes could
be modeled and, if so, could these models predict
scale change effects on fuzzy spatial objects at either

finer or coarser scales. In order to test the hy pothe-

ses, we use statistical analysis. We calculate the to-
tal cells belonging to three landscape units based on
the effective image window created at grain size 25
X 25 cells. Then we calculate by scale the mean,
minimum and standard deviation of fuzziness for
those cells belonging to each landscape units re-
spectively. Please notice the regression equations,
yi» y2 and y3, in the following figures represents
the relationship of foreshore, beach and foredune

with scale, respectively.

4.1 Change in The Fuzzy Area

There is obvious change of the area of the three
fuzzy objects with scale (Fig.2). With the increase
of scale, the area of beach decreased till to scale at
15, but the area of foreshore and foredune increased
till to scale at 9 and 15, respectively; then they
change in opposite ways.

In order to test the hypotheses set in the begin-
ning of this section, linear regression analyses and
diagnoses were implemented. The results are also
shown in Fig.2. We can see that the area of all the
landscape units change significantly Cat significant
level 95%) with scale, while foreshore and fore-
dune are in positive relationships and beach in nega-
tive relationship. However, the coefficient of deter-
mination for foreshore and foredune (R°= 0.35)
shows only about 35% of the variance of area is ex-
plained by its common variance with scale, suggest-
ing low levels of explanation, indicating that other
factors could be involved; but the coefficient of de-
termination for the area change of beach indicates

67% variance is coming from the effect of scale.

4.2 Change in mean of fuzziness

The change in mean of the fuzziness of three land-
scape units with scales is illustrated in Fig.3. It can
be seen from Fig.3 that the changes in the mean of
fuzziness of foreshore and beach have similar tune,
mostly down with scale; but the change of foredune
is unstable.

Regression analyses and diagnoses have also ap-

plied to the data above. The results are shown in
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Fig.3 Change in the mean fuzziness of

Fig.3. From the results we can only say that the
mean of fuzziness of foreshore and beach change
significantly and linearly (at level 95%) with scale.
But for beach,
passed.

the linear regression test is not

4.3 Change in minimum of fuzziness

The change in minimum of fuzzness of the three

landscape units with scales is.illustrated in Fig. 4,

three landscape units with the scale

which shows cyclic patterns. But the amplitude and
The

change exhibits cyclic fluctuations, indicative of the

ranges are different for these three units.

periodic pattern in the landscape. Regression analy-
ses reveal that there is no obvious linear correlation
of the minimum fuzzy membership function value of
the landscape units with scale. It is intuitively

showed in Fig.4.
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Fig. 4 Change of the minimum of fuzziness of three landscape units

4.4 Change in standard deviation (o) of

fuzziness

We also calculated the standard deviation of the
fuzziness of each landscape unit at different scales.
There is no systematically change with the scale
but relevant (Fig. 5). It can be seen that a linear
relationship exists between ¢ of the fuzziness of
foreshore and of foredune with the scale. We can
see that the standard deviation of the fuzziness of all
the landscape units change significantly (at level
95%) with scale positively. The coefficient of de-
termination for foreshore and foredune (R°= 0.6)

suggests high levels of explanation, i. e. around

60% of the variance of STDEV is explained by its
common variance with scale, but the coefficient of
determination of foredune is relatively low as 0. 36,
indicating that other factors might be involved in

the variance.
4.5 Discussion

In summary, we found that the area of three
landscape units, the mean and the standard devia-
tion of the foreshore and beach change significantly
with scale; but the minimum of the fuzziness of the
landscape units doesn’ t change significantly with
scale. It implies that the scale has effect on fuzzy
classification, 1.

e. the fuzzy membership values

changed. so,that the class of the cells changed which

resulted in that the areas of fuzzy objects are differ-
ent with scale. The change of STDEV is obvious
with scale, if implies that the fuzziness of the land-
scape units increase with scale (becoming more un-
certainty with scale). This is because the aggrega-
tion enlarges (and smoothes) the transition zone be-
tween the landscape units.

Further, we would like to say although the linear
regressions have been applied, the coefficients of
determination (R?) are generally low, specially the
area of the three landscape units, indicating low ex-
planation of the variance of the statistical indicators
with scale. It also suggests that the liner regression lines
are not the best-fit lines. Therefore, polynomial trend
lines are tried out. We may say that fouth-order poly-
nomial line fits the trend of area change very well. The
results are illustrated in Fig. 6.

5 Conclusions

In this paper, we evaluate the effect of scale on
modeling fuzzy spatial objects, i.e., the subjectivi-
ty of the assignment of the fuzzy membership values
to the scale of measurement. The work is illustrat-
ed by a coastal geomorphologic case. M ulti-scale
analysis of the landscape is carried out using a mov-
ing window, ranging in size from 3X 3 cells to 25X
25 cells. The differences of fuzzy memberships de-

rived from data, at different resolutions, are studied
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Fig 6 Forth-order polynomial trendlines

in order to examine these higher-order uncertain-
ties. The statistics of the fuzziness of the fuzzy
landscape units are calculated, and the variability of
them with scale is assessed.

Results showed that it is difficult to accurately
predict the effect of scale on fuzzy spatial objects,
although the change with the scale exhibits linear
relationship in some statistical indicators. In other
words, the change of the fuzzy spatial objects with
scale exhibits cyclic fluctuations indicative of the
periodic pattern in the landscape, which more suit-
able to be polynomial than linear. In conclusion the

identification of geomorphologic landscape units are

dependent upon the scale of the measurement, par-
ticularly the area of the landscape units. A fine res-
olution affords more detail in original data does not
necessarily results in the landscape appearing to be
more highly fragmented and complex than the same
landscape examined with a coarser resolution. In
view of this, caution must be exercised in compar-
ing landscapes at different scales and in choosing the
resolution of the data that best describes the process
under study.

For the effect of scale on modeling of spatial data,
it is still in its infancy stage. However, fieldwork

Jdata and satellite; demote -sensing hdatd/ have heen
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more and more widely used without understanding
the problems associated with the outcome. In this
way, misleading decision may be made based on the
uncertain modeling results. This topic has attracted
increasing attention from GIS community. The re-
sults from this study will enable us to be aware of
the level of uncertainty associated with the model-
ing outcome and thus make precautions if neces-
sary . Further research using additional data of land-
scape and a greater range of resolution is necessary
to determine w hether general scaling laws be deter-
mined. Moreover, the effect of scale on dynamic

processes should also be investigated.
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