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ABSTRACT　I n the automation of identification of landscape features the vagueness arises from the fact that the at-

tributes and parameters that make up a landscape vary over space and scale.I n most of existing studies , these two

kinds of vagueness are studied separately.This paper investigates their combination in identification of coast landscape

units.Fuzzy set theory is used to describe the vagueness of geomorphic features due to the continuity in space.The

vagueness resulted from the scale of measurement is evaluated by statistic indicato rs.The differences of fuzzy objects

derived from data at differing resolutions (in size from 3×3 cells to 25×25 cells)are studied in o rder to examine

these higher-o rder uncer tainties.
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Introduction

The surface parameters of a landscape can vary in

a spatial nature as w ell as w ith scale.The continu-

ous dist ribution of conceptual features and landfo rm

parameters over space means that it is not possible

to draw a crisp boundary betw een the fo reshore and

the beach[ 1] .Further , i t is widely accepted that a

single scale of analy sis is insuf ficient for accurate

descript ion or characterization of a landscape , as

this would rely too heavily on the resolution of the

o riginal DEM.For example , a channel at one scale

w ould be a ridge at a different scale[ 2] .When clas-

sifying a landscape in terms of surface parameters ,

the scale of analysis must be considered.Therefore ,

in the automation of ident if ication of landscape fea-

tures the vagueness arises from the fact that the at-

tributes and parameters that make up a landscape

vary over space and scale.

Fuzzy set theory can be used to model vagueness ,

imprecision and in-accuracy.It has been successful-

ly used , for ex ample , to describe the accuracy of

land cover classif ications , imprecision in geographi-

cal boundaries and vagueness in geographic ob-

jects[ 1 ,3 ,4] .The assignment of fuzzy membership

values is not clearly understood , how ever.The as-

signment of fuzzy membership values is alw ay s sub-

jective , subject to algorithm , spatial scales , and in-

dividual preference , etc., giving rise to a higher

level of uncertainty , and often making this the

w eakest part in the applicat ion of fuzzy set theory .

Scale is a majo r unsolved issue in geographical in-

fo rmation related sciences although some at tempts

have been made.For example , in cartog raphy ,

“how to derive small scale maps f rom large scale

maps” is a key issue for automated map generaliza-

t ion
[ 5]
.In human geography , “how to agg regate

data f rom small enumeration units to larger units

for processing” on spatial analy sis and modelling is

called “ the modifiable areal unit problem”[ 6] .In

physical geography , “ how to ex trapolate informa-
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tion across scales” is of ten being asked to improve

the cost-befi t ratio of sampling
[ 7]
.

When vagueness is involved in the definition of

the geog raphical objects , the multiscale problem

makes the modeling and representation of the geo-

g raphical objects more complicated and uncertain;

there is not just uncertainty about the extent of the

object , but about the estimate of the uncertainty of

the ex tent of the object.However , very lit tle re-

search has looked at this higher order vagueness:

vagueness f rom both space and scale , at the same

time.“Will scale affect the result of modeling fuzzy

spat ial objects” is an un-tackled question.The re-

search repo rted here aims to answer this question.

1　Modeling of fuzzy spatial objects

The inherent characteristics of geog raphical enti-

ties , i.e.continuity , heterogeneity , dynamics and

scale-dependence , imply that most of them are nat-

urally indeterminate or fuzzy[ 8] .If we w ant to

model geog raphical entities in GIS , we have to first

define the objects and then measure them in term of

the parameters involved in the definition.Since the

definition of objects in GIS is related to catego ry

theory[ 9] , the indeterminacy of geographical enti-

ties is revealed in the uncertainties in category theo-

ry , as the defini tion of the category might be fuzzy ,

multi-cri teria , spat ially incomplete , and/o r time-

incoherent.If one of the reasons is valid , the object

class should be defined as an uncertain category.If

w e use set theory to define the class of the geo-

g raphical entities , we may use fuzzy set theo ry or

rough set theo ry to model the vagueness
[ 9-11]

.

A number of researchers have also introduced the

idea that terrain objects are fundamentally vague ,

and may be appropriate fo r analy sis by fuzzy sets.

Vague landscape features have been def ined by two

methods:either elevation has been as the basis of a

semantic import model w here some a priori know l-

edge is used to assign a certain value of fuzzy mem-

bership of a landscape feature to a particular height

above datum[ 1 , 12] , or they use a number of surface

derivatives , such as slope and curvature , in a multi-

variate fuzzy classif ication[ 13 , 14] .

2　Modeling of scale

Scale can refer bo th to the level of detail of a de-

scription , and to the scope o r ex tent of the area

covered.As mentioned above , scales are inherent in

the w ay s process operates.To deal w ith scale in

modeling human and physical systems , and to mod-

el the effect of scale on description is a challenging

issue in geog raphical information science.In car-

tog raphy , maps are produced at certain scales with

dif ferent application , e.g .1∶10 000 and 1∶100

000.Small-scale maps provide better overview

while large-scale maps provide more detailed and

precise information.It is intuitive that the same

number of map symbols cannot be represented when

the map scale is smaller.I t means that the repre-

sentation of the same features on the ground w ill be

dif ferent on maps of different scales.The issue aris-

ing is “ how to derive small scale maps from large

scale maps” through operations such as simplifica-

t ion , agg regat ion and selective omission[ 15] .This

issue is on the representation of spatial data and is

called “map generalization” .As map generalization

is not direct ly relevant to current research , i t w ill

not be discussed further here.

In geography , there is a similar issue.Normally ,

geographical data are sampled in small enumeration

units (also called small scale), and in some applica-

t ions , these data need to be agg regated to a larger

enumeration uni t.However , the statist ical results

w ill be different when the analysis is carried out on

the basis of dif ferent size of enumeration units (spe-

cially on the zones used to produce aggregate statis-

t ics , i.e.different scales), and different agg rega-

t ions of the same size.Therefore , there is an issue

of “how to agg regate data f rom small enumeration

units to larger units for processing” .This issue is

called “ the modifiable areal unit problem”[ 6] .

There is a similar issue in all geographical infor-

mation related sciences , such as geomorphology , o-

ceanog raphy , soil science , biology , biophy sics , so-

cial sciences , hydrology , environmental sciences
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and landscape ecolog y.In general , there are two

related but distinctive goals for conducting a multi-

scale analysis in these studies.The first is to char-

acterize the multiscale st ructure of a landscape.The

second is to detect or identify “scale breaks” or “hi-

erarchical levels” in the landscape , which often can

be studied as a spatially nested hierarchy.

Two approaches to multiscale analy ses are possi-

ble:① the direct multiscale approach that use in-

herent ly multiscale methods , and ② the indi rect

multiscale approach that uses single methods repeatedly

at different scales.Frequently used multiscale methods

include semivariance analysis , wavelet analysis , f ractal

analysis , lacunarity analysis , and blocking quadrate

variance analysis.All these methods contain multiscale

components in their mathematical formulation or proce-

dures , and thus are either hierarchical or multi-

scaled[ 16] .On the other hand , the indirect approach to

multiscale analysis can use methods redesigned from sin-

gle scale analysis , such as a wide variety of landscape

metrics (e.g.diversity , contagion , perimeter-area ra-

tios , spatial autocorrelation indices)as well as statistical

measures (e.g.mean , variance , correlation or regres-

sion coefficients).The scale multiplicity in the indirect

approach is realized by resampling the data at different

scales , albeit grain or extent , and then repeatedly com-

puting the metrics or statistical measures using sampled

data at different scales[ 17] .

M any studies have dealt with numerical agg rega-

tion such as zoning o r modif iable area uni t prob-

lems[ 18 ,19] .Some studies have used catego rical ag-

g regation based either on a majori ty or a random

rule[ 20] .The statistical approach has been broadly

applied in multiscale analy sis , just as i t has been

w idely used to model spatial uncertainty and its

propagation.However , Wood (1996)had used

fuzzy sets to calibrate the vagueness resulting f rom

multiscale analysis[ 21] .

Recent research on scales in G IS can be found in

Reference [ 22] .Five key issues of scales such as ,

“changing the scale of measurement” , “ non-sta-

tionary modeling” , “ dynamic modeling” , “ condi-

tional simulation” and “ const rained optimization” ,

are put forw ard as recommended for further re-

search fo r GI Science.It is argued that w hile regu-

larization provides an impo rtant tool for modeling

change of scale , i t does not solve the problem of

changing the scale of measurement fo r an actual da-

ta layer.When changing the scale of measurement

is facilitated by interpolation , the inherent smooth-

ing w hich results in the predicted values may alter

the bivariate distribution betw een that variable and

any other.Solut ions based on simulation are inade-

quate.Therefore , the issue of “Changing the scale

of measurement” is the most important and should

be given the highest prio rity by researchers among

these five problems.

In summary , although fuzzy set theo ry has been

w idely used in GIS , the scale issue has not been in-

vestigated;while statist ical approaches has been ap-

plied in multiscale analy sis , the fuzzy aspect of the

geographical features is ignored.This current re-

search attempts to combine these tw o relevant and

inherent issues by study ing the ef fect of scale on

modeling fuzzy spatial objects , as an approach to

modeling the higher order fuzziness in spatial ob-

jects:double fuzziness.

3　Case and methodology

3.1　Case study area

A barrier island , Ameland , in the no rth of the

Netherlands is adopted as a case study here (Fig.

1).The process of coast change involves the erosion

and accumulat ion of sediments along the coast .It

can be monitored through the observation of

changes of landscape units such as foresho re , beach

and foredune.The process of coastal change is

scale-dependent in space and time.

The landscape units are defined on the basis of

w ater lines.The foreshore is the area above the clo-

sure depth and beneath the low water line , beach is

the area above the low w ater line and beneath the

dune foo t , the foredune is the first

row of the dunes inland from dune foot.These
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Fig.1　Test site— Ameland , The Netherlands

definitions are normally different from surveyor to

surveyor , f rom case to case and from t ime to time.

For example , the low w ater line w as set to be -6

m in 1965 to 1984 and 1989 , and -8 m in 1985 to

1988 and in 1990 to 1993.Therefore , the ex tent of

these landscape units are a fuzzy concept , but on

the basis of height observation , it is possible to de-

rive a measure of fo reshore , beach and duneness.

Height observations have been made by laser scan-

ning of the beach and dune area and by echo sound-

ing on the foresho re.These data have been interpo-

lated to form a full height raster of the test area.

Experiments show that the uncertainty of the inter-

polated heights of the raster can be expressed by

standard deviation(σ=0.15 m).However , in the

following analysis , the error of the height raster ,

which w as used as the o riginal fine resolution

DEM , is ignored.

3.2　Multiscale analysis of DEM

Since the hierarchical analysis does no t have to as-

sume the existence of a hierarchical st ructure in the

landscape under study , we adopted the indirect ap-

proach to multi-scale analysis.The multiplicity of

scales is realized by resampling the data at dif ferent

resolutions , resolution act ing as a surrogate for

scale , and then repeatedly computing the statistical

measures using sampled data at different resolu-

tions.One w ay of resampling data is to systemati-

cally agg regate the o riginal fine-resolut ion data set

and produce a hierarchically nested data set , which

leads to a hierarchical analysis using sing le-resolu-

t ion methods.We have used the sof tw are Landsurf

developed by Wood (2003)to aggregate the origi-

nal fine-resolution DEM (60 m ×60 m)to coarse

data sets , using a moving w indow ranging in size

f rom 3×3 cells to 25×25 cells.In Wood' s sof t-

ware the surface is modeled as a quadratic surface

using the central point and the outer points of an

expanding w indow , and calculating a generalized

value of the elevation for the centre point of the sur-

face[ 2] .The characterization of scale-based uncer-

tainty so far has been described independently of the

model of the surface and any operational def inition

of scale itself .In this way , a series of DEM s with

cell size f rom 60 m×60 m (1×1 cells)to 1 500 m

×1 500 m (25×25 cells)are created.

3.3　Fuzzy classification

As described in Section 3.1 , the extent of the

coastal landscape units are a fuzzy concept , but

based on height observation , it is possible to derive

a measure of foresho re , beach and duneness.We

use the fuzzy set to represent the vagueness in the

defini tion of these landscape units.The fuzzy mem-

bership function is built to modify the crisp classifi-

cation criteria and a trapezodial membership func-

t ion w as adopted[ 23] for fuzzy classification.Ac-

cording to the definitions given by geomorphologists

for the situation of Ameland , the height values of

the closure depth , low w ater line and dune foot are

suggested to be about -6.0 m , -1.1 m , and 2
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m , respectively.After fuzzy classification , each

g rid cell has a membership vecto r , containing a val-

ue for each of the three classes.As multiresolution

DEM s w ere created in Section 3.2 , a series of fuzzy

membership vectors were created at 13 resolutions.

3.4　Identification of multiscale fuzzy geo-

morphologic objects

The estimat ion of the spatial ex tent of objects

from the fuzzy classifications is related to the inter-

pretation of fuzziness of the objects and their topo-

logical relationships , hence a pre-defined fuzzy ob-

ject model is required.For example , if foreshore ,

beach and foredune are considered to be spatially

disjointing objects , the conceptual model suggests

that a specific location should either belong to beach

o r foredune , but not to both and a boundary has to

be set to define explicit ly the spat ial ex tent of any

object by assigning each g rid cell to ex actly one ob-

ject.In such cases criteria(conditions)have to be

applied to assign a cell to a specific class.After seg-

mentation , the spatial extents of objects are identi-

f ied and the boundaries between them are apparent

automatically.These boundaries are called condi-

tional-boundaries since they are based upon condi-

tions (o r criteria).In this case , the concept of ob-

jects w ith fuzzy spatial extent is applied , which

means the objects are represented as f ields wi th

varying fuzziness and conditional boundaries[ 8] .

4　Effect of scale on fuzzy spatial ob-

jects

In the beginning of the multi-scale analy sis , we

actually proposed tw o opposing hypotheses:fuzzy

spat ial object w ill vary smoo thly w ith changing

g rain size as pixels are agg regated ref lecting a de-

crease in variability ;o r fuzzy spatial objects will

show discrete changes as g rain changes.Additional-

ly , we w anted to determine if these changes could

be modeled and , if so , could these models predict

scale change ef fects on fuzzy spatial objects at either

finer or coarser scales.In o rder to test the hypothe-

ses , we use statistical analysis.We calculate the to-

tal cells belonging to three landscape uni ts based on

the effective image w indow created at g rain size 25

×25 cells.Then we calculate by scale the mean ,

minimum and standard deviation of fuzziness fo r

those cells belonging to each landscape units , re-

spectively.Please notice the reg ression equations ,

y 1 , y 2 and y 3 , in the follow ing f igures represents

the relationship of foreshore , beach and foredune

w ith scale , respectively.

4.1　Change in The Fuzzy Area

There is obvious change of the area of the three

fuzzy objects w ith scale(Fig.2).With the increase

of scale , the area of beach decreased till to scale at

15 , but the area of fo reshore and foredune increased

till to scale at 9 and 15 , respectively;then they

change in opposi te ways.

In order to test the hypotheses set in the begin-

ning of this section , linear reg ression analy ses and

diagnoses w ere implemented.The results are also

show n in Fig.2.We can see that the area of all the

landscape units change significantly (at signif icant

level 95%)with scale , while foreshore and fore-

dune are in posi tive relationships and beach in nega-

t ive relationship.However , the coefficient of deter-

mination for foresho re and fo redune (R
2
= 0.35)

show s only about 35%of the variance of area is ex-

plained by its common variance w ith scale , suggest-

ing low levels of explanation , indicating that other

factors could be involved;but the coef ficient of de-

termination fo r the area change of beach indicates

67% variance is coming f rom the effect of scale.

4.2　Change in mean of fuzziness

The change in mean of the fuzziness of three land-

scape units w ith scales is illust rated in Fig .3.It can

be seen from Fig .3 that the changes in the mean of

fuzziness of foresho re and beach have similar tune ,

most ly dow n w ith scale;but the change of foredune

is unstable.

Regression analyses and diagnoses have also ap-

plied to the data above.The results are show n in
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Fig.2　Change in the fuzzy area of the three objects with scales

Fig.3　Change in the mean fuzziness of three landscape units with the scale

Fig.3.From the results we can only say that the

mean of fuzziness of fo reshore and beach change

signif icantly and linearly (at level 95%)w ith scale.

But fo r beach , the linear reg ression test is not

passed.

4.3　Change in minimum of fuzziness

The change in minimum of fuzziness of the three

landscape units w ith scales is illustrated in Fig .4 ,

which show s cyclic patterns.But the amplitude and

ranges are different for these three units.The

change exhibits cyclic f luctuat ions , indicative of the

periodic pat tern in the landscape.Regression analy-

ses reveal that there is no obvious linear co rrelation

of the minimum fuzzy membership function value of

the landscape uni ts w ith scale.It is intuitively

show ed in Fig.4.
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Fig.4　Change of the minimum of fuzziness of three landscape units

4.4　Change in standard deviation (σ)of

fuzziness

We also calculated the standard deviation of the

fuzziness of each landscape uni t at different scales.

There is no sy stematically change w ith the scale ,

but relevant (Fig.5).It can be seen that a linear

relationship exists between σ of the fuzziness of

foreshore and of foredune w ith the scale.We can

see that the standard deviat ion of the fuzziness of all

the landscape units change significant ly (at level

95%)w ith scale positively.The coef ficient of de-

termination for foreshore and foredune (R
2
=0.6)

suggests high levels of explanat ion , i.e.around

60% of the variance of STDEV is explained by its

common variance w ith scale , but the coef ficient of

determination of foredune is relatively low as 0.36 ,

indicating that other factors might be involved in

the variance.

4.5　Discussion

In summary , we found that the area of three

landscape units , the mean and the standard devia-

tion of the foreshore and beach change significant ly

w ith scale;but the minimum of the fuzziness of the

landscape units doesn' t change significantly wi th

scale.It implies that the scale has ef fect on fuzzy

classification , i.e.the fuzzy membership values

changed so that the class of the cells changed which

resulted in that the areas of fuzzy objects are differ-

ent w ith scale.The change of STDEV is obvious

w ith scale , if implies that the fuzziness of the land-

scape units increase wi th scale (becoming mo re un-

certainty wi th scale).This is because the agg rega-

t ion enlarges(and smoothes)the transition zone be-

tween the landscape units.

Further , we w ould like to say although the linear

regressions have been applied , the coefficients of

determination(R 2)are generally low , specially the

area of the three landscape units , indicat ing low ex-

planation of the variance of the statistical indicators

with scale.It also suggests that the liner regression lines

are not the best-fit lines.Therefore , polynomial trend

lines are t ried out.We may say that fouth-order poly-

nomial line fits the trend of area change very well.The

results are illustrated in Fig.6.

5　Conclusions

In this paper , we evaluate the ef fect of scale on

modeling fuzzy spatial objects , i.e., the subject ivi-

ty of the assignment of the fuzzy membership values

to the scale of measurement.The w ork is illustrat-

ed by a coastal geomorphologic case.M ulti-scale

analy sis of the landscape is carried out using a mov-

ing w indow , ranging in size f rom 3×3 cells to 25×

25 cells.The dif ferences of fuzzy memberships de-

rived f rom data at dif ferent resolutions are studied
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Fig.5　Change in standard deviation of fuzziness of three landscape units

Fig.6　Forth-order polynomial trendlines

in order to examine these higher-order uncertain-

ties.The statistics of the fuzziness of the fuzzy

landscape units are calculated , and the variability of

them with scale is assessed.

Results show ed that it is diff icult to accurately

predict the effect of scale on fuzzy spatial objects ,

although the change with the scale exhibits linear

relationship in some statistical indicators.In other

w ords , the change of the fuzzy spatial objects wi th

scale exhibits cyclic f luctuations , indicative of the

periodic pat tern in the landscape , which more suit-

able to be polynomial than linear.In conclusion the

identification of geomorpholog ic landscape units are

dependent upon the scale of the measurement , par-

t icularly the area of the landscape units.A fine res-

olution af fords more detail in original data does not

necessarily results in the landscape appearing to be

mo re highly fragmented and complex than the same

landscape examined w ith a coarser resolution.In

view of this , caution must be exercised in compar-

ing landscapes at dif ferent scales and in choosing the

resolution of the data that best describes the process

under study.

Fo r the effect of scale on modeling of spatial data ,

it is still in i ts infancy stage.However , fieldw ork

data and satellite remote sensing data have been
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more and more widely used wi thout understanding

the problems associated with the outcome.In this

w ay , misleading decision may be made based on the

uncertain modeling results.This topic has att racted

increasing at tention f rom GIS community.The re-

sults f rom this study w ill enable us to be aware of

the level of uncertainty associated w ith the model-

ing outcome and thus make precautions if neces-

sary .Further research using additional data of land-

scape and a g reater range of resolution is necessary

to determine w hether general scaling law s be deter-

mined.Moreover , the ef fect of scale on dynamic

processes should also be investig ated.
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