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Abstract 
During the past decade, various powerful single-molecule techniques have 

evolved and helped to address important questions in life sciences. As the single 

molecule techniques become mature, there is increasingly pressing need to maximize the 

information content of the analysis in order to be able to study more complex systems 

that better approximate in-vivo conditions. Here, we develop a fluorescence-force 

spectroscopy method to combine single-molecule fluorescence spectroscopy with optical 

tweezers. Optical tweezers are used to manipulate and observe mechanical properties on 

the nanometer scale and piconewton force range. However, once the force range is in the 

low piconewton range or less, the spatial resolution of optical tweezers decreases 

significantly. In combination with fluorescence spectroscopy, like single molecule 

Förster (or fluorescence) resonance energy transfer (FRET) whose detectable distance 

range is approximately 3-10 nm, we are able to observe nanometer fluctuations and 

internal conformational changes in a low-force regime. The possibility to place 

fluorescent labels at nearly any desired position and a sophisticated design of the 

experiment increases the amount of information that can be extracted in contrast to pure 

mechanical or fluorescence experiments.  We demonstrate the applications of this method 

to various biological systems including: 1) to measure the effect of very low forces on the 

nanometer scale conformational transitions of the DNA four-way (Holliday) junction; 2) 

to dissect protein diffusion and dissociation mechanisms on single stranded DNA, 3) to 

calibrate FRET-based in-vivo force sensors and 4) to study mechanical unfolding of 

single proteins. The results could not have been obtained with fluorescence or force 

measurement alone, and clearly demonstrates the power and generality of our approach.  

Finally, we show that self-quenching of two identical fluorophores can be used to detect 

small conformational dynamics corresponding to sub-nanometer distance changes of 

single molecules in a FRET-insensitive short range (< 3 nm), extending the detectable 

distance range of our fluorescence-force spectroscopy method.  
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Chapter 1 
Introduction 

 
 

1.1 Single Molecule Fluorescence and FRET 
1.1.1   Fluorescence and Jablonski Diagram 

As the rapid development of various fluorescence molecules (or fluorephores) and 

new fluorescence techniques, fluorescence microscopy has become the mainstream 

method in biology to directly observe the biomolecules functioning in variety of 

biological processes. The fudenmental principle of fluorescence can be described in a 

Jablonski diagram (Figure 1.1A) 1. After the molecule absorbs a photon of certain 

wavelengths supplied by an external source (for example, a laser), its electronic energy 

state changes from a singlet ground state (S0) to an excited electronic singlet state (S1). 

Within the S0 or S1 state, there are multiple of vibrational energy levels with Line G 

representing the lowest energy state and thin lines 1 to 3 representing the higher energy 

state. The absorbed photon should have an energy that corresponds to the energy 

difference between the S0 state and the S1 state of the molecule.  The absorbance occurs 

very quickly and on the order of 10-15 seconds. Once the absorption is accomplished, the 

most likely pathway for the molecule to dissipate the energy and return to the ground 

state is first to relax to the lowest vibrational energy level of the S1 state through a non-

radiative process known as internal conversion, taking typically on the order of 10-14 -10-

11 seconds.  From there, the molecule can emit a photon and relax to a S0
 state (10-9-10-7 

seconds), immediately after which it eventually relaxes to the lowest energy state of the 

S0 state through internal conversion. The energy lost during internal conversion process 

results in an emitted photon with lower energy than that of the absorbed photon, leading 

to a red-shifted spectrum for the emission compared to the absorption spectrum of the 

molecule (referred to as the Stokes shift 2). 

Another pathway for the molecule to return to the ground state is through 

intersystem crossing, converting the molecule from the excited singlet state (S1) to an 

excited triplet state (T1). This requires the electron to change its spin multiplicity which is 

weakly allowed and takes 10-8-10-3 seconds.  Once in the T1 state, the molecule may 
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either relax to the ground state by a radiative process (called phosphorescence; Figure 

1.1A) or a non-radiative process (such as collisional quenching, and fluorescence 

resonance engergy transfer as we discuss in the next section; Figure 1.1B). 

 

1.1.2   Förster (or Fluorescence) Resonance Energy Transfer (FRET)  

Förster (or Fluorescence) Resonance Energy Transfer (FRET) is a non-radiative 

energy transfer from an electronic excited energy state of a fluorescent molecule (termed 

donor) to another neighboring fluorescent molecule (termed acceptor) via a dipole-dipole 

interaction, converting the acceptor molecule to its excited energy state such that the 

acceptor can emit fluorescence (Figure 1.1B) 3-5. The extent of energy transfer depends 

on the separation distance between the donor and the acceptor, the spectral overlap 

between the donor emission and acceptor absorption and the relative orientation of the 

donor and acceptor dipoles. FRET efficiency, E, is a measure of how much the energy 

transferred from the donor to the acceptor (Figure 1.2) and is given by  

6

0

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
R

E       (1.1) 

where R is the separation between the donor and the acceptor, and R0 is known as Förster 

radius which is a constant for a set of FRET pair under identical conditions and is given 

by 

[ ] nmJnR D 6
1

4217
0 )()10785.8( υκ −Φ×=       (1.2) 

 where ΦD is the donor quantum yield in the absence of the acceptor, n is the refractive 

index of the medium and κ is the orientation factor for the dipole-dipole interaction. κ2 

ranges between 0 (when dipoles are perpendicular) to 4 (when the dipoles are aligned) 

and is estimated to be 2/3 for a pair of freely rotating dipoles. J(ν) is the integral of the 

spectral overlap between the donor emission and the acceptor absorption.   

 

1.1.3  Single Molecule Fluorescence and Single Molecule FRET  

In the past two decades, fluorescence techniques have been extended to observe 

biological processes at the single molecule level under biologically relevant conditions. 
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These single molecule studies involve detecting structural and conformational changes of 

the proteins or nucleic acids and investigating the protein-nucleic acid interactions by 

using the fluorescence localization; fluorescence quenching; polarization response; and 

FRET 6,7. In contrast to conventional ensemble methods, single-molecule methods can 

look at a biological system when it is out of equilibrium and hence allow us to explore 

the heterogeneity among molecules and detect the transition and intermediate states 

which are otherwise hidden in ensemble measurements 8,9. 

Although conventional fluorescence microscopy and other imaging methods have 

been used to observe biological processes, there is a light diffraction limit which is about 

half wavelength of the visible light itself (several hundreds of nanometers). However, the 

size of a biomolecule is typically about several nanometers. To push the spatial resolution 

limit so that we can observe the motion or the structure dynamics of a single biomolecule, 

single molecule  FRET (smFRET) detection was first achieved in 1996 10 and later 

became a mainstream technique in the biology field because of its ability to detect the 

conformational change of individual molecules or mutual interactions in the nanometer 

distance range at the single molecule level. 

Organic fluorophores (such as Cyanine and Alexa fluorophores) are typically 

utilized in the smFRET experiments, because they are typically bright, small-sized, 

water-soluble, easily conjugated to proteins and/or nucleic acids and possess stable 

photo-physical characteristics.  In this thesis, two FRET pairs were selected in all the 

experiments presented: 1) Cy3(donor)-Cy5(acceptor) pair and 2) Alexa555(donor)-

Cy5(acceptor)  pair.  Cy3 and Alexa555 can both be excited by a 532nm solid-state laser 

and emit fluorescence (emission peak at ~ 570 nm).  When in close proximity to Cy3 or 

Alexa555, Cy5 can emit fluorescence through FRET.  In practice, estimated FRET 

efficiency, E, can be calculated by, 

)3.1(
DA

A

II
IE
+

=  

where IA and ID are the emission intensities of the acceptor and the donor respectively.   

 Many previous reviews have intensively described the instrumentation by which 

one can perform a single molecule FRET experiment 9,11,12. Briefly, there are two kinds 

of commonly used microscopy for single molecule FRET experiments: 1) Confocol 
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microscopy and 2) Total internal reflection (TIR) microscopy (Figure 1.3). In confocal 

microscopy, the excitation laser beam (532 nm laser in our case) is focused onto the 

coverslip surface where the fluorescently labeled biomolecules are immobilized. A 

sample chamber consists of a microscope coverslip and a microscope slide and is filled 

with an imaging buffer that mimics the biologically relevant conditions. A 100-µm 

pinhole is placed in the detection path to eliminate out-of-focus signal. The Cy3 and Cy5 

signals were split and collected by two avalance photodiodes (APDs). Only one point (a 

few hundred nanometers in focus diameter) on the sample plane is imaged at one time. 

Therefore, to obtain a sample image containing multiple biomolecules, a peizo stage is 

used to raster scan the sample in the x-y plane (Figure 1.3A). In TIR microscopy, the 

excitation is achieved by total internal reflection of the excitation light at the slide-buffer 

interface (Figure 1.3B). The fluorescently labeled biomolecules are immobilized on the 

slide surface inside the sample chamber and are exposed to the evanescence field (~a 

few hundred nanometers in depth) induced by TIR to produce fluorescence. An electron 

multiplying charged couple device (EM-CCD) is used for imaging. A slide area (75 µm × 

75 µm) can be imaged onto a 8.2 mm × 8.2 mm CCD chip at one time.  Cy3 and Cy5 

signals from a same slide area (75 µm × 37 µm) are split and imaged side by side on the 

CCD (Figure 1.3B).  

 

1.2  Optical Tweezers for Single Molecule Studies* 
1.2.1   Introduction to Optical Tweezers 

A dielectric bead whose size is typically in the range of ~ 0.2 – 5 μm was first 

found capable to be trapped by a gradient force near the focus of a high-power laser beam 

in 198613. This technique is known as optical tweezers and has been widely employed in 

studying motor proteins14-17, nucleic acid mechanics18-20, DNA packing motors21,22,  

protein folding and unfolding23-25, protein-protein interaction26, and protein-nucleic acid 

interaction27-29 at the single-molecule level.  To minimize heating of the sample and laser-

induced damage to the biomolecule attached to the bead, a near-infrared wavelength (e.g., 

                                                 
* The content in this section has been published as a paper: 

Brenner, M. D., Zhou, R. & Ha, T. Forcing a connection: impacts of single-molecule force 
spectroscopy on in vivo tension sensing. Biopolymers 95, 332-44 (2011). 
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830, 980, 1064 nm) laser is typically used 30.  In a typical optical tweezers experiment, 

the biomolecule (e.g., nucleic acids, proteins), or the biological complex of interest is 

tethered between a bead and a stiff surface through DNA handles.  By gradually moving 

the surface away from the bead, mechanical tension is applied through the DNA handles 

to the biomolecule (or the biological complex). The bead trapped by optical tweezers 

usually serves as a Hookean spring and has a linear elasticity with a stiffness (k) ranging 

from 0.005 to 1  pN nm-1. The stiffness of the optical trap depends on the laser power, the 

size of the bead and the change in refractive index between the bead and the aqueous 

medium, resulting in a typical accessible force range of 0.1-100 pN31.The applied force 

(F) can be determined by F = k x, where x is the deflection of the bead from the trap 

center.  For detecting the deviation of the bead from the center of the trapping laser beam, 

the scattered light from the bead is collected and sent onto a quadrant photodiode or a 

position-sensitive photodetector30. It has been shown directly by single molecule 

experiments that biochemical reactions can be influenced by applied force 32. Not only 

can optical tweezers provide a manipulation tool to apply forces to a biomolecule, but it 

is also possible to detect the conformational dynamics of single biomolecules through the 

force spectroscopy. In recent years, optical tweezers have achieved angstrom spatial 

resolution (the magnitude of a single base-pair length of DNA) to follow the steps of 

biological motors moving on their track 33-35.  

 

1.2.2    Other Single Molecule Force Methods 

Besides optical tweezers, many other single-molecule force methods have been 

developed to probe the intermolecular forces generated by biomolecules through binding 

energies between individual ligand-receptor pairs and the response of biomolecules to 

applied mechanical tension during the past few decades. The most commonly used 

techniques for these purposes include glass microneedles, atomic force microscopy 

(AFM), the biomembrane force probe (BFP), magnetic tweezers, optical tweezers, and 

flow-induced stretching. In a typical single-molecule experiment, the biomolecule or the 

biological complex under investigation is tethered between a flexible force transducer 

and a stiff surface or substrate.  By gradually moving the surface/substrate away from the 

force transducer, mechanical tension is applied through the tethers to the biomolecule(s), 
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with the applied forces commonly determined by the recorded variation of the force 

transducer’s position. Similarly, if the complex generates force between the two tethering 

points, the force can be detected by the force transducer. Similar to the trapped bead in 

optical tweezers, the force transducer usually serves as a Hookean spring and has a linear 

elasticity with a stiffness (k) ranging from 10-6 to105 pN nm-1. The force (F) can be 

determined by F = k x, where x represents the deflection of the transducer.  A softer (less 

stiff) force transducer allows for higher sensitivity, meaning it can detect smaller forces. 

The typical, accessible force range with these techniques is 10-2-104 pN with an 

experimental time resolution ranging from 1-100 milliseconds 36-38, which is sufficient for 

biologically relevant studies with a variety of systems including, for example, DNA 

replication and recombination39-41. Various single-molecule force techniques utilize 

different types of force transducers, and these differences help in making these 

techniques complementary yet distinct in the types of biological systems each can address. 

While some of the single-molecule techniques discussed in the following sections have 

drawbacks such as being time-consuming and thus low-throughput, there is currently no 

other way to ascertain biomolecular forces in vitro that can be used as calibration for 

force determination in the cell at the single-molecule level 42.    

 

1.2.2.1  Glass Microneedles 

A biomolecule of interest can be attached between a soft glass microneedle and a 

stiff needle or surface, as shown in Figure 1.4A. If the soft needle (i.e., the force 

transducer) is thin enough , a stiffness of 10-3-1 pN nm-1 can be achieved to detect 

molecular forces 37. The stiff needle or surface is moved away from the soft needle, 

applying forces of 10-103 pN. For determining the force applied, the soft needle is 

directly imaged to determine its deflection. This technique was first used to measure the 

sliding force between doublet microtubules in flagella,43 and for measurement of bond 

disruption between two actin monomers in an actin filament as well as myosin migration 

force along actin filaments 44. Alternatively, an optical fiber can act as the soft needle, 

and this approach was used to study the elasticity of single dsDNA molecules 45. The 

light emitted from the end of the soft optical fiber is projected onto a position-sensitive 
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photodetector which allows for precise determination of the force transducer’s bending 

geometry.  

 

1.2.2.2    Atomic  Force Microscopy (AFM) 

AFM replaces the soft glass needle with a flexible cantilever characterized by a 

stiffness range between 1-105 pN nm-1.37,38 A complete AFM probe consists of a 

cantilever with an attached sharp tip (nanometer in size) at its free end, and the 

biomolecule of interest is attached between the tip and a stiff surface (Figure 1.4B). 

Forces between ~5 and 103 pN can be applied to the biomolecule by moving the stiff 

surface with a piezoelectric stage. For force calibration, a laser beam is reflected off the 

back plane of the cantilever onto a position-sensitive photodetector for determination of 

cantilever deflection by forces applied through the tip. AFM was hereby employed to 

stretch individual biomolecules including chromatin fibers 46, proteins 47,48,nucleic acids 
46,49, and to elegantly measure the energy landscape of ligand-receptor interactions50. 

Because the force required to break covalent bonds 51 is much larger than the binding 

force between ligands and receptors, researchers are able to covalently link ligands to the 

AFM tip and the cognate receptor to a stiff surface for measurement of the adhesion force 

between single ligand-receptor pairs 52,53. The first single-molecule measurements of the 

ligand-receptor recognition force was performed for  biotin- avidin pairs by AFM 54,55.  

 

1.2.2.3    Biomembrane Force Probe (BFP) 

The BFP technique is based on the micropipette aspiration (MPA) method 

originally developed to study the elastic properties of cell membranes and intercellular 

adhesion forces 56. MPA was first used to study cell membrane elasticity by observing 

membrane tension as a function of the suction pressure applied by a micropipette (tip 

opening diameter: < 1 µm – 10 µm) in contact with the cell 57. Evans and 

coworkers utilized a red blood cell (RBC) as the force transducer whose membrane 

stiffness is flexibly controllable by micropipette suction, and a functionalized bead can be 

chemically attached to the RBC as a surface probe (Figure 1.4C) to determine the 

distance between the bead and membrane surfaces from the interference fringe pattern 

between unscattered light and light scattered from the bead 58,59.  This combination of 
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RBC and bead composes the BFP. This method has been widely used to study the 

interactions between cell-surface receptors and its cognate ligands.58 The ligands are on 

the surface of the bead attached to the RBC, and the receptors are on the surface of a 

vesicle. Both the RBC and vesicle are held by a glass micropipette.  If the density of the 

ligands and receptors are low enough, the bond between a single ligand-receptor pair can 

be formed when the vesicle containing receptors is brought in contact with the bead 

covered with ligands. The interaction between a single ligand-receptor pair can be studied 

by then moving the vesicle away from the bead.  A biomolecule or a biological complex 

can be attached between the BFP and a second bead or a vesicle, both of which are held 

by a micropipette.  The forces exerted can be determined from the deformation of the 

RBC, typically ranging from 10-2 to 103 pN. S.E. Chesla and coworkers developed this 

method to study the 2D receptor-ligand binding kinetics by measuring the adhesion 

probability depending on contact duration between receptor and ligand and surface 

density of the receptor/ligand.60 

 

1.2.2.4  Magnetic Tweezers 

Instead of trapping a bead by a gradient force near the focus of a laser, magnetic 

tweezers traps a bead in the magnetic field (Figure 1.4D).  Pioneering work with 

magnetic tweezers involved the study of the elastic response of single dsDNA 

molecules61, including stretching of nucleosomal DNA62. Magnetic field gradients 

generated by permanent magnets or electromagnets are used to exert forces between 10- 

3–102 pN on magnetic beads attached to biomolecules of interest38. The detectable forces 

are the smallest among all the force techniques (as small as 10- 3 pN) because of a very 

soft force transducer (the magnetic bead) in magnetic tweeezers with the stiffness 

typically ranging between 10-3 -10-6 pN nm-1. Another advantage in magnetic tweezers 

assays is the capability to apply torque to surface-tethered biomolecules due to the 

preferential orientation of the beads which rotate in the magnetic field. The torque 

applied by magnetic tweezers can generate supercoils in surface-tethered dsDNA63 and 

extensions of the technique have included probing protein-nucleic acid interactions. 

Examples include the study of DNA uncoiling by a topoisomerase64, DNA scrunching by 

a RNA polymerase during transcription65, and DNA unzipping by DNA helicases66,67.  
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1.2.2.5  Flow-Induced Stretching 

Liquid flow has been a simple method for stretching long pieces of DNA attached 

at one end to a surface immobilized biomolecule and to a magnetic bead at the free end 

(Figure 1.4G) 61.  The scattered light from the bead is imaged using a darkfield 

microscope with a high-resolution charge-coupled device (CCD) camera at 0.5–2 Hz, and 

the flow-induced force exerted on the biomolecule through the DNA handle can be 

calculated from the mean-square displacement of the DNA-tethered bead 68. One 

advantage of the method is high-throughput data acquisition, since observation of many 

simultaneously stretched biomolecules is possible.  Van oijen and coworkers use this 

technique to study bacteriophage λ DNA digestion by λ exonuclease69 and the mechanism 

of DNA synthesis at a replication fork 40.  

 

1.3  Single Molecule Forces in Biology 

1.3.1   Nucleic Acid Mechanics 

          As single-molecule force techniques mature, the simplest studies remain those 

elucidating the mechanical properties and folding kinetics of naked DNA/RNA molecules.  

Direct measurements of the length of extension of single DNA molecules as a function of 

force, generating force-extension curves, offers insight about the biopolymer properties 

and provide tests for elasticity theories such as the worm-like chain (WLC) and freely-

jointed chain models 70. Knowledge of these properties sets the stage for more bio-

functional experimental assays in nucleic acid polymer physics, such as studying DNA 

supercoiling transitions using both magnetic 63 and optical tweezers 71 as mentioned 

previously. Additionally, the determination of mechanical melting energies of 

complementary DNA strands upon applied force 72,73, as well as the unzipping force of 

DNA and RNA hairpins, are established applications of single-molecule force techniques 
19,20,74,75. 

 

1.3.2     Protein Folding and Unfolding 

The adoption of specific 3-D conformations upon folding determines protein 

function in often mechanically stressful environments 76. Single-molecule force 
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measurements provide tools to unfold individual proteins mechanically rather than 

through chemical or thermal means. Comparison between chemical denaturation and 

applied mechanical tension suggests a similar energy barrier, and transition state, to 

unfolding of immunoglobulin domains promoted by either technique 48. As applied force 

increases, the protein unfolding pathway may be divided into three stages: 1) inter-

domain hinge motion; 2) domain deformation and unfolding; and 3) secondary structure 

denaturation (e.g., α-helices, β-sheets) 76. The first mechanical unfolding experiments 

were performed on the modular protein titin using AFM and optical tweezers; and the 

foce-extension curves for an unfolded polypeptide were described by the WLC model 
23,24,47. Intermediate conformational states could be observed along the protein unfolding 

pathway, contributing to a picture of a protein folding energy landscape 77.  

 

1.3.3    Protein-Protein Interactions 

Ligand-receptor interactions are essential cellular processes controlled by a 

complex array of intra and intermolecular forces. The recognition forces between 

streptavidin and biotin or their analogs were the first to be measured as being one of the 

strongest non-covalent interactions in nature 55,78. Adhesion forces between many 

antigen/antibody pairs and ligand/membrane receptors have been measured with certain 

constant loading rate, or pulling speed 51,53,60,79. Rupture forces of soluble N-

Ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes, the 

protein complexes that mediate membrane fusion, were also investigated by AFM, 

revealing dissociation kinetics and the sequence of interactions by the SNARE complex 

important for exocytosis80,81.  Recently, MPA and BFP were used to study the interaction 

between a T-Cell receptor and its antigenic peptide-major histocompatibility complexes 
82. 

These types of single-molecule pulling measurements are often not at equilibrium, 

and the measured interaction forces vary broadly for the same ligand/receptor pair 

depending on the loading rate 50,83.  The same is true when applying unfolding force to a 

protein or a nucleic acid hairpin structure; however, equilibrium thermodynamic 

parameters such as the free energy can still be obtained from non-equilibrium 

measurements 84. To this end, the development of dynamic force spectroscopy has been 
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instrumental in exploring the loading rate effects on ligand-receptor interactions 83. The 

observed force may also vary depending on the measurement technique. For example, 

single talin molecules were unfolded at lower forces using magnetic tweezers than with 

AFM, which may be due to differences in the length of time the force is applied 85. 

 

1.3.4    Forces Generated by Protein Motors 

            Using single-molecule force spectroscopy, we can perform tug of war with single 

protein motors to determine the minimum stall force for preventing ATP-dependent 

protein translocation. A variety of protein motors have been investigated, including the 

motor proteins myosin 14,86 kinesin 15-17 and dynein 87 moving on the cytoskeleton,  DNA 

translocases,29 RNA and DNA polymerases translocating a DNA template 27,28, DNA 

packaging motors 21,22 and a promotor of branch migration of a DNA 4-way (Holliday) 

junction 39 (summarized in Table 1.1). Clearly, protein motors generate a range of forces 

measurable with various force techniques. The ability to detect forces exerted on 

biomolecules can provide important insights into the effects of mechanical tension at the 

cellular level, and incorporation of additional reporter methods such as fluorescence 

extends the capabilities of the current force-sensing techniques.  
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1.4  Figures and Tables 
 

 
Figure 1.1 (A) A Jablonski diagram depicting the energy levels of a fluorescent 

molecule. S0 represents ground state. S1 and T1 represent the singlet and triplet excited 

states respectively. The multiple black lines represent multiple vibrational energy levels 

within each primary energy state. (B) An energy diagram for fluorescence resonance 

energy transfer between two fluorescent molecules (donor and acceptor molecules).  

 

 
Figure 1.2 FRET Efficiency as a function of the separation distance (R) between the 

donor (the green circle) and the accepter (the red circle). for a R0 =5 nm. At R=R0, E=0.5. 

In the distance range of 3-8 nm, FRET is sensitive enough to report the distance change 

between the donor and the acceptor. 
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Figure 1.3 (A) Optical scheme for confocal microscopy with typical images of surface-

immobilized single biomolecules carrying a Cy3 and a Cy5 fluorophore. The images 

were obtained by scanning the sample stage in x-y plane while recording the photon 

counts using two avalanche photodiodes (ADPs; one for Cy3 signal and the other for Cy5 

signal). (B) Optical scheme for total internal reflection (TIR) microscopy with a typical 

dual-channel EM-CCD image of surface-immobilized single biomolecules carrying a 

Cy3 and a Cy5 fluorophore. The white circles identify the Cy3 and Cy5 images from a 

same biomolecule. 
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Figure 1.4  Schematic of single molecule force spectroscopy techniques (not to scale). 

(A) Glass microneedles, (B) atomic force microscopy (AFM), (C) biomembrane force 

probe (BFP), (D) magnetic tweezers, (E) optical tweezers, and (F) flow-induced 

stretching. The shape in green represents the biomolecule or the complex (e.g., ligand-

receptor and protein/DNA complex) under tension. The force transducers are a soft 

microneedle, a AFM tip, a red blood cell (RBC) with attached bead, a magnetic bead 

trapped in a magnetic field, a bead trapped in an optical field, and a bead in a flow field 

from (A) to (F), respectively. To apply force, one end of the molecule of interest is 

attached to the force transducer, and the other end is attached to a stiff object or a surface, 

and the stiff object or the surface is moving away from the force transducer. 
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Description 
Force 

(pN) 

Measuring 

techniques 
References

Force to break a covalent bond ~103 
AFM 

51 

Force to unzip DNA/RNA 9-20 Glass microneedles 
Optical tweezers 

19,72,73,84 

Average stall force  of cytoskeletal motor 
proteins (Myosin, Kinesin and Dynein) 

3-7 Optical tweezers 
Glass microneedles 

14-17,86 

Average stall force  of DNA translocases 
(RNA/DNA polymerase, FtsK) 

25-40 Optical tweezers 
Magnetic tweezers 

27-29,88 39 21

Average stall force of DNA junction  
branch migration motor protein (RuvAB) 

25 Magnetic tweezers 
39 

Average stall force of Phage Ф29 for 
DNA package 

57 Optical tweezers 
 

21 

The force to disrupt the bond between two 
actin monomers 

108±5 Glass microneedles 
44 

The force to disrupt fibronectin-integrin-
cytoskeleton linkage 

2 Optical tweezers 
 

89,90 

Adhesion force between biotin-strepavidin
160±2

0 AFM 
55,78 

Typical adhesion force range between a 
cell-surface-receptor (intergrins, 

cadherins, selectins) and its cognate 
ligand 

~5-

300 

AFM, BFP, Flow-
induced stretching, 
Optical tweezers 

52,79,91 

Typical adhesion force range for  
antigen/antibody pairs 

~10-

500 

AFM, BFP, Optical 
tweezers 

 

52,79,91 

Unfolding force of a protein domain (titin) 30-300 AFM, optical 
tweezers 

23,24,47 

Table 1.1 Biological forces measured using single-molecule force methods in vitro 
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Chapter 2 
Single Molecule Fluorescence-Force 

Spectroscopy † 
 
 
2.1  Introduction 

As mentioned in Chapter 1, optical tweezers and single molecule FRET are two 

mainstream techniques used in the field of single molecule biophysics study. However, 

with the fluorescence method alone, one can not apply forces or manipulate the 

biomolecules. On the other hand, with the force method alone, one has to apply relatively 

high forces  to achieve high spatial resolution to detect conformational changes of a 

single biomolecule through the force spectroscopy 92. At weak forces, the flexible tether 

connecting the mechanical probe to the biological molecule is not fully stretched and 

therefore cannot transmit small movements. Additionally, conformational change 

detection with a force method alone is limited only to one vector which is defined by the 

two tethering positions of the biomolecule. By combining single molecule force and 

fluorescence methods (termed Fluorescence-Force Spectroscopy), one can obtain detailed 

information about the conformation or the location of the biomolecule using single 

molecule fluorescence while having the capability of manipulating the biomolecule using 

optical tweezers at the same time. The force applied to the biomolecule can be arbitrary 

low because FRET can now report the conformational changes of the biomolecule instead 

of following the bead displacement in the optical tweezers experiment. The fluorescence 

probes (Cy3, Cy5, Alexa555, etc) can be positioned at different desired locations on the 

biomolecule or the biological complex to probe the dynamics along various vectors, 

which increases the sophistication of the experimental design and maximizes the 

information content of the acquired data. 

                                                 
† This work in Chapter 2 has been published as papers: 

• Zhou, R., Schlierf, M. & Ha, T. Fluorescence-force spectroscopy at the single-molecule level. 
Methods Enzymol 475, 405-426 (2010) 

• Hohng, S., Zhou, R. et al. Fluorescence-force spectroscopy maps two-dimensional reaction 
landscape of the holliday junction. Science 318, 279-283 (2007). 
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Although the marriage of the two techniques is useful, it has not become reality 

until recently because of the existence of two major technical barriers: 1) a typical 

trapping laser has the intensity roughly 15 orders of magnitude greater than that emitted 

by a single fluorophore, which obviously obscure the relatively weak fluorescence signal; 

2) The high flux trapping and position detection lasers can reduce markedly the lifetimes 

of the single fluorophore through unwanted two-photon excitation of dyes or other 

destructive photochemical mechanisms 93-98. Recently, we showed that with the 

combination of an optical tweezers setup and a single-molecule FRET confocal 

microscope the complex energy landscape of Holliday junctions could be studied in detail 
99. In the sections below, we give an overview of the experimental setup that allows this 

hybrid instrument to study not only Holliday junction dynamics but also other nucleic 

acid mechanics and even protein-nucleic acid interactions. We anticipate that 

fluorescence-force experiments can significantly extend the knowledge and 

understanding of essential reactions in living cells.  

 

2.2  Instrument Overview  
2.2.1   Optical Scheme of the Hybrid Instrument 

In this section we briefly describe the hybrid instrument that we have developed 

to combine the surface-coupled optical tweezers and a confocal microscope. Figure 2.1A 

illustrates schematically the optical scheme of the combined instrument. The combined 

optical trapping and single-molecule confocal fluorescence instrument is built around a 

commercial inverted microscope (IX71, Olympus) equipped with a three-dimensional 

piezo stage (P-527.3CL, Physik Instrumente). The piezo stage is used for the precisely 

positioning and movement of the sample chamber. The infrared (IR) trapping laser beam 

(1064 nm, 800 mW, Spectra-Physics, Excelsior-1064-800-CDRH) is coupled through the 

back port of the microscope, while the fluorescence excitation laser beam (532 nm, 30 

mW, World StarTech) is directionally controlled by a two-dimensional piezo-controlled 

steering mirror (S-334K.2SL, Physik Instrumente) and coupled through the right side port 

(Figure 2.1A). The beams are combined via a dichroic mirror (D2: 780DCSPXR; 

Chroma) into an oil-immersion objective (UPlanSApo, 100×, NA = 1.4, Olympus). The 

intensity profile of the trapping laser in the back focal plane of the condenser 
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(Achromat/Aplanat, NA = 1.4, Olympus) is imaged onto a quadrant photodiode (QPD; 

UDT SPOT/9DMI) to detect the deviation of the trapped bead position from the optical 

trap center. The applied force The Cy3 and Cy5 emission signals are isolated from the 

reflected infrared light (F3: HNPF-1064.0-1.0, Kaiser) and are band-pass filtered (F1: 

HQ580/60m, F2: HQ680/60m, Chroma) before imaged onto two APDs, respectively. In 

order to image the surface-tethered beads before trapping them, the bright-field image of 

the trapped beads is imaged onto a video-rate CCD camera (GW-902H, Genwac) at the 

eye piece of the microscope. A detailed description of the calibration for the optical 

trapping part is given in the following section Optical Tweerzers in the Hybrid 

Instrument (Section 2.3) and further details on the fluorescence excitation and detection 

are given in the corresponding section Confocal Microscope in the Hybrid Insturment 

(Section 2.4).  

   

2.2.2  Experimental Scheme for Fluorescence-Force Spectroscopy 

Figure 2.1B shows a not-to-scale cartoon of the experimental scheme for 

fluorescence-force spectroscopy where optical trapping and smFRET measurement are 

combined simultaneously. As mentioned in Chapter 1, the lifetime of the single 

fluorophore used for FRET measurement (Cy3, Cy5, etc) is strongly reduced by a nearby 

IR trapping laser. In order to overcome this limiting factor, one might either choose 

alternating excitation and IR trapping beams for a temporal separation or a relatively 

large spatial separation. Our setup is built such that we use a long DNA spacer for the 

large spatial separation of the excitation laser beam and the trapping laser beam. 

Conveniently, the DNA from the lambda phage (Promega) with a length of 48502 base 

pairs (bp) provides a natural long DNA. λ-phage DNA adopts either a circular from or a 

linear form that has two complementary 12 nucleotide (nt) single-stranded overhangs 

(termed cos-site) . A complementary short DNA oligonucleotide modified with 

digoxigenin (Integrated DNA Technologies, Inc. Coralville, IA, USA) is annealed to one 

of the 12 nt overhang of the λ-DNA and provides the possibility to specifically attach the 

λ-DNA to anti-digoxigenin coated beads (1 µm in diameter). The other λ-DNA overhang 

is attached to biomolecule(s) of interest as illustrated in Figure 2.1B. The biomolecule(s) 

can be tethered to the surface via a specific biotin–neutravidin interaction. In the simplest 
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case, the biomolecule of interest is a nucleic acid construct.  Since both the λ-DNA and 

beads tend to interact non-specifically with the coverslip surface, it is crucial to ensure 

optimal surface passivation, especially if unlabeled and/or labeled proteins are added to 

the assay. The section Sample Preparation in this chapter gives a detailed description of 

DNA and protein labeling, surface passivation, anti-digoxigenin coated bead preparation 

and the final sample chamber assembly protocols. In order to avoid non-specific 

interactions between the trapped bead and the surface, the IR trapping laser focus is 

chosen to be approximately 250-500 nm above the surface, while the focus of the 

exciation laser was set to align with the coverslip surface. We have successfully used this 

method to map the reaction energy landscape of a DNA four-way (Holliday) junction 

structure100, to calibrate a FRET-based in-vivo force sensor 101, and to study SSB/DNA 

interactions 102.  

 

2.3  Optical Tweezers in the Hybrid Instrument 
2.3.1    Determination of the Bead Trapping Height 

A critical factor for surface tethered, combined fluorescence-force assays is the z-

height difference between the focus of the excitation (or confocal) laser beam and the 

focus of the trapping laser beam. When the surface-tethered bead is trapped (Figure 2.1B 

and Figure 2.2A), one does not want the bead trapping height (or trapped bead height) to 

be too small, since then the bead might interact with the coverslip surface and a large 

measurement error is induced from the precision of the trap stiffness determination 

because the hydrodynamic drag on the bead strongly depends on the the trapped bead 

height. On the other hand, the oil immersion objective does not allow deep trapping in 

solution due to spherical aberrations 103. Furthermore, in the case of deep trapping there 

are necessary corrections on the actual pulling force since the angle between the surface 

tether point and the tether at the bead is no longer close to zero ( cos(ϕ) ≈1) and the 

changes of the bead trapping height at different applied forces become significant. In 

order to determine the bead trapping height, the focus of the confocal beam needs to be 

preset on the surface of the coverslip such that the diameter of the reflected light spot of 

the confocal laser detected at the eyepiece CCD camera can be minimized while the 

coverslip surface is being imaged. The trapping height here is defined as the distance 
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along z-axis from the coverslip surface to the bottom of the trapped bead, when the 

confocal beam is focused. This is also the working height in an actual experiment.  To 

determine the bead trapping height, we use a similar approach described by Lang and 

coworkers 104. First, a freely floating bead in 10 mM Tris-HCl, pH 8.0 (buffer A) is 

trapped. After the confocal beam is focused, the cover slip surface together with the 

sample chamber is raised by the piezo-electric stage as illustrated in Figure 2.2A, while 

recording the sum signal of the QPD. Similar to Ref.[104], the voltage is initially 

constant, showing only small oscillations, while when the bead touches the surface, the 

voltage is first rising and then shows a strong drop (Figure 2.2B). The point where the 

QPD voltage suddenly starts to rise is recorded as the point when the bead touches the 

surface.  Since this approach depends on the actual focusing of the surface and the 

Brownian motion of the bead in the trap, this procedure is repeated several times, until a 

Gaussian distribution of the average bead height above the surface is obtained. Figure 

2.2C shows such an experimentally obtained Gaussian distribution with an average height 

of ~390 nm. The distribution width mainly originates from two sources, the focal point 

determination and the Brownian motion of the bead. Due to a planar interface between 

two mismatched indices of refraction, e.g., between the coverslip and the aqueous 

medium (buffer A in this case), the measured trapping height has to be corrected by a 

factor 103 such that nmnmzz measuredreal 32039082.082.0 ≈×=⋅= . 

The real bead height is therefore in our case 320 nm and is used in the following 

calibration procedures.   

 

2.3.2    Position Detector Calibration 

In the following steps, we describe the calibration of the QPD, the device we use 

to detect the bead position (i.e. the displacement of the trapped bead in the xy plane from 

the trap center) when a force is applied. Since the position of the bead is imaged in the 

back focal plane of the condenser on the QPD, a calibration of the QPD signal is 

required. The beads are immobilized on the coverslip non-specifically by putting the 

beads in buffer B (10 mM Tris-HCl, pH 8.0, 20-50 mM MgCl2). This ensured that beads 

close to the coverslip surface tend to stick strongly through electrostatic interactions. To 

begin the QPD calibration process, a stuck bead is found and the confocol beam is 
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focused on the surface (Figure 2.3A). Then the stuck bead is elevated with the surface 

along z-axis by the amount of realz  determined from the previous section so that the stuck 

bead is brought to the bead trapping height for an actual expereiment. Then the relation of 

the position of the bead to the trapping beam is determined by raster scanning the stuck 

bead with the piezo stage in the xy plane through the trapping beam at that elevated z-

position, while recording the QPD signals. The QPD is a four-element photodiode array 

providing four voltage signals (A, B, C and D) that depend on the amount of laser light 

within each element area (Figure 2.3B). For the position detection purpose, the four 

values are converted to V1 and V2. The V1 signal is composed of ((A+B) – 

(C+D))/(A+B+C+D), while V2 = ((A+D)-(B+C))/(A+B+ C+D). Similar to Lang et al. 

the back focal plane signals V1 and V2 of a stuck bead are taken at various positions to 

the center of the trapping beam (Figure 2.3C) 104. A fifth order polynomial function is 

fitted to the QPD signals, ji

ji
ij VVax 21

5

0,
∑
=

= , ji

ji
ij VVby 21

5

0,
∑
=

= ,  in order to obtain a 

relation between the displacement of the bead from the trap center  in the xy plane (x, y) 

and (V1, V2) signals of the QPD. Figure 2.3C shows the residual errors from the fitting 

and those coefficients are stored for the actual experiment. 

 

2.3.3    Determination of the Trap Stiffness 

Knowing the calibration factor that converts the QPD signal to the actual 

displacement of the bead, we are able to determine the stiffness of the optical trap. This 

final calibration step is done with trapped non-stuck beads in solution. After focusing the 

confocal laser beam on the surface, we record the thermal fluctuations of a single bead 

over a certain time period with a sampling frequency of 40-200 kHz. Using this thermal 

motion of the bead in x- and y-direction, two very common methods are used to obtain 

the trap stiffness kot . The first method simply uses the equipartition theorem, that 

describes the relation between the mean square displacement (MSD) of the bead and the 

trapping stiffness kot : 

kot =
kBT
x 2  (2.1) 
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where kB denotes the Boltzmann constant, T the absolute temperature and x 2  the MSD 

displacement.  

The second common method determines the roll-off frequency of the Brownian 

motion of the bead in the optical trap. Therefore one calculates the power spectrum of the 

Brownian motion of the bead and fits the power spectrum with a Lorentzian function 

(Figure 2.4) according to 

P =
kBT

cons ⋅ ( f 2 + f0
2)

    (2.2) 

The roll-off frequency f0  is then used to determine the stiffness of the optical 

tweezers setup following: 

0)(2 fzkot ⋅⋅= γπ     (2.3) 

where γ(z)  is the corrected drag coefficient. Keeping the optical tweezers close to the 

surface requires a correction of the apparent drag coefficient γ(z).  This hydrodynamic 

effect, together with the filtering effect of the QPD, also needs to be taken into account 

when fitting the power spectrum 105-107. We use the following expression to correct for 

the altered drag coefficient: 
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where r denotes the bead diameter (in our case 500 nm) and z denotes the real average 

bead height above the surface. 

Since our typical experimental assay does not allow a calibration of each bead, we 

record many time traces from different beads and determine the average spring constant 

(~ 0.1 pN/nm in our case). The variation between the spring constants and several beads 

is on average less than 10%.  

2.4  Confocal Microscope in the Hybrid Instrument 

As described in the previous chapter, confocal microscopy has been used for 

single molecule fluorescence studies for years 12,108 and one way to obtain the sample 

image is to raster scan the peizo-stage. An alternative way to obtain the image is to use a 

two-dimensional piezo-controlled mirror to raster scan the excitation laser beam over the 
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sample stage while keeping the sample stage fixed (Figure 2.1A). A telescope system 

containing two lenses 98 (L1 and L2) is used for steering the confocal excitation beam 

(532 nm) so that the excitation laser focus can scan for individual fluorescently labeled 

biomolecules immobilized on the coverslip (Figure 2.4). For keeping the excitation beam 

collimated before and after the telescope, the distance between lenses L1 and L2 is the 

sum of their focal lengths (Figure 2.5A). Beam steering is achieved by placing the piezo-

controlled mirror in a plane conjugate to the back aperture of the objective so that the lens 

L2 images the lens L1 onto the back aperture plane. This can be easily achieved by 

arranging lenses L1 and L2 as follows: the distance between the piezo-controlled mirror 

and lens L1 is set to the focal length of L1 (f1), the distance between lens L2 and the back 

aperture plane of the objective is set to the focal length of L2 (f2) (Figure 2.5B). Then a 

rotation of the laser beam direction (θ1) at the mirror position is propagated into a rotation 

(θ2) at the back aperture where θ2 is given by, 

2

1
12 f

f
θθ =        (2.5) 

The focus of the excitation laser beam is set right on the coverslip surface and the 

laser spot on the coverslip moves as the incident angle of the beam through the objective 

lens changes.  

A fluorescent bead sample is needed for the alignment of the pinhole and the 

APDs in the confocal light path. The procedure is: 

1. Dilute the fluorescently labeled bead stock (FluoSpheres® carboxylate-modified 

beads, 0.2 μm, crimson fluorescent, 625/645, 2% solids, Molecular Probes) to an 

appropriate concentration (Typically 200- to 500-fold dilution) in buffer B (10 

mM Tris-HCL, pH 8.0, 20-50 mM MgCl2). 

2. Inject the diluted beads into a sample chamber. Incubate for 10 min. 

3. Rinse with buffer B to remove excess beads in the solution and use epoxy to seal 

the chamber.  

After focusing the 532-nm confocal excitation laser onto the flow chamber 

surface, the APD and pinhole position can be precisely adjusted with a precision XYZ 

stage to maximize the photon counting rate of the APDs. 
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2.5 Coalignment of Confocal Microscope and Optical Tweezers 
2.5.1  Calibration of Piezo-Controlled Mirror 

To simultaneously operate the single molecule confocal microscope and optical 

trap, the confocal excitation beam has to be programmed to follow the motion of the 

molecule when the molecule is moved with the piezoelectric stage for stretching. The 

deflection angle of confocal beam can be controlled precisely by the piezo-controlled 

mirror but its resulting displacement in the sample plane is unknown and needs to be 

calibrated. Therefore, mapping is required between the deflection angle of the piezo-

controlled mirror (α, β) and the resulting displacement in the sample plane (x, y).  In 

addition, the origin of the piezo-controlled mirror should be preset to a particular position 

such that the confocal spot is overlapped in the sample plane with that of the trapping 

laser. The piezo-controlled mirror can be calibrated as follows: 

1. Prepare two fluorescent bead samples. One has stuck beads on the cover slip 

(please find the protocol in section 4.1), the other contains free beads in the 

chamber. To make the free bead sample, the protocol is similar to that for a stuck 

bead sample, but buffer A (10 mM Tris-HCl, pH 8.0) instead of buffer B is used 

to dilute and inject the beads. 

2. Use the free fluorescent bead sample to reset the mirror origin. Focus the confocal 

beam to the sample plane and turn on the trapping laser. Some fluorescent beads 

can be trapped to the center of the laser trap. Steer the mirror to scan the area 

where the trapping laser spot is located with a stepsize of 32 nrad. Figure 2.6A 

(upper panel) shows a typical mirror scan image of trapped beads. Set the origin 

of the mirror to the center pixel position of the fluorescent spot. Note that the 

fluorescent spot is ellipse-like because the mirror calibration has not been 

performed yet. Using a calibrated mirror to scan the trapped beads with a stepsize 

of 100 nm in the sample plane, a circular fluorescent spot is obtained instead 

(Figure 2.6A, lower panel). Calibration is accomplished in the following step. 

3. Use the stuck bead sample to calibrate the mirror. The stuck bead sample is 

imaged sequentially either by scanning with the piezo stage (scan area, 38.4 μm × 

38.4 μm) while fixing the mirror or by scanning with the mirror while fixing the 



 

25 
 

piezo stage. Two third order polynomial fits, ji
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, 

are used to map angle coordinates into spatial coordinates in the sample plane. 

Then two mapping files containing the coefficients ijm and ijn  are generated, 

which are later used for steering the confocal beam to any desired position in the 

sample plane. Typical mapping images were shown previously 99. 

With the calibrated piezo-mirror, we can ask the confocal spot to follow the 

movement of the piezo stage by written software such that the confocal spot keeps track 

of the fluorescently labeled molecule under investigation.  

 

2.5.2  Setting Up the Tethered Molecule for Measurement 

Once the calibrations of QPD and piezo-controlled mirror are complete, 

fluorescence-force measurements can be performed on a sample. After a surface-tethered 

λ-phage DNA is optically trapped via the attached bead, the stretching curve is obtained 

by moving the coverslip in x- and y-direction with the piezo stage (Figure 2.6C). The 

symmetry of the stretching curves can be used to roughly determine the tethered position 

by finding the central positions in two orthogonal stretching directions in the xy sample 

plane. The origin of the piezo stage can then be reset to this central position. After 

considering the bead radius and the deviation of the bead from the trap center, force-

extension curves of the molecule (blue line, upper inset, Figure 2.6C) are obtained and 

can be fitted with the worm-like-chain (WLC) model (red solid line) yielding a 

persistence length of about 40-50 nm 109.  

Next the fluorescently labeled biomolecule is displaced by typically 13 µm for the 

spatial separation of the trapping and excitation laser beams. The confocal image around 

the target molecule is taken by scanning the confocal spot in the sample plane (scan area, 

3.2 μm × 3.2 μm) using the steering mirror calibration. A more accurate position of the 

fluorescently labeled molecule and therefore the accurate surface attachment point is then 

determined from the image (Figure 2.6C, lower inset).  For the fluorescence-force 

measurement, the piezo stage was moved further away to reach different forces, while 

both force and the fluorescence signals are recorded. 
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2.6  Sample Preparation Protocols 
A good sample preparation is essential for fluorescence-force measurement. For 

example, a high dye labeling efficiency, appropriate annealing and sample assembly lead 

to a successful fluorescence-force measurement. 

 

2.6.1     Nucleic Acid and Protein Labeling 

Since the λ-phage DNA linker is acting as an entropic spring, the force resolution 

is limited in fluorescence-force spectroscopy. Therefore, the FRET or fluorescence data, 

rather than the force values, are the read-out of the conformational changes of single 

molecules. The fluorescent probes (donor and acceptor) need to be engineered to the 

desired locations on individual nucleic acids or proteins. There are many conjugation 

strategies for either proteins or nucleic acids as previously described 9,110, but a high 

labeling yield is achieved much more easily for nucleic acids than proteins. 3’ or 5’ 

fluorescently end-labeled DNA/RNA oligonucleotides can be ordered from companies 

(for example, Integrated DNA Technologies). Fluorescent probes may also be 

incorporated internally into the nucleic acid chain using phosphoramidite chemistry 

during oligonucleotide synthesis. This is optimal in cases where the dynamic nature of 

the biological system is affected little by the internal modification. Not quite understand 

the comment here either  In most of the cases, an alternative method is recommended for 

internal labeling where the DNA backbone is not broken: an amine-modified base 

(typically thymine), instead of a fluorescent probe, is inserted into the desired location, 

which can later react with the N-Hydroxysuccinimide (NHS) ester form of the fluorescent 

probe (GE Healthcare).  Purification can be achieved by polyacrylamide gel 

electrophoresis to separate labeled from unlabeled oligonucleotides.  Recombinant 

engineered cysteine variants of proteins can be easily labeled with maleimide derivatized 

fluorescent probes, for example, E. coli Rep helicase 9,111. However, there are certain 

limitations since many proteins carry multiple solvent-exposed cysteines and upon 

substitution of those cysteines the functionality might be changed or totally lost.  

In order to specifically immobilize the molecules of interest on the glass coverslip 

for single molecule experiments, a biotin-neutravidin linkage is commonly used. A biotin 

modification is easily introduced by commercially ordered DNA oligonucleotides. 
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Furthermore, proteins can be biotinylated using similar conjugation strategies as used for 

the conjugation of fluorescent probes. 

2.6.2    Polymer-Passivated Surface Preparation  

Although biotinylated bovine serum albumin (BSA) can be used to adsorb to the 

glass surface for immobilization of biotinylated molecules through neutravidin protein 

sandwiched in the middle, a polymer-passivated surface coated with polyethyleneglycol 

(PEG) is highly recommended in order to eliminate nonspecific surface adsorption of 

proteins and efficiently reduce the surface interactions with nucleic acids and beads. The 

common protocol for preparing the PEGylated surface contains three steps 110:  

1. Pre-cleaning and surface activation 

2. Aminosilanization of the surface  

3. PEGylation (Coating the amino-modified surface with PEG–NHS esters)  

In the third step, a small fraction (~ 3%) of biotin-PEG–NHS ester (Bio-PEG-SC, Laysan 

Bio) is mixed with regular PEG–NHS ester (mPEG-SC, Laysan Bio) for the purpose of 

immobilizing biomolecules. The detailed steps can be inferred from 110). The PEGylation 

following this protocol on a glass surface is not as good as on a quartz surface. However, 

dissolving PEG-NHS ester in 50 mM MOPS (pH 7.5) for PEGylation instead of in 0.1 M 

sodium bicarbonate (pH 8.5) has been found to improve the PEGylation efficiency 

resulting in further suppression of nonspecific adsorption on a silicate surface 112. A 

higher concentration of KOH (10 M in MilliQ water) for the first cleaning step can also 

be applied to drastically enhance the aminosilanization result and hence improve the 

PEGylation efficiency. 

2.6.3    Nucleic Acid Construct Preparation 

The nucleic acid construct (for example, a four-way Holliday junction, partial 

duplex, or forked DNA substrates that can interact with proteins) carrying fluorescence 

dyes (Cy3, Cy5) is pre-annealed from oligonucleotides and contains a 5’ single-stranded 

tail (5’-GGG CGG CGA CCT) which is complementary to the 12 nt cos site of  λ-phage 

DNA.  λ-phage DNA adopts either a circular from or a linear form that has two 

complementary 12 nt single-stranded overhangs. By heating to above the melting 
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temperature of the cos site (~ 60-70 °C) for approximately 10 min (please specify 

temperature here), the circular λ-phage DNA is converted into the linear form with 

single-stranded 5’ extensions of 12 nt at both ends which are complementary to each 

other. Thus, we can make the nucleic acid construct annealed with the linear form of a λ-

phage DNA using the following protocol: 

1. Resuspend and mix the oligonucleotides in a microcentrifuge tube with each final 

concentration no less than 1 μM in annealing buffer (10 mM Tris-HCl, pH 8.0, 50 

mM NaCl). The biotinylated strand should have a slightly lower concentration 

than the other strands.  

2. Put the tube in a heat block at 90-95 °C for 3 min. Remove the heat block from 

the heater and allow it to slowly cool to room temperature over ~ 2 h. 

3. Dilute the pre-annealed nucleic acid product to a concentration of 100 nM, make 

aliquots and store in the freezer.  

4. Prepare 40-μl aliquots of λ-phage DNA (~ 500 μg/ml, Promega) in 

microcentrifuge tubes. Take one λ-phage DNA aliquot and add 5 μl of 5 M NaCl. 

Mix very gently (large orifice pipette tips should be used when handling λ-phage 

DNA to avoid high shearing forces).  

5. Place the tube from Step 4 in a heat block at 85-90 °C for 10 min.   

6. Bury the tube in ice and incubate for 5 min for fast cooling. Then quickly add 3 μl 

of 100 nM pre-annealed mixture from Step 3 and 1 μl of 10 mg/ml BSA (New 

England Biolabs). 

7. Rotate the tube for 1-1.5 h at room temperature. 

8. Move the tube to a cold room (4 °C) and keep rotating for another hour. 

9. Take out the tube from the cold room and add 1 μl of 10 μM digoxigenin-

conjugated DNA oligonucleotide (5’-AGG TCG CCG CCC TTT /digoxigenin/-3’) 

into the tube and keep rotating the tube in the cold room for 1-1.5 h. This 

generates the complete DNA/RNA construct with a single digoxigenin-tag on one 

end of the λ-phage DNA and a biotin-tag on the other end. 

10. Add 250 μl of 10 mM Tris-HCl, pH 8.0, 50 mM NaCl into the tube and prepare 

10-μl or 20-μl aliquots of this completed sample (which is now at a concentration 

of 1 nM). Store aliquots at -20°C.  
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2.6.4    Preparation of Anti-Digoxigenin Coated Beads 

Anti-digoxigenin is cross-linked to Protein G-coated polystyrene beads following 

the protocol below so that the beads can be attached to the DNA/RNA template for 

optical stretching via a Digoxigenin-Anti-digoxigenin interaction.  

Buffer solutions:  

1. MES buffer: 100 mM MES-NaOH, pH 6.5 (prepare immediately before use).  

2. Antibody reconstitution buffer: 0.019 M NaH2PO4, 0.081 M Na2HPO4, 0.14 M 

NaCl, 2.7 mM KCl. 

3. Bead storage buffer: 0.039 M NaH2PO4, 0.061 M Na2HPO4, 0.14 M NaCl, 2.7 

mM KCl, 0.1 mg/ml BSA, 0.1 % (v/v) Tween-20, 0.02% (w/v) sodium azide. 

Protocol: 

1. Resuspend protein G coated polystyrene beads (1.0 μm, undiluted, 1.4% solids-

latex, Polysciences) and take 250 μl of it to a microcentrifuge tube. Exchange the 

beads into a freshly made MES buffer by repeating buffer wash for 3-4 times 

(centrifuge for 4 min at 7000 rpm, carefully pipette off the supernatant, and add 

250 μl of MES buffer into the tube). 

2. Dissolve 50 mg of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC hydrochloride, Sigma-Aldrich) in 1 ml MES buffer, and 

dissolve 50 mg of N-Hydroxysuccinimide (NHS, Aldrich) in 1 ml MES buffer. 

3. Add 50 μl of EDC hydrochloride and 25 μl of NHS from step 2 into the tube. 

4. Tumble the tube for 10 min at room temperature. 

5. Dissolve 200 μg of anti-digoxigenin antibody (Roche Applied Science) in 200 μl 

of antibody reconstitution buffer and add 30 μl of anti-digoxigenin to the tube. 

Aliquot and shock freeze the remaining dissolved anti-digoxigenin with liquid 

nitrogen for future use. 

6. Keep tumbling the tube for 2 h at room temperature. 

7. Stop the crosslinking reaction by adding 20 μl of Tris-HCl buffer (1 M, pH 6.8) 

and continue tumbling for one hour. 

8. Wash the beads three times with bead storage buffer by resuspending and 

centrifuging as in step 1. 
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9. Store the beads at 4 °C for future use. This bead solution is 50- to 100-fold diluted 

in Tris buffer (10 mM Tris-HCl, pH 8.0) for sample assembly in the fluorescence-

force experiment as follows. 

 

2.6.5   Sample Assembly 

Experimental samples are assembled by sequential infusions of buffer solutions 

into an open-ended chamber with a volume of approximately 15-20 μl110. The infusion is 

a very important step for successful sample preparation, especially after the DNA/RNA 

samples are immobilized on the coverslip. An overly rapid fluid flow may result in the 

adsorption of some internal portion of λ-phage DNA onto the coverslip surface. 

Incubation in a buffer containing tRNA (Ambion) or short double-stranded DNA (20-30 

base pairs) can significantly reduce this non-specific adsorption. The buffer solutions are 

delivered drop by drop to one open end of the chamber using a micropipette. Slightly tilt 

the chamber with a small angle such that the liquid drop infuses into the chamber slowly 

through gravity and comes out the other end. An alternative way for infusing buffer is to 

adapt an automated pump (PHD 22/2000 series syringe pump; Harvard Apparatus) by 

using a sample chamber with two 0.75-mm-diameter inlet/outlet holes 110. The 

incubations given in the following protocol are performed at room temperature by putting 

the sample chamber in a humid environment (The chamber was put on a pipette tip box 

with some water underneath the chamber) to avoid evaporation.  

1. Take out a PEGylated coverslip and a PEGylated microscope slide and assemble a 

fluid chamber. 

2. Infuse 25 μl (slightly larger than the chamber volume) of 0.25 mg/ml Neutravidin 

in T50 buffer (10 mM Tris-HCl, pH 8.0, 50 mM NaCl)and incubate for 5 min. 

3. Rinse the chamber with 50 μl of T50 buffer. 

4. Infuse 50 μl blocking buffer (10 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mg/ml 

tRNA, 1 mg/ml BSA) and incubate for one hour. 

5. Remove one aliquot of completed DNA/RNA sample and dilute it to a final 

DNA/RNA concentration of 30-50 pM in 10 mM Tris-HCl, pH 8.0, 50 mM NaCl, 

0.1 mg/ml BSA. Infuse the diluted solution into the chamber and incubate for 30 

min.  
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6. Rinse sample chamber with 100-120 μl (more than 5 chamber volumes) of buffer 

A(10 mM Tris-HCl, pH 8.0). 

7. Mix 1 μl of the anti-digoxigenin-coated beads as prepared before and 99 μl of 

buffer A. Complete the buffer exchange from bead storage buffer to the Tris 

buffer by resuspending and centrifuging twice. Infuse 25 μl of the 100-times 

diluted beads into the chamber. Incubate for 30 min. 
8.  Rinse sample chamber with 100-120 μl Tris buffer (10 mM Tris-HCl, pH 8.0). 

9. Infuse the final imaging buffer typically containing 20 mM Tris-HCl, pH 8.0, 

0.5mg/ml BSA, 0.01 mg/ml anti-digoxigenin, 0.5 % (w/v) D-glucose (Sigma), 

165 U/ml glucose oxidase (Sigma), 2170 U/ml catalase (Roche), 3 mM Trolox 

(Sigma), and 0.1% (v/v) Tween 20 (Sigma) as well as appropriate concentrations 

of NaCl and divalent ions (MgCl2, CaCl2, etc) for the scientific question at hand. 

Proteins and other reagents (ATP, DTT, EDTA, glycerol, etc) can be added to the 

imaging buffer as needed. 
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2.7  Figures 
 

 
 
Figure 2.1 Experimental configuration: (A) Optical scheme of the hybrid instrument that 

combines optical tweezers and confocal microscopy . (B) Experimental scheme for 

Fluorescence-Force spectroscopy (not-to-scale). Mechanical forces can be applied to the 

biomolecule of interest by moving the sample surface aside with the piezo-stage. The 

biomolecule here could be a DNA/RNA molecule, a protein, or a biological complex 

(DNA-protein complex, protein-protein complex, etc). Cy3 and Cy5 are attached to the 

desired locations to monitor the conformational dynamics of the system through FRET.  
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Figure 2.2 Determination of the trapped bead height. (A) A diagram that shows how to 

determine the trapped bead height. Initially, a freely floating bead is trapped by the 

optical trap and the 532 nm laser is then focused at the surface by adjusting the height of 

the objective in z-axis. The coverslip surface is next raised to determine the height of the 

bead above the surface. (B) The QPD sum signal as a function of the surface position 

along z-axis. The QPD sum signal is recorded while moving the surface with a step size 

of 10 nm in z-axis from -2 µm to +2 µm (the initial z-position of the surface is zero). The 

contact point at z = 0.4 µm where the curve shows a strong kink and then rises steeply is 

when the elevated surface touches the bottom of the trapped bead (marked by a black 

arrow). (C) Histogram of the measured trapped bead height (n = 85). The average 

measured height, measuredz , is determined to be ~390 nm by a Gauss fit to the histogram. 
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Figure 2.3 The QPD calibration. (A) A diagram that shows how to place a surface-struck 

bead to the proper height to reproduce the trapped bead height. (B) The cartoon for a 

QPD containing four elements A, B, C and D. (C) The V1, V2 signals obtained at 

different bead positions (step size is 16 nm) when raster scanning the stuck beack through 

the trap center in the xy plane. Ex and Ey represent the residual errors from the fifth order 

polynomial fit (the circle indicates the fitting area). 
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Figure 2.4 An example power spectrum for the trap stiffness determination. The trapped 

bead (1-µm diameter)  is trapped and the confocol beam is focused onto the surface while 

the bead position in the xy plane is recorded at the sampling rate of 20 kHz. The roll-off 

frequency f0 = 1140 Hz obtained from the fit to Equation (2.2) (red solid line). 

 
 

 
Figure 2.5 Optically conjugated geometry for the piezo-controlled mirror. (A) The 

distance between L1 and L2 is the sum of their focal lengths, to keep the excitation laser 

beam collimated before and after the telescope system. (B) The piezo-controlled mirror is 

positioned in the optically conjugated plane of the back aperture of the objective. 
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Figure 2.6 Piezo mirror calibration and force-extension curve. (A) The mirror scan image 

around the area where the fluorescent beads are trapped in the sample plane without 

(upper) and with (lower) the mirror calibration. (B) A stretching curve and the force–

extension curve (upper inset) of the tethered DNA after the origin of the piezo stage is set 

to the estimated tethered position. A WLC model (red) is used to fit the experimental 

force–extension curve (blue). The lower inset shows a mirror scan image around the 

origin of the piezo stage after displacing the stage from its origin by 13 μm. The green 

dot indicates the center position of the fluorescently labeled molecule that is being 

stretched. 

 

 

 

 

 

 

 

 

 

 



 

37 
 

Chapter 3 
Probing Protein Dissociation 

Mechanism from Single-Stranded 
DNA‡ 

 
 
3.1 Introduction 
Single-stranded DNA binding (SSB) proteins are a class of proteins that bind 

preferentially and with high affinity to single-stranded DNA (ssDNA) which is a key 

intermediate in DNA metabolic processes including replication, recombination and repair 
113-115. The binding of  SSB proteins to ssDNA is mostly in a DNA-sequence-independent 

manner 116. SSB proteins are conserved in all kingdoms of life and are essential for cell 

survival 117. The E. coli SSB (EcoSSB), one of the first SSB proteins identified, forms a 

stable homotetramer in solution (Figure 3.1A) and each EcoSSB monomer (19 kDa) 

possesses one oligonucleotide binding (OB) fold 118,119.  EcoSSB is found to ssDNA with 

multiple modes (Figures 3.1B and 3.1C): At low salt concentrations (<10 mM Na+ or < 

0.2 mM Mg2+) and high SSB to DNA ratios, an SSB tetramer binds in the (SSB)35 mode 

in which on average two subunits of the tetramer cover ~35 ssDNA nucleotides (nt); in 

this mode SSB can form long cooperative clusters along ssDNA. At high salt conditions 

(> 200 mM Na+ or > 2 mM Mg2+), a low cooperativity mode ((SSB)65) is dominant in 

which ~65 nt of ssDNA wraps fully around all four subunits so that the two ends of the 

ssDNA exit the protein in close proximity 118,120-122.  But there are increasingly more 

evidence to show that the (SSB)65 mode is more biological relevant because SSB binds to 

ssDNA with this mode in the replication foci inside the living cells and SSB has been 

found to migrate ssDNA back and forth in this mode to facilitate the RecA filament 

growth on DNA123,124. 

                                                 
‡ The work in this chapter has been published as a paper: 

Zhou, R. et al. SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell 146, 
222-232 (2011) 
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Not only does SSB binding protect ssDNA from degradation and reduces the 

secondary structure of ssDNA, but it also controls the accessibility of ssDNA to other 

proteins. However, for subsequent DNA metabolic processes, SSB needs to give access 

of its bound ssDNAto other proteins such that the DNA metabolism can resume. EcoSSB 

interacts directly with at least 14 other proteins in every aspect of DNA metabolism that 

we term SIPs (SSB Interacting Proteins), including DNA Polymerase II, III and V, 

primase, RecQ, RecO, RecJ, RecG, PriA, PriB, Exonuclease I and IX, Uracil DNA 

Glycosylase and phage N4 RNA polymerase (Shereda et al., 2008), bringing them to their 

sites of function. How SSB permits access of SIPs to SSB-bound DNA is unclear. In this 

chapter, we adopt fluorescence-force spectroscopy described in Chapter 2 to probe the 

detailed steps by which SSB releases its bound DNA (i.e. the SSB dissociation 

mechanism from ssDNA). 

 

3.2  Two Distinct Stages of SSB Dissociation 
3.2.1    Near-Equilibrium DNA Unwrapping and Rewrapping at Low Forces 

The experimental configuration used is shown in Figure 3.2A to investigate the 

initial stage of the removal of tightly wrapped ssDNA from SSB in its fully wrapped 

(SSB)65 mode. A partial duplex DNA with a 5’-82 nt ssDNA overhang (Figure 3.2B; 

(dT)70 + 12 nt cos site of λ-DNA) was immobilized on a polymer-paussivated glass 

surface using a biotin-neutravidin link. A Cy3 (donor) - Cy5 (acceptor) FRET pair was 

attached to the DNA, separated by 68 nt of ssDNA ((dT)68). A λ-DNA was annealed to 

the 5’ end of the ssDNA tail via its 12 nt cos site and to a bead held in an optical trap via 

the other end via a Dig-Anti-dig interaction.  (Figures 3.2A and 3.2B). For simplicity, we 

depict the complex as a protein disc surrounded by a line, whereas in the 3D structural 

model of the SSB/DNA complex in its (SSB)65 mode, the path of the DNA around SSB 

resembles the seam of a tennis ball (Figure 3.1C).Our previous work showed that surface 

immobilization and fluorescent labelling have no measurable effect on the dynamics of 

the SSB-ssDNA binding mode transitions 121. At zero force and in 500 mM Na+, the 

wrapping topology of the 70-mer ssDNA around an SSB tetramer when bound in the 

(SSB)65 mode under our solution conditions should result in high FRET (~ 0.7) due to the 

close proximity of the donor-acceptor pair (Figure 3.1C). SSB remains bound to the 
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surface-tethered DNA even 5 hours after removing free SSB from solution (Figure 3.2C). 

After a surface-tethered bead was optically trapped and the tethered point was determined 

as we describe in Chapter 2, the coverslip was moved with the piezo-controlled stage to 

stretch the SSB-bound ssDNA for five force cycles. For each cycle, the stage was moved 

from a low force position (typically ~0.5 pN) at a constant speed of 455 nm s-1 until the 

force reached a pre-determined value (typically ~ 6 pN), followed by returning the stage 

at the same speed to the initial low force position (at 20 nM SSB tetramer concentration). 

The FRET efficiency E decreased and increased gradually (between ~ 0.7 and 0) as the 

force was increased and then decreased respectively, demonstrating force-induced, 

progressive DNA unravelling from SSB (Figure 3.2D). Figure 3.2D also shows the donor 

signal ID and acceptor signal IA as a function of time. 

In contrast, the E vs. force curve of ssDNA alone without SSB showed E values 

below 0.2 for the entire force range (Figure 3.3).  For each DNA stretching cycle shown 

in Figure 3.3, the sample stage was moved from a low force position (~0.5 pN) at a 

constant speed v (455 nm s-1) until the force reached a pre-determined value (~typically 

between 15-20 pN), followed by a sudden jump of the stage back to the initial low force 

position. In Figure 3.3B, the FRET efficiency trace obtained in the absence of SSB 

showed a very small force dependence until Cy3 (donor) was photobleached at t = 20.5 s. 

In each force cycle, FRET efficiency started from ~ 0.1 and decreased to ~ 0 as the force 

increased. In contrast to the case of SSB-bound DNA displaying high FRET, the initial 

FRET value for the ssDNA in solution is close to the value reported in a previous FRET 

study on single-stranded DNA conformational flexibility 125.   In Figure 3.3C, the FRET 

efficiency E decreased gradually from ~ 0.7 to ~ 0 as the force increased, demonstrating 

force-induced, progressive unraveling of the ssDNA from SSB as we observed in Figure 

3.2D. Blue arrows indicate SSB rebinding events. With 20 nM SSB tetramers in solution, 

once the force was reduced, E returned to 0.7 within our time resolution (~ 44 ms). 

However, with 1 nM SSB, E often remained low after force reduction, indicating that the 

SSB had dissociated at high force but did not immediately rebind. The E vs. force curve 

in the presumed unbound state resembled that of ssDNA itself. 

 Having confirmed that the time traces shown in Figure 3.2D indeed represents 

the initial ssDNA unraveling from a SSB tetramer surface, we calculated the averaged 



 

40 
 

FRET versus force curve from many obtained molecules in 500 mM Na+ (Figure 3.4A). 

We found that ssDNA unravelling begins once the force goes above a threshold of β = 

0.9 ± 0.2 pN and the averaged stretching and relaxation curves coincide (Figure 3.4A), 

indicating that the initial peeling off of ssDNA from the SSB surface below 6 pN of force 

is reversible. From the averaged FRET vs. force curve for stretching the SSB-bound 

ssDNA, we can replot the same data in a different presentation of distance vs. force 

(Figure 3.4B) by converting FRET efficiencies to distance values. The theoretical 

expression of FRET efficiency, EFRET, is given by EFRET = 1/ (1+(R/Ro)6), where R is the 

donor-accepter separation (or inter-fluorophores distance) and  Ro is the Förster radius. Ro 

for Cy3-Cy5 pair is ~ 6 nm 9,126. Therefore,       
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Throughout the following discussion, force and distance units are pN and nm 

respectively. Consequently, the energy is in pN nm. We can further define a variable, the 

ssDNA unraveling distance D, as the distance change in Cy3-Cy5 separation caused by 

the ssDNA unraveling from the protein surface.   Assuming the initial donor-accepter 

separation for the fully wrapped state is D0, then 

                                      D = R-D0            (3.2) 

The change in the distance between Cy3 and Cy5 estimated from FRET efficiency, 

D, scales linearly with force, F, within the FRET detectable range with a slope of α = 1.0 

± 0.03 pN/nm (Figure 3.4B). We have 

                                                 D= α·(F-β)   (when F ≥ β)                (3.3) 

 where α = 1.0 ± 0.03 nm/pN, β = 0.9 ± 0.2 pN for 500 mM Na+. The unraveling 

experiment performed at a different ionic condition (5 mM Mg2+ and 100 mM Na+) gave 

a similar result except that α = 0.7± 0.02 nm/pN and β = 1.2 ± 0.3 pN (Figure 3.4).  

For estimating the mechanical work, W, performed to reach an unraveling 

distance D, we have  
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 However, this work contains two parts: 1) the adsorption energy, Eads, contributed by the 

interaction between the protein surface and a ssDNA of a contour length L, which we 
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assume is equally distributed along the ssDNA bound to SSB, i.e. LE adsads ⋅= ε  , where 

adsε  is the adsorption energy density; and 2) the energy stored in the ssDNA segment that 

has been unraveled from the protein surface, EDNA. The first energy gives the adsorption 

energy of SSB-DNA complex so it is more specific to the protein-DNA interaction 

whereas the second term is a property of the ssDNA itself. In order to estimate the 

adsorption energy, we consider a regime where the ssDNA has been unraveled by an 

infinitely small amount, i.e. 0→D and β→F . We define L as the total contour length 

of two end ssDNA segments that has been unraveled from the protein surface (Figure 

3.4C). We can show that LD ≈ in the small D region by making two reasonable 

assumptions:  

1) When the two end segments of ssDNA stays bound to SSB, they have their total 

length close to the contour length L, shown in the above cartoon.  

2) After being unraveled, the segments of ssDNA changed their total length from L 

to x as unbound/bare ssDNA. When the applied force is small, using worm-like 

chain (WLC) model to estimate 127,  the applied force, F, required to induce an 

end-to-end distance extension of x in a ssDNA of contour length L is given by 

⎟
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L
x

P
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2
3 , where P, the persistence length of  ssDNA,  is very small (~ 1 nm 

in 150 mM NaCl and even smaller at higher salt concentrations) compared with 

that of dsDNA (~50 nm)18. At room temperature kBT = 4 pN nm, we have 
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⋅
=

⋅⋅
=  if using P ~ 1 nm for estimation. When β→F and β=~1 

pN, LLx ⋅≈⋅→ 1.08/β   At higher ionic strength (500 mM Na+), x should be 

even smaller and WLC tends to overestimate the end-to-end extension of ssDNA4. 

For example, in 5 mM Mg2+ buffer , at a force of ~ 0.9 pN the extension x is 

~ L⋅03.0 estimated from Figure 2 in Ref. [127]. Therefore, x is negligible 

compared with L in 500 mM Na+. But this approximation becomes not as good as 

at decreased ionic strength. 
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From the discussion above, we show that LD ≈ is a good approximation for 

infinitely small D at high ionic strength. So W can be rewritten by 

LLW ⋅+⋅≈ β
α

2

2
1       (3.5) 

The linear term is dominant compared with the second order term when L is small, so we 

have LW ⋅≈ β . Here, this dominant linear term represents Eads , while EDNA can be 

expressed from higher order terms. The contour length of ssDNA is 0.58 nm/nt 18, so adsε  

= β =0.9 ± 0.2  pN = 0.22 ± 0.05 kBT/nm = 0.13 ± 0.03 kBT/nt  for 500 mM Na+, and adsε  

= 1.2 ± 0.3 pN = 0.29 ± 0.07 kBT/nm = 0.17 ± 0.04 kBT/nt  for 5 mM Mg2+ and 100 mM 

Na+. This SSB/DNA interaction energy density is smaller than that between nucleosomal 

DNA and a histone octamer (0.5 -1.0 kBT/nm) 128,129, potentially explaining the more 

rapid diffusion for SSB.  

 

3.2.2    SSB Dissociation Events at Higher Forces 

If a maximum force of ~13 pN was reached, hysteresis was often observed 

(Figures 3.5A and 2B) where the initial return segment resembled that observed for 

ssDNA alone (Figure 3.3B), indicating that the SSB had dissociated fully at this higher 

force and did not immediately rebind. The averaged stretching and relaxation curves did 

not overlap and displayed hysteresis due to suppression of rebinding at high forces 

(Figure 2C), further indicating that full SSB dissociation occurs mainly at forces between 

6 and 13 pN. 

To determine precisely the force at which SSB dissociates, we repeated the same 

experiment, but using 1 nM SSBf, an A122C SSB mutant labeled with ~ one Alexa555 

per SSB tetramer124. Cy3 was used to locate the tethered DNA and then photobleached 

before the asymmetric force cycles were initiated. Alexa555 fluorescence becomes 

observable only upon SSBf binding to the DNA because proteins free in solution 

contribute only to the overall background fluorescence. Alexa555 fluorescence increases 

abruptly upon SSBf binding to the DNA and disappears later due to either SSBf 

dissociation or photobleaching (Figures 3.6A and 3.6B, green trace). The same types of 

events but monitored by FRET were seen if Cy5 is still active (Figures 3.6D and 3.6E). 
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Similar force-induced fluorescence disappearance events were observed at twice the stage 

moving speed (Figures 3.6C and 3.6F).   

From many SSB dissociation events, we could build a dissociation force 

histograms (Figures 3.7A and 3.7B). Beside the dominant peak centered at higher force 

(9-10 pN), an additional low force peak was found. The number N reflects the total 

events recorded including both dye photobleaching and SSB dissociation. The 

photobleaching of fluorophores follows an exponential decay 130 and most of the 

stretching cycle at the constant stage-moving speed was spent at low forces. The 

dominant peak did not shift very much upon doubling the pulling speed and the 

unraveling data in Figure 2 showed that SSB does not dissociate at these low forces. We 

hence attribute the additional peak in the low force region to photobleaching of 

fluorophores. 

The probability distribution p(Fd) was obtained (Figure 3.7D) after removing the 

population at low force (~ 1 pN) that we attribute to photobleaching. p(Fd) is broad and 

asymmetric, and the mean Fd shifted from 8.8±0.2 to 9.5±0.2 pN upon doubling the 

pulling rate v (Figures 3.7D), indicating that the final SSB dissociation from a partially 

wrapped intermediate 131 is a non-equilibrium process. We used the theory of Dudko et al 
132-134 to obtain the rate of SSB dissociation from the partially wrapped intermediate at 

zero force, k-1 = 0.010 ± 0.006 s-1; the distance to the transition state from the 

intermediate, Δx‡ = 3.2 ± 0.5 nm; and the height of the free energy barrier between the 

intermediate and unbound state ΔG‡ = (11 ± 2) kBT (Experimental Procedures). Similar 

results were obtained in 5 mM Mg2+ and 100 mM Na+ (Figure 2H) with mean Fd  = 

10.7±0.3 pN, k-1 = 0.010 ± 0.005 s-1, Δx‡ = 2.4 ± 0.3 nm, and ΔG‡ = (8.0 ± 0.3) kBT, 

Combining our data both at low (< 6 pN) and high force ranges (> 6 pN), the overall 

energy landscape can be stitched together with two major regions along the dissociation 

reaction coordinate (Figure 3.8).  

 

3.3   Conclusions 
Our data suggest that DNA unravels from SSB in two distinct stages (Figure 2G). 

Under moderate tension DNA is peeled off from SSB gradually at near equilibrium with 
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a uniform SSB/DNA interaction energy density of 0.1-0.2 kBT per nt, followed by 

complete dissociation at higher tension (~10 pN) that involves a large energy barrier (11 

kBT for 500 mM Na+, 8 kBT for 5 mM Mg2+ and 100 mM Na+). The partially wrapped 

intermediate that separates the two regions represents a state where SSB stays bound to 

the last short stretch of ssDNA before final dissociation. All SIPs tested so far bind SSB 

via the last 8-10 amino acids in the unstructured SSB-Ct 117. After the initial binding to an 

SSB-Ct, the resulting high local concentration of a SIP and the unwrapping of ssDNA at 

moderate tension may allow progressive ssDNA transfer from SSB to the SIP while 

avoiding the exposure of the ssDNA region to nucleases.  

 

3.4 Experimental Procedures  
DNA Sequences and Annealing Procedures 

1. 5'- /biotin/ TGG CGA CGG CAG CGA GGC /Cy5/ - 3' 

2. 5'-/5Phos/ GGG CGG CGA CCT T /iAmMC6T/ (T)68 GCC TCG CTG CCG 
TCG CCA - 3' 

3. 5’-AGG TCG CCG CCC TTT /digoxigenin/-3’ 
 
The sequence in red is the 12 nt cohesive end site of phage lambda DNA. The 

amine-modified thymine (iAmMC6T) shown in the sequence enables the 

oligonucleotides to be labeled with the monofunctional NHS ester form of Cy3 or Cy5 

dyes (GE Healthcare). Otherwise, Cy3 or Cy5 dye was attached directly to the DNA 

backbone using phosphoramidite chemistry. 

The partial duplex DNA substrates (18 bp dsDNA) with poly(T) single-stranded 

tails carrying fluorescence dyes were annealed by mixing ~5μM of biotinylated strand 

and ~7 μM of poly(T) strand in 10 mM Tris:HCl (pH 8.0) and 50mM NaCl followed by 

slow cooling from 90°C to room temperature for ~ 2 hours. λ-DNA (Promega) was then 

attached to the pre-annealed partial duplex DNA by following the protocol described 

previously100. Subsequently, the digoxigenin-labeled oligonucleotide complementary to 

the cohesive end site of λ-DNA was added (5’-AGG TCG CCG CCC TTT /digoxigenin/-

3’). This produced the complete DNA template, which was labeled with a single dig tag 

on one end and a biotin tag on the other end. 
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Protein Purification, Characterization and Labeling 

E. coli SSB 135 and SSB mutant (A122C labelled with ~ one Alexa555 per SSB 

tetramer) 124 were purified as described.  

  

Fluorescence-Force Spectroscopy Instrument 

The combined optical trapping and single-molecule confocal fluorescence 

instrument was built as previously described in Chapter 2. Briefly, the trapping laser 

beam was coupled through the back port of the microscope, while the fluorescence 

excitation laser beam (532 nm, 30 mW, World StarTech) was directionally controlled by 

a two-dimensional piezo-controlled steering mirror (S-334K.2SL, Physik Instrument) and 

coupled through the right side port. The fluorescence emission was isolated from the 

reflected infrared light (F3: HNPF-1064.0-1.0, Kaiser) and was band-pass filtered (F1: 

HQ580/60m, F2: HQ680/60m, Chroma) before being imaged onto two avalanche 

photodiodes. The bright-field image of the trapped bead was obtained using a CCD 

camera (GW-902H, Genwac). Two dimensional calibration of the QPD (UDT 

SPOT/9DMI) over the full detector range and trap stiffness determination were 

performed as described in Chapter 2.  

 

Sample Assembly 

For fluorescence-force measurements, about 10-50 pM of the complete DNA 

templates were immobilized on a coverslip surface which is coated with 

polyethyleneglycol (mPEG-SC, Laysan Bio) in order to eliminate nonspecific surface 

adsorption of proteins and reduce the surface interactions with DNA and beads 9,126. The 

immobilization was mediated by biotin-Neutravidin binding between biotinylated DNA, 

Neutravidin (Pierce), and biotinylated polymer (Bio-PEG-SC, Laysan Bio). Next anti-

digoxigenin-coated 1 μm polystyrene beads (Polysciences) were added so that one bead 

can attach to the free end of each tethered DNA. Finally, 1 nM or 20 nM of SSB protein 

was added in an imaging buffer containing 500 mM NaCl (or 5 mM MgCl2, 100 mM 

NaCl), 20 mM Tris:HCl (pH8.0), 0.1mM EDTA, 0.5mg/ml BSA(New England Biolabs), 

0.01 mg/ml anti-digoxigenin, 0.5 % (wt/vol) D-glucose (Sigma), 165 U/ml glucose 
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oxidase (Sigma), 2170 U/ml catalase (Roche), 3 mM Trolox (Sigma), and 0.1% (vol/vol) 

Tween 20 (Sigma).  

 

Single-Molecule Data Acquisition 

All single molecule measurements were performed at 22 ± 1°C. For fluorescence-

force measurements, once a tethered bead was trapped, the coverslip was moved back 

and forth with the piezo-stage to roughly determine the tethered position by finding the 

central position of the stretching curves in two orthogonal directions in the sample plane. 

The origin of the piezo stage was then reset to this central position. Next a more accurate 

position of the fluorescently labeled molecule was determined by displacing the molecule 

by 13 μm from the trap center and taking a confocal image around the tethered position.  

For the SSB dissociation experiment, the piezo-stage was then moved back and forth 

between a starting position (typically 13-14 μm separation between the tethered point and 

the trap center) to an end position (16.5 -16.8 μm separation between the tethered point 

and the trap center) at a constant stage-moving speed (455 or 910 nm s-1) for several force 

cycles.  The confocal excitation beam was programmed to follow the motion of the 

molecule so that in the meantime we were able to record the donor and acceptor 

fluorescence intensities with 44ms time resolution as the applied force ramped up. To 

obtain the averaged FRET vs. force curve, averaging was done over 30-50 cycles from 

10-20 molecules using a force bin size of 0.2 pN. To test the force dependence of the 

SSB diffusion rates, the stage was sequentially moved to five different positions. At 

different constant forces, single-molecule fluorescence signals were collected for 6 s with 

10 ms time resolution. For force-free smFRET experiments, the confocal microscope in 

the combined setup or a TIR microscope was used and single-molecule FRET histograms 

were generated by averaging for 300 ms. 

 

Dissociation Force Distributions 

Unfolding force distributions were created by reading out the corresponding force 

value for the SSB dissociation event indicated by fluorescence. The two distributions 

obtained in 500 mM Na+ with different pulling speeds were fit to the non-equilibrium 

model of Dudko et al 132.  



 

47 
 

            
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

−
Δ

−
Δ

∝
−

−
μ

μ

11

‡

‡

‡‡
1 1)(exp)()(

G
Fx

rx
Fk

rx
k

r
FkFp  

where       
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

−−Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

−=
−

−

μμ
μμ

1

‡

‡
‡

11

‡

‡

1 11exp1)(
G

FxG
G

FxkFk

,

 

r is the loading rate,  k-1 is the SSB dissociation rate from the partially wrapped 

intermediate at zero force, Δx‡ is the distance to the transition state from the intermediate; 

and ΔG‡ is the height of the energy barrier between the intermediate and unwrapped state, 

and μ is a parameter characterizing the shape of the energy barrier. We found the fitting 

results to be insensitive to the absolute values of the two loading rates but sensitive to the 

ratio between the two. Shifting the loading rate values by 10 % (the ratio maintains at 1:2) 

caused a shift of less than 1% in the fitted values of the three parameters. Considering 

that the majority of the dissociation events happened in a short span between 5 and 13 pN 

and the contour length of the DNA tether is very long, the loading rates can be treated as 

constant to a good approximation 133. We therefore performed a linear fit to the force-

time curve in the range of 5-13 pN to determine the approximate loading rates for the two 

pulling speeds. We used two values of ν to fit the force distributions and the fitting was 

performed globally between the two dissociation force distributions with three shared 

parameters k-1, Δx‡ and ΔG‡.  We obtained k-1 = 0.010 ± 0.007 s-1, Δx‡=3.4 ± 0.7 nm., and 

ΔG‡ = (12 ± 3) kBT for a sharp, cusp-like energy barrier (μ = 1/2), whereas k-1 = 0.010 ± 

0.006 s-1, Δx‡ = 3.2 ± 0.5 nm, and ΔG‡ = (11 ± 2) kBT for a softer, cubic potential (μ = 

2/3).  
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3.5 Figures 
 

 
Figure 3.1 (A) a cystal structure of a C-terminal truncated SSB tetramer (SSB∆C) 119. (B 

and C) Structural model for an SSB tetramer bound to a stretch of  ssDNA (thick gray 

line) in the (SSB)35 binding mode and fully wrapped (SSB)65 binding mode respectively, 

based on an X-ray crystallographic structure of a C-terminal truncated SSB tetramer 

(SSB∆C) bound to two (dC)35 oligonucleotides 118. 
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Figure 3.2 Force-induced Unraveling of ssDNA from SSB Measured by Fluorescence-

Force Spectroscopy. (A) Experimental scheme for force-induced unravelling of ssDNA, 

(dT)69+1, from SSB measured via FRET. One end of the construct was immobilized on a 

PEG surface via biotin-neutravidin interaction and the other end was linked to a bead 

held in an optical trap via a Digoxigenin-Anti-digoxigenin interaction. (B) DNA template 

used for the unravelling experiment showing the fluorescent labeling and the annealing 

geometry to λ DNA. The (dT)70 in purple represents the ssDNA part. (C) FRET 

histograms of the DNA construct at zero force with and without SSB bound.  The peak at 

zero FRET corresponds to DNA molecules with active Cy3 only, and the second major 

peak corresponds to DNA molecules with both active Cy3 and Cy5. Excess SSB proteins 
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were removed from the solution after incubating at 500 mM NaCl and 1 nM SSB 

tetramer concentration. The FRET histograms were obtained 1 minute, 2 hours, and 5 

hours after the removal of free SSB in solution. (D) Fluorescence-force traces obtained 

while stretching and relaxing the DNA at the stage-moving speed v of 455 nm s-1 (20 nM 

SSB in solution) when the maximum force achieved was set to ~ 6 pN (Averaged among 

~ 50 cycles from 10 molecules with a bin size of 0.2 pN).  

 

 
Figure 3.3 Unraveling ssDNA from an SSB tetramer. (A) Experimental scheme to stretch 

a 70-mer ssDNA with Cy3 and Cy5 separated by 68 nts of the ssDNA region. (B-D) 

Force-fluorescence traces at a SSB tetramer concentration of 0 (B), 20 (C),  or 1 (D) nM 

SSB.  
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Figure 3.4 (A) The averaged FRET vs. force curves for stretching and relaxing the DNA 

when the maximum force achieved was set to ~ 6 pN (in 500 mM Na+) or ~8 pN (in 5 

mM Mg2+ and 100 mM Na+). (B) Unraveling distance vs. force curves in two ionic 

conditions fit to straight lines (red lines), D = α·(F-β)  (when the force F ≥ β ), where α = 

1.0 ± 0.03 nm/pN, β = 0.9 ± 0.2 pN for 500 mM Na+, and α = 0.7± 0.02 nm/pN, β = 1.2 ± 

0.3 pN for 5 mM Mg2+ and 100 mM Na+, determined from the fit Error bars are the 

standard errors. (C) The cartoon illustrates when a force is applied, two end segment of 

SSB-bound DNA are unraveled from the protein surface. The black thick curve presents 

the ssDNA. We define L as the total contour length of the two end ssDNA segments that 

have been unraveled from the protein surface, and x/2 as the end-to-end extension of each 

ssDNA segment unraveled.  

 
 
 
 
 
 
 
 
 
 

Force 

x/2 L   x/2 
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Figure 3.5 (A) Experimental scheme for force-induced unravelling of ssDNA, (dT)69+1, 

from SSB measured via FRET as in Figure 3.2D. (B) Fluorescence-force traces obtained 

while stretching and relaxing the DNA at the stage-moving speed v of 455 nm s-1 (20 nM 

SSB in solution) when the maximum force achieved was set to ~ 13 pN (in 500 mM Na+). 

Blue arrows indicate SSB binding events. (C) The averaged FRET vs. force curves for 

stretching and relaxing the DNA when the maximum force achieved was set to ~ 13 pN. 

Error bars are ± s.e.m. (Averaged among 45 cycles from 12 molecules with a bin size of 

0.2 pN). 
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Figure 3.6 (A-C) Experimental scheme and force-fluorescence curves that indicate the 

binding and dissociation of individual Alexa555-labeled SSB (SSBf) at a stage-moving 

speed of 455 (B) or 910 (C) nm s-1. Similar force-induced fluorescence disappearance 

events were observed as seen at a stage-moving speed of 455 nm s-1. Blue and magenta 

arrows represent SSB binding and dissociation events respectively. (C-E) Experimental 

scheme and force-fluorescence curves that indicate the binding and dissociation of 

individual SSBf with active Cy5 at a stage-moving speed of 455 (D) or 910 (E) nm s-1. 

When Cy5 labeled on the DNA duplex junction is active, fluorescence signals appear 

both in donor and acceptor channels upon SSBf binding (blue arrows), further suggesting 

the abrupt fluorescence appearance events observed were not caused by non-specific 

binding of SSBf to the surface. The sudden disappearance of fluorescence signal in both 

detection channels represents SSBf dissociation or donor photobleaching events (magenta 

arrows).  

 



 

54 
 

 
 
Figure 3.7 (A and B) The dissociation force histograms obtained in 500 mM Na+ at the 

stage-moving speed of 455 (A) or 910 (B) nm s-1. (C) The dissociation force histogram 

obtained in 5 mM Mg2+ and 100 mM Na+ at the stage-moving speed of 455 nm s-1. In 

contrast to the previous work where a force-fluorescence combined scheme was used 136, 

our method has the single protein resolution so that we can differentiate some part of 

photobeaching events from protein dissociation events. This reduces the influence of the 

fluorophore photobleaching in counting the protein dissociation events because the 

photobleaching population outside the time window of the protein dissociation events can 

be removed as shown above. (D) Dissociation force distributions obtained in 500 mM 

Na+ at the two stage-moving speeds. The small population assigned to fluorophore 

photobleaching has been removed. The solid lines are the global fits to the Dudko model 

with the parameter (μ) that controls the shape of the energy barrier set to 1/2 (blue) or 2/3 

(red) (see Experimental Procedures). (E) Dissociation force distribution obtained in 5 

mM Mg2+ and 100 mM Na+ at the stage-moving speed of 455 nm s-1. 

 
 



 

55 
 

 
 
Figure 3.8 Energy landscape along the SSB dissociation reaction coordinate with two 

distinct regions: 1) gradual peeling off of SSB-bound ssDNA from SSB tetramer surface 

and 2) Final dissociation of SSB that needs overcome a high energy barrier. 
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Chapter 4 
Probing Protein Diffusion Mechanism 

on Single-Stranded DNA§ 
 
4.1 Introduction 

The process by which protein diffusion along DNA facilitates location of specific 

target sites or its repositioning has been studied almost exclusively on double-stranded 

DNA 137. Recently, we reported the direct observation of a protein diffusing on ssDNA 
124. Using single molecule two- and three-color FRET (fluorescence resonance energy 

transfer 10), we found that EcoSSB can diffuse on ssDNA (diffusion coefficient ~300 

nt2/s at 37 ºC) with a mean step size of 3 nt, and that this SSB activity transiently melts 

DNA secondary structures and stimulates RecA filament elongation 124. The underlying 

mechanism for diffusion is fundamental to understanding cellular functions but how a 

protein with such a large binding site size (~65 nt for SSB) and high affinity can diffuse 

spontaneously and rapidly on DNA remains unknown. In addition, how the application of 

force or the binding of SIPs might modulate these SSB dynamics has not been 

investigated. 

Here, we apply fluorescence-force spectroscopy described in Chapter 2 to monitor 

the tension-dependent conformational transitions of DNA/protein complexes with 

nanometer resolution at the single protein level. Our earlier study on SSB 124 was based 

on only fluorescence measurements. Here, with tension applied to the DNA and our 

unique capability to measure temporal changes of arbitrary coordinates (i.e., not just the 

end-to-end distance of a biopolymer) at low forces, we were able to obtain unique 

information that is unattainable by mechanical manipulations or fluorescence techniques 

alone. The fluorescence probes can be positioned at different desired locations on DNA 

and/or protein to probe the dynamics along various vectors, which maximizes the 

information content. This approach allowed us to directly observe the mechanical 
                                                 
§ The work in this chapter has been published as a paper: 

Zhou, R. et al. SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell 146, 
222-232 (2011) 
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regulation of an individual SSB tetramer diffusing along ssDNA. In addition, we also 

applied single molecule FRET together with fluorescence-force spectroscopy to probe 

SSB diffusion mechanism. 

 

4.2 Probing SSB Diffusion Mechanism 
4.2.1   Rolling vs. Sliding Mechanisms for SSB Diffusion on DNA 

At present, there is only one proposed mechanism in the literature on how SSB 

may achieve this feat 138,139. In this rolling mechanism, a partial unwrapping of one end 

segment of ssDNA from an SSB tetramer is followed by rewrapping of the other end of 

the ssDNA in its place, resulting in a one-dimensional random walk of SSB along DNA 

(Figure 4.1A). The rolling mechanism utilizes the closed wrapping of ssDNA on the SSB 

surface and allows SSB diffusion while maintaining most of its contacts with ssDNA 

(with relatively low energetic cost), and is therefore an attractive mechanism. An 

alternative scenario that has not been previously considered for SSB is that the whole 

ssDNA ‘slides’ relative to the protein surface (Figure 4.1B). 

To distinguish between ‘rolling’ and ‘sliding’, we performed smFRET 

experiments with Alexa555-labeled SSB (SSBf) and DNA constructs with Cy5 attached 

to either the end (Figure 4.1C, Scheme 1) or the mid-section (Figure 4.1D, Scheme 2) of 

(dT)70 ssDNA. In rolling, only the end segments of the ssDNA would display motion 

relative to SSB while the mid-section of bound ssDNA would not because the 70 nt 

ssDNA is only slightly longer than the SSB binding site. Therefore, Scheme 2 should 

show FRET fluctuations for sliding due to the change in the distance between Alexa555 

and Cy5 (Figure 4.1B), but not for rolling (Figure 4.1A). FRET time traces for both 

schemes show fluctuations of similar amplitudes (Figures 4.1C and 4.1D), strongly 

supporting the sliding model in which the whole SSB-bound ssDNA moves relative to 

the SSB surface during diffusion. Plotting the mean FRET efficiency of each molecule, 

<E>, versus its standard deviation over time, σE, (Figure 4.1E) revealed no significant 

differences in the amplitude of FRET fluctuations between the two labelling schemes, 

further indicating that sliding is likely the dominant mechanism and that contributions 

from rolling, if any, must be much smaller. To quantify the diffusion time scale in each 

case, we calculated the cross-correlation function between Cy3 and Cy5 intensity-time 
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traces. The diffusion-induced fluctuation time scales were 117 ± 3 ms for Scheme 1 and 

301 ± 22 ms for Scheme 2 obtained from single-exponential fits to the cross-correlation 

of ID and IA (Figure 4.1F and Experimental Procedures in this chapter).  

Besides Schemes 1 and 2, we also tested the other two labeling schemes (Schemes 

3 and 4) for SSBf /(dT)70 where Cy5 was instead positioned either 16 or 70 nt away from 

one end of the ssDNA (dT)70 (in Schemes 1 and 2, Cy5 was positioned either 0 or 35 nt 

away from one end of the (dT)70 respectively). In Figure 4.2, we plot the normalized 

cross-correlation functions of ID and IA for all the four labeling schemes. The scatter plot 

of <E> versus σE for individual FRET time trajectories obtained from Schemes 3 and 4 

shows the similar result as we observed for Schemes 1 and 2 (Figure 4.2C). 

In order to further test that the FRET fluctuations observed are due to SSB 

diffusion on DNA, we first obtained FRET time traces using (dT)40 and (dT)51, which are 

shorter than an SSB tetramer binding site size and therefore are not expected to allow 

SSB diffusion. Indeed, FRET fluctuations beyond measurement noise were eliminated 

(Figures 4.2A-C). The cross-correlation of ID and IA averaged over >100 molecules 

showed no significant anti-correlation (Figure 4.3D). Next, we performed a systematic 

experiment using unlabeled SSB and DNA constructs with ssDNA equal to or shorter 

than the SSB tetramer binding site size and labelled with Cy3 and Cy5 separated by 16, 

31, 41, 50 and 60 nt (Figure 4.4). We did not observe any FRET fluctuations beyond 

measurement noise, indicating that the FRET fluctuations observed when ssDNA is 

longer than the binding site size are not due to conformational changes of SSB-bound 

ssDNA. 

As a further test, we applied tension to SSB-bound DNA to disrupt the closed 

wrapping which is a prerequisite for rolling 124,131. The diffusion-induced FRET 

fluctuations persisted even at forces up to ~ 5 pN (Figure 4.5), a force regime where the 

ssDNA unravelling, as measured by FRET, is essentially complete (Figure 1C). If 

diffusion on ssDNA indeed does not require closed wrapping, the ability to diffuse on 

ssDNA may be shared by other ssDNA binding proteins that do not display closed 

wrapping. This result also supports the sliding mechanism. 
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4.2.2   Reptation (Sliding-With-Bulge) Mechanism for SSB Diffusion 

Having ruled out rolling as a dominant mechanism, how might the sliding of 65 nt 

of SSB-bound DNA be achieved every time SSB takes a step? There are two general 

classes of model with different transition or intermediate states between diffusional steps. 

In one, all of the contacts are broken simultaneously before the protein can slide relative 

to the DNA to arrive at the adjacent position (Class A, Figure 4.6A). In the other, only a 

few contacts between the protein and the DNA are broken and then reformed at a time, 

i.e., all contacts are broken in piecemeal (Class B). An attractive possibility for a Class B 

model is ‘reptation’ (Figure 4.6B) where propagation of a defect (or a loop/bulge) in a 

polymer chain gives rise to an overall translation of the chain 140-142. A DNA bulge is 

formed via thermal fluctuations with an excess length ΔL, equivalent to the diffusion step 

size, which then propagates via a random walk: if the bulge happens to be annihilated at 

the position where it formed, there will be no net motion, but if it reaches the other end of 

the SSB-bound DNA, the protein would be repositioned by ΔL 143. The bulge can form 

spontaneously if an unwrapped DNA segment is rewrapped but with an offset of size ΔL. 

Because this would reduce the overall end-to-end length of the DNA tether, an applied 

force would make such an event less likely to occur, slowing down the reaction. 

Therefore, the reptation model predicts that increased tension on the DNA will slow 

down SSB diffusion. One would expect just the opposite for Class A models where the 

DNA needs to be transiently detached from the protein surface for each step of diffusion 

because higher forces will make it easier to achieve such a transient state (hence faster 

diffusion) by reducing the number of contacts between the protein and the DNA via DNA 

unraveling. 

In order to probe if diffusion becomes faster or slower with increasing force, we 

extended the ssDNA region by 13 nt beyond the 69 nt that separate Cy3 and Cy5 (Figure 

6A) and measured FRET at constant forces and at 1 nM SSB and 500 mM Na+. The anti-

correlated fluctuations in ID and IA confirm that SSB can diffuse along the ssDNA even 

under tensions up to ~ 5 pN (Figures 4.7A and 4.7B). The peak of the FRET histogram 

shifted to a value near zero at the higher (6.5 pN) force (Figure 4.7C) due to ssDNA 

unwrapping from the protein surface, as was seen from the FRET-Force stretching curve 

in Chapter 3 (Figure 3.4A).  We repeated this experiment in another ionic condition (5 
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mM Mg2+ and 100 mM Na+) and the result was similar (Figures 4.7E and 4.7F). 

Importantly, the characteristic time scale for diffusion τ calculated from the cross-

correlation curve increased with force F under both ionic conditions that we have 

investigated (Figures 4.7D and 4.7G). The slower diffusion at higher forces favors the 

reptation model (‘sliding-with-bulge’), over the Class A models (‘sliding-without-bulge’) 

as a mechanism for sliding. In addition, the data in Figures 1 and 2 indicate that the 

energy cost of breaking multitudes of bonds simultaneously between ~65 nt of DNA and 

the protein surface is (11 + 0.13·N) kBT (N is the number of nucleotides unraveled before 

reaching the partially wrapped intermediate) and that an SSB tetramer remains bound to 

ssDNA in the absence of free SSB for several hours (Figure 3.2C). Therefore, it is highly 

unlikely that a complete/global dissociation of SSB occurs every time SSB diffuses on 

ssDNA by each step, further discounting Class A models in favour of the reptation model.  

  In reptation, to step from one site to the other at zero force, SSB needs to 

overcome an energy barrier, ΔU(0) (Figure 4.8), associated with the extra curvature 

energy for the DNA loop-bulge formation and the adsorption energy of the protein 

surface and DNA 143.The ragged plateaus in the energy landscape represent the 

intermediates when a DNA loop-bulge of about 3 nt in extra length is formed, and in this 

model, we envision that the bulge propagates to either of the two ends rapidly and is then 

annihilated. The tension, F, applied to the ends of the ssDNA adds an extra mechanical 

energy penalty (~FΔL) to loop formation, and increases the energy barrier by the same 

amount, resulting in a force-dependent diffusion time scale.  

 Why is the force dependence of the diffusion time scale steeper in 5 mM Mg2+ 

and 100 mM Na+ than in 500 mM Na+? We obtained FRET histograms of naked ssDNA 

with Cy3 and Cy5 separated by either (dT)31 or (dT)50 (Figure 4.9). We observed lower 

FRET values in 5 mM Mg2+ and 100 mM Na+, suggesting that ssDNA is more extended 

and the persistence length of ssDNA is larger due to the lower salt concentration 125. If 

the minimum bulge size during reptation is limited by the persistence length of ssDNA, 

one would expect a larger ΔL at lower salt concentrations, resulting in a stronger force 

dependence.  
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4.2.3   SSB Interacting with RecO via SSB-Ct Decelerates SSB Diffusion on DNA 

Our data thus far show that SSB diffusion on DNA is robust against moderate 

tension. Would SSB diffusion persist even when bound to SIPs? We examined the effect 

of RecO, one of the 14 SIPs in E. coli 117. RecO promotes annealing between SSB-coated 

DNA strands 144 and stimulates RecA loading onto SSB-coated ssDNA 145-149. RecO is 

monomeric in solution under our conditions (Experimental Procedures) and binds with 

1:1 stoichiometry to each of the four SSB-Cterminal tail (SSB-Ct) but not to SSB without 

the Ct (Figures 4.11A-C)145,150. After forming a stable complex of a single SSB tetramer 

with (dT)69+8, we added RecO to the solution (Figure 4.10A). These FRET histograms 

(Figure 7B) differed from those observed for DNA/RecO interactions (Figure S6E). 

FRET fluctuations persisted even with RecO present in solution (Figures 4.10C and 

4.10D), indicating that SSB diffusion occurs even with RecO bound to the DNA/SSB 

complex. However, cross-correlation analysis (Figure 4.10E) showed that RecO binding 

does slow SSB diffusion and the characteristic time scale of SSB diffusion increased 

from 50 ± 2 to 77 ± 4 ms at the highest RecO concentration tested. This effect is not 

merely due to RecO binding to ssDNA 147,150,151 because it is abolished if the SSB/RecO 

interaction is disrupted by deleting the last 42 amino acid residues from the SSB-Ct 118 

(termed SSB∆C; Figure 4.10F). SSB∆C or an 8 amino acid C-terminal truncation of SSB 

(termed SSB∆C8) displayed the same ssDNA binding features as wild type SSB under 

these conditions 124,152, but SSB∆C8 does not bind RecO (Figure 4.11B). Because RecO-

promoted ssDNA annealing requires Mg2+ 151, we repeated our experiment in buffer 

containing 10 mM Mg2+ and 80 mM K+. Similar diffusion-induced FRET fluctuations 

were observed in the absence and presence of RecO (Figures 4.11F and 4.11G). Slowing 

of diffusion was also observed for wild type SSB but not for SSB∆C8 (Figures 4.10G). 

 

4.3  Discussion 
4.3.1 Reptation as a Diffusion Mechanism 

Our probing of SSB diffusion along ssDNA has provided new insights into the 

fundamental mechanism of the one-dimensional random walk of proteins on ssDNA. Our 

data ruled out ‘rolling’ as a dominant mechanism for SSB diffusion on DNA and suggest 

that the SSB-bound DNA would ‘slide’ all together relative to the protein surface during 
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diffusion. Reptation may also offer an explanation for why SSB diffusion may occur with 

a step size larger than 1 nt 124. The minimum step size in reptation is constrained by the 

minimum size of the DNA bulge. Because the persistence length ranges from 1 to 3 nm 

between 25 mM and 2 M Na+ 125, a bulge of the minimal size, 1 nt, could be too 

energetically costly to form. A reptation step size of ~3 nt may also be rationalized by the 

crystal structure of SSB bound by ssDNA which showed clusters of 2-4 nt in size that 

bind to specific sites on the protein 118. 

The force-dependence data on SSB diffusion (Figure 6) provides direct 

experimental evidence for a ‘reptation’ model of protein motion on DNA. Although we 

have not directly observed bulge formation and propagation, which is presumably too fast 

to detect, and we have not technically ruled out all other Class B models, reptation (or 

sliding-with-bulge) is the only model we are aware of that is consistent with all of the 

data reported here.  

 

4.3.2   Functional Role of SSB Diffusion on DNA 

The fact that SSB diffusion along ssDNA was detected with up to 5 pN of tension, 

even when the SSB-ssDNA structure is not fully wrapped, suggests that SSB diffusion 

may persist during its cellular functioning even in the crowded conditions in vivo where 

the DNA is likely to experience tension of various magnitudes, and that the ability to 

diffuse on ssDNA may be shared by other ssDNA binding proteins that do not display 

closed wrapping, as suggested for phage T4 gene 32 protein 153. SSB appears to diffuse 

continually as long as there is an available extension of ssDNA beyond its binding site 

size. This small-scale (tens of nucleotides) SSB diffusion along DNA should be 

important in the redistribution of SSB on ssDNA after its initial binding to a random 

location because for proteins with such high affinities, redistribution would be difficult if 

it required complete dissociation and reassociation. SSB diffusion over short lengths 

would be important for protecting these small DNA gaps and allowing access of SIPs to 

the ssDNA and hairpin removal by SSB. In addition, single SSB tetramers can be moved 

by the action of a directed motion as we have shown for RecA filament formation 124. 

Our data also suggest RecO and other SIPs that bind to SSB via the SSB-Ct would not 

prevent but only moderately slow down SSB diffusion along ssDNA. The slowing of 
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diffusion may be due to the weak interaction of RecO with ssDNA facilitated by SSB-Ct 

binding 150, and/or the increased radius of the SSB-RecO complex. Our data overall 

suggest that SSB diffusion may occur even when a SIP interacts simultaneously with 

both ssDNA and SSB and that SSB may serve as a dynamic platform to recruit SIPs for 

use in DNA replication, recombination and repair. 

 

4.3.3   Implications for Nucleosomes 

The closed wrapping of ssDNA around SSB bears some resemblance to the 

wrapping of ~ 147 bp of dsDNA around the histone core in a nucleosome 118,154,155. The 

mechanistic insights that we obtained for SSB diffusion and dissociation processes 

parallel those observed for nucleosomes 156-160. Nucleosomes can also be repositioned 

along duplex DNA 156, likely through the spontaneous unwrapping of the DNA ends 160, 

and RNA polymerase can rectify this thermal motion to move through chromatin 161. A 

similar mechanism allows a growing RecA filament to rectify the diffusion of SSB into a 

directed movement 124.Two models for nucleosome sliding were proposed, based on the 

reptation of defects in polymer chains: through 10 bp bulge defects 128,143 and through 1 

bp twist defects 162 but no experimental support is yet available for either. Our study 

provides direct experimental evidence for a reptation model of protein motion on ssDNA. 

 

4.4 Experimental Procedures 
DNA Sequences and Annealing Procedures 

1. 5'- /biotin/ TGG CGA CGG CAG CGA GGC /Cy5/ - 3' 

2. 5'-GGG CGG CGA CCT (T)13  /iAmMC6T/  (T)68 GCC TCG CTG CCG TCG 
CCA - 3' 

3. 5’-AGG TCG CCG CCC TTT /digoxigenin/-3’ 
4. 5’- GCC TCG CTG CCG TCG CCA - /biotin/ - 3’ 
5. 5’- /Cy5/  GCC TCG CTG CCG TCG CCA -/biotin/- 3’ 
6. 5’- TGG CGA CGG CAG CGA GGC (T)70 - 3’ 
7. 5’- TGG CGA CGG CAG CGA GGC (T)16 /Cy5/ (T)54  - 3’ 
8. 5’- TGG CGA CGG CAG CGA GGC (T)35 /Cy5/ (T)35  - 3’ 
9. 5’- TGG CGA CGG CAG CGA GGC (T)70  /Cy5/T - 3’ 
10. 5’- TGG CGA CGG CAG CGA GGC (T)68  /iAmMC6T/ (T)8 - 3’ 
11. 5’- TGG CGA CGG CAG CGA GGC (T)16 /Cy5/ (T)24  - 3’ 
12. 5’- TGG CGA CGG CAG CGA GGC (T)16 /Cy5/ (T)35  - 3’ 
13. 5’- TGG CGA CGG CAG CGA GGC (T)40 /Cy5/ - 3’ 
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14. 5’- TGG CGA CGG CAG CGA GGC (T)40 - 3’ 
15. 5’- TGG CGA CGG CAG CGA GGC (T)16 /iAmMC6T/ (T)43  - 3’ 
16. 5’- TGG CGA CGG CAG CGA GGC (T)31 /iAmMC6T/ T - 3’ 
17. 5’- TGG CGA CGG CAG CGA GGC (T)41 /iAmMC6T/ T - 3’ 
18. 5’- /Cy3 / (T)50 GCC TCG CTG CCG TCG CCA -3' 
19. 5'-GGG CGG CGA CCT /iAmMC6T/ (T)65 GCC TCG CTG CCG TCG CCA - 3' 

 
The sequence in red is the 12 nt cohesive end site of phage lambda DNA. The 

amine-modified thymine (iAmMC6T) shown in the sequence enables the 

oligonucleotides to be labeled with the monofunctional NHS ester form of Cy3 or Cy5 

dyes (GE Healthcare). Otherwise, Cy3 or Cy5 dye was attached directly to the DNA 

backbone using phosphoramidite chemistry. DNA Annealing protocol is the same as 

described in Chapter 3. 

 

Protein Purification, Characterization and Labeling 

E. coli SSB, SSB-C proteins (>99% homogeneity), SSBΔC 135, SSBΔC8 152 and 

SSB mutant (A122C labelled with ~ one Alexa555 per SSB tetramer) 124 were purified as 

described. E. coli RecO protein was expressed and purified as described 163,164. The 

assembly state and stability of RecO protein was verified using sedimentation 

equilibrium at two concentrations (3 and 4 μM) and three rotor speeds (20, 25 and 30 

thousands RPM) as described 165. All sedimentation profiles (not shown) obtained either 

under conditions of single molecule assays (Figures 7 and S7E) or ITC binding 

experiments (Figure S7A-C) fit well to a model for a single ideal species with molecular 

masses 26.9 ± 0.3 kD and 25.9 ± 0.4, respectively, similar to that expected for a RecO 

monomer (27.3 kD). 

 

Sample Assembly and Data Acquisition 

For fluorescence-force measurements, the protocols and instrumentation are 

described in Chapter 2 and Chapter 3. For the diffusion measurement of SSB at zero 

force, the partial duplex DNA was surface immobilized as described above but the beads 

were not added afterwards. Instead, 1 nM of SSB was directly added with the 

aforementioned imaging buffer and then incubated for 1 min to form the SSB-ssDNA 

complexes before flushing with the same imaging buffer (but with no SSB) to remove the 
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excess SSB from solution. All the experiments with RecO were performed with a total 

internal reflection (TIR) microscope described in Chapter 1. After SSB/DNA complexes 

were formed and excess SSB proteins were removed, RecO was added at varying 

concentrations with buffer: 200 mM KCl, 0.2% DMSO (or 10 mM MgCl2, 80 mM KCl, 

0.8% DMSO), 20 mM Hepes:NaOH (pH 7.5), 0.5mM TCEP, 1 mM EDTA, 0.1 mg/ml 

BSA, 5% (vol/vol) glycerol, 0.5 % (wt/vol) D-glucose, 165 U/ml glucose oxidase, 2170 

U/ml catalase, 3 mM Trolox, and RecO at concentrations as stated. Single-molecule 

FRET histograms were generated by averaging for 300 ms. 

 

Isothermal Titration Calorimetry (ITC) 

All ITC experiments were performed using a VP-ITC titration microcalorimeter 

(MicroCal Inc., Northampton, MA) in buffer C (200 mM KCl, 10 mM Cacodylate, pH 

7.0, 0.1 mM EDTA, 1 mM BME, 25% glycerol) following the routine established for 

studying SSB interaction with PriA and Chi proteins 166. RecO concentrations were 1-3 

μM in the cell, and C-terminal peptides and SSBs concentrations in the syringe were 40-

100 μM and 8-14 μM (tetramer), respectively (Figures S7A and S7B). In Figure S7C, the 

concentration of SSB in the cell was 1 μM  and concentration of (dT)70 in the syringe 15 

μM. Binding isotherms were analyzed using n-independent and identical sites model as 

described 166.SSB C-terminal peptides WMDFDDDIPF and WMDFDDDISF were 

obtained from Celtek peptides (Celtek Bioscience, LLC, TN). The Trp residue at N 

terminus was added for better quantification of peptide concentration (ε280= 5500 M-1cm-1) 

 

Cross-correlation Analysis 

The cross-correlation analysis was performed as previously described 167. The 

calculated cross-correlation functions were calculated between donor and acceptor time 

traces for a given molecule. By fitting the calculated cross-correlation functions to a 

single exponential function, one obtains two parameters (the characteristic time of the 

exponential, τ, and the amplitude of the exponential at τ = 0). As an extra example, we 

re-examined SSB diffusion along a 70 nt ssDNA using two different labeling schemes: 

(A) Cy3-Cy5 labeled DNA and SSB; (B) Cy5-labeled DNA and SSBf (Figure 4.12A). 

Both schemes showed anti-correlated fluctuations of ID and IA (Figure 4.12B; 10 ms time 
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resolution), likely due to SSB diffusion on ssDNA. The fluctuation time scales (30 ± 2 

ms for Scheme A and 149 ± 4 ms for Scheme B) obtained from single-exponential fits to 

the cross-correlation of ID and IA
167,168 were similar to those for SSB diffusion on similar 

length ssDNA124. The faster fluctuations of smaller amplitudes observed using Scheme A 

are likely due to a different degree of degeneracy in the FRET states (Figure 4.12C). 
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4.5  Figures 
 

 
 
Figure 4.1 Evidence favoring the sliding mechanism over the rolling mechanism. (A) 

Rolling mechanism for SSB diffusion. One end of the wrapped DNA could partially 

dissociate from the SSB while the other end of the DNA binds to the same newly open 

DNA binding site. This mechanism is facilitated by the ‘closed wrapping’ topology of the 

DNA around the SSB tetramer and there is no relative ‘sliding’ motion between ssDNA 

and the SSB surface in this model. Only the ends but not the mid-section of the bound 

DNA slide/move relative to SSB during diffusion. (B) Sliding mechanism for SSB 
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diffusion. In this mechanism, the whole SSB-bound DNA (65 nt) slides relative to protein 

surface during diffusion. (C and D) Representative single-molecule time traces of 

donor(Alexa555) and acceptor(Cy5) intensities and corresponding FRET efficiency show 

fluctuations induced by SSBf diffusion along the ssDNA if Cy5 is attached near one end 

of (dT)70 (Scheme 1) or to the middle of (dT)70 (Scheme 2; 30 ms time resolution). a.u., 

arbitrary units. (E) A scatter plot of <E> versus σE for individual FRET time trajectories 

obtained from the two Cy5 labelling schemes. (F) Cross-correlation analysis of single-

molecule intensity-time traces fit to single exponential function for data obtained with the 

two labeling schemes in (C) and (D) (averaged over > 300 molecules each). 

 
Figure 4.2 (A) The other two Cy5 labeling schemes for SSBf /(dT)70 and their typical 

corresponding FRET time traces (time resolution: 30 ms). To test whether the reptation or 

rolling mechanisms is more likely, we varied the Cy5 labeling locations on the same 

DNA partial duplex. Cy5 was positioned either 0, 16, 35, or 70 nt away from one end of 

the ssDNA (dT)70. The length of the ssDNA here was only 5 nt longer than the SSB 

tetramer binding site size (65 nt). The rolling mechanism proposed previously suggests 

no relative ‘sliding’ movement between bound ssDNA and the SSB surface so the DNA 
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substrates with internally labeled Cy5 should not yield FRET fluctuation as when Cy5 

was attached to either end of the ssDNA because in the rolling model diffusional 

dynamics occurs only at the two unwrapping/rewrapping ends of the ssDNA. However, 

the FRET time traces show the same amplitude of diffusion-induced fluctuations for all 

four DNA substrates, indicating the existence of movement of protein relative to ssDNA. 

(B) Normalized cross-correlation analysis of FRET trajectories fit to single exponential 

function for data obtained with the four labeling schemes (average from more than 300 

molecules for each scheme).  The characteristic time constants obtained for these 

fluctuations are 117 ± 3, 301 ± 22, 351 ± 25, 151 ± 10 ms for Schemes 1, 2, 3, 4 

respectively. The characteristic times obtained from Schemes 1 and 4 were longer, 

possibly due to bulge formation events that when created at the ends did not propagate to 

the middle of the DNA if a reptation model is considered for SSB diffusion. 

(C) A scatter plot of <E> versus σE for individual FRET time trajectories obtained from 

Schemes 3 and 4.  σE , reflecting the amplitude of the fluctuations, shared a same mean 

compared with Schemes 1 and 2. 

 

 

 
Figure 4.3 (A and B) Representative single-molecule intensity-time traces (30 ms time 

resolution) suggest the FRET fluctuations are inhibited if SSBf binds to a Cy5-labeled 
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ssDNA that is shorter than the SSB tetramer binding site size ((dT)40 and (dT)51). (C) 

Two other Cy5 labeling schemes for SSBf /(dT)40 and their typical corresponding FRET 

time traces. (D) Cross-correlation analysis of single-molecule intensity-time traces for 

data obtained with the shorter ssDNA in (A-C) (averaged over > 100 molecules each). 

 

 
Figure 4.4 (A) Five DNA labeling schemes and their typical corresponding FRET time 

traces when SSB binds to the ssDNA. The lengthes of the ssDNA here were either the 

same with or shorter than the SSB tetramer binding site size. The Cy3-Cy5 separation 

was 16, 31, 41, 50 and 65 nt of ssDNA respectively. (B) Cross-correlation analysis of 

single-molecule intensity-time traces for data obtained with five Cy3-Cy5 labeled DNA 

constructs whose ssDNA tail lengths are equal to or shorter than the SSB tetramer 

binding site size (averaged over > 100 molecules each). 
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Figure 4.5 SSB diffusion persists under tension. FRET trajectories of SSBf continue to 

show diffusion-induced fluctuations with increasing force up to ~ 5 pN. Magenta arrows 

indicate SSBf dissociation events.  

 

 
Figure 4.6 Schemes for two possible SSB sliding mechanisms. (A and B) For the sliding 

mechanism, the whole bound DNA sliding would occur through different transition or 

intermediate states. The sliding-without-bulge model (or ‘hopping’) would require the 

simultaneous rupture of all of the binding interactions between ~ 65 nts of DNA and the 

SSB protein surface as the transition state (A). Alternatively, a sliding-with-bulge model, 

namely the reptation mechanism for SSB diffusion, allows the sliding of the whole bound 
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DNA relative to SSB surface to occur little by little. As the transition states in reptation, 

the ssDNA at the 'edge' of the SSB partially dissociates from the protein surface and 

distortion of this unwrapped segment of DNA can form a loop-bulge with an extra length 

of three nucleotides, and this 'defect in stored length' propagates back and forth over the 

entire wrapped portion until it emerges on the other side, leading to one step of SSB 

diffusion along the ssDNA (B). The arrows represent the DNA movements and the cyan 

asterisk represents a single nucleotide position on the DNA. The asterisk-marked position 

on ssDNA will slide along the protein surface by the end of the diffusion cycle. 

 

 
Figure 4.7 Mechanical control of SSB diffusion along DNA and the reptation (sliding-

with-bulge) mechanism. (A) Experimental scheme with extended ssDNA region. 
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Fluorophores are conjugated to the 82 nt long ssDNA ((dT)69+13) as shown. (B and C) 

Cy3-Cy5 time traces and FRET histograms at five different constant forces when SSB 

binds to (dT) 69+13  in 500 mM Na+ and 1 nM SSB tetramer (10 ms time resolution). 

These diffusion-induced FRET fluctuations persisted even at forces up to 4.7 pN. The 

characteristic time scale of SSB diffusion at different forces can be obtained by cross-

correlation analysis. (D) Cross-correlations of donor and acceptor intensities over time 

and exponential decay fits in 500 mM Na+ at five different constant forces (10 ms time 

resolution). (E and F) Cy3-Cy5 time traces and FRET histograms at five different 

constant forces when SSB binds to (dT) 69+13  in 5 mM Mg2+ and 100 mM Na+ (10 ms 

time resolution). (G) The characteristic time scale τ of SSB diffusion determined from the 

exponential fit of cross-correlation vs force obtained under two ionic conditions. Error 

bars are s.e.m. 

 

 

 

 

 
Figure 4.8 Energy landscape along the SSB diffusion coordinate and the proposed 

reptation model for SSB diffusion on DNA. ΔL is the reduction in the overall DNA 

length when the thermally activated DNA bulge is formed. Solid line for force F = 0; 

dashed line for F > 0. 
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Figure 4.9 FRET histograms of naked ssDNA (dT)50 and (dT)31+1 in two ionic conditions, 

suggesting the persistence length of ssDNA is larger in  5 mM Mg2+ and 100 mM Na+ 125. 

The peaks at zero FRET are due to DNA molecules possessing inactive Cy5, whereas the 

other peaks are due to FRET. 

 

 

 
Figure 4.10 SSB diffusion along ssDNA persists but slows down when SSB interacts 

with RecO via SSB-Ct. (A) Schematic of reaction steps. (B) FRET efficiency histograms 

for (dT)69+8 DNA only, and DNA/SSB complexes in the absence and presence of RecO. 

(C) Representative single-molecule time traces of DNA/SSB in the absence of free SSB 
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and RecO (in 200 mM K+).  (D) Representative single-molecule time traces of 

DNA/SSB/RecO complex in 3 μM RecO and in the absence of free SSB (in 200 mM K+).  

(E), Normalized cross-correlations of donor and acceptor intensity time traces as shown 

in (C) and (D) averaged over more than 300 molecules each with and without 3 μM RecO. 

Single exponential fits are also shown. (F) The characteristic time scale τ of SSB 

diffusion determined from the exponential fits of cross correlations as shown in (E) as a 

function of RecO concentrations for wild type SSB and SSB∆C in 200 mM K+. τ of SSB 

diffusion as a function of RecO concentrations for wild type SSB and SSB∆C in 10 mM 

Mg2+ and 80 mM K+. 

 

 
Figure 4.11 RecO binding to SSB-Ct peptide, SSB, SSB-(dT)70 complex, and (dT) 69+8 

DNA. (A) Results of ITC (Isothermal Titration Calorimetry) titration of RecO with SSB-

Ct peptide, WMDFDDDIPF, (grey squares) indicate that RecO binds one molecule of the 

peptide with moderate affinity ~ 2×106 M-1, whereas the interaction with the peptide 
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containing a single Pro to Ser mutation, corresponding to the SSB-113 mutation, which is 

known to disrupt a number of protein interactions with SSB-C-terminus 120,169 is not 

detectable (open squares).  

(B) Reverse titrations of RecO with SSB (dark yellow triangles) and SSB-dT70 (1:1) 

stoichiometric complex (cyan triangles) confirm that ~4 molecules of RecO interact with 

SSB tetramer (1 per C-terminal tail). Control titrations with SSBΔC8, lacking last 8 

amino acids, (yellow circles) and its complex with (dT)70 (open squares) show no 

detectable interaction with RecO. The affinity of RecO binding to C-terminal tails of SSB 

tetramer appears to be similar to C-terminal peptide alone. However, slight increase in 

affinity (~two fold) is observed when SSB tetramer is in the stoichiometric complex with 

(dT)70. The latter increase could be related to additional contacts, which RecO may form 

interacting weakly with ssDNA in the complex, as was observed previously for another 

SIP protein, PriA helicase, which also can interact weakly with ssDNA alone 166. 

 (C) Control titrations of SSB and SSBΔC8 with (dT)70 indicating that both proteins form 

identical stoichiometric (K>1010 M-1)  1:1 complex with ssDNA. All binding isotherms 

presented in panels a, b and c were analyzed using n- independent and identical site 

model as described 166. The smooth lines through the experimental points represent fits of 

the data with the best fit parameters, N – the stoichiometry of binding, K – equilibrium 

binding constant  (M-1) and ΔH – enthalpy change (kcal/mol), which are shown in the 

inserts with the errors representing S.D. 

(D) Schematic of reaction steps. RecO were added to the immobilized partial duplex 

DNA that contains (dT) 69+8. FRET histograms were obtained 10 min after RecO addition 

at varying RecO concentrations. Excess RecO were then flushed out and FRET 

histograms were obtained 2 min and 10 minutes after flushing.  

(E) FRET histograms for (dT) 69+8 DNA, DNA/RecO complexes at varying RecO 

concentrations and after flushing out excess RecO in 200 mM K+. FRET histograms 

suggest RecO binds to ssDNA without a well defined FRET state for RecO binding. 

(F) Representative single-molecule time traces of DNA/SSB in the absence of free SSB 

and RecO (in 10 mM Mg2+ and 200 mM K+).  

(G) Representative single-molecule time traces of DNA/SSB/RecO complex in 2 μM 

RecO and in the absence of free SSB (in 10 mM Mg2+ and 200 mM K+).  
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Figure 4.12 Cross-Correlation Analysis for Labeled and Unlabeled SSB. (A and B) Anti-

correlated donor-acceptor time traces with corresponding FRET efficiency (time 

resolution: 10 ms). SSB binds to DNA substrates that contain an ssDNA region 70 nt 

long flanked by two dsDNA arms but the FRET pair has two different labeling schemes: 

A) Cy3 and Cy5 were labeled near the two ends of the 70nt ssDNA; B) Cy5 was attached 

near one end of the 70nt, whereas Alexa555 was labeled on the SSB (one Alexa555 per 

tetramer on average). (C) Cross-correlation analysis of experiments performed using 

Scheme A (yellow, average from 73 molecules) and Scheme B (purple, average from 76 

molecules) for SSB binding to (dT)70 at zero force. Solid lines show single exponential 

fits. The fluctuation time scales (30 ± 2 ms for Scheme A and 149 ± 4 ms for Scheme B) 

obtained from single-exponential fits to the cross-correlation of ID and IA were similar to 

those for SSB diffusion on similar length ssDNA 124.  (D) Comparison of residence times 

in difference FRET states for Schemes A and B in a cycle containing two SSB diffusion 

steps by a reptation mechanism. We plotted all the FRET states (F) and their 
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corresponding residence times (t). One would anticipate multiple residence times though 

it might not be resolved with the given time resolution. Note that the duplex DNA part 

was not shown in the picture for simplification and the Cy3 labeling site for Scheme A 

was not exactly on the end of the ssDNA, either of which has made the labeling 

asymmetric for the two ends in Scheme A (F1 and F3 would not yield the same FRET, 

and the same is true for F0 and F4). But in Scheme B, there exists a greater degree of 

degeneracy in the FRET states, resulting in longer residence times (t1’= t1 + t2 ; t2’= t3 + 

t4). This can explain why we observed longer characteristic times for Scheme B from the 

cross-correlation analysis. 
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Chapter 5  
Mapping Two-Dimensional Reaction 
Landscape of the Holliday Junction** 

 
5.1  Introduction 

Holliday juncions (HJs) are a four-way DNA junction structures, the central DNA 

intermediates in homologous genetic recombination which are important in DNA 

rearrangements and in the repair of double-strand breaks in DNA170. In the absence of 

ions the junction adopts an ‘open’ state where the four arms are directed toward the 

corners of a square with an open central region (Figure 5.1A). In the presence of 

physiological concentrations of magnesium ions (or some monovalent and divalent 

mental ions), the HJ becomes more compact by pairwise coaxial stacking of helical arms 

into a right-handed antiparallel stacked-X structure 171-173. There are two ways of forming 

this stacked structure that depend upon the choice of helical stacking partners (isoI and 

isoII), and a single junction can undergo fast dynamics of conformational exchanges 

between isoI and isoII conformers (Figure 5.1B) 174,175. At present, there is no structural 

information on the transient species populated during these conformational changes, and 

the population of isoI relative to isoII strongly depends on the junction core sequence 
174,176. 

Many biological processes are dependent on tension. In recent years, single 

molecule force measurements have shown directly that biochemical reactions can be 

influenced by applied force 74. Yet, purely mechanical tools can not detect small scale 

conformational changes unless persistent and strong enough force is applied. At weak 

forces, the flexible tether connecting the mechanical probe to the biological molecule is 

not fully stretched and therefore can not transmit small movements. This is unfortunate 

because weak and transient forces are likely more prevalent in vivo, but the experimental 

                                                 
** This work has been published as a paper: 

Hohng, S., Zhou, R. et al. Fluorescence-force spectroscopy maps two-dimensional reaction 
landscape of the holliday junction. Science 318, 279-283 (2007). 
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limitations confine in vitro single molecule studies to examining the effect of relatively 

large forces. We aimed to study the effect of small external forces by combining single 

molecule fluorescence resonance energy transfer (smFRET) 177-179 with manipulation 

using optical tweezers 180 such that an individual molecule’s conformational fluctuations 

can be measured by FRET as a function of force. smFRET has high spatial resolution (≤ 

5 Å) 181,182) and can be measured at arbitrarily low forces. Previous attempts to combine 

FRET and optical trap using the DNA hairpin as a model system 183,184 did not reveal new 

information because the hairpin unzips at high forces ( ~ 15 pN), a regime that had been 

extensively investigated using force-based methods 185,186. Here, we use fluorescence-

force spectroscopy to detect nanometer-scale motion at sub-pico Newton (pN) forces. We 

used the approach to gain insight into the reaction landscape of the Holliday junction (HJ) 

by gently stretching it along different directions. 

 

5.2  Experimental Scheme and HJ Construct Design 
To investigate the nature of the possible transient HJ structures and to understand 

how HJ conformational properties could depend on physiologically relevant forces, we 

built a hybrid instrument that combines smFRET with optical trapping via a long linker 

(bacteriophage λ DNA) as we describe in Chapter 2. The trapping and fluorescence 

excitation beams in our confocal microscope are spatially separated (minimum 13 μm, 

Figure 5.2A) such that fluorescence and force processes can operate without mutual 

interference. The long linker acts as a loose spring that dampens the random forces 

generated by Brownian motion of the trapped bead and reduces force variations due to 

the nanometer-scale conformational change of the HJ. Therefore, the measurements can 

be performed under effectively constant force without the need for active force clamping. 

The relaxation time scales of the λ DNA are faster than the time scale of conformational 

fluctuations we investigate here 187. The trapping beam (1,064 nm) was fixed along the 

optical axis of the microscope, and force was applied by moving the surface-tethered HJ 

using a piezoelectric sample scanner. The confocal excitation beam (532 nm) was 

programmed to follow the HJ using a piezo-controlled mirror to maintain uniform 

excitation and detection efficiencies regardless of the specimen location (and therefore 

force).  
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Under physiological conditions, i.e. with magnesium ions present, the HJ 

becomes more compact by pairwise stacking into a right-handed antiparallel stacked-X 

structure 171-173. In Figure 5.2B, we show the two alternative ways of forming this stacked 

structure that depend upon the choice of helical stacking partners (isoI and isoII). To 

determine comprehensively the force response of the HJ, we used the following four 

constructs (Figure 5.2C). The four helices comprising the HJ are named B (red), H 

(green), R (dark gray), and X (gray). Helix R was labeled at its 5’ terminus with biotin for 

surface immobilization, and helices X, H, or B were extended by a 12 nt ssDNA 5’-

overhang to permit annealing to a cohesive end of λ-DNA (named junctions XR, HR and 

BR respectively). The other end of the λ-DNA was attached to a bead via 

digoxigenin/anti-digoxigenin coupling in order to pull on the DNA using optical tweezers 

in three different directions, between X and R arms for junction XR etc. Junctions XR and 

XR-long differ in the length of the X and R arms (11 bp vs. 21 bp). For these studies, we 

have chosen a well-studied junction construct called junction 7 which has similar 

population of stacking conformers isoI and isoII 176. Cy3 (FRET donor), was attached to 

the 5’-terminus of helix H, and Cy5 (acceptor) to the 5’-end of helix B. For junctions XR 

and XR-long, the stretching force should favor isoI (low FRET), in which there is a larger 

separation between the two tether points, over isoII (high FRET) (Figure 5.2D). 

Likewise, isoII (high FRET) would be favored at high forces for junction HR. In contrast, 

the two tether points would have similar distances for isoI and isoII in the case of 

junction BR, and force-induced bias should be minimal.  

 

5.3  Experimental Results 
5.3.1   Conformational Equilibrium of Different HJ Constructs at Zero Force 

We first compared the conformational equilibrium at zero force among the different HJ 

constructs that we designed above but without a λ-DNA attached and in the absence of 

trapping laser beam. The transition rate from isoI to isoII (kf) and the transition rate from 

isoII to isoI (kb) can be determined from FRET time traces of single HJ molecules. We 

made the scatter plots of kf versus kb for individual FRET time traces obtain for each HJ 

construct (Figure 5.3). It is clear from the scatter plots that the dynamic behaviors of the 

isolated junctions are not modified significantly when the adhesive single stranded tail is 
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added to a different arm (Figure 5.3A) and when the arm lengths are changed (Figure 

5.3B) because the scatter plots for all the HJ constructs tested showed no significant 

difference.  

 

5.3.2   Force Response of Different HJ Constructs 

We next applied forces to junctions XR, HR and BR to study how applied forces 

through different vectors (or arm pairs) influence the conformational dynamics of a same 

HJ molecule (Junction 7 in this case). Figure 5.4A shows smFRET time traces at five 

different forces (gray lines, 10 s duration each with 10 ms integration time) obtained from 

a single molecule of junction XR. Enhanced photostability by means of the use of Trolox 
188 allowed us to obtain one to five cycles of force data from a single molecule before 

fluorophore photobleaching, corresponding to observation over 50 to 250 s. Idealized 

FRET trajectories generated by hidden Markov modeling (red lines) 189 are also shown. 

At the lowest force (0.3 pN), the junction switches between the high and low FRET states 

with similar populations. As the force exceeds 1 pN, the dynamics become clearly biased 

to the low FRET state. Figure 5.4B shows the transition rates determined from hidden 

Markov modeling as a function of force. The transition rate kf  for the forward reaction 

from the low FRET state (isoI) to the high FRET state (isoII) decreases with increasing 

force (blue), while the transition rate for the backward reaction kb (isoII to isoI) increases 

with force (red) as expected. Both changes were linear in the log-linear scale but 

interestingly, kf had twice the slope of kb. If the reaction is viewed as possessing a single 

transition state, the slope reflects the distance to the transition state 74. Therefore, the 

transition state lies closer to isoII than to isoI when force is applied via the XR vector. 

According to Ref.[74], we have the following equations for a two-state reaction energy 

landscape (Figure 5.5), 

                       (5.1) 
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where ΔG0 is the energy difference between the two states. Keq(F) is the equilibrium 

constant at certain applied force F and can be determined from the ratio of dwell times of 

the molecule in the isoI and isoII states at any given force . Δxb
‡ represents the distance 

from isoII to the transition state (the energy maximum) along the reaction coordinate and 

Δxf
‡ represents the distance from isoI to the transition state along the reaction coordinate. 

the distance Δxeq represents the distance between isoI and isoII along the reaction 

coordinate. kf(F) and kb(F) are the forward and backward transition rates at certain 

applied force, respectively. kf(0) and kb(0) are the forward and backward transition rates 

at zero force, respectively. We hence used Equations  (5.2) and (5.3) to fit the data in 

Figure 5.4B and obtained Δxb
‡ and Δxb

‡ from the slope of the linear fits. Averaged over 

five molecules, for junction XR Δxb
‡ = 1.5 ± 0.3 nm and Δxf

‡ = 2.9 ± 0.6 nm (Table 5.1).  

We next studied junction HR where the λ DNA tether has been transferred from 

the X to the H arm. In this construct, the force is expected to bias the HJ to the high 

FRET isoII state, and indeed this was the result (Figure 5.4C). kb decreased and kf 

increased with stronger forces, but with two-fold higher slope for kb than for kf (Figure 

5.4D). Averaged over five molecules, Δxb
‡=2.4 ± 0.5 nm and Δxf

‡=1.3 ± 0.3 nm. In both 

junctions, (Δxb
‡+Δxf

‡) is equal to the distance between isoI and isoII, Δxeq, calculated 

from equilibrium population vs. force data (Table 5.1). Therefore, the distances between 

the ends of the pulled arms, dXR for junction XR and dHR for junction HR, are suitable 

reaction coordinates spanning the complete trajectory from isoI to isoII (Figure 5.6A).  

In one pulling direction represented by dXR, the transition state lies closer to isoII 

(Figure 5.6A, middle panel) while for the other pulling direction along dHR, the transition 

state more closely resembles isoI (Figure 5.6A, bottom panel). These two transition states 

can not represent a single structure because then both dXR and dHR must be relatively 

small, and by symmetry so must be dXB and dHB. Such a structure would have all four 

helices in the same hemisphere relative to the junction core which is highly unlikely 

considering the symmetry of the HJ. Instead, we favor a model where there are at least 

two different transition states, tsI and tsII, equal in energy but corresponding to different 

values of dXR (or dHR), such that force would elevate one of them into the single highest 

( ) ( )0lnln
‡
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energy barrier via the tilting of the energy landscape (Figure 5.6A). 

Finally, it is better to note that the data presented so far show that the distance 

change upon stacking conformer transitions is about 4 nm. Since thermal energy is about 

4 pN nm, a force on the order of 1 pN would consequently change the equilibrium 

between the two states by 2-3 fold. Such small scale conformational fluctuations at these 

low forces are probably impossible to detect in a purely mechanical measurement, 

especially at our time resolution (10 ms). 

 

5.3.3   A Lever Arm Effect 

What determines the force sensitivity of the junction? Is it an intrinsic property of 

the junction core or is it dependent on the length of helical arms on which the force is 

applied? Since the four arms of the HJ meet at its center, we may recast the experimental 

configuration as a torque being applied around the central pivot point. The torque is 

proportional to the product of the magnitude of force and the distance between the point 

of application of the force and the pivot point (i.e., the length of the arm). Therefore, it 

could be expected that increasing arm length would result in a greater torque for the same 

force. We tested such a lever arm effect using junction XR-long, where the X and R arms 

are lengthened by about a factor of two (from 11 bp to 21 bp) compared to junction XR. 

FRET histograms as a function of applied force (Figures 5.7E and 5.7F) show that 

increasing the lever arm length has magnified the force effect such that much lower force 

is needed for junction XR-long to achieve the same conformational bias. Figures 5.7C and 

5.7D compare the transition rates vs. force between five molecules each of junctions XR 

and XR-long each and shows that junction XR-long exhibits much greater changes in rates 

for the same magnitude of force (also compare Δxf
‡ and Δxb

‡ in Table 5.1). Since the 

persistence length of double stranded DNA is about 50 nm ( ~ 150 bp) 190 the lever arm 

effect can probably be extended by another factor of five for arms of ≥ 100 bp. That is, 

forces as low as 0.1 pN would be enough to influence the junction conformations, 

illustrating the exquisite force sensitivity of the HJ. 

 

5.3.4   Mapping the Reaction Energy Landscape of HJ 

Since the effect of force depends on the arm lengths, the most natural reaction 
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coordinates are angular. The angles that define the global shape of the junction are φ, the 

interhelical angle between two stacked pairs of helices, and ψ, the angle that measures 

the degree of unstacking of stacked helices 191 (Figure 5.6B). For example, for a stacked-

X structure φ=40° and ψ=0° 173, while for an open structure, φ is 0° and ψ is 90° (Figure 

5.6C). These two angles are well-defined within the angular space in which identities of 

stacking pairs are maintained. Our aim here is to deduce the structure of the transition 

state by determining the φ and ψ values of the transition state using a geometrical 

analysis. The analysis below estimates the angles (φII, ψII) of the transition state tsII in the 

isoII half of the conformational reaction coordinate, but the same conclusions hold for tsI.  

tsII lies a third of the way from isoII to isoI along the dXR coordinate (Table 5.1, Figure 

5.6A). We can show that this condition is satisfied for a collection of (φII, ψII) values, 

starting from (70°, 0°) at one extreme and arriving at (0°, 70°) at the other (Figure 5.6C, 

gray zone, see also section 5.4 Experimental Procedures). In order to obtain an additional 

constraint, we performed an equivalent force analysis on junction BR (Figure 5.4E, 5.4F, 

Table 5.1). Junction BR exhibited much reduced (by 5-6 fold) force dependence of the 

equilibrium populations compared to junctions XR and HR (compare Δxeq  values in Table 

5.1). The residual force dependence of the equilibrium populations may be attributed to 

the finite diameter of the DNA duplex (Supporting Online Materials). In contrast to 

junctions XR and HR, application of force on junction BR accelerated both forward and 

backward transitions (Figure 5.4F). Therefore, the distance between the ends of B and R 

arms, dBR , must be larger in the transition state than in the stacked-X structures. This 

condition is satisfied only if φII in the transition state is smaller than the 40° of the 

stacked-X structure. Furthermore, the distance to the transition state is 0.37 nm at 

minimum which constrains φII to be essentially zero (see section 5.4 Experimental 

Procedures). In combination, our best estimate is (φII, ψII)ts= (0°, 70°) for tsII (Figure 

5.6C). This transition state is similar to the open state, but with arms deviating by about 

20° from the ideal open state while displaying signatures on which pairs of helices are 

nearly stacked over each other (Figure 5.6D). The structure bears a strong resemblance to 

the HJ structure bound to the Cre recombinase 192. Following the same argument, we can 
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deduce that the transition state in the isoI-like conformational space, tsI, also has (φI, 

ψI)ts= (0°, 70°). 

By probing the HJ dynamics in response to pulling forces in three different 

directions, we mapped the location of the transition states in the two-dimensional reaction 

landscape and deduced the global structure of the transient species populated during the 

HJ conformational changes. Our simplest model envisions a shallow minimum between 

the two transition states, depicted as the open structure (Figures 5.6A and 5.6D), but it is 

also possible that a continuum of conformations exist, spanning from tsI and tsII with 

nearly identical free energies, instead of having a single well-defined minimum. 

 

5.3.5   Laser-Induced Heating from Optical Tweezers 

A laser beam has a high power density at its focus position and hence may 

generate a significant amount of localized heating at the laser focus193. In our case, the 

typical laser intensities are 300-800 mW for the 1064 nm trapping laser and 2-3 µW for 

the 532 nm excitation laser. Considering that 300-800 mW is fairly high, we tested the 

heating effect by the 1064 nm trapping laser.  Taking advantage of the fact that HJ 

dynamics are very sensitive to temperature, we compared the transition rates of HJ in the 

absence and presence of the IR trapping laser. In an actual fluorescence-force 

spectroscopy exeperiment, the HJ molecule was placed 13 μm or larger distances away 

from the IR laser focus (i.e. the trap center). Therefore, we obtained the FRET time traces 

from a HJ molecule with and without the the IR beam placed away by 13 μm. In Table 

5.2, we summarize the average and standard deviation of the transition rates in the 

absence and presence of IR laser. Indeed, both the forward and backward transition rates 

increase up to ~1.5 folds. Since the enthalpic barrier determined from temperature 

dependent studies of the junction of same sequence was 110 kJ/mole 194, 50% increase in 

rate corresponds to about 2-3° C increase in temperature induced by the trapping laser. 

We can also obtain the transition rates of junction XR, HR and XR-long at zero 

force by extrapolating the fit in Figures 5.4B and 5.4D to zero force and compare the  

rates for zero-force extrapolation with those for free forms of the junctions (without λ-

DNA attached) in Table 5.3. The data in Table 5.3 show that the zero force extrapolation 

yields rates are 3 to 4 times higher for the forward reaction and 1.5 to 3.5 times higher for 
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the backward reaction, than those for free forms of the junctions.  This is consistent with 

the result shown in Table 5.2 where up to 1.5 times increase in rates were observed from 

laser heating. The remaining differences may have multiple origins, for example, (1) λ-

DNA may tug on the junction continually even in the absence of applied force, (2) λ-

DNA may alter the electrostatic environment of the junction. We note that the conformer 

transition rate can vary by more than two orders of magnitude when the ionic conditions 

are changed 195. 

 

5.4  Experimental Procedures 
Sample assembly 

Nonspecific binding of the DNA and beads was prevented using cover slips 

coated with poly-ethylene glycol as previously described196. The sample chamber was 

sequentially incubated with (1) neutravidin (0.25 mg/ml) for 10 min, 2) blocking buffer 

containing tRNA (1 mg/ml) and BSA (1 mg/ml) for 1 h, 3) junction- λ-DNA (50 pM in 

HJ) for 40 min, 4) a solution of anti-digoxigenin coated bead for 30 min, and  5) imaging 

buffer comprising 10 mM Tris (pH 8.0), 5 mM NaCl, 10 mM MgCl2, 1 mg/ml BSA, 

1mg/ml blocking DNA, 0.04 mg/ml anti-digoxigenin, 0.4 % (w/v) D-glucose (Sigma), 

165 U/ml glucose oxidase (Sigma # G2133), 2170 U/ml catalase (Roche # 

10106810001), and 1 mM Trolox (Sigma) 188). Steps 3-5 were carried out using a syringe 

pump to minimize DNA shearing. 

 

Experimental Scheme and Data Analysis 

The tethered position of the trapped bead was determined with an accuracy 

greater than 100 nm by finding the central position of the stretching curves in two 

orthogonal directions in the sample plane. The force-extension curves were used to 

determine the extension required to achieve the desired stretching force. Before collecting 

the data a more accurate central position of the molecule was determined from the 
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confocal image of single-molecule fluorescence from the HJ displaced 13 μm from the 

trap center.  At different stretching lengths, single-molecule fluorescence signals were 

collected for 10 s at room temperature with 5 ms (junction BR) and 10 ms (all others) 

time resolution. The measurements were repeated for the same molecule until 

photobleaching. The confocal beam was programmed to follow the motion the HJ using 

the mapping generated between the sample scanning and beam scanning. To determine 

transition rates at different forces, hidden Markov modeling was used as described 

previously 189 . 
 

DNA Sequences for the Four Different Holliday Junction Structures 

Junction XR 
b-strand: 5’-/Cy5/ CCC TAG CAA GCC GCT GCT ACG G-3’ 
h-strand: 5’-/Cy3/ CCG TAG CAG CGC GAG CGG TGG G-3’ 
r-strand: 5’-/biotin/ CCC ACC GCT CGG CTC AAC TGG G-3’ 
x-strand: 5’-GGG CGG CGA CCT CCC AGT TGA GCG CTT GCT AGG G-3’ 
 
Junction XR-long 
b-strand: 5’-/Cy5/ CCC TAG CAA GCC GCT GCT ACG G-3’ 
h-strand: 5’-/Cy3/ CCG TAG CAG CGC GAG CGG TGG GCG AAC GCT TA-3’ 
r-strand: 5’-/biotin/ TAA GCG TTC GCC CAC CGC TCG GCT CAA CTG GGA CCG 
TTT CGT-3’ 
x-strand: 5’-GGG CGG CGA CCT ACG AAA CGG TCC CAG TTG AGC GCT TGC 
TAG GG-3’ 
 
Junction HR 
b-strand: 5’-/Cy5/ CCC TAG CAA GCC GCT GCT ACG G /Cy3/-3’ 
h-strand: 5’-GGG CGG CGA CCT TTT CCG TAG CAG CGC GAG CGG TGG G-3’ 
r-strand: 5’-/biotin/ CCC ACC GCT CGG CTC AAC TGG G-3’ 
x-strand: 5’-CCC AGT TGA GCG CTT GCT AGG G-3’ 
 
Junction BR 
b-strand:  5' - /5Phos/GGG CGG CGA CCT CCC TAG CAA GCC GCT GCT ACG G - 3'  
h-strand:  5' - /5Cy3/CCG TAG CAG CGC GAG CGG TGG G - 3'  
r-strand:   5’- /biotin/ CCC ACC GCT CGG CTC AAC TGG G-3’  
x-strand:  5' - CCC AGT TGA GCG CTT GCT AGG G/3Cy5Sp/ - 3 
 
Sample Preparation 

DNA strands were purchased from IDT DNA (Coralville, IA). The Holliday 
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junctions were annealed as follows.  Biotinylated (10 μM) and non-biotinylated strands 

were mixed in 1:1.2 molar ratio in a buffer containing 10 mM Tris (pH 8) and 50 mM 

NaCl. The mixture was cooled on a heating block from 90 ºC to room temperature over 

the course of 3 ~ 4 hours. Then λ-DNA was annealed to the small HJ molecules and anti-

digoxigenin beads were made as described in Chapter 2. 

 

Geometrical Model of Holliday Junction in Angular and Cartesian Coordinates 

Here, we describe a simplified geometrical model that depicts the HJ 

conformation using two angular coordinates. Starting from this configuration shown, 

bend 1 and 2 out of the page by ψ/2 each, and 3 and 4 into the page by ψ/2 each. 

Assuming each arm length is 1, 
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From these coordinates, we can easily calculate the distance between two ends of 

any pair of helices. For example, dHR, the distance between the ends of arms H and R, in 

isoI would be given by the distance between points 1 and 4 above multiplied by the 

effective arm length Leff. Likewise, dBR in isoI would be given by the distance between 

points 1 and 3 above multiplied by Leff. In this model, dHR in isoI would be identical to 

dXR in isoII and dBR would be identical in isoI and isoII. These are good assumptions as 

long as one strand being pulled is an exchanging strand and the other strand being pulled 

is a continuous strand which was true for junctions XR and HR, but not for junction BR. 

In fact, in junction BR, dBR is expected to be larger in isoI where both of the pulled 

strands are the continuous strands (therefore at the outer sides of the HJ for 11 bp long 
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arms) than in isoII where both of the pulled strands are the exchanging strands (therefore 

at the inner sides of the HJ). This expectation is consistent with our observation that isoI 

is favored at higher forces for junction BR. 

 

Estimating φ and ψ Angles at the Transition State 

Our data presented in the paper is not consistent with a single transition state that 

is valid regardless of pulling direction. Rather, our data suggest that the configuration of 

the transition state depends on the pulling direction. A possible explanation for this effect 

is the existence of two transition states of equivalent free energy, each belonging to the 

angular coordinate space defined by the stacking configurations, I and II. In such a model, 

applying tension in the direction that favors isoII (as in junction HR) will lower the free 

energy of the transition state belonging to (φII,ψII) space, termed tsII, relative to that of 

the transition state belonging to (φI,ψI) space, termed tsI, such that TI becomes the single 

transition state (Figure 5.6A). Likewise, applying tension in the direction that favors isoI 

(as in junction XR) would result in tsII becoming the single transition state. 

Below, we describe how we determined the φ andψ angles in the transition state 

from our data. We restrict our discussion to junction XR but the same argument applies to 

junction HR. Here, we used a simple geometrical model described in the previous section. 

For a junction with effective arm length Leff, the distance change between the isoI and 

isoII, ⎟
⎠
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⎜
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⎛ −=Δ

2
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effeq Lx where φ0 is for the stacked-X structure. Using φ0=40° and 

Δxeq=4.4 nm from the data, we obtain Leff=3.4 nm. We note that this effective length of 

each arm we deduced is similar to 3.7 nm length calculated by multiplying 11 bp arm 

length by 0.34 nm of crystallographic base pair length. Since the transition state is in the 

isoII half of the phase space, we need to find (φII,ψII) such that distance from isoII to tsII, 
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effL is equal to Δxb
‡=1.5 nm.  There is a 

combination of (φII,ψII) values that satisfy this relation, starting from (70°, 0°) at one 

extreme and arriving at (0°, 70°) at the other (Figure 5.8A). 
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In order to obtain an additional constraint, we measured junction BR. This 

construct gave increase in both forward and backward rates with force. Acceleration in 

rates with force means that the distance between the two ends of the B and R arm is 

larger in the transition state than in the stacked-X structures. The distance between the 

two ends of B and R arms is given by ⎟
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relatively insensitive to ψII for φII < 70° , and is larger than its value in isoII, 
2

cos2 0φ
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only if φII < φ0. Therefore, the fact that the transition rates increase with force itself 

already restricts φII to below 40 °. How much below depends on the distance to the 

transition state. The minimum distance to the transition state we estimated for junction 

BR is 0.37 nm. The equivalent distance in our model is 
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Here, it is uncertain which value should be used for Leff  because the pulling direction 

does not define a reaction coordinate that is valid from isoI all the way to isoII as 

revealed by a large discrepancy between Δxeq and (Δxb
‡ + Δxf

‡) (Table 5.1). Here, we set 

Leff to the 11 bp arm length, 3.7 nm. Then, the maximum value of 
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+  is 0.35 nm when φII=0 (Figure 5.8B), 

and this becomes smaller for smaller Leff. Therefore, in order to account for the finite 

distance to the transition state, φII needs to be essentially zero. 

 Combining results from XR and BR analysis, we conclude that in the transition 

state tsII, (φII,ψII)ts= (0°, 70°).   This transition state is similar to the open state but with 

arms veering off by about 20° from the ideal open state. Following the same argument, 

we can deduce that for the transition state in the isoI-like phase space, TI, has the 

(φI,ψI)T= (0°, 70°) as well. 

We also note that the equilibrium between the two states does shift with force for 

junction BR. Δxeq is 0.7 nm favoring isoI. This value is about 5-6 times lower than those 

of junctions XR and  HR, confirming our prediction that there will not be as big a change 
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in conformational bias with force for junction BR. We suggest that the residual bias we 

detect here is due to the finite diameter effect of the duplex arms which is amplified for 

junction BR because two pulling strands are either both exchanging strands (isoII) or both 

continuous strands (isoI). The ends of the pulling strands are therefore expected to be 

farther apart in isoI than isoII thereby leading to the increased relative population of isoI 

upon force application. Such an effect due to the finite DNA duplex diameter would be 

much less pronounced in junctions XR and HR because in both conformations, one 

pulling strand is an exchanging strand and the other is a continous strand. 

 

5.5  Conclusions 
Unlike DNA or RNA hairpins, where forces on the order of 15 pN are necessary to 

induce mechanical unzipping 185,186, the conformations of HJs could be biased at 0.5 pN 

or lower. The lever arm effect makes it unlikely that a purely mechanical tool could have 

probed the force effect on HJ conformations because if the arms are lengthened to 

magnify the distance change, the force effect will occur at even lower forces. FRET can 

also report on vectors other than the end-to-end distances which we exploited here by 

pulling on XR, HR or BR arms while simultaneously measuring the same HB vector via 

FRET, which led to the two dimensional mapping of reaction landscapes. The 

development reported here expands on the current arsenal of hybrid single molecule 

techniques combining force and other observables 183,197-199. Our method is readily 

applicable to other nucleic acids systems and their interaction with proteins and enzymes, 

and with the advent of new orthogonal labeling techniques, should be extendable to 

proteins and protein complexes. The next technical challenge would be to obtain time 

evolution of the end-to-end distance by force, for example due to the action of DNA 

processing enzymes 200, and correlate it with the enzyme conformational changes 

simultaneously measured via fluorescence. 
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5.6  Figures and Tables   
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dynamics
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Figure 5.1 Structure diagrams of a Holliday junction in the (A) absence and (B) presence 

of divalent ions.  

 
Figure 5.2 Holliday junction constructs and experimental scheme. (A) A surface-

immobilized biomolecule with FRET labeling is connected to a trapped bead via a long 

DNA linker. The linker DNA spatially separates the confocal beam (532 nm) from the 

trapping beam (1064 nm) such that enhanced photobleaching and an overwhelming 

A 

B 
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background signal induced by the intense trapping laser are avoided. To apply force, the 

surface immobilized molecule was moved relative to the trapped bead. The confocal 

beam was programmed to follow the motion of the molecule using the mapping 

generated between sample scanning and beam scanning as described in Chapter 2.  (B) 

Junction XR is known to alternate between two different stacking conformers, isoI (Low 

FRET) and isoII (High FRET) with similar populations in both states. (C) The HJ species 

studied. Junction XR comprises four arms of 11 base pairs (bp), termed B (red), H 

(green), R (dark gray) and X (gray). Cy3 and Cy5 fluorophores are terminally attached to 

H and B arms respectively, and the molecule is tethered to the surface through biotin 

attached to the end of the R arm. Stretching force is applied through the λ-DNA linker 

hybridized to the X arm. In junction XR-long the lengths of arms R and X are increased to 

21 bp. In junction HR the λ-DNA linker is hybridized to the H arm. In junctions HR and 

BR the λ-DNA linker is hybridized to the H and B arms respectively. (D) Force is 

expected to bias the junction XR to isoI which possesses a larger separation between the 

two tether points than isoI. 

Figure 5.3 Dynamics of the three different Holliday junction structures at zero force. 

(A) Scatter plot of transition rates of junctions XR and XR-long. (B) Scatter plot of 

transition rates of junctions XR and HR. All the data were obtained without a λ-DNA 

attached and in the absence of trapping laser beam, but otherwise in identical solution 

conditions. 
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Figure 5.4 Conformer exchange dynamics of the HJ as a function of applied force. (A) 
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FRET time traces (gray lines) of a single junction XR molecule at different forces. FRET 

efficiency is approximated by the acceptor intensity divided by the sum of the donor and 

acceptor intensities. Red lines are the most likely FRET trajectories generated via hidden 

Markov modeling. The imposed force (indicated on the top left of each plot) increases 

top to bottom. (B) Log-linear plot of rate constants of conformer exchange as a function 

of force. Rates of transitions from states isoII to isoI (kb  red) and isoI to isoII (kf, blue) 

are differentiated by color.  Error bars represent standard deviations obtained from 

repeated measurements of the same molecule. From linear fitting, we found that the 

transition state is closer to isoII (1.5 nm) than to isoI (2.9 nm). (C) Same as (A) but for a 

single junction HR molecule. (D) Same as (B) for a single junction HR molecule. (E) 

Same as (A) and (C) but for a single junction BR molecule. (F) Same as (B) and (D) but 

for a single junction BR molecule. 

 

 

Figure 5.5 Energy landscape for a two-state system along the reaction coordinate. The 

applied force (F) tilts the energy landscape linearly. 
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Figure 5.6 Mapping the reaction landscape and determining the transition state structure. 

(A) A proposed reaction landscape with two distinct transition states with nearly identical 

energies (top). In junction XR, the applied force would tilt the energy landscape toward 

isoI so that the transition state, tsII, nearer to isoII would become the state of highest 

energy along the entire coordinate (middle). The reaction coordinate here is the distance 

between the ends of X and R arms, dXR, which increases to the left as shown. Similarly, 

in junction XR, the transition state, tsI, nearer to isoI would become the single transition 

state upon application of force. The reaction coordinate here is the distance between the 

ends of H and R arms, dHR, which increases to the right. (B) Two angular coordinates φ 

and ψ define the global conformation of the HJ. (C) Two-dimensional conformational 

space of HJ conformations. The stacked-X structure and open structure are marked. The 

gray arc represents a zone that satisfies experimental constraints derived from XR and HR 

data, and the gradient zone is derived from BR data. The consensus location of the 

transition state is marked with a diamond. (D) Global structures of isoI, isoII and two 

transition states, tsI and tsII, plus an open structure. 
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Figure 5.7 A lever arm effect. In junction XR-long, arms X and R (i.e. the arms through 

which the force is applied) have been extended to 21 bp in length compared to 11 bp in 

junction XR. (A) FRET histograms of a single junction XR at different forces. Junction 

XR is almost completely biased to isoI at ~ 5 pN. (B) FRET histograms of a single 

junction XR-long at different forces. Complete biasing to isoI already occurs below 2 pN. 

(C) Rate constants of conformer exchange are plotted as a function of force for 5 

different XR molecules. Different molecules are marked by different colors. Backward 

reaction rates from isoII to isoI were represented in solid data point and forward rates 

from isoI to isoII in open data points. Linear fits are also shown in the figure. Error bars 

representing s.e.m are added when possible (i.e., when the force dependence 

measurements were made more than once because photobleaching did not terminate the 

experiment after one cycle). (D) Data for XR-long generated in the same as in (C). It is 

clear that XR-long exhibits much greater changes in rates for the same range of applied 

force. 

. 
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Figure 5.8 Mapping the location of the transition states in the two-dimensional reaction 
landscape. 
 
 
 

 

 XR XR-long HR BR 

Δxb
‡ (nm) 1.5 (±0.3) 2.6 (±0.6) 2.4 (±0.5) 1.1 (±0.2) 

Δxf
‡ (nm) 2.9 (±0.6) 7.7 (±1.5) 1.3 (±0.3) 0.37 (±0.2) 

Δxeq (nm) 4.4 (±0.8) 9.9 (±2.6) 3.1 (±0.8) 0.7 (±0.2) 
Δxb

‡+Δxf
‡ (nm) 4.4 (±0.8) 10.3 (±2.0) 3.6 (±0.5) 1.5 (±0.3) 

Table 5.1 Distance to the transition state from isoI (Δxf
‡) and from isoII (Δxb

‡) measured 

from the force-dependent transition rates between isoI and isoII for four different 

junctions. Errors represent standard deviation from five different molecules each. Also 

shown is Δxeq, the distance between isoI and isoII determined from force-dependent 

changes in the equilibrium constant. For junction BR, Δxeq deviates significantly from 

(Δxb
‡+Δxf

‡ ) showing that dBR is not a valid reaction coordinate connecting isoI and isoII. 

In contrast, Δxeq=Δxb
‡+Δxf

‡ within error for junctions XR and HR showing that dXR and 

dHR are reaction coordinates valid from isoI to isoII.  
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 XR (free junction, no trapping 

laser) 
XR (free junction, trapping 

laser on) 
kb (s-1) 4.7±1.4 6.2±1.9 

kf (s-1) 7.2±4.2 11.3±4.8 
 
Table 5.2 Comparing the transitions rates in the absence and presence of the trapping 

laser. Trapping laser was focused 13 µm away from the HJ molecule when in presence. 

 

 

 
 

 XR XR-long HR 

kb (s-1) free junction 4.2±1.9 3.2±1.3 3.7±1.3 

kf (s-1) free junction 6.1±1.6 4.6±1.2 5.0±2.4 

kb (s-1) zero force 11±2.7 16±4.5 18±1.3 

kf (s-1) zero force 9.9±3.3 16±2.5 11±1.9 
 
Table 5.3 Comparing the transitions rates for zero-force extrapolation and for free forms 

of the junctions. 
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Chapter 6 
Stretching Peptides and Proteins 

Using Fluorescence-Force 
Spectroscopy†† 

 
6.1  Introduction 

In Chapters 2-5, we have shown applications of the fluorescence-force 

spectroscopy that we developed to study the effect of forces on protein-nucleic acid 

interactions as well as the effect of forces on the conformational dynamics of a nucleic 

acid structure. In this chapter, we extend its applications to monitor the conformations of 

a folded poly-peptide or protein in response to external forces.  

As we have mentioned in Chpater 1, many force-based methods (AFM, optical 

tweezers, etc) have been used to stretch peptides 201-204 and proteins 23,24,47,48,76,77. In order 

to apply forces to them, proper chemical reactions have to be utilized to covalently attach 

the peptide/protein to the force transducer (beads, AFM tips) through one tethering 

position on the peptide/protein and to a stiff surface through the other tethering position 

on the peptide/protein. Primary amino groups (-NH2) and thiol  groups (-SH) are natural 

components of peptides and proteins and are  often used as the targets for such covalent 

attachments 205.  However, if we want to apply fluorescence-force spectroscopy to stretch 

peptide/protein, more covalent attachments have to be introduced to label the same 

peptide or protein with two fluorophores (a FRET pair) as well. It is extremely difficult to 

achieve four covalent attachments on the peptide/protein with high yield and this requires 

four different types of reactions for the attachments. Therefore, we have developed a 

simpler method to achieve this by covalently attaching two DNA handles carrying 

                                                 
†† Part of this work has been published as papers: 

• Grashoff, C., Hoffman, B. D., Brenner M. D., Zhou R., Parsons M., Yang, M. T., McLean, M. A., 
Sligar, S. G., Chen, C. S., Ha, T. & Schwartz, M. A. Measuring mechanical tension across vinculin 
reveals regulation of focal adhesion dynamics. Nature 466, 263-266 (2010). 

• Brenner, M. D., Zhou, R. & Ha, T. Forcing a connection: impacts of single-molecule force 
spectroscopy on in vivo tension sensing. Biopolymers 95, 332-44 (2011). 
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fluorophores to the peptide/protein. The design is shown in Figure 6.1. Two cysteine 

residues are placed at the two ends of the peptide sequence of interest respectively. For 

proteins, the protein mutant carrying two exposed cysteine residues are generated through 

site-directed mutagenesis and the two cysteine positions are where the two DNA handles 

are attached. Two single strands of DNA with 5′-amine modifications are reacted with a 

heterobifunctional cross-linker succinimidyl 4-[N-maleimidomethyl] cyclohexane-1-

carboxylate (SMCC) to produce maleimide-functionalized DNA handles which reacts 

with the two cysteine residues in the peptide or protein to generate a DNA-protein or 

DNA-peptide conjugate carrying two ssDNA handles. Next, the Cy3-strand and Cy5-

biotin-strand of ssDNA are annealed to the previous product so that the DNA handles 

become double strands (Figure 6.1A). For fluorescence-force experiments, λ-DNA is 

then attached to the pre-annealed product as described in Chapter 2. Finally, the 

digoxigenin-labelled oligonucleotide complementary to the cohesive end-site of λ-DNA 

is added. Alternatively, Cecconi and coworkers also developed a similar method to attach 

two DNA handles to protein/peptide where a disulfide bond was generated  between a 

thiol group present at the end of each DNA handle and a thiol group of a cysteine residue 

in the protein 206.  

 

6.2  Calibrating the FRET-based In-Vivo Force Sensor 
6.2.1 Calibrating a FRET-based In-Vivo Force Sensor  

The first application for using our fluorescence-force spectroscopy to stretch 

single peptides is to calibrate a FRET-based in-vivo force sensor. Grashoff and coworkers 

developed a FRET-based tension sensor module that can be expressed inside the cell to 

report the forces transmitted from extracellular matrix to cytoskeleton through focal 

adhesions 101. Focal adhesions are comprised of integrins (cell surface receptors), talin, 

vinculin and other proteins, connecting the extracellular matrix to actin cytoskeleton 207. 

The transmission of the forces has been recently found significant to impact cell growth, 

differentiation, morphology and even protein expression inside the cell 208,209.  The 

FRET-based in-vivo tension sensor module (TSMod) that Grashoff and coworkers 

designed was to use two fluorophores,  mTFP1 and venus (A206K) as donor and acceptor 

respectively, connected by a 40-amino-acid-long elastic peptide linker (Figure 6.2A). The 
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elastic peptide linker was composed of eight repeats of  amino acid motif GPGGA and 

was derived from the spider silk protein flagelliform which is composed of repetitive 

amino acid motifs 210. If a force (or tension) is applied across the elastic TSMod, FRET 

efficiency should decrease because the distance between the two fluorophores increases 

(Figure 6.2A). Grashoff and coworkers applied this TSMod to report the force 

transmitted by vinculin, an intracellular force adhesion protein 101. TSMod was inserted 

between the head and tail domains of the vinculin protein to form the vinculin tension 

sensor (VinTS) (Figure 6.2B). Vinculin consists of a head domain (Vh) that can connect 

to integrin through talin, and a tail domain (Vt) that can bind to the actin cytoskeleton. 

FRET values in the vinculin deficient cells expressing VinTS were determined using 

fluorescence lifetime imaging microscopy (FLIM) 211 with which the fluorescence of the 

fluorophores (mTFP1 and venus) can be differentiated from cellular autofluorescence 

more readily than with intensity-based measurements. The VinTS in the adherent cell 

showed longer fluorescence life times (corresponding to lower FRET efficiency; Figure 

6.2B). However, a control construct, VinTL, containing the tension sensor module and 

vinculin head domain, but missing the tail domain required for interaction with the actin 

cytoskeleton, displayed only high FRET (Figure 6.2C; blue color, short mTFP1 lifetimes), 

indicating that VinTS was experiencing tension whereas VinTL is not.  

Having known that VinTS indeed can detect the force that exists across the vinculin 

in the living cell, can we calibrate the TSMod inserted into the vinculin such that we can 

convert the FRET efficiency determined from FLIM into its corresponding forces? We 

therefore applied our fluorescence-force spectroscopy to calibrate TSMod. Fluorescent 

proteins have low photostability, which precludes single molecule FRET measurements. 

We therefore generated a version of TSMod using the organic fluorophores Cy3 and Cy5 

(termed F40, Figure 6.3A). The Cy3-Cy5 FRET pair has a similar R0 (Förster radius) as 

that of the mTFP1-venus FRET pair (~ 6 nm).The flagelliform linker (F40) was 

connected to a polymer-coated glass surface via 18 bp double-stranded (ds) DNA and to a 

bead held in optical tweezers through λ-DNA (Figure 6.1). Two DNA handles presented 

the fluorophores in close proximity to terminal cysteine residues of F40, allowing 

estimation of the linker end-to-end distance as a function of force from FRET 

measurements. FRET efficiency changes over multiple force cycles showed that F40 
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reached conformational equilibrium rapidly and displayed no hysteresis, indicating 

reversibility (Figures 6.3B). The zero force FRET efficiency of ~50% determined 

separately from single molecule TIR measurement (Figure 6.3C) matched the FRET 

value at the lowest force analyzed (0.25 pN, Figure 6.3D) indicating no adverse effects 

due to linkers or the optical tweezers. Together, these experiments showed that F40 is 

most sensitive at 1-6 pN (Figure 6.3C). These measurements were used to estimate the 

force sensitivity of TSMod, and to calculate forces across vinculin in living cells using 

FLIM microscopy data 101. This analysis showed that the average force in stationary focal 

adhesions is ~2.5 pN 101. 

 

6.2.2  Stretching Various FRET-based Force Sensors  

In the design for stretching F40 (Figure 6.3), SMCC linkers, the terminal phosphate 

group at 5’end of DNA and the six-carbon chain for the amino modification of the DNA 

handles have to be considered but are actually not included in TSMod (we use a term 

‘connecters’ later in this section to refer to those who are used to connect fluorophores to 

the elastic peptide but at the same time add some unwanted extension to the peptide 

length).Additionally, the radius of the flurophores should be considered as well. If the 

extension of the connecters greatly depends on the applied force as TSMod does, it would 

make the TSMod calibration inaccurate. In order to separate the extension changes of the 

connecters from that of the peptide as a function of applied force, we have to obstain the 

force-extension curves for several force sensor constructs containing different repeat 

numbers of the amino acid motif GPGGA. In addition, it would be useful to measure the 

FRET-force curves for different FRET-based force sensors containing different repeat 

numbers of the amino acid motif GPGGA, which should sense different ranges of forces 

using the FRET sensitive range (3-8 nm). We hereby made two more force sensors F25 

and F50, containing five and ten repeats of GPGGA respectively. All the three force 

sensors (F25, F40 and F50) possess two terminal cysteine residues, which make them 

contain actually 27, 42 and 52 amino acids respectively (Figure 6.4A). Figure 6.4B shows 

the averaged FRET versus force curves for F25, F40 and F50 obtained from many 

stretching and relaxing cycles using fluorescence-force spectroscopy as we did in Figure 

6.3B. In all the three force sensors, stretching and relaxing curves coincided and little 
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hysteresis was observed. As mentioned in Chapter 3, we can use Equation (3.1) to 

convert FRET efficiencies to Cy3-Cy5 separation distance values and replot the same 

data in a different presentation of distance versus force (Figure 6.4C). All the three force 

sensors showed a linear elasticity as a Hooke’s spring and the Cy3-Cy5 separation 

distance, Dtotal(F) is given by 

Dtotal(F) = a·F+D0      (6.1) 

Where D0 is the Cy3-Cy5 separation distance at zero force for the force sensor and a is 

the compliance (the inverse of stiffness) of the force sensor. From the linear fits in Figure 

6.4C, we obtained D0 and a for each force sensor.  

In Figure 6.4D, we plot a as a function of N, the number of amino acids in the 

force sensor (N=27 for F25, N=42 for F40 and N=52 for F50). A linear fit can well 

describe the data (the red line, Figure 6.4D) so we have 

a = (ε·N + γ)  nm pN-1       (6.2) 

where ε = 0.012 ± 0.0006 nm pN-1 per amino acid and γ = 0.00013 ± 0.018 nm pN-1, 

obtained from the linear fit (errors represent standard errors from the linear fit, 

confidence level is 0.95). We consider that the Cy3-Cy5 separation distance for each 

force sensor construct consists of two parts: 1) the end-to-end distance of the elastic 

peptide and 2) the extension of the ‘connecters’ (i.e. the sum of the two distances from 

one end of the peptide to the center position of the fluoropore near that end).  ε·N  is the 

only term in Equation (6.2) that shows linear  dependence on N, indicating that it should 

represent the compliance of the peptide (the amino-acid chain). And the constant γ hence 

represents the effective compliance of the ‘connecters’ (SMCC linkers, etc), which 

should be a constant for all the three force sensor constructs. ε is then the compliance of 

the peptide per amino acid, which is 0.012 nm pN-1  per amino acid. The compliance of 

the connecters (0.00013 nm pN-1) is very small and even the value of the standard error 

(0.018 nm pN-1) is equal to the compliance of only one or two amino acids. This indicates 

that the connecter to link the fluorophore to the end of the peptide is relatively stiff and 

its total extension (i.e. the sum of the two distances from one end of the peptide to the 

center position of the fluoropore near that end) depends little on force in the force range 

tested (< 20 pN). 
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In Figure 6.4E, we next plot D0 as a function of N, the number of amino acids in 

the force sensor. A linear fit can describe the data as well (the red line, Figure 6.4E) so 

we have  

D0 = ( d·N + l ) nm      (6.3) 

where d = 0.044 ± 0.0017 nm is the average extension of one amino acid at zero force, 

which is much smaller than the contour length of one amino acid (~ 0.38 nm) and is only 

half the extension derived previously when assuming the peptide is a random coil 212. l = 

3.76 ± 0.06 nm, presenting the total extension of the connecters at zero force, which is 

not a small number compared to the extension of the elastic peptide at zero force. 

In summary, we successfully used fluorescence-force spectroscopy to obtain the 

FRET-force curves of three FRET-based force sensors. F25, F40 and F50 behave like a 

Hooke’s spring and can report the forces up to ~5 pN, ~7 pN and ~14 pN, respectively. 

But the sensitivity in the detectable range is lower for the force sensor that has a larger 

detectable force range. If we put Equations (6.2) and (6.3) into Equation (6.1), we get 

 Dtotal = (ε·N+γ) ·F+ (d·N+l) = (ε·F+d) ·N+ (γ·F+l) = Dpeptide·N+ Dconnecters      (6.4) 

where we define  Dpeptide = ε·F + d as the average extension of one amino acid at the force 

F, and Dconnecters = γ·F+l as the effective extension of the two connecters on the either end 

of the peptide. Our data suggest that the peptide tends to coil up and likely in a folded 

form whereas the connecters are more extended to their contour length even at zero force.  

 

6.2.3  Experimental Procedures 

Expression and purification of the flagelliform peptide linker for force calibration 

The flagelliform linker sequence (F40) flanked by a sequence containing a single 

cysteine and a thrombin cleavage site was inserted into pGEX-4T3. BL21(DE3) pLysS 

competent cells were transformed and expression was induced with 0.5 mM IPTG. The 

cell pellet was lysed using 2 mg/mL lysozyme and affinity purification of GST-F40 was 

performed using GSTrap 4B prepacked columns (GE Healthcare). GST-F40 was eluted 

in 10mM glutathione and thrombin was either added directly to a final concentration of 

10mg/mL for 6h at 4˚C, or elution fractions were frozen at -80˚C. The thrombin/GST-

F40 mixture was then separated by size exclusion on a Superdex75 column and further 
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purified with reverse phase chromatography. The F40 peptide elution peak was analyzed 

and confirmed by mass spectrometry and speed vacuumed to dryness. 

 

Preparation of the force sensors for fluorescence-force spectroscopy 

Two handle DNAs with 5’-amine modifications (5’-CCC ACG CGC GACTAC 

CCA GC -3’ and 5’-GCC TCG CTG CCGTCG CCA-3’) were reacted with 200x molar 

excess of succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (SMCC). Un-

reacted SMCC was removed by fast protein liquid chromatography (FPLC) purification 

and modified DNA handles were incubated with dried F40 peptide (1:1) in 50mM Tris 

buffer (pH 7.5) overnight at 4˚C. Annealing with Cy3- and Cy5-labelled strands was 

performed by incubation of 250 pmol of the DNA modified peptide (the force sensor), 

250 pmol of biotinylated strand (5’-/biotin/-TGG CGA CGG CAG CGA GGC -/ Cy5/ 3’) 

and 250 pmol of single-stranded (ss) DNA containing a λ-DNA cos site (5’-GGG CGG 

CGA CCT GCT GGG TAG TCG CGC GTG GG/Cy3/-3’) in 10mM Tris-HCl (pH 8.0) 

and 50mM NaCl overnight at room temperature. For fluorescence-force experiments, λ-

DNA (Promega) was attached to the pre-annealed product as described previously. 

Subsequently, the digoxigenin-labelled oligonucleotide complementary to the cohesive 

end site of λ-DNA was added (5’-AGG TCG CCG CCC TTT /digoxigenin/-3’). Thus, the 

complete construct for the force sensor calibration contained a single digoxigenin-tag on 

λ-DNA and a biotin-tag at the DNA-peptide conjugate. 

 

Fluorescence-force spectroscopy 

A sample assembly protocol for the fluorescence-force experiment was described in 

Chapter 2. Briefly, a solution of 50pM force sensor construct was immobilized on a 

coverslip surface coated with polyethyleneglycol, which eliminated non-specific surface 

adsorption of proteins and reduced surface interactions with DNA and microspheres9. 

The immobilization was mediated by biotin-Neutravidin binding between the biotinylated 

force sensor, Neutravidin, and biotinylated polymer. Next, anti-digoxigenin-coated 1μm 

polystyrene beads were added so that one bead could attach to the free end of each 

tethered molecule. For imaging, the buffer was: 10mM Tris (pH 7.5), 1x PBS, 0.5 % 

(wt/vol) D-glucose (Sigma), 165 U/ml glucose oxidase (Sigma), 2170 U/ml catalase 
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(Roche), 3 mM Trolox (Sigma), and 0.1% (vol/vol) Tween 20 (Sigma). All single 

molecule fluorescence-force experiments were performed at 22 ± 1°C. Once a tethered 

microsphere was trapped, the sample was moved in two orthogonal directions with the 

piezo-stage to roughly determine the tethered position of the peptide construct. The 

piezo-stage was then moved back and forth between a starting position (typically 13.5μm 

or 14μm separation between the tethered point and the trap centre) to an end position 

(16.8-16.9μm) at a constant speed of 455nm s-1 for several cycles. The confocal 

excitation beam was programmed to follow the motion of the tethered force sensor 

molecule so that the donor (Cy3) and acceptor (Cy5) fluorescence intensities were 

recorded with 44ms time resolution as a function of applied force. 

 

Single-molecule TIR spectroscopy 

Wide-field prism-type total internal reflection (TIR) spectroscopy described 

previously 9 was used to determine the zero force FRET value of the Cy3/Cy5 sensor in 

the same imaging buffer as used in fluorescence-force spectroscopy. A single-molecule 

FRET histogram was generated by averaging for 300 ms. Background, cross-talk and 

gamma corrections were considered for calculating the FRET efficiency 9. 

 

6.3  Stretching Single Proteins  
To further extend our fluorescence-force spectroscopy to stretch single proteins, 

we used the same strategy to link two DNA handles to IκBα, a protein that binds to and 

inhibits the NFκB transcription factor, which activates hundreds of genes 213. IκBα 

contains six ankyrin repeat (AR) domains, a ~33-amino-acid structural motif that 

generally adopts a helix-loop-helix-β-hairpin/loop fold, among which four ARs (ARs 1–4) 

are structureally stable and two ARs (AR5–6) are weekly folded (or disordered). The two 

weakly folded ARs are crucial because they regulate the intracellular life time of IκBα 

and stabilization of the AR5–6 region (either upon NFκB binding to IκBα   or return AR6 

to the consensus sequence for stable ARs by mutating two residues Y254L/T257A) 

lengthened the intracellular half-life of IκBα  213,214.  The mechanical unfolding of 

ankyrin repeats have been investigated at the single protein level where the stately folded 

ankyrin repeats were unfolded at ~37 pN and refolded at ~32 pN 215,216. 
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In order to make the DNA handle linkage, we replaced wilde typle cysteins IκBα 

with serines introduced cysteine residues into a cysteine-free construct of IκBα: 1) one is 

at residue E128 in AR 2 (or at residue S166 in AR 3); 2) the other is at residue S262 in 

AR 6.  The protein preparation procedures were described previously and this IκBα 

(hereafter referred to as IκBα) retained the function to bind to NFκB 213. We followed the 

protocols used for generating the force sensor constructs to make IκBα/DNA conjugates 

for the fluorescence-force experiments (Figure 6.5A).  Representative stretching and 

relaxing time traces of IκBα are shown in Figure 6.5B, obtained in the buffer containing 

10mM Tris: HCl (pH 7.8), 150 mM NaCl, 0.5 % (wt/vol) D-glucose, 165 U/ml glucose 

oxidase, 2170 U/ml catalase, 3 mM Trolox, 0.5 mg/ml BSA and 0.1% (vol/vol) Tween 20. 

After averaging among many force cycles from several molecules, we plot the averaged 

FRET efficiency versus force curves for stretching and relaxing the single IκBα 

molecules (Figure 6.5C). FRET efficiency quickly decreases to zero at ~ 5 pN. After 

converting FRET to Cy3-Cy5 separation distance assuming R0 = 6 nm, we replot distance 

versus force curves in Figure 6.5D. The averaged Cy3-Cy5 separation increases rapidly 

as a function of force for stretching. In the relaxing curve does not often coincide with the 

stretching curve. Surprisingly, for the relaxing curve, the Cy3-Cy5 distance recovered to 

a same value at a higher force (referred to as ‘overshooting’) compared to the stretching 

curve, which has never been observed from any mechanical unfolding experiment using 

single molecule force-based method. The energy cost to unfold the protein in the 

stretching circle cannot be smaller than the energy regained through the protein refolding 

in the relaxing circle. Considering that FRET can only monitor the Cy3-Cy5 separation 

distance up to ~10 nm, we were only able to monitor the initial stage of the protein 

unfolding. Therefore, it is possible that the stretching curve and relaxing curve could 

have a cross-over point at a force larger than 5 pN where FRET efficiency is zero and we 

are unable to detect it. Further investigation is needed to confirm this and a pure 

mechanical measurement seems promising to test the hypothesis. Because the weakly 

folded AR5 and AR6 of IκBα may be responsible for the ‘overshooting’ phenomenon, we 

performed fluorescence-force experiments for an IκBα mutant (E128C/S262C/Y254L 

/Y257A) where two more mutations were made at residues Y254 and Y257 to make AR5 

and AR6 as stable as ARs 1-4 214. Figures 6.5E-G show the fluorescence-force time traces, 
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averaged FRET-force curves, and Cy3-Cy5 distance versus force curves of the mutant. 

The stretching curve of the mutant is similar as that of IκBα but the ‘overshooting’ was 

abolished in the relaxing curve (Figures 6.5F and 6.5G). In the relaxing cycle, the 

molecule often recovered to a same Cy3-Cy5 distance value at lower force compared to 

the stretching cycle (Figure 6.5G), which is consistent with previous unfolding 

measurements for the anykrin repeats 215,216.  The ‘overshooting’ seems to be caused by 

the disordered AR5 and AR6 of IκBα. However, further investigation is clearly needed. 

 

 

 

 

 
6.4  Figures 
 

 
Figure 6.1 (A and B) Diagrams depicting how we extend our fluorescence-force 

spectroscopy to stretch single peptides or proteins. 
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Figure 6.2 The figures are adopted from Ref. [101]. (A) The tension sensor module 

(TSMod) consists of two fluorophores separated by a flagelliform linker sequence 

(GPGGA)8.  At zero force, the elastic linker (i.e. the peptide) gives a relatively high 

FRET efficiency (left). When force across TSMod extends the elastic linker, FRET 

efficiency decreases (right). (B) A representative fluorescence lifetime image of cells 

expressing the vinculin tension sensor (VinTS) which consists of TSMod inserted after 

amino acid 883 of vinculin. The Color scale bar represents lifetimes of donor mTFP1, 

which can be converted into FRET values. Red represents low FRET and blue is high 

FRET. (C) A representative fluorescence lifetime image of cells expressing the tailless 

mutant of the vinculin tension sensor (VinTL). TSMod should not experience applied 

force without the ability to bind the actin cytoskeleton, giving mostly a blue color which 

indicates high FRET. Scale bar, 2 μm.  
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Figure 6.3 (A) A diagram that depicts F40. (B) Fluorescence-force time traces of peptide 

linker undergoing multiple stretching and relaxing cycles. FRET decreases as force 

increases and vice versa, as determined from anti-correlated Cy3 (green) and Cy5 (red) 

intensity. The tether broke at ~28 s. (C) Single-molecule FRET histogram of F40 at zero 

force. The peak at ~0.5 FRET represents F40. (D) Averaged FRET versus force curves of 

several molecules reveals little hysteresis upon stretching and relaxing. The force bin size 

for averaging is 0.3 pN. Error bars represent s.e.m. 
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Figure 6.4 (A) Diagrams that depict F25, F40 and F50. (B) Averaged FRET versus force 

curves of several molecules from many stretching and relaxing cycles when the 

maximum force achieved was set to ~ 20 pN. The force bin size for averaging is 0.3 pN. 

(C) The separation distance between Cy3 and Cy5 as a function of applied force. Solid 

lines are the fit to straight lines. Error bars shown in (B) and (C) represent s.e.m. (D) 
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Compliance of the force sensor versus the number of amino acides in the force sensor. 

Red line is the linear fit. (E) The calculated Cy3-Cy5 distance at zero force versus the 

number of amino acides in the force sensor. Error bars shown in (D) and (E) represent the 

fitting standard errors obtained from the linear fits in (C). 

 

 

 
Figure 6.5 (A) A diagram that shows the experimental scheme to stretch IκBα. The 

purple spheres represent the two cysteine residues where the DNA handles are linked to.  

(B-D) Fluorescence-force time traces (B), averaged FRET-force curves (C) and Cy3-Cy5 

separationi distance vs. force curves (D) of a single IκBα protein (two cysteine mutations 

S166C/S262C were made for the DNA handle linkage and all wild-type cysteines were  

replaced with serines) for several stretching and relaxing cycles. AR5 and AR6 are 

weakly folded in this mutant. (E-G) Fluorescence-force time traces (E), averaged FRET-
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force curves (F) and Cy3-Cy5 separationi distance vs. force curves (G) of a single IκBα 

mutant (E128C/S262C/Y254L/Y257A) for several stretching and relaxing cycles. Beside 

the two cysteine mutantions E128C/S262C for the DNA handle linkage and the 

replacement of wilde type cysteines, two more mutantions (Y254L/Y257A) were made to 

make AR5 and AR6 as stable as ARs 1-4. The force bin size for averaging is 0.3 pN. 

Error bars represent s.e.m. 
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Chapter 7 
Detecting Intramolecular 

Conformational Dynamics in a FRET-
Insensitive Distance Range‡‡ 

 
7.1 Introduction 

In our fluorescence-force spectroscopy, FRET is the only measure of the 

conformational dynamics of the biomolecule or biological complex, so the detection 

range is limited by the FRET sensitive distance range (3-10 nm). As mentioned in 

Chapter 1,  FRET efficiency, EFRET, is a measure of how much energy is transferred from 

the donor to the acceptor and is given by EFRET = 1/ (1+(R/Ro)6), where R is the distance 

between the donor and the accepter and Ro is the Förster radius at which EFRET =0.5 10. A 

typical value of Ro is 5-7 nm for the FRET pairs used in a single molecule experiment 9, 

making smFRET sensitive to the distance changes in the range of 3-10 nm 6. 

Nanoparticle-induced lifetime modification has been used to serve as a nanoscopic ruler 

for the distance range beyond the upper limit of FRET sensitive range (> 10 nm) 217.  

There have been previous attempts to monitor small distance changes in the 0-3 nm 

distance range but they are mostly based on time-resolved or time-correlated fluorescence 

spectroscopy using freely diffusing biomolecules and hence could not yield long time 

traces of a single biomolecule undergoing conformational changes 218-224.  For some 

FRET pairs, when the donor and acceptor come in close proximity (< 3 nm), their 

interactions cause complex fluorescence fluctuations 225.  Protein induced fluorescence 

enhancement, a recently reported single molecule assay, provides a means of monitoring 

the time-dependent intermolecular distance change between a fluorophore and a protein 

in the 0-3 nm range 226. However, an equivalent method is missing for detecting the 

intramolecular conformational dynamics of single biomolecules in the smFRET 
                                                 
‡‡This work has been published as a paper: 

 Zhou, R., Kunzelmann, S., Webb M.R. and Ha, T. "Detecting intramolecular conformational 
dynamics of single molecules in short distance range with sub-nanometer sensitivity", Nano Letters , 
DOI: 10.1021/nl2032876 (2011)  
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insensitive distance range.  

Therefore, developing a fluorescence-based method complementary to FRET for 

the detection of small comformational dynamics potentially extend our fluorescence-

force spectroscopy to analyze more biological systems in which the intramolecular 

conformational changes are minimal.  In addition,  this complementary tool can be also 

used in the absence of the optical tweezers for characterizing nano-devices, nano-sensors 

and biological macromolecules at the single molecule level. 

In this chapter, we use a ParM mutant,  an engineered ADP-sensing protein 227,  as 

a model system to illustrate the use of self-quenching between two identical 

tetramethylrhodamines (TMR) to study the intramolecular conformational dynamics in 

short distances.  When in close proximity, the two TMRs can stack on each other to form 

a dimer in which their fluorescence emission is significantly quenched. Self-quenching of 

TMR due to stacking has been used in the ensemble studies to monitor the peptide 

cleavage by proteases 228,229, and intramolecular conformational changes of proteins 
227,230,231 and nucleic acids 232.  This strategy has also been used to study molecular 

motors stepping on microtubules at both ensemble and single molecule levels 233,234.  In 

the previous attempts to utilize this approach to study titin unfolding/refolding at a single 

protein level, there were multiple TMRs attached to a titin molecule and rapid fluorescent  

enhancement induced by chemical denaturants was shown to be the result of direct action 

of the denaturants on TMR  dimers rather than protein unfolding 235,236. In this article, we 

present a generalizable surface-tethered single molecule assay for detecting 

conformational changes of individual biomolecules in a FRET inaccessible short range 

and in real time. 

 

7.2  Experimental Results 
7.2.1  Assay Design and Validation 

The model system we use to demonstrate our assay is ParM,  a bacterial actin 

homologue that forms F-actin-like filaments during plasmid segregation in E. coli 237. 

ParM consists of two domains (I and II) between which is a cleft where the nucleotide 

binding site is located. ParM is in an open conformation in the absence of ADP whereas 

it changes to a closed conformation with ADP bound by closing the two domains (Figure 
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7.1A). The mutations T174A/T175N and K33A were made to increase the selectivity for 

ADP versus ATP and to inhibit filament formation, respectively 227. To use TMR self-

quenching as a reporter for the dynamics between the open and closed conformations, 

two cysteines residues were introduced (D63C/D224C; Figure 7.1A) which reacted with 

5′-isomers of tetramethylrhodamine iodoacetamide (5-TMRIA) on either side of the 

nucleotide binding cleft (the natural, exposed cysteine in the wild-type protein was 

mutated to alanine, C287A). The two attachment positions (or cysteines) in the protein 

must be sufficiently close (~1.5 nm) and the cysteine side chains needs to adopt 

appropriate relative orientations for the two TMRs to dimerize in one of the ParM 

conformations but not in the other. In order to satisfy these requirements, several pairs of 

TMR labeling positions were tested through a screening process 227,230. In general, such 

screening procedure would be needed to identify the optimum labeling positions even if 

structural information is available for a protein. In the previous ensemble measurement, 

the ParM mutant (His6/K33A /D63C/T174A/T175N/D224C/C287A) developed as a ADP 

sensor showed ~ 15-fold fluorescence increase and the characteristic absorbance changes 

of the rhodamines in response to ADP binding 227, suggesting that distance change, 

estimated from the crystal structures, from 1.6 nm (ADP unbound, open conformation) to 

2.1 nm (ADP bound, closed conformation) is enough to strongly affect the probability of 

rhodamines stacking. 

We have developed multiple surface immobilization strategies for smFRET 

experiments where fluorescently labeled biomolecules are anchored onto a PEG 

(polyethylene glycol) coated surface with a low density such that individual molecules 

can be resolved as well-separated diffraction limited spots 9,238. In our current design, 

ParM was surface-immobilized using an antibody against the Histidine6-tag 238 to achieve 

specific binding and the total internal reflection fluorescence (TIRF) microscope 9 was 

used for sample illumination and data acquisition (Figure 7.1B). Upon ADP binding, one 

would expect the doubly TMR-labeled ParM to change from a fluorescently quenched to 

an unquenched state. The oxygen-scavenging system with Trolox was used for imaging 

to reduce photobleaching while preventing milliseconds time scale photophysical 

blinking of TMRs (Figure 7.2)239. 

We first validated the assay by comparing the TIRF images, obtained in the 
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absence and presence of His6-tagged ParM at different ADP concentrations (Figure 7.3A). 

Before adding ParM to the sample chamber containing a penta-His-antibody coated 

surface, the surface image showed ~30 fluorescent spots per imaging area (2,700 μm2) 

presumably due to surface impurities. After anchoring the proteins to the surface and 

flushing away excess unbound proteins, we observed ~100 fluorescent spots on average 

per imaging area in the absence of ADP (Figure 7.3B). The additional ~70 spots observed 

beyond the surface impurity spots (~30) typically show a steady, continuous fluorescence 

emission over time with one photobleaching step (Figure 7.3B), which we assign to the 

proteins with only one active TMR attached. Either the protein is singly labeled or one of 

the two TMRs has been photobleached before data acquisition, but in either case TMR 

self-quenching would not occur. We then sequentially injected imaging buffers 

containing increasing ADP concentrations and determined the average number of 

fluorescent spots per imaging area, N.  N increases with increasing ADP concentrations to 

a saturation value of ~290 (Figures 7.3C and 7.3D). This indicates a larger fraction of 

proteins is bound with ADP at high ADP concentrations because ADP binding converts 

ParM from a weakly-fluorescent (or quenched) state into a highly-fluorescent (or 

unquenched) state and the proteins in the quenched state cannot be detected by the 

automated algorithm to pick fluorescent spots. The hyperbolic fit to the data points yields 

a dissociation constant (Kd) of 20 ± 3 μM for ADP binding to the protein (Figure 2d), 

similar to the value of 30 ± 4 μM obtained from previous ensemble experiments 227. In 

order to demonstrate that ParM proteins were immobilized on the surface through 

specific interactions rather than non-specific adsorption, we used a surface without penta-

His-antibody coating and obtained ~ 40 fluorescent spots per imaging area in the 

presence of ADP, which is close to the ~ 30 spots of surface impurities (Figures 7.3A and 

7.3C). 

 

7.2.2   Detection of Protein Conformational Transitions  

In the presence of ADP, two types of fluorescence-intensity versus time traces 

were observed: Type I molecules (around 100 per imaging area at all ADP concentrations 

tested) displayed steady (or continuous) fluorescence intensity over time until 

photobleaching (Figure 7.3B); Type II molecules (the number per imaging area increased 
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from ~50 to ~200 as ADP concentration increased from 2 to 400 µM) display two-state 

transitions between a weakly-fluorescent state (nearly non-fluorescence) and a highly-

fluorescent state. Figure 7.4A shows the representative intensity-time traces of Type II 

molecules with corresponding fluorescence intensity distributions at five different ADP 

concentrations. The weakly fluorescent state is not completely non-fluorescent (Figure 

7.5) and the fluorescence emission in the highly-fluorescent state is 20 ± 5 (mean ± s.d) 

times larger than that in the weakly-fluorescent state, similar to the 15-fold difference 

between the unquenched and quenched states determined from ensemble measurements 
227. The dwell time of the weakly-fluorescent state (Δtoff) and the dwell time of the 

highly-fluorescent state (Δton) were collected from many Type II molecules. The 

histograms of Δton and Δtoff fit well with single exponential functions (Figure 7.4B). The 

transition rates between the two states at different ADP concentrations are plotted in 

Figure 7.6A. Here, kon=1/τoff and koff=1/τon, where τon and τoff are the average dwell times 

obtained from the single exponential fits. koff is independent of ADP concentration 

whereas kon displays a linear dependence on ADP concentration. These data suggest that 

the two-state dynamics observed in the Type II molecules represent events of single ADP 

binding to and dissociation from a single ParM protein carrying two active TMRs, with 

the unquenched state being the ADP-bound state and the quenched state being the ADP-

unbound state. Therefore, ADP dissociation rate is equal to koff, which is 2.9±0.04 s-1 

(mean ± s.e.m.) and the bimolecular association rate between ADP and ParM is  

0.082 ±0.002 s-1 μM-1 (mean ± s.e.m.), yielding a dissociation constant Kd = 35 ± 1 μM 

(mean ± s.e.m.). These values are all consistent with the values obtained previously by 

stopped-flow experiments 227. 

To examine the heterogeneity further among different ParM molecules, we 

plotted the distribution of transition rates for each molecule obtained at five different 

ADP concentrations (Figure 7.6B). The scatter plot indicates that the rates of ParM 

conformational changes are heterogeneous among different molecules even with the same 

ADP concentration. The intermolecular heterogeneity has been ubiquitously observed in 

single-molecule studies for the conformational kinetics and enzymatic activity of 

biomolecules, possibly due to local environment differences, sampling of conformational 

sub-states or small imperfections during the protein synthesis 240-242.  
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7.2.3   Characterization of the Photobleaching of TMR Dimers  

As mentioned above, a fraction of molecules (Type I) emitted steady/continuous 

fluorescence over time both in the absence and presence of ADP (Figure 7.3B). A large 

fraction of molecules initially showing two-state dynamics (Type II) switched to Type I 

behavior (Figure 7.7A). In contrast, none of the molecules initially showing Type I 

behavior switched to Type II behavior. The mechanism of TMR self-quenching is not 

well-understood, but we speculate that the self-quenching of TMR requires that both 

TMR monomers are not photobleached so that once one of the two TMRs is 

photobleached the remaining TMR emits steadily. The fluorescence intensity histogram 

for a molecule that changed from Type II to Type I behavior showed three peaks (Figure 

7.7B). The peak at near zero fluorescence intensity (IL) represents the molecule in the 

quenched state, whereas the peak at the high fluorescence intensity (IH) represents the 

unquenched state. The peak at the middle fluorescence intensity (IM) represents the 

fluorescence emission when the molecule switches into the ‘steady’ fluorescence state. 

After a dynamic molecule switches into the IM state, only one more photobleaching event 

was observed (Figure 7.7A), indicating that only one active TMR is present in the IM 

state whereas there are two active TMRs present in its initial dynamic phase. From many 

similar time traces, we collected IH and IM values from Gaussian fits of the intensity 

histograms and calculated the ratio IM/IH for each molecule. The distribution of the ratio 

IM/IH obtained from all molecules showed two Gaussian peaks centered at 0.35 and 0.61, 

indicating two different IM levels (Figure 7.7C). We notice that the sum of the two peak 

values is ~1. Given the fact that the fluorescence level of a single TMR varies with 

environment (on D63C or D224C positions; data not shown), each of the two different 

intermediate fluorescence levels could represent the protein population containing either 

of the two active TMRs. The peak at IM/IH=0.61 has a larger population probably because 

the TMR at one position can be photobleached faster than the other despite the lower 

emission rate. 

Finally, we asked whether TMR photobleaching occurs significantly also from the 

stacked state or occurs only when the TMR molecules are unstacked. We further 

analyzed the intensity time traces of the molecules that show conversion from a dynamic 

to a steady phase and determined the state immediately before the conversion event. We 
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found the molecule could be either in quenched (IL) or unquenched (IH) state before the 

conversion to the IM state at all the five ADP concentrations tested. Figure 7.7D shows 

that the percentage of the molecules observed to switch from IH to IM increases as the 

ADP concentration increases, whereas the percentage of the molecules that show IL to IM 

transition decreases. However, if we consider the average dwell time of the ADP bound 

and unbound states and normalize each percentage value by the fraction of time spent in 

the two states (see also Section 7.4 Experimental Procedures), we found that the 

normalized probabilities for IL to IM and IH to IM transitions are both essentially 

independent of ADP concentration (0.32  ±  0.03 and 0.68  ±  0.03 respectively). This 

suggests that the probability for the TMR photobleaching to occur in the quenched, 

stacked state  is half that for the TMR photobleaching to occur in the unquenched,  

unstacked state. We find this observation peculiar because one would normally imagine 

that in the stacked state, non-radiative decay to the ground state would occur much faster 

and the likelihood of photobleaching per photo-excitation would greatly decrease. 

The dissociation constant of free TMR dimers (5′-isomers) in aqueous solutions is 

very high, ~137 µM 243 and  indirect evidence indicates that TMR stacking itself does not 

greatly affect the affinity for the ligand, ADP or Pi 
227,230. Overall, it is reasonable to 

assume that TMR stacking and unstacking rates do not limit the ParM conformational 

changes induced by ADP binding and dissociation, and are likely to occur on a much 

faster time scale than ADP binding and dissociation. There is likely to be a small but 

significant amount, for example 5%, of unstacked TMRs in rapid equilibrium with 

stacked TMRs in the apo (or weakly-fluoresent) state that could be responsible for the 

low fluorescence rather than the non-fluorescence. In addition, it is also possible that 

fluorescence quenching by stacking is not complete because of conformational 

constraints exerted on the TMRs by tethering them to the protein surface. Even the ADP 

bound, unquenched state may represent a rapid equilibrium between the stacked and 

unstacked states favoring the unstacked state.  

 

7.3   Conclusions 
In conclusion, we demonstrated a surface-tethered single molecule assay to study the 

intramolecular conformational dynamics of biomolecules in short distance range (1-3 nm) 
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based on self-quenching of two TMRs. We have shown that a sub-nanometer distance 

change (between 1.6 and 2.1 nm) between the two TMRs attachment points on a ADP 

sensing protein caused by the protein conformational dynamics can be sensitively 

detected by ~20-fold fluorescence intensity change. This single molecule assay is 

applicable to the studies of small conformational dynamics of other nano-devices based 

on biomolecules at short distances as long as rhodamines are positioned correctly, 

through a screening process, to take advantage of the structural changes 230. Our method 

based on fluorescence quenching of two stacked rhodamine should be able to extend the 

single molecule analysis of biomolecules and other nano-scale machineries to the FRET-

insensitive distance range, opening up many new opportunities. In addition, our work 

provides new insights about photophysics of rhodamine dimers that could not have been 

obtained otherwise: (1) photobleaching of either of the two rhodamines eliminates 

quenching of the other rhodamine fluorophore and (2) photobleaching from the highly 

quenched, stacked state is only two-fold slower than from the unstacked state. 

 

7. 4  Experimental Procedures 
Sample Preparation 

Flow chambers were prepared on mPEG-coated quartz slides doped with biotin-

PEG as described 9,11. 0.2 mg/ml neutravidin (Thermo) was incubated for 5 min to 

generate neutravidin-coated flow chambers and the unbound excess neutravidin 

molecules were flushed away. 10 nM of biotinylated penta-His antibody (Qiagen) was 

then incubated for 10 min on the neutrAvidin-coated surface followed by flushing away 

the unbound excess antibodies as previously described 238 (this step was omitted for the 

control experiment where we showed ParM proteins were indeed immobilized on surface 

through specific interactions). 1 nM of ParM was incubated for 5 min and the imaging 

buffer containing 30 mM Tris-HCl (pH 7.5), 25 mM KCl, 3 mM MgCl2, 4 mM Trolox, 

0.1 mg/ml BSA with an oxygen scavenging system (1 mg/ml glucose oxidase, 0.4% 

(w/v) D-glucose and 0.04 mg/ml catalase) was injected into the flow chamber for single-

molecule data acquisition. The measurements were performed at room temperature (22 ± 

1°C). ParM, labeled with rhodamines, at stock concentration of 322 µM was obtained and 
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stored using standard buffer (30 mM Tris-HCl, 1 mM DTT, 150 mM KCl, 1 mM EDTA) 

as previously described 227  and diluted into 1 nM concentration right before each 

experiment.  

 

Single-Molecule Data Acquisition 

The prism type total internal reflection fluorescence microscopy (TIRF) 9,11 was 

used to acquire all the single-molecule data. Briefly, a Nd:YAG laser with 532 nm 

wavelength was guided through the prism to generate an evanescent field of illumination. 

A water-immersion objective (60×, numerical aperture 1.2, Olympus) was used to collect 

the signal and the scattered light was removed using a 550 nm long-pass filter. Although 

the laser was set up specifically for Cy3-Cy5 FRET experiment, this set up can be used 

for rhodamine, which has a similar spectroscopic profile to Cy3 fluorophore. The 

fluorescence signal was sent to a high-speed CCD camera (iXon DV 887-BI, Andor 

Technology). Time resolution of 0.03 sec was used for data acquisition.  

 

Data Analysis 

The florescent spots were determined using a custom DSL program described 

before 238. The average number of the fluorescent spots per imaging area (2,700 μm2) was 

calculated from 20 or more TIRF images taken from different regions. For the two-state 

fluorescence dynamics, the dwell times in each state were estimated from intensity-time 

traces (having at least ten turnovers; 50–100 sec long) using a custom MATLAB 

(Mathworks) routines using a thresholding criterion described before 244. Dwell time 

histograms were built from 50-100 molecules at each ADP concentration and fitted to 

single exponential functions to obtain the average dwell times (τon and τoff). Rate 

constants were estimated as the inverse of the average dwell times. 

To obtain the normalized probabilities in Figure 7.7D, we consider the average 

life time of the state  immediately before the molecule converts from a dynamic to a static 

phase (τon if the state was IH, τoff if the state was IL. We define the percentage of the 

molecules that show IL to IM  transition is xi and the percentage of the molecules that 

show IH to IM transition is yi at the ADP concentration of i (i = 2, 4, 10, 20, 40 µM; 

xi+yi=1). The normalized probability for the molecules that show IL to IM transition is 
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given by  and the normalized probability for the molecules that show IH to 

IM transition is given by , where + =1. 
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7.5  Figures 

 
Figure 7.1  (A) The top and front views of  ParM apo structure (left, PDB entry 1MWM) 

and the ADP-bound ParM structure (right, PDB entry 1MWK).  The positions of the two 

cysteine mutations and the distance between them are shown (1.6 nm for the quenched 

state and 2.1 nm for the unquenched state; the distances were measured between 

cysteineα-carbons). (B) The experimental scheme that shows how the protein is anchored 

onto the PEG-coated surface through anti-His5/His6-tag and biotin/neutravidin 

interactions (also see Section 7.4 Experimental Procedure). 
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Figure 7.2 A TMR-labeled DNA construct previously used for G-Quadruplex study 
245,246 was used to test whether oxygen removal and trolox addition in the imaging buffer 

sufficiently suppress the blinking of TMRs and increase the photostability of TMRs. (A) 

The experimental scheme. The TMR-labeled DNA molecules were immobilized on PEG 

surface via biotin-nertravidin interactions. The sample preparation is as described 

previously and the same single molecule TIR setup was used for the data acquisition as 

we used for the ParM experiments 245,246. The Cy5 fluorophore on the DNA constructs 

was photobleached before data acquisition by directly exciting Cy5 using a 633 nm laser 

for the surface-immobilized DNA constructs. (B)  A representative fluorescence-intensity 

time trace of a single TMR-labeled DNA molecule that shows one-step photobleaching in 

the buffer that we used for the ParM experiments (30 mM Tris-HCl (pH 7.5), 25 mM KCl, 

3 mM MgCl2, 4 mM Trolox, 0.1 mg/ml BSA, 1 mg/ml glucose oxidase, 0.4% (w/v) D-

glucose, 0.04 mg/ml catalase) .  (C) Representative fluorescence-intensity time traces of a 

single TMR-labeled DNA molecule that show one-step photobleaching in the buffer 

without trolox addition (30 mM Tris-HCl (pH 7.5), 25 mM KCl, 3 mM MgCl2, 0.1 

mg/ml BSA, 1 mg/ml glucose oxidase, 0.4% (w/v) D-glucose, 0.04 mg/ml catalase). Our 

data suggest the addition of trolox indeed suppressed the blinking of TMRs and hence 
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increased the photostability of TMRs. This result is similar as what we observed  for 

Cyanine dyes 239. 

 

 Figure 7.3 (A) Representative TIRF images taken in the absence and presence of ParM 

with the indicated ADP concentrations and surface conditions (penta-His-antibody coated 

surface or not). (B) A representative fluorescence-intensity time trace for the molecules 

in the absence of ADP, showing steady and continuous fluorescence over time. (C) The 

average number of fluorescent spots per imaging area determined in the absence and 

presence of ParM and/or ADP. (D) The average number of fluorescence spots per 

imaging area as a function of the ADP concentration. The red line is the fit to a hyperbola. 
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 Figure 7.4 (A) Representative fluorescence-intensity time traces for the molecules 

showing two-state dynamics at five different ADP concentrations with the corresponding 

fluorescence intensity distributions. (B and C) Dwell time analysis for the two states 

respectively at the five ADP concentrations. The dwell time histograms were built from 

50-100 molecules at each ADP concentration. The red lines are the single exponential fits 

to the dwell time histograms. τon or τoff  obtained from the fit is shown next to each 

histogram. 

 

 
Figure 7.5 Representative fluorescence-intensity time traces of a single ParM-based ADP 

sensor obtained at 20 µM ADP.  After one of the two TMRs on the protein is 

photobleached, the fluorescence emission of the protein goes into an intermediate 

fluorescence level. Later after the second TMR is photobleached, the fluorescence 
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emission goes down to a background value which has been corrected to zero. The red 

solid line shows the zero background value. The average fluorescence emission in the 

quenched (or apo) state (gray solid lines) typically shows a non-zero value (above the red 

line). 

 

 

 

 

 

 
Figure 7.6 (A) The transition rates between the quenched and unquenched states at five 

ADP concentrations. The best fit horizontal was performed for koff and the best linear fit 

was performed for kon. (B) Scatter plots of the transition rates among many different 

individual molecules at five ADP concentrations. 
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Figure 7.7 (A and B) A representative fluorescence-intensity time trace for the molecules 

showing conversion from two-state dynamics to steady fluorescence and the 

corresponding fluorescence intensity distribution (This trace was taken at 20 µM ADP). 

(C) Distribution of the ratio IM/IH built from 343 molecules that show the type of time 

trace in a). The red line is the fit to the sum of two Gaussian peaks. (D) The percentages 

of the molecules that convert from the unquenched to the IM state or from the quenched to 

the IM  state when the molecule switches from a dynamic to a steady phase at five ADP 

concentrations, with calculated probabilities normalized to the average dwell time of the 

state before the conversion.  The example conversion traces (from IH to IM, from IL to IM) 

are shown in the right.  
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Appendix A 
Stretching a Mobile HJ Bound by a 

HJ Resolvase 
 
 
A.1  Introduction 
In Chapter 5, we use fluorescence-force spectroscopy to stretch DNA Holliday junctions 

(HJs) where the designed HJ constructs are all immobile. In fact, if the opposing arms of 

a HJ contain homologous sequences in the junction core region, the branch point of a HJ 

may migrate spontaneously through a process called branch migration. In the cell, brach 

migration is catalyzed by enzymes (such as helicases). At a later time point, the HJ needs 

to be cleaved to two nicked DNA double strands. There is a class of proteins called 

Holliday junction resolvase to selectively bind to HJs and accomplish the cleavage. In 

bacteriophage T7, T7 endonuclease I (endo I) is the encoded HJ resolvase and is a stable 

dimmer of identical 149 amino acids subunits 247. Endo I preferentially binds to HJs with 

high affinity and cleaves the two continuous DNA strands adjacent to the crossover point 

in the presence of Mg2+ ions 248.  The crystal structures of endo I alone or in complex 

with a synthetic four-way DNA junction (Figure A.1) have been resolved 247,249,250 . Upon 

endo I binding to the HJ, the structure of the junction is distorted and is different from the 

structure of isoI (or isoII) (Figure A1). There are also two possible binding directions for 

endo I which correspond to the two possible cleavage products 251 (Figure A.2). Each 

endo I monomer has one active site which contains two ion binding sites (Sites 1 and 2). 

The active site for the cleavage activity contains three acidic side chains (Glu20, Asp55 

and Glu65) and a lysine (Lys67), very similar to that of many type II restriction enzymes 

such as BglI (Figure A.1D; the scissile phosphate bond shown by the black arrow). The 

metal ion at site 1 is coordinated by Asp 55, Glu 65 and Thr 66, whereas the metal ion  at 

site 2 is coordinated by Asp 55 249,250. The hydrolytic water molecule was thought to be 

coordinated by the ion at site 1 to carry out in-line nucleophilic attack on the scissile 

phosphate. The negatively charged transition state is stabilized by the ion at site 2 and 

Lys67.  Glu20 may have a more general electrostatic role. Although T7 endo I is a 
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structure-specific enzyme, the catalytic domain of T7 Endo I is a non-specific nicking 

endonuclease and shows no sequence preference 252.   

 

A.2  Stretching the Naked Mobile HJ  
The spontaneous branch migration of Holliday junction (HJ) with 1 bp step size has been 

reported previously 253. We took the same mobile HJ construct (Figure A.3A; refered to 

as mmHJ). The mobile HJ is capable of branch migration with 5 bp of identical sequence 

(the pink region in Fig.9a) in the opposite arms so that six spontaneous migration steps 

are expected and the distance between Cy3 and Cy5 may range from 10 to 20 bp during 

the migration. The force applied through the two opposing arms of the HJ can bias the 

spontaneous migration, which has implications on how much of helicase-catalyzed 

branch migration could be attributable to spontaneous branch migration. We applied five 

sequential stretching cycles. The FRET efficiency decreased from ~ 0.35 to 0.1 as 

increasing force in absence of divalent ions (2 mM EDTA; Figure A.3B). In the presence 

of divalent ions, FRET efficiency started with a higher initial value (~0.45; this 

difference comes from the structure difference between the open state and the stacking 

conformer of HJs) and decreased (Figures A.3B and A.3C). The stretching curves at high 

Mg2+ displayed more fluctuations because it is known that increasing divalent ions can 

slow down the spontaneous branch migration 175,253 whereas in the absence of Mg2+ the 

dynamics were too fast to be observed in our given time resolution (~ 44 ms). We found a 

relatively high force ( > 15 pN in the absence of Mg2+, > 20 pN in te presence of Mg2+) is 

required to completely bias the spontaneous migration which means the helicases need to 

actively apply high enough force to prevent the migration from going backwards. This is 

consistent with previous work where a 23 pN stall force was found to halt RuvAB-

directed branch migration 254.  

 

A.3  Stretching the Mobile HJ bound by T7 Endo I 
We next tested the T7 endonuclease I binding to the mobile HJ construct described above 

(Figure A.4; inserted cartoon shows the stretching direction). To prevent the cleavage, we 

used a catalytically impaired mutant of the protein (K67A). In the presence of 10 mM 
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Ca2+ or Mg2+, FRET fluctuations induced by spontaneous branch migration was 

previously observed for the mobile HJ construct we used (mmHJ) 253. We found such fast 

FRET fluctuations induced by spontaneous branch migration were completely stopped 

upon the binding of endo I to HJ, indicating that endo I binding halts the spontaneous 

branch migration (Figure A.4).  Then we asked the question if the force-induced branch 

migration can occur even after endo I binds to the HJ. We observed that FRET efficiency 

decreased as the force increased at 10 mM Mg2+ (Scenario 1; Figure A.5A). The initial 

FRET values from different molecules are different, suggesting endo I can bind at 

different branch points which can migrate within 5 bp freely before the protein binds. We 

think the force-induced FRET decrease is not due to branch migration but represents the 

force-induced deformation of the HJ or protein because the FRET always jumped back to 

a same initial value once the force was released in Scenario 1. To confirm this, we tested 

an immobile HJ (termed imHJ) which contains no any identical sequence in the opposite 

arms. Indeed, we observed the similar force-induced FRET decrease as shown in 

Scenario 1 for the mobile HJ in the same ionic condition (Figure A.5B). Endo I binding 

displayed strong divalent ion dependence and we may divide all the individual 

fluorescence-force time traces into three scenarios (Figure A.5A): (Scenario 1) the FRET 

time trace is very repetitive in each force cycle and there is no any abrupt FRET change 

within each force cycle. Although the initial FRET value  in a force cycle for different 

molecules could be different, FRET jumped back to a same initial value once the force 

was released for the same molecule; (Scenario 2) in the time trace of a HJ molecule, once 

we released the force, FRET frequently jumped to a value which was different from that 

of the previous force cycle; (Scenario 3) The time trace of a HJ molecule shows many 

adrupt FRET changes even within each force cycle.  The averaged FRET-force curves for 

different ionic conditions are shown in Figure A.5B, which show the ionic concentration 

dependence. The abrupt FRET changes are related to the stability of endo I binding to HJ 

and the binding stability increases as increasing Mg2+ or Ca2+ concentrations. 
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A.4  Figures 

 

 
 

Figure A1 Crystal structure of the HJ resolvase phage T7 endonuclease I in complex 

with a synthetic four-way HJ and the active site of T7 endonulcease I (Adopted from 

Ref.[249]) .  
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Figure A.2 Structure diagrams of a Holliday junction in the (A) absence and (B) 

presence of divalent ions. (C) Two possible binding directions of T7 endo I to the 

junctions. 
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Figure A.3 Force-induced HJ branch migration. (A) Experimental Scheme. The force 

was applied to two opposite arms of the mobile HJ. (B) Force-fluoresence time traces for 

five stretching cycles at different Mg2+ concentrations. (C) Averaged FRET-force curves 

from several molecules and force cycles. 
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Figure A.4 Representative single molecule time traces of Cy3-Cy5 labeled mobile HJ 

upon the addition of 10 nM of T7 endo I at the time point of ~ 30 s. 10 mM Ca2+ were 

present both before and after the addition of the protein. Fast FRET fluctuation stops at 

about 33 s.  
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Figure A.5 (A) Representative fluorescence-force time traces in different ion conditions. 

The red arrows indicate abrupt FRET changes. (B) The averaged FERT-force curves for 

stretching the single mobile Holiday junction (mmHJ) bound by endo I (K67A) in 

different and the averaged FRET-force curve for stretching the single immobile Holliday 

junction (imHJ) bound by endo I (K67A) in the presence of 10 mM MgCl2. 
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Appendix B 
Probing the Orientation of Cyanine 

Fluorophores Terminally Attached to 
DNA 

 
B.1  Experimental Design 

It has been previously shown that the fluorophores, indocarbocyanine-3 (Cy3) or 

indocarbocyanine-5 (Cy5) terminally attached to the 5’ terminus of the duplex DNA, are 

stacked onto the end of the DNA helix 255-257. Here, we adopt a previously developed 

polarization modulation method 258 in combination with our fluorescence-force 

spectroscopy to test whether the Cy3 linked to 5’-end of a DNA duplex is indeed stably 

stacked. In the polarization modulation method 258,  the polarization direction of a 

linearly polarized excitation laser beam was modulated (or rotated) in order to measure 

the projected dipole orientation in the xy plane of a single fluorophore linked to a short 

single-stranded DNA molecule, and the DNA-fluorophore complex  was  nonspecifically 

adsorbed to a silanized glass surface. In our fluorescence-force spectroscopy, a 22 base 

pair DNA duplex with Cy3 attached to the 5’ end was specifically attached to surface 

through neutravidin-biotin interactions so that DNA duplex is free to rotate and tumble 

(Figure B.3A). The 22 bp DNA duplex construct was made by annealing two single 

strands 5’-GGGCGGCGACCTCCCACCGCTCGTGCTGCTACGG/iSp18/TTTTTTTTT 

T-/Biotin/-3’ and 5’-/Cy3/CCG TAGCAGCACGAGCGGTGGG-3’ (from IDT DNA 

Technologies), where the sequence underlined is the 12 nt cohesive end site of λ-DNA 

and /iSp18/ represents an internal spacer used to minimize the interaction between the 

PEG surface and the 22 bp duplex. In our setup, a combination of a polarizing beam 

splitter and a half wave plate is used to control the excitation laser power, and a second 

half wave plate is added into the beam path such that we can modulate the polarization 

direction of the excitation laser in the xy sample plane by rotating the second half wave 

plate manually. According to the dipole approximation, the intensity of the emission 

signal of the single fluorophore, I, has the following formula 258, 
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2
EI
rr

⋅∝ μ          (B.1) 

where μr is the molecular transition dipole and E
r

 is the excitation laser field. Therefore if 

single Cy3 fluorophore can be fixed in the xy plane and the excitation polarization angle 

(θ) is modulated graduatlly, the detected emission intensity of Cy3 is proportional to 

(cosθ)2. 

However, even the Cy3 is indeed stacked to the 5’ terminus of the DNA duplex, 

we cannot observe such modulations in the Cy3 emission intensity with the time 

resolution of our instrument by modulating the excitation polarization, because the DNA 

duplex itself, along with the dipole orientation of the Cy3, is free to rotate and tumble 

very fast on a smaller time scale at zero force. Therefore, using optical tweezers to apply 

a force to both ends of the DNA duplex is necessary to eliminate the tumbling of the 

duplex. With enough tension applied, we expect to see the Cy3 emission inetensity 

changes when modulating the excitation polarization direction if Cy3 is indeed stacked 

on the DNA terminus. 

 

B.2  Experimental Results 
The experimental scheme is shown in Figure B.1A. Once a surface-tethered bead 

was trapped, the coverslip surface was moved back and forth with the piezo-stage to 

roughly determine the tethered position by finding the central position of the stretching 

curves in two orthogonal directions in the xy plane. The origin of the piezo stage was then 

reset to this central position which is where the Cy3-labeled DNA is located. Next, the 

coverslip surface was moved along x-axis to three different positions (displaced by 10, 14 

and 16.5 μm from the stage origin, corresponding to applied forces of ~ 0, 0.9 and 15 pN 

respectively). At each stage displacement, the Cy3 signal from the stretched DNA 

molecule was recorded by the APD for 10 seconds while the polarization direction of the 

532 nm excitation laser was modulated by rotating the second half wave plate. At zero 

force, Cy3 emission did not change as the function of time. However, at 0.9 and 15 pN, 

the periodic intensity change of Cy3 emission was observed (Figure B.3B), indicating 

that Cy3 is indeed stacked on the terminus of the duplex DNA. 
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Next, we designed another similar experiment using fluorescence-force 

spectroscopy where we rotated the the dipole orientation of Cy3 about z-axis by rotating 

the optical trap rather than rotating the polarization direction of the excitation laser 

(Figure B.2A).  After the origin of the piezo stage was reset the central position of the x 

and y stretching curves as described above, the optical trap was moved along x-axis by ~ 

16 μm (corresponding to ~ 5 pN). We then started recorded Cy3 signal from the tethered 

molecule and at a later time point we started rotating the optical trap with a constant 

speed. A representative time trace recorded is shown in Figure B.2B. After some time 

point, the Cy3 signal begins to fluctuate periodically similar to the time traces we 

obtained in Figure B.1B. We can fit the time trace with a cosine square function, 

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅+=
w

ttAItI 02
0 cos)( π         (B.2) 

We obtained w=5.06 ± 0.03 s from the fit (red line; Figure B.2B).  

         These results indicate that the Cy3 fluorophore attached to the 5’ terminus of DNA 

is indeed stacked such that the orientation of the transition dipole moment is largely 

restricted.  

 

B.3  Figures 

 

 
 
Figure B.1 (A) Experimental scheme.  The polarization direction of the excitation laser 

beam was rotated by rotating the half wavelength plate manually. (B) The Cy3 signal 
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from a single Cy3 fluorophore that is attached to the DNA duplex as a function of time at 

the different forces applied to the DNA duplex. 
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Figure B.2 (A) Experimental scheme.  The polarization direction of the excitation laser 

beam was fixed whereas the optical trap was rotated by rotating the half wavelength plate 

manually. (B) The Cy3 signal from a single Cy3 fluorophore that is attached to the DNA 

duplex as a function of time (green trace). At time point t = ~3.8 s, we started rotated the 

optical trap. The red trace is the fit to the cosine square function (t > 3.8 s).And the blue 

line indicates the mean value of  the Cy3 signal before the optical trap started to rotate (t 

<  3.8 s). 

 
 
 
 
 

A 

B 



 

143 
 

References 
 
1. Jablonski, A. Uber den Mechanismus der Photolumineszenz von Farbst-

offphosphoren. Zeitschrift fur Physik 94, 38-46 (1935). 
2. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Kluwer 

Academic/Plenum Publishers, New York, 1999). 
3. Forster, T. Experimental and Theoretical Investigation of the Intermolecular 

Transfer of Electronic Excitation Energy. Zeitschrift Naturforsch A 4, 321-327 
(1949). 

4. Selvin, P. R. Lanthanide-based resonance energy transfer. IEEE Journal of 
Selected Topics in Quantum Electronics:  Lasers in Biology 2, 1077-1087 (1996). 

5. Clegg, R. M. in Methods in Enzymology (eds. Lilley, D. M. J. & Dahlberg, J.) 
353-388 (Academic Press, New York, 1992). 

6. Ha, T. Single-molecule fluorescence methods for the study of nucleic acids. Curr 
Opin Struct Biol 11, 287-92 (2001). 

7. Ha, T. Single-molecule fluorescence resonance energy transfer. Methods 25, 78-
86 (2001). 

8. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-
molecule fluorescence methods for molecular biology. Annu Rev Biochem 77, 51-
76 (2008). 

9. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat 
Methods 5, 507-16 (2008). 

10. Ha, T. et al. Probing the interaction between two single molecules: fluorescence 
resonance energy transfer between a single donor and a single acceptor. Proc Natl 
Acad Sci U S A 93, 6264-8 (1996). 

11. Joo, C. & Ha, T. in Single molecule techniques: A laboratory manual (eds. Selvin, 
P. R. & Ha, T.) 507 (Cold Spring Harbor Laboratory Press, New York, 2008). 

12. Ha, T., Chemla, D. S., Enderle, T. & Weiss, S. Single molecule spectroscopy with 
automated positioning. Applied Physics Letters 70, 782-784 (1997). 

13. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a Single-
Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters 11, 288-
290 (1986). 

14. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single Myosin Molecule 
Mechanics - Piconewton Forces and Nanometer Steps. Nature 368, 113-119 
(1994). 

15. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct Observation of 
Kinesin Stepping by Optical Trapping Interferometry. Nature 365, 721-727 
(1993). 

16. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied 
with a molecular force clamp. Nature 400, 184-189 (1999). 

17. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin 
molecules measured by optical trapping nanometry. Biophysical Journal 73, 
2012-2022 (1997). 

18. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic 
response of individual double-stranded and single-stranded DNA molecules. 
Science 271, 795-9 (1996). 



 

144 
 

19. Woodside, M. T., Garcia-Garcia, C. & Block, S. M. Folding and unfolding single 
RNA molecules under tension. Curr Opin Chem Biol 12, 640-6 (2008). 

20. Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent 
folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci U S A 103, 
6190-5 (2006). 

21. Smith, D. E. et al. The bacteriophage phi 29 portal motor can package DNA 
against a large internal force. Nature 413, 748-752 (2001). 

22. Fuller, D. N., Raymer, D. M., Kottadiel, V. I., Rao, V. B. & Smith, D. E. Single 
phage T4 DNA packaging motors exhibit large force generation, high velocity, 
and dynamic variability. Proc Natl Acad Sci U S A 104, 16868-73 (2007). 

23. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding-
unfolding transitions in single titin molecules characterized with laser tweezers. 
Science 276, 1112-6 (1997). 

24. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M. Elasticity and 
unfolding of single molecules of the giant muscle protein titin. Nature 387, 308-
12 (1997). 

25. Shank, E. A., Cecconi, C., Dill, J. W., Marqusee, S. & Bustamante, C. The 
folding cooperativity of a protein is controlled by its chain topology. Nature 465, 
637-U134 (2010). 

26. Kim, J., Zhang, C. Z., Zhang, X. & Springer, T. A. A mechanically stabilized 
receptor-ligand flex-bond important in the vasculature. Nature 466, 992-5. 

27. Wang, M. D. et al. Force and velocity measured for single molecules of RNA 
polymerase. Science 282, 902-907 (1998). 

28. Wuite, G. J. L., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-
molecule studies of the effect of template tension on T7 DNA polymerase activity. 
Nature 404, 103-106 (2000). 

29. Pease, P. J. et al. Sequence-directed DNA translocation by purified FtsK. Science 
307, 586-590 (2005). 

30. Greenleaf, W. J., Woodside, M. T. & Block, S. M. High-resolution, single-
molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 
36, 171-90 (2007). 

31. Bustamante, C., Macosko, J. C. & Wuite, G. J. Grabbing the cat by the tail: 
manipulating molecules one by one. Nat Rev Mol Cell Biol 1, 130-6 (2000). 

32. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in 
optical tweezers. Annu Rev Biochem 77, 205-28 (2008). 

33. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. 
M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 
460-465 (2005). 

34. Moffitt, J. R., Chemla, Y. R., Izhaky, D. & Bustamante, C. Differential detection 
of dual traps improves the spatial resolution of optical tweezers. Proceedings of 
the National Academy of Sciences of the United States of America 103, 9006-9011 
(2006). 

35. Carter, A. R., Seol, Y. & Perkins, T. T. Precision Surface-Coupled Optical-
Trapping Assay with One-Basepair Resolution. Biophysical Journal 96, 2926-
2934 (2009). 



 

145 
 

36. Clausen-Schaumann, H., Seitz, M., Krautbauer, R. & Gaub, H. E. Force 
spectroscopy with single bio-molecules. Curr Opin Chem Biol 4, 524-30 (2000). 

37. Neuman, K. C., Lionnet, T. & Allemand, J. F. Single-molecule 
micromanipulation techniques. Annual Review of Materials Research 37, 33-67 
(2007). 

38. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, 
magnetic tweezers and atomic force microscopy. Nature Methods 5, 491-505 
(2008). 

39. Amit, R., Gileadi, O. & Stavans, J. Direct observation of RuvAB-catalyzed 
branch migration of single Holliday junctions. Proceedings of the National 
Academy of Sciences of the United States of America 101, 11605-11610 (2004). 

40. Lee, J.-B. et al. DNA primase acts as a molecular brake in DNA replication. 
Nature 439, 621-624 (2006). 

41. van Mameren, J. et al. Counting RAD51 proteins disassembling from 
nucleoprotein filaments under tension. Nature 457, 745-748 (2009). 

42. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals 
regulation of focal adhesion dynamics. Nature 466, 263-266 (2010). 

43. Kamimura, S. & Takahashi, K. Direct Measurement of the Force of Microtubule 
Sliding in Flagella. Nature 293, 566-568 (1981). 

44. Kishino, A. & Yanagida, T. Force Measurements by Micromanipulation of a 
Single Actin Filament by Glass Needles. Nature 334, 74-76 (1988). 

45. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792-4 (1996). 
46. Zlatanova, J. & Leuba, S. H. Chromatin fibers, one-at-a-time. Journal of 

Molecular Biology 331, 1-19 (2003). 
47. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible 

unfolding of individual titin immunoglobulin domains by AFM. Science 276, 
1109-1112 (1997). 

48. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: 
A comparison. Proceedings of the National Academy of Sciences of the United 
States of America 96, 3694-3699 (1999). 

49. Lee, G. U., Chrisey, L. A. & Colton, R. J. Direct Measurement of the Forces 
between Complementary Strands of DNA. Science 266, 771-773 (1994). 

50. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of 
receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50-
53 (1999). 

51. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How 
strong is a covalent bond? Science 283, 1727-1730 (1999). 

52. Lee, C. K., Wang, Y. M., Huang, L. S. & Lin, S. M. Atomic force microscopy: 
Determination of unbinding force, off rate and energy barrier for protein-ligand 
interaction. Micron 38, 446-461 (2007). 

53. Hinterdorfer, P. & Dufrene, Y. F. Detection and localization of single molecular 
recognition events using atomic force microscopy. Nature Methods 3, 347-355 
(2006). 

54. Lee, G. U., Kidwell, D. A. & Colton, R. J. Sensing Discrete Streptavidin Biotin 
Interactions with Atomic-Force Microscopy. Langmuir 10, 354-357 (1994). 



 

146 
 

55. Florin, E. L., Moy, V. T. & Gaub, H. E. Adhesion Forces between Individual 
Ligand-Receptor Pairs. Science 264, 415-417 (1994). 

56. Leckband, D. & Israelachvili, J. Intermolecular forces in biology. Quarterly 
Reviews of Biophysics 34, 105-267 (2001). 

57. Lim, C. T., Zhou, E. H., Li, A., Vedula, S. R. K. & Fu, H. X. Experimental 
techniques for single cell and single molecule biomechanics. Materials Science & 
Engineering C-Biomimetic and Supramolecular Systems 26, 1278-1288 (2006). 

58. Evans, E., Ritchie, K. & Merkel, R. Sensitive force technique to probe molecular 
adhesion and structural linkages at biological interfaces. Biophys J 68, 2580-7 
(1995). 

59. Simson, D. A., Ziemann, F., Strigl, M. & Merkel, R. Micropipet-based pico force 
transducer: in depth analysis and experimental verification. Biophys J 74, 2080-8 
(1998). 

60. Chesla, S. E., Selvaraj, P. & Zhu, C. Measuring two-dimensional receptor-ligand 
binding kinetics by micropipette. Biophys J 75, 1553-72 (1998). 

61. Smith, S. B., Finzi, L. & Bustamante, C. Direct Mechanical Measurements of the 
Elasticity of Single DNA-Molecules by Using Magnetic Beads. Science 258, 
1122-1126 (1992). 

62. Yan, J. et al. Micromanipulation studies of chromatin fibers in Xenopus egg 
extracts reveal ATP-dependent chromatin assembly dynamics. Molecular Biology 
of the Cell 18, 464-474 (2007). 

63. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The 
elasticity of a single supercoiled DNA molecule. Science 271, 1835-1837 (1996). 

64. Koster, D. A., Crut, A., Shuman, S., Bjornsti, M. A. & Dekker, N. H. Cellular 
Strategies for Regulating DNA Supercoiling: A Single-Molecule Perspective. Cell 
142, 519-530 (2010). 

65. Revyakin, A., Liu, C. Y., Ebright, R. H. & Strick, T. R. Abortive initiation and 
productive initiation by RNA polymerase involve DNA scrunching. Science 314, 
1139-1143 (2006). 

66. Dessinges, M. N., Lionnet, T., Xi, X. G., Bensimon, D. & Croquette, V. Single-
molecule assay reveals strand switching and enhanced processivity of UvrD. 
Proceedings of the National Academy of Sciences of the United States of America 
101, 6439-6444 (2004). 

67. Lionnet, T., Spiering, M. M., Benkovic, S. J., Bensimon, D. & Croquette, V. 
Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding 
mechanism. Proceedings of the National Academy of Sciences of the United 
States of America 104, 19790-19795 (2007). 

68. Kim, S. J., Blainey, P. C., Schroeder, C. M. & Xie, X. S. Multiplexed single-
molecule assay for enzymatic activity on flow-stretched DNA. Nature Methods 4, 
397-399 (2007). 

69. van Oijen, A. M. et al. Single-Molecule Kinetics of Î» Exonuclease Reveal Base 
Dependence and Dynamic Disorder. Science 301, 1235-1238 (2003). 

70. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule 
DNA mechanics. Nature 421, 423-7 (2003). 

71. La Porta, A. & Wang, M. D. Optical torque wrench: angular trapping, rotation, 
and torque detection of quartz microparticles. Phys Rev Lett 92, 190801 (2004). 



 

147 
 

72. EssevazRoulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the 
complementary strands of DNA. Proceedings of the National Academy of 
Sciences of the United States of America 94, 11935-11940 (1997). 

73. Rief, M., Clausen-Schaumann, H. & Gaub, H. E. Sequence-dependent mechanics 
of single DNA molecules. Nature Structural Biology 6, 346-349 (1999). 

74. Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes 
in biochemistry. Annu Rev Biochem 73, 705-48 (2004). 

75. Li, P. T. X., Vieregg, J. & Tinoco, I. How RNA unfolds and refolds. Annual 
Review of Biochemistry 77, 77-100 (2008). 

76. Zhu, C., Bao, G. & Wang, N. Cell mechanics: Mechanical response, cell adhesion, 
and molecular deformation. Annual Review of Biomedical Engineering 2, 189-226 
(2000). 

77. Borgia, A., Williams, P. M. & Clarke, J. Single-molecule studies of protein 
folding. Annual Review of Biochemistry 77, 101-125 (2008). 

78. Moy, V. T., Florin, E. L. & Gaub, H. E. Intermolecular Forces and Energies 
between Ligands and Receptors. Science 266, 257-259 (1994). 

79. Weisel, J. W., Shuman, H. & Litvinov, R. I. Protein-protein unbinding induced by 
force: single-molecule studies. Curr Opin Struct Biol 13, 227-35 (2003). 

80. Liu, W. et al. Single molecule mechanical probing of the SNARE protein 
interactions. Biophys J 91, 744-58 (2006). 

81. Yersin, A. et al. Interactions between synaptic vesicle fusion proteins explored by 
atomic force microscopy. Proceedings of the National Academy of Sciences of the 
United States of America 100, 8736-8741 (2003). 

82. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions 
determine T-cell responsiveness. Nature 464, 932-6. 

83. Evans, E. Probing the relation between force - Lifetime - and chemistry in single 
molecular bonds. Annual Review of Biophysics and Biomolecular Structure 30, 
105-128 (2001). 

84. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I., Jr. & Bustamante, C. 
Equilibrium information from nonequilibrium measurements in an experimental 
test of Jarzynski's equality. Science 296, 1832-5 (2002). 

85. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. 
Science 323, 638-41 (2009). 

86. Ishijima, A. et al. Multiple- and single-molecule analysis of the actomyosin motor 
by nanometer piconewton manipulation with a microneedle: Unitary steps and 
forces. Biophysical Journal 70, 383-400 (1996). 

87. Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced 
bidirectional stepping of cytoplasmic dynein. Cell 131, 952-65 (2007). 

88. Seidel, R. & Dekker, C. Single-molecule studies of nucleic acid motors. Current 
Opinion in Structural Biology 17, 80-86 (2007). 

89. Jiang, G. Y., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-
piconewton slip bond between fibronectin and the cytoskeleton depends on talin. 
Nature 424, 334-337 (2003). 

90. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship 
studied using elastic micropatterned substrates. Nature Cell Biology 3, 466-472 
(2001). 



 

148 
 

91. Zlatanova, J., Lindsay, S. M. & Leuba, S. H. Single molecule force spectroscopy 
in biology using the atomic force microscope. Progress in Biophysics and 
Molecular Biology 74, 37-61. 

92. Moffitt, J. R., Chemla, Y. R., Izhaky, D. & Bustamante, C. Differential detection 
of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad 
Sci U S A 103, 9006-11 (2006). 

93. Dijk, M. A., Kapitein, L. C., Mameren, J., Schmidt, C. F. & Peterman, E. J. 
Combining optical trapping and single-molecule fluorescence spectroscopy: 
enhanced photobleaching of fluorophores. J Phys Chem B 108, 6479-84 (2004). 

94. Lang, M. J., Fordyce, P. M. & Block, S. M. Combined optical trapping and 
single-molecule fluorescence. J Biol 2, 6 (2003). 

95. Lang, M. J., Fordyce, P. M., Engh, A. M., Neuman, K. C. & Block, S. M. 
Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat 
Methods 1, 133-9 (2004). 

96. Funatsu, T. et al. Imaging and nano-manipulation of single biomolecules. Biophys 
Chem 68, 63-72 (1997). 

97. Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical 
events by a single myosin molecule during interaction with actin. Cell 92, 161-71 
(1998). 

98. Harada, Y. et al. Single molecule imaging and nanomanipulation of biomolecules. 
Methods Cell Biol 55, 117-28 (1998). 

99. Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional reaction 
landscape of the holliday junction. Science 318, 279-83 (2007). 

100. Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional reaction 
landscape of the holliday junction. Science 318, 279-283 (2007). 

101. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals 
regulation of focal adhesion dynamics. Nature 466, 263-U143 (2010). 

102. Zhou, R. et al. SSB Functions as a Sliding Platform that Migrates on DNA via 
Reptation. Cell 146, 222-232 (2011). 

103. Neuman, K. C., Abbondanzieri, E. A. & Block, S. M. Measurement of the 
effective focal shift in an optical trap. Optics Letters 30, 1318-1320 (2005). 

104. Lang, M. J., Asbury, C. L., Shaevitz, J. W. & Block, S. M. An automated two-
dimensional optical force clamp for single molecule studies. Biophys J 83, 491-
501 (2002). 

105. Happel, J. & Brenner, H. Low Reynolds number hydrodynamics: with special 
applications to particulate media (Kluwer Academic Print on Demand, 1983). 

106. Pralle, A., Florin, E. L., Stelzer, E. H. K. & Horber, J. K. H. Local viscosity 
probed by photonic force microscopy. Applied Physics a-Materials Science & 
Processing 66, S71-S73 (1998). 

107. Berg-Sørensen, K. & Flyvbjerg, H. Power spectrum analysis for optical tweezers. 
Review of Scientific Instruments 75, 594 (2004). 

108. Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophys J 87, 
1328-37 (2004). 

109. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of 
lambda-phage DNA. Science 265, 1599-600 (1994). 



 

149 
 

110. Selvin, P. R. & Ha, T. Single Molecule Techniques: A Laboratory Manual (Cold 
Spring Harbor Laboratory Press, 2007). 

111. Myong, S., Rasnik, I., Joo, C., Lohman, T. M. & Ha, T. Repetitive shuttling of a 
motor protein on DNA. Nature 437, 1321-5 (2005). 

112. Yokota, H. et al. Single-molecule Visualization of Binding Modes of Helicase to 
DNA on PEGylated Surfaces. Chemistry Letters 38, 308-309 (2009). 

113. Richard, D. J. et al. Single-stranded DNA-binding protein hSSB1 is critical for 
genomic stability. Nature 453, 677-81 (2008). 

114. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & 
Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli. 
Microbiol Rev 58, 401-65 (1994). 

115. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and 
bacteriophage lambda. Microbiol Mol Biol Rev 63, 751-813, table of contents 
(1999). 

116. Meyer, R. R. & Laine, P. S. The single-stranded DNA-binding protein of 
Escherichia coli. Microbiol Rev 54, 342-80 (1990). 

117. Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M. & Keck, J. L. SSB as 
an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol 
Biol 43, 289-318 (2008). 

118. Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. Structure of the 
DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7, 648-52 
(2000). 

119. Raghunathan, S., Ricard, C. S., Lohman, T. M. & Waksman, G. Crystal structure 
of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded 
DNA-binding protein determined by multiwavelength x-ray diffraction on the 
selenomethionyl protein at 2.9-A resolution. Proc Natl Acad Sci U S A 94, 6652-7 
(1997). 

120. Lohman, T. M. & Ferrari, M. E. Escherichia coli single-stranded DNA-binding 
protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63, 
527-70 (1994). 

121. Roy, R., Kozlov, A. G., Lohman, T. M. & Ha, T. Dynamic structural 
rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 
369, 1244-57 (2007). 

122. Griffith, J. D., Harris, L. D. & Register, J., 3rd. Visualization of SSB-ssDNA 
complexes active in the assembly of stable RecA-DNA filaments. Cold Spring 
Harb Symp Quant Biol 49, 553-9 (1984). 

123. Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and 
Architecture of Active DNA Replication Machinery in Escherichia coli. Science 
328, 498-501 (2010). 

124. Roy, R., Kozlov, A. G., Lohman, T. M. & Ha, T. SSB protein diffusion on single-
stranded DNA stimulates RecA filament formation. Nature 461, 1092-7 (2009). 

125. Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M. & Ha, T. Probing single-
stranded DNA conformational flexibility using fluorescence spectroscopy. 
Biophys J 86, 2530-7 (2004). 

126. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli 
Rep helicase. Nature 419, 638-41 (2002). 



 

150 
 

127. Bustamante, C., Smith, S. B., Liphardt, J. & Smith, D. Single-molecule studies of 
DNA mechanics. Curr Opin Struct Biol 10, 279-85 (2000). 

128. Kulic, I. M. & Schiessel, H. Nucleosome repositioning via loop formation. 
Biophys J 84, 3197-211 (2003). 

129. Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA 
sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol 
Biol 254, 130-49 (1995). 

130. Ha, T. & Xu, J. Photodestruction intermediates probed by an adjacent reporter 
molecule. Phys Rev Lett 90, 223002 (2003). 

131. Kozlov, A. G. & Lohman, T. M. Stopped-flow studies of the kinetics of single-
stranded DNA binding and wrapping around the Escherichia coli SSB tetramer. 
Biochemistry 41, 6032-44 (2002). 

132. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free 
energies from single-molecule pulling experiments. Phys Rev Lett 96, 108101 
(2006). 

133. Dudko, O. K., Hummer, G. & Szabo, A. Theory, analysis, and interpretation of 
single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105, 
15755-60 (2008). 

134. Greenleaf, W. J., Frieda, K. L., Foster, D. A., Woodside, M. T. & Block, S. M. 
Direct observation of hierarchical folding in single riboswitch aptamers. Science 
319, 630-3 (2008). 

135. Lohman, T. M., Green, J. M. & Beyer, R. S. Large-scale overproduction and rapid 
purification of the Escherichia coli ssb gene product. Expression of the ssb gene 
under lambda PL control. Biochemistry 25, 21-5 (1986). 

136. van Mameren, J. et al. Counting RAD51 proteins disassembling from 
nucleoprotein filaments under tension. Nature 457, 745-8 (2009). 

137. Gorman, J. & Greene, E. C. Visualizing one-dimensional diffusion of proteins 
along DNA. Nat Struct Mol Biol 15, 768-74 (2008). 

138. Romer, R., Schomburg, U., Krauss, G. & Maass, G. Escherichia coli single-
stranded DNA binding protein is mobile on DNA: 1H NMR study of its 
interaction with oligo- and polynucleotides. Biochemistry 23, 6132-7 (1984). 

139. Kuznetsov, S. V., Kozlov, A. G., Lohman, T. M. & Ansari, A. Microsecond 
dynamics of protein-DNA interactions: direct observation of the 
wrapping/unwrapping kinetics of single-stranded DNA around the E. coli SSB 
tetramer. J Mol Biol 359, 55-65 (2006). 

140. de Gennes, P. G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. 
The Journal of Chemical Physics 55, 572-579 (1971). 

141. Perkins, T. T., Smith, D. E. & Chu, S. Direct observation of tube-like motion of a 
single polymer chain. Science 264, 819-22 (1994). 

142. Sukhishvili, S. A. et al. Materials science. Diffusion of a polymer 'pancake'. 
Nature 406, 146 (2000). 

143. Schiessel, H., Widom, J., Bruinsma, R. F. & Gelbart, W. M. Polymer reptation 
and nucleosome repositioning. Phys Rev Lett 86, 4414-7 (2001). 

144. Kantake, N., Madiraju, M. V., Sugiyama, T. & Kowalczykowski, S. C. 
Escherichia coli RecO protein anneals ssDNA complexed with its cognate 



 

151 
 

ssDNA-binding protein: A common step in genetic recombination. Proc Natl 
Acad Sci U S A 99, 15327-32 (2002). 

145. Umezu, K. & Kolodner, R. D. Protein interactions in genetic recombination in 
Escherichia coli. Interactions involving RecO and RecR overcome the inhibition 
of RecA by single-stranded DNA-binding protein. J Biol Chem 269, 30005-13 
(1994). 

146. Cox, M. M. Regulation of bacterial RecA protein function. Crit Rev Biochem Mol 
Biol 42, 41-63 (2007). 

147. Sakai, A. & Cox, M. M. RecFOR and RecOR as distinct RecA loading pathways. 
J Biol Chem 284, 3264-72 (2009). 

148. Manfredi, C., Carrasco, B., Ayora, S. & Alonso, J. C. Bacillus subtilis RecO 
nucleates RecA onto SsbA-coated single-stranded DNA. J Biol Chem 283, 24837-
47 (2008). 

149. Hobbs, M. D., Sakai, A. & Cox, M. M. SSB protein limits RecOR binding onto 
single-stranded DNA. J Biol Chem 282, 11058-67 (2007). 

150. Ryzhikov, M., Koroleva, O., Postnov, D., Tran, A. & Korolev, S. Mechanism of 
RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic 
Acids Research (2011). 

151. Luisi-DeLuca, C. & Kolodner, R. Purification and characterization of the 
Escherichia coli RecO protein. Renaturation of complementary single-stranded 
DNA molecules catalyzed by the RecO protein. J Mol Biol 236, 124-38 (1994). 

152. Kozlov, A. G., Cox, M. M. & Lohman, T. M. Regulation of Single-stranded DNA 
Binding by the C Termini of Escherichia coli Single-stranded DNA-binding (SSB) 
Protein. Journal of Biological Chemistry 285, 17246-17252 (2010). 

153. Lohman, T. M. Kinetics and mechanism of dissociation of cooperatively bound 
T4 gene 32 protein-single-stranded nucleic acid complexes. 1. Irreversible 
dissociation induced by sodium chloride concentration jumps. Biochemistry 23, 
4656-65 (1984). 

154. Chrysogelos, S. & Griffith, J. Escherichia coli single-strand binding protein 
organizes single-stranded DNA in nucleosome-like units. Proc Natl Acad Sci U S 
A 79, 5803-7 (1982). 

155. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. 
Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 
251-60 (1997). 

156. Beard, P. Mobility of histones on the chromosome of simian virus 40. Cell 15, 
955-67 (1978). 

157. Ranjith, P., Yan, J. & Marko, J. F. Nucleosome hopping and sliding kinetics 
determined from dynamics of single chromatin fibers in Xenopus egg extracts. 
Proc Natl Acad Sci U S A 104, 13649-54 (2007). 

158. Mihardja, S., Spakowitz, A. J., Zhang, Y. & Bustamante, C. Effect of force on 
mononucleosomal dynamics. Proc Natl Acad Sci U S A 103, 15871-6 (2006). 

159. Brower-Toland, B. D. et al. Mechanical disruption of individual nucleosomes 
reveals a reversible multistage release of DNA. Proc Natl Acad Sci U S A 99, 
1960-5 (2002). 

160. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility 
of nucleosomal DNA. Nat Struct Mol Biol 12, 46-53 (2005). 



 

152 
 

161. Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M. & Bustamante, C. 
Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase 
II. Science 325, 626-8 (2009). 

162. Kulic, I. M. & Schiessel, H. Chromatin dynamics: nucleosomes go mobile 
through twist defects. Phys Rev Lett 91, 148103 (2003). 

163. Makharashvili, N., Koroleva, O., Bera, S., Grandgenett, D. P. & Korolev, S. A 
novel structure of DNA repair protein RecO from Deinococcus radiodurans. 
Structure 12, 1881-9 (2004). 

164. Makharashvili, N., Mi, T., Koroleva, O. & Korolev, S. RecR-mediated 
modulation of RecF dimer specificity for single- and double-stranded DNA. J 
Biol Chem 284, 1425-34 (2009). 

165. Kumaran, S., Kozlov, A. G. & Lohman, T. M. Saccharomyces cerevisiae 
replication protein A binds to single-stranded DNA in multiple salt-dependent 
modes. Biochemistry 45, 11958-73 (2006). 

166. Kozlov, A. G., Jezewska, M. J., Bujalowski, W. & Lohman, T. M. Binding 
Specificity of Escherichia coil Single-Stranded DNA Binding Protein for the chi 
Subunit of DNA pol III Holoenzyme and PriA Helicase. Biochemistry 49, 3555-
3566 (2010). 

167. Kim, H. D. et al. Mg2+-dependent conformational change of RNA studied by 
fluorescence correlation and FRET on immobilized single molecules. Proc Natl 
Acad Sci U S A 99, 4284-9 (2002). 

168. Joo, C., McKinney, S. A., Lilley, D. M. & Ha, T. Exploring rare conformational 
species and ionic effects in DNA Holliday junctions using single-molecule 
spectroscopy. J Mol Biol 341, 739-51 (2004). 

169. Chase, J. W. & Williams, K. R. Single-stranded DNA binding proteins required 
for DNA replication. Annu Rev Biochem 55, 103-36 (1986). 

170. Liu, Y. & West, S. C. Happy Hollidays: 40th anniversary of the Holliday junction. 
Nat Rev Mol Cell Biol 5, 937-44 (2004). 

171. Duckett, D. R. et al. The structure of the Holliday junction, and its resolution. Cell 
55, 79-89 (1988). 

172. Lilley, D. M. J. Structure of helical junctions in  nucleic acids. Quarterly Reviews 
of Biophysics 33, 109-159 (2000). 

173. Eichman, B. F., Vargason, J. M., Mooers, B. H. M. & Ho, P. S. The Holliday 
junction in an inverted repeat DNA sequence: Sequence effects on the structure of 
four-way junctions. Proceedings of the National Academy of Sciences of the 
United States of America 97, 3971-3976 (2000). 

174. McKinney, S. A., Declais, A. C., Lilley, D. M. & Ha, T. Structural dynamics of 
individual Holliday junctions. Nat Struct Biol 10, 93-7 (2003). 

175. McKinney, S. A., Freeman, A. D., Lilley, D. M. & Ha, T. Observing spontaneous 
branch migration of Holliday junctions one step at a time. Proc Natl Acad Sci U S 
A 102, 5715-20 (2005). 

176. Grainger, R. J., Murchie, A. I. H. & Lilley, D. M. J. Exchange Between Stacking 
Conformers in a Four-Way DNA Junction. Biochemistry 37, 23-32 (1998). 

177. Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl. 
Acad. Sci., USA 58, 719-726 (1967). 



 

153 
 

178. Ha, T. et al. Probing the interaction between two single molecules - fluorescence 
resonance energy transfer between a single donor and a single acceptor. 
Proceedings of the National Academy of Sciences of the United States of America 
93, 6264-6268 (1996). 

179. Ha, T. Single molecule fluorescence resonance energy transfer. Methods 25, 78 
(2001). 

180. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-
beam gradient force optical trap for dielectric particles. Optics Letters 11, 288-
290 (1986). 

181. Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through 
a DNA-scrunching mechanism. Science 314, 1144-7 (2006). 

182. Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. tRNA 
selection and kinetic proofreading in translation. Nat Struct Mol Biol 11, 1008-14 
(2004). 

183. Lang, M. J., Fordyce, P. M. & Block, S. M. Combined optical trapping and 
single-molecule fluorescence. Journal of Biology 2, 6 (2003). 

184. Tarsa, P. B. et al. Detecting force-induced molecular transitions with fluorescence 
resonant energy transfer. Angew Chem Int Ed Engl 46, 1999-2001 (2007). 

185. Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. & Bustamante, C. Reversible 
unfolding of single RNA molecules by mechanical force. Science 292, 733-737 
(2001). 

186. Woodside, M. T. et al. Direct measurement of the full, sequence-dependent 
folding landscape of a nucleic acid. Science 314, 1001-4 (2006). 

187. Meiners, J. C. & Quake, S. R. Femtonewton force spectroscopy of single 
extended DNA molecules. Physical Review Letters 84, 5014-5017 (2000). 

188. Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and long-lasting single-
molecule fluorescence imaging. Nat Methods 3, 891-3 (2006). 

189. McKinney, S. A., Joo, C. & Ha, T. Analysis of Single-Molecule FRET 
Trajectories Using Hidden Markov Modeling. Biophys J 91, 1941-51 (2006). 

190. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic Elasticity of 
Lambda-Phage DNA. Science 265, 1599-1600 (1994). 

191. Yu, J., Ha, T. & Schulten, K. Conformational model of the Holliday junction 
transition deduced from molecular dynamics simulations. Nucleic Acids Res 32, 
6683-95 (2004). 

192. Van Duyne, G. D. A structural view of cre-loxp site-specific recombination. Annu 
Rev Biophys Biomol Struct 30, 87-104 (2001). 

193. Peterman, E. J., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. 
Biophys J 84, 1308-16 (2003). 

194. McKinney, S. A., Declais, A. C., Lilley, D. M. J. & Ha, T. Structural dynamics of 
individual Holliday junctions. Nature Structural Biology 10, 93-97 (2003). 

195. Joo, C., McKinney, S. A., Lilley, D. M. J. & Ha, T. Exploring rare conformational 
species and ionic effects in DNA holliday junctions using single-molecule 
spectroscopy. J Mol Biol 341, 739-751 (2004). 

196. Ha, T. et al. Initiation and reinitiation of DNA unwinding by the Escherichia coli 
Rep helicase. Nature 419, 638-641 (2002). 



 

154 
 

197. Ishijima, A. et al. Simultaneous Observation of Individual ATPase and 
Mechanical Events By a Single Myosin Molecule During Interaction With Actin. 
Cell 92, 161-171 (1998). 

198. Shroff, H. et al. Biocompatible force sensor with optical readout and dimensions 
of 6 nm3. Nano Lett 5, 1509-14 (2005). 

199. Gore, J. et al. Mechanochemical analysis of DNA gyrase using rotor bead 
tracking. Nature 439, 100-4 (2006). 

200. Lee, J. B. et al. DNA primase acts as a molecular brake in DNA replication. 
Nature 439, 621-4 (2006). 

201. Idiris, A., Alam, M. T. & Ikai, A. Spring mechanics of alpha-helical polypeptide. 
Protein Eng 13, 763-70 (2000). 

202. Afrin, R., Takahashi, I., Shiga, K. & Ikai, A. Tensile mechanics of alanine-based 
helical polypeptide: force spectroscopy versus computer simulations. Biophys J 
96, 1105-14 (2009). 

203. Lantz, M. A. et al. Stretching the alpha-helix: a direct measure of the hydrogen-
bond energy of a single-peptide molecule. Chemical Physics Letters 315, 61-68 
(1999). 

204. Kageshima, M. et al. Insight into conformational changes of a single alpha-helix 
peptide molecule through stiffness measurements. Chemical Physics Letters 343, 
77-82 (2001). 

205. Brinkley, M. A Brief Survey of Methods for Preparing Protein Conjugates with 
Dyes, Haptens, and Cross-Linking Reagents. Bioconjugate Chemistry 3, 2-13 
(1992). 

206. Cecconi, C., Shank, E. A., Marqusee, S. & Bustamante, C. DNA molecular 
handles for single-molecule protein-folding studies by optical tweezers. Methods 
Mol Biol 749, 255-71. 

207. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat Rev Mol 
Cell Biol 10, 63-73 (2009). 

208. Smith, A.-S. Physics challenged by cells. Nat Phys 6, 726-729 (2010). 
209. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix Elasticity Directs 

Stem Cell Lineage Specification. Cell 126, 677-689 (2006). 
210. Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nat Mater 

2, 278-83 (2003). 
211. Gadella Jr, T. W. J., Jovin, T. M. & Clegg, R. M. Fluorescence lifetime imaging 

microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time 
scale. Biophysical Chemistry 48, 221-239 (1993). 

212. Evers, T. H., van Dongen, E. M., Faesen, A. C., Meijer, E. W. & Merkx, M. 
Quantitative understanding of the energy transfer between fluorescent proteins 
connected via flexible peptide linkers. Biochemistry 45, 13183-92 (2006). 

213. Lamboy, J. A., Kim, H., Lee, K. S., Ha, T. & Komives, E. A. Visualization of the 
nanospring dynamics of the IkappaBalpha ankyrin repeat domain in real time. 
Proc Natl Acad Sci U S A 108, 10178-83 (2011). 

214. Ferreiro, D. U. et al. Stabilizing IkappaBalpha by "consensus" design. J Mol Biol 
365, 1201-16 (2007). 

215. Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246-9 (2006). 



 

155 
 

216. Li, L., Wetzel, S., Pluckthun, A. & Fernandez, J. M. Stepwise unfolding of 
ankyrin repeats in a single protein revealed by atomic force microscopy. Biophys 
J 90, L30-2 (2006). 

217. Seelig, J. et al. Nanoparticle-induced fluorescence lifetime modification as 
nanoscopic ruler: Demonstration at the single molecule level. Nano Letters 7, 
685-689 (2007). 

218. Doose, S., Neuweiler, H. & Sauer, M. Fluorescence quenching by photoinduced 
electron transfer: a reporter for conformational dynamics of macromolecules. 
Chemphyschem 10, 1389-98 (2009). 

219. Michalet, X., Weiss, S. & Jager, M. Single-molecule fluorescence studies of 
protein folding and conformational dynamics. Chem Rev 106, 1785-813 (2006). 

220. Yang, H. et al. Protein conformational dynamics probed by single-molecule 
electron transfer. Science 302, 262-6 (2003). 

221. Zhu, P., Clamme, J. P. & Deniz, A. A. Fluorescence quenching by TEMPO: a 
sub-30 A single-molecule ruler. Biophys J 89, L37-9 (2005). 

222. Chattopadhyay, K., Elson, E. L. & Frieden, C. The kinetics of conformational 
fluctuations in an unfolded protein measured by fluorescence methods. Proc Natl 
Acad Sci U S A 102, 2385-9 (2005). 

223. Doose, S., Neuweiler, H., Barsch, H. & Sauer, M. Probing polyproline structure 
and dynamics by photoinduced electron transfer provides evidence for deviations 
from a regular polyproline type II helix. Proc Natl Acad Sci U S A 104, 17400-5 
(2007). 

224. Neuweiler, H., Doose, S. & Sauer, M. A microscopic view of miniprotein folding: 
enhanced folding efficiency through formation of an intermediate. Proc Natl Acad 
Sci U S A 102, 16650-5 (2005). 

225. Meller, A. & Di Fiori, N. The Effect of Dye-Dye Interactions on the Spatial 
Resolution of Single-Molecule FRET Measurements in Nucleic Acids. 
Biophysical Journal 98, 2265-2272 (2010). 

226. Hwang, H., Kim, H. & Myong, S. Protein induced fluorescence enhancement as a 
single molecule assay with short distance sensitivity. Proc Natl Acad Sci U S A 
108, 7414-8 (2011). 

227. Kunzelmann, S. & Webb, M. R. A Fluorescent, Reagentless Biosensor for ADP 
Based on Tetramethylrhodamine-Labeled ParM. Acs Chemical Biology 5, 415-
425 (2010). 

228. Packard, B. Z., Toptygin, D. D., Komoriya, A. & Brand, L. Profluorescent 
protease substrates: intramolecular dimers described by the exciton model. Proc 
Natl Acad Sci U S A 93, 11640-5 (1996). 

229. Blackman, M. J. et al. Structural and biochemical characterization of a 
fluorogenic rhodamine-labeled malarial protease substrate. Biochemistry 41, 
12244-12252 (2002). 

230. Okoh, M. P., Hunter, J. L., Corrie, J. E. T. & Webb, M. R. A biosensor for 
inorganic phosphate using a rhodamine-labeled phosphate binding protein. 
Biochemistry 45, 14764-14771 (2006). 

231. Hamman, B. D. et al. Tetramethylrhodamine dimer formation as a spectroscopic 
probe of the conformation of Escherichia coli ribosomal protein L7/L12 dimers. 
Journal of Biological Chemistry 271, 7568-7573 (1996). 



 

156 
 

232. Bernacchi, S. & Mely, Y. Exciton interaction in molecular beacons: a sensitive 
sensor for short range modifications of the nucleic acid structure. Nucleic Acids 
Res 29, E62-2 (2001). 

233. Rosenfeld, S. S., Xing, J., Jefferson, G. M., Cheung, H. C. & King, P. H. 
Measuring kinesin's first step. Journal of Biological Chemistry 277, 36731-36739 
(2002). 

234. Toprak, E., Yildiz, A., Hoffman, M. T., Rosenfeld, S. S. & Selvin, P. R. Why 
kinesin is so processive. Proceedings of the National Academy of Sciences of the 
United States of America 106, 12717-12722 (2009). 

235. Zhuang, X. et al. Fluorescence quenching: A tool for single-molecule protein-
folding study. Proc Natl Acad Sci U S A 97, 14241-4 (2000). 

236. Kellermayer, M. S. Z., Grama, L. & Somogyi, B. Global configuration of single 
titin molecules observed through chain-associated rhodamine dimers. Proc Natl 
Acad Sci U S A 98, 14362-14367 (2001). 

237. van den Ent, F., Moller-Jensen, J., Amos, L. A., Gerdes, K. & Lowe, J. F-actin-
like filaments formed by plasmid segregation protein ParM. Embo Journal 21, 
6935-6943 (2002). 

238. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. 
Nature 473, 484-U322 (2011). 

239. Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and longlasting single-
molecule fluorescence imaging. Nature Methods 3, 891-893 (2006). 

240. Zhuang, X. Single-molecule RNA science. Annu Rev Biophys Biomol Struct 34, 
399-414 (2005). 

241. Ha, T. Structural dynamics and processing of nucleic acids revealed by single-
molecule spectroscopy. Biochemistry 43, 4055-63 (2004). 

242. Herbert, K. M., Greenleaf, W. J. & Block, S. M. Single-molecule studies of RNA 
polymerase: motoring along. Annu Rev Biochem 77, 149-76 (2008). 

243. Ajtai, K. et al. Stereospecific reaction of muscle fiber proteins with the 5' or 6' 
isomer of (iodoacetamido)tetramethylrhodamine. Biochemistry 31, 12431-40 
(1992). 

244. McKinney, S. A., Declais, A. C., Lilley, D. M. J. & Ha, T. Structural dynamics of 
individual Holliday junctions. Nature Structural Biology 10, 93-97 (2003). 

245. Lee, J. Y., Okumus, B., Kim, D. S. & Ha, T. J. Extreme conformational diversity 
in human telomeric DNA. Proceedings of the National Academy of Sciences of 
the United States of America 102, 18938-18943 (2005). 

246. Jena, P. V. et al. G-Quadruplex DNA Bound by a Synthetic Ligand is Highly 
Dynamic. Journal of the American Chemical Society 131, 12522-12523 (2009). 

247. Hadden, J. M., Convery, M. A., Declais, A. C., Lilley, D. M. & Phillips, S. E. 
Crystal structure of the Holliday junction resolving enzyme T7 endonuclease I. 
Nat Struct Biol 8, 62-7 (2001). 

248. Lilley, D. M. & White, M. F. The junction-resolving enzymes. Nat Rev Mol Cell 
Biol 2, 433-43 (2001). 

249. Hadden, J. M., Declais, A. C., Carr, S. B., Lilley, D. M. & Phillips, S. E. The 
structural basis of Holliday junction resolution by T7 endonuclease I. Nature 449, 
621-4 (2007). 



 

157 
 

250. Hadden, J. M., Declais, A. C., Phillips, S. E. & Lilley, D. M. Metal ions bound at 
the active site of the junction-resolving enzyme T7 endonuclease I. EMBO J 21, 
3505-15 (2002). 

251. Declais, A. C. et al. The complex between a four-way DNA junction and T7 
endonuclease I. EMBO J 22, 1398-409 (2003). 

252. Guan, C. & Kumar, S. A single catalytic domain of the junction-resolving enzyme 
T7 endonuclease I is a non-specific nicking endonuclease. Nucleic Acids Res 33, 
6225-34 (2005). 

253. Karymov, M., Daniel, D., Sankey, O. F. & Lyubchenko, Y. L. Holliday junction 
dynamics and branch migration: single-molecule analysis. Proc Natl Acad Sci U S 
A 102, 8186-91 (2005). 

254. Amit, R., Gileadi, O. & Stavans, J. Direct observation of RuvAB-catalyzed 
branch migration of single Holliday junctions. Proc Natl Acad Sci U S A 101, 
11605-10 (2004). 

255. Norman, D. G., Grainger, R. J., Uhrin, D. & Lilley, D. M. Location of cyanine-3 
on double-stranded DNA: importance for fluorescence resonance energy transfer 
studies. Biochemistry 39, 6317-24 (2000). 

256. Iqbal, A., Wang, L., Thompson, K. C., Lilley, D. M. & Norman, D. G. The 
structure of cyanine 5 terminally attached to double-stranded DNA: implications 
for FRET studies. Biochemistry 47, 7857-62 (2008). 

257. Ouellet, J., Schorr, S., Iqbal, A., Wilson, T. J. & Lilley, D. M. Orientation of 
cyanine fluorophores terminally attached to DNA via long, flexible tethers. 
Biophys J 101, 1148-54 (2011). 

258. Ha, T., Enderle, T., Chemla, S., Selvin, R. & Weiss, S. Single Molecule 
Dynamics Studied by Polarization Modulation. Phys Rev Lett 77, 3979-3982 
(1996). 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


